

1 **Title:** Optimizing the conservation of migratory species over their full annual cycle

2

3 **Authors:** Schuster R.^{a,b,*}, Wilson S.^{a,c}, Rodewald, A. D.^{d,e}, Arcese P.^f, Fink, D.^d, Auer, T.^d,

4 Bennett, J. R^a

5

6 ^aDepartment of Biology, 1125 Colonel By Drive, Carleton University, Ottawa ON, K1S 5B6
7 Canada.

8 ^bEcosystem Science and Management Program, 3333 University Way, University of Northern
9 British Columbia, Prince George BC, V2N 4Z9 Canada.

10 ^cEnvironment and Climate Change Canada, National Wildlife Research Centre, 1125 Colonel
11 By Drive, Ottawa, Ontario, Canada, K1S 5B6.

12 ^dCornell Lab of Ornithology, 159 Sapsucker Woods Rd., Ithaca, NY 14850, USA

13 ^eDepartment of Natural Resources, Cornell University, Fernow Hall, #111, Ithaca, NY 14853,
14 USA.

15 ^fDepartment of Forest and Conservation Sciences, 2424 Main Mall, University of British
16 Columbia, Vancouver BC, V6T 1Z4 Canada.

17 * Corresponding author: Richard Schuster, Department of Biology, 1125 Colonel By Drive,
18 Carleton University, Ottawa ON, K1S 5B6 Canada. 250-635-2321. [mail@richard-](mailto:mail@richard-schuster.com)
19 schuster.com

20

21 **Keywords:** migratory species, conservation, spatial optimization, citizen-science, land-sharing,
22 land-sparing

23 **Abstract**

24 Limited knowledge of the distribution, abundance, and habitat associations of migratory species
25 introduces uncertainty about the most effective conservation actions. We used Neotropical
26 migratory birds as a model group to evaluate contrasting approaches to land prioritization to
27 support $\geq 30\%$ of the global abundances of 117 species throughout the annual cycle in the
28 Western hemisphere. Conservation targets were achieved in 43% less land area in plans based on
29 annual vs. weekly optimizations. Plans agnostic to population structure required comparatively
30 less land area to meet targets, but at the expense of representation. Less land area was also
31 needed to meet conservation targets when human-dominated lands were included rather than
32 excluded from solutions. Our results point to key trade-offs between efforts minimizing the
33 opportunity costs of conservation vs. those ensuring spatiotemporal representation of
34 populations, and demonstrate a novel approach to the conservation of migratory species based on
35 leading-edge abundance models and linear programming to identify portfolios of priority
36 landscapes and inform conservation planners.

37

38 Land-use change is a key threat to the conservation of biodiversity, ecosystems¹, and the services
39 they provide globally^{2,3}, and migratory species are particularly vulnerable to such change given
40 the vast geographic areas they occupy over the annual cycle^{4,5}. Indeed, a recent global
41 assessment indicated that protected areas adequately protect the ranges of just 9% of migratory
42 bird species⁵. Strategic approaches to identify and conserve habitats critical to the persistence of
43 migratory species are therefore sorely needed.

44 Unfortunately, substantial gaps in knowledge of the abundance, distribution, and
45 demography of most migratory species⁶ have hampered strategic planning and led to uncertainty

46 about the optimal allocation of conservation effort^{5,7}. Given that populations of many migratory
47 species continue to decline^{4,8}, there is an urgent need to identify portfolios of lands critical to the
48 persistence of target species, and amenable to management in support of species conservation
49 without compromising human well-being.

50 Multi-species decision support tools can facilitate the identification of areas crucial to the
51 conservation of migratory species but have remained intractable due to limits on knowledge and
52 computing power. We capitalized on advances in crowd-sourced models of bird species
53 abundance and distribution^{9,10} and linear programming techniques¹¹ to develop a robust multi-
54 species planning tool to estimate the land area needed to conserve 117 Nearctic-Neotropical
55 migratory songbirds throughout the annual cycle (SI Table 1). Specifically, we combined fine-
56 scale, predictive models of distribution and abundance estimated weekly throughout the year
57 with spatial optimization techniques¹² to identify the amount and type of land needed to reach
58 our conservation targets given alternative planning scenarios at hemispheric scales.

59 We first estimated the abundance and distribution of 117 migratory bird species weekly,
60 using spatiotemporal exploratory models^{9,13} to calculate the relative abundance of each species
61 throughout the annual cycle (SI Fig. 1). We next recorded and compared the geographic area
62 requirements and land cover types selected when optimizing during each week of the annual
63 cycle (hereafter, “weekly”), versus simultaneously over the entire annual cycle (hereafter, “full
64 annual cycle”). Because all existing conservation plans consider stationary phases of the
65 breeding and non-breeding periods separately^{14,15}, our analysis is the first example of spatial
66 optimization scenarios which track populations over their full annual cycle.

67 We next created area-optimized solutions designed to conserve lands used by 30% of the
68 global populations of all 117 species in each of 52 weeks by sampling species a) over their entire

69 range, without accounting for population structure, or b) by sampling within 5 regional
70 population clusters, identified weekly to accommodate spatial variation in population structure
71 and migratory connectivity. Our 30% target is arbitrary, but intermediate to the 17% of terrestrial
72 ecosystems targeted by the Convention on Biodiversity¹⁶ and 50% targets suggested by
73 comparative analysis¹⁷, and it can be easily modified to reflect strategic goals¹⁸.

74 Last, we compared area-based conservation plans designed to represent different
75 perspectives about the potential contribution of human-modified lands to the conservation of
76 migratory birds. Our ‘land-sparing’ approach emphasized the protection of relatively intact
77 habitat as indicated by a low human footprint index¹⁹ (SI Fig. 2), whereas our ‘land sharing’
78 approach permitted the inclusion of landscapes converted to more intensive use by humans²⁰.
79 Exploring such constraints represents a critical step in conservation planning, given that human
80 cultural history, values, and well-being can all affect conservation success and represent critical
81 inputs into structured decisions about the most efficacious actions²¹⁻²³.

82

83 **Results and Discussion**

84 The land area required to achieve conservation targets declined by 56% on average when
85 prioritizations were conducted over the full annual cycle rather than weekly (range = 49% to
86 65%; Table 1). Full annual cycle solutions also resulted in less land area being prioritized in
87 land-sharing and land-sparing scenarios as compared to solution based on weekly approaches
88 (62% and 49%, respectively; Table 1, Fig. 1, 2). These area reductions under full annual cycle
89 planning generally result from cases such as the inclusion of sites used by a single species in two
90 or more weeks of the year, or by two or more species in during two or more weeks.

91 Because population structure – let alone its consequences for movement or connectivity –
92 is poorly understood in most migratory species²⁴, we developed an innovative approach to
93 account for structure statistically. Specifically, we delineated the populations of each species into
94 5 spatial clusters and stratified our weekly sampling among clusters to capture the full
95 geographic distribution of each species. As expected, the area required to reach our conservation
96 targets increased when we accommodated population structure, though relatively less so under a
97 land-sparing (13% increase) compared to a land-sharing (26% increase) scenario (Table 1, Figs.
98 1, 2). Although we currently lack empirical data with which our spatial clusters can be validated,
99 our predictions can be tested directly as tracking and genetic mapping techniques improve to
100 allow comparisons of observed and predicted migration routes. That said, our current method
101 provides a useful approach to ensure geographic representation of population structure of a broad
102 suite of species using publicly-available citizen science data in spatial planning tools.

103 Many conservation interventions, including land protection, are constrained by limits on
104 fiscal or human resources and the opportunity costs of development. Our results indicate that
105 land area represents one of the key trade-offs in conservation designed to account for population
106 structure and migratory connectivity. In particular, we showed that sampling populations across
107 the species range each week required almost twice the amount of land compared to plans based
108 on the relative abundance of species mapped over the full annual cycle. Our work thus offers the
109 first empirical evidence to support recent calls to assess conservation needs of migratory species
110 across the annual cycle in ways that conserve regional representation, species diversity, and
111 adaptive potential^{5,7,10,25}. These findings suggest a need to re-evaluate conservation planning
112 processes based on less precise methods. For example, government and non-governmental
113 organizations allocate up to \$1 billion annually to bird conservation based on aspatial targets and

114 expert elicitation, with most actions directed to breeding habitat^{14,15}. Our results suggest an
115 alternative approach that stands to meet conservation targets at lower land management cost and,
116 potentially, more compatible with human-dominated lands potentially serving a dual purpose of
117 supporting migratory species and human livelihoods.

118 Another key result of our work is that incorporating conservation objectives in human-
119 dominated habitats may dramatically improve the efficiency of conservation area designs if the
120 demographic performance of migrants is similar in ‘working’ and ‘intact’ landscapes. We found
121 that land-sharing approaches required 27% and 18% less land area, respectively, than land-
122 sparing approaches including or ignoring population structure (Table 1). Our findings thus add to
123 a growing body of literature indicating the need to broaden the lens through which we view
124 conservation to both accommodate human livelihoods and conserve valued species^{21–23}.

125 Our comparisons of land-sharing and land-sparing approaches identified other
126 geographical or ecosystem-related factors that might influence conservation decisions. Most
127 notably, land-sparing approaches selected larger areas of needle-leaved forest in boreal and
128 mountainous zones of western Canada, and more broad-leaved evergreen forest in the eastern
129 Andes and western Amazon basin (Fig. 1,2; Table 2). Weekly and full annual cycle approaches
130 to land-sparing resulted in geographically similar outcomes (Fig. 1,2), but also differed in land
131 cover types selected (Table 2). Whereas annual cycle planning with land sparing consistently
132 increased the amount of land prioritized over most types of land cover, weekly approaches with
133 and without land sparing resulted in large increases in area requirement for some cover-types and
134 decreases in others (e.g., Table 2 and Table S1). In particular, a weekly, land-sparing approach
135 favored broadleaf evergreen over mixed and broadleaf deciduous forest. Overall, these results
136 illustrate potential trade-offs that conservation practitioners considering optimized portfolios

137 must consider as additional targets and constraints are identified and incorporated in higher-level
138 management models²³. Even without consensus among conservation practitioners on which
139 scenario to focus on, there is still a considerable amount of land selected in at least six of the
140 eight scenarios investigated, illustrating priority areas that most approaches agree on (126,000
141 km², Figure 3).

142 Several additional caveats arise from our results, particularly with respect to land-sharing
143 and sparing. Implementing conservation action in working landscapes may be more challenging
144 than in areas with less human activity if the opportunity costs of management are higher in
145 developed than undeveloped landscapes. For example, even if identified as a high-priority site
146 for conservation in our land-sharing scenarios, land already converted to human use may be
147 more vulnerable to degradation in the future than more intact areas²⁶. Such habitat degradation,
148 especially if combined with other anthropogenic stressors that may directly or indirectly reduce
149 survival or performance of wildlife²⁷, could make it difficult to reach population goals for
150 species even if area needs are lower compared to less developed landscapes. In practice, both
151 approaches are likely to be utilized given that target species will differ in their reliance on more
152 or less developed habitats²⁸. Therefore, our approach to prioritization provides planners with
153 guidance on the approximate locations and requirements for land needed to meet our stated
154 targets under a range of scenarios. With such portfolios in hand, planners can then more readily
155 assess the cost-effectiveness of alternate approaches to land management and socio-economic
156 policies most favorable to conservation and human well-being²¹⁻²³. We also emphasize that the
157 30% target used here is illustrative only. In some cases, higher targets may be needed to avoid
158 range contraction or the local extinction of sub-populations, to conserve ecological function such
159 as seed dispersal or pest control²⁹, or to maintain the evolutionary potential of locally-adapted

160 populations^{25,30}. Nevertheless, our 30% target returned solutions in all cases which vastly exceed
161 the areal extent of existing conservation plans in support of Neotropical migrant birds.

162

163 Conclusion

164 Ongoing declines in the abundance and distribution of many migratory species amid severe
165 constraints on financial and human resources³¹ points to an urgent need for area-based plans that
166 optimize the efficiency of conservation investments in ways that achieve conservation targets
167 while minimizing the opportunity costs of land conservation and impacts on human livelihood^{21–}
168 ^{23,32}. Our solutions minimized the total land area prioritized for conservation to provide an area-
169 efficient portfolio of lands for further consideration by conservation planners. Three key lessons
170 can be derived from our results. First, scenarios based on the distributions of abundance of all
171 117 species over the entire annual cycle required less land area to meet conservation targets than
172 scenarios based on optimizations that used the weekly distributions of those species throughout
173 the year. Second, accounting for population structure through stratified sampling across the
174 entire distribution of species increased the total land area required to achieve conservation
175 targets. Despite requiring more land area, ensuring geographic representation may be necessary
176 to the long-term persistence of species, particularly in widely-distributed species with population
177 genetic structure potentially reflecting local adaptation to climatic conditions^{25,30}. Third, area-
178 based plans that accommodated human activity (land-sharing) were more efficient than land-
179 sparing approaches that avoided areas with a high human footprint. However, because migrants
180 vary spatially and temporally in their tolerance of human-impacted landscapes³³, achieving
181 conservation goals will likely require a portfolio of sites located in both intact and disturbed
182 landscapes. Third, although our planning scenarios focused on Neotropical migratory birds, our

183 approach could be easily adjusted and replicated in other migratory species and systems with
184 sufficient data. In the case of birds, citizen science data and advanced prioritization tools allowed
185 us to reveal marked efficiencies in area-based plans spanning the full annual cycle and multiple
186 jurisdictions to conserve 117 individual species simultaneously.

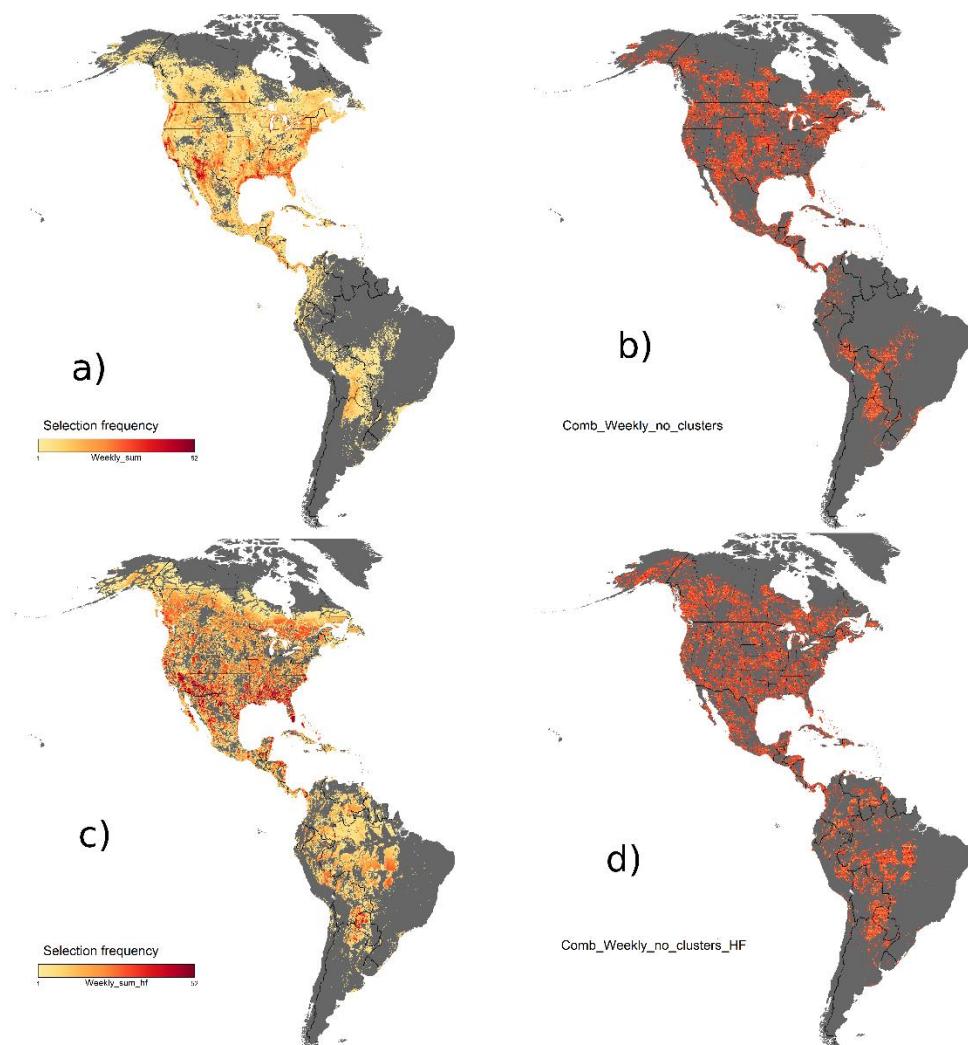
187

188 **Table 1.** Area requirements to meet a 30% population target for 117 Neotropical migrant bird
189 species for different prioritization approaches under land sharing and land sparing scenarios.

Area Constraint	Single Population		Population Structure	
	Weekly	Annual Cycle	Weekly	Annual Cycle
Land Sharing	14.38	5.51	20.03	6.93
Land Sparing	14.54	7.45	16.44	8.45

190

191 Table entries show the area needed to meet targets (million km²). Weekly prioritizes the most
192 efficient target for each week of the year independently and sums the total area across all weeks.
193 Annual cycle prioritizes the most efficient target for all weeks combined. Single population
194 identifies the 30% area target for each species from anywhere within the species range.
195 Population structure identifies population sub-structure using a clustering approach to ensure
196 representation from across the range of each species in each week of the year.

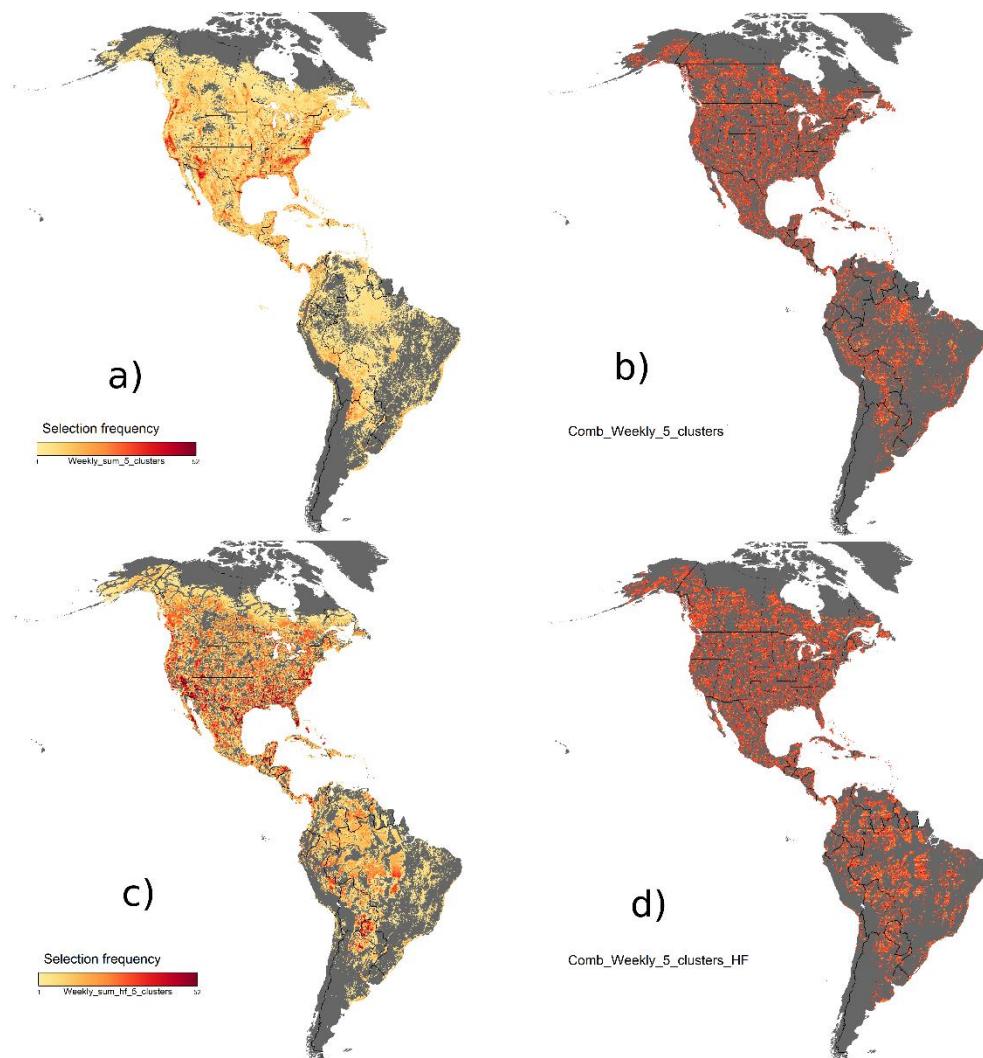

197 **Table 2.** Area selected (1000 km²) for major land cover types using full annual cycle planning for land sharing vs. sparing scenarios
 198 and for single population vs population structure approaches.

Land cover	Area available	Single Population			Population Structure		
		Land Sparing	Land Sharing	% reduction	Land Sparing	Land Sharing	% reduction
Cropland/Mosaic Cropland	2269	339	313	8	445	439	1
Grassland	5555	1198	1088	9	1313	1238	6
Urban areas	205	9	95	-956	25	74	-196
Broadleaf Deciduous Forest	1994	627	637	-2	619	548	11
Broadleaf Evergreen Forest	6921	1595	735	54	2024	1433	29
Needleleaf Forest	4599	1359	1006	26	1395	1160	17
Mixed Forest	966	310	246	21	311	285	8
Mosaic Forest	934	207	160	23	229	194	15
Flooded Forest	540	148	97	34	162	136	16
Shrubland	4226	912	643	29	1135	864	24
Wetland	468	144	74	49	159	107	33
Barren	1053	207	79	62	208	109	48
Total	31615	7055	5174	27	8025	6586	18

199
 200 Area available is the total amount of each land cover available based on all cells throughout the year where ≥ 1 species was present. %
 201 reduction is the percentage decrease in the area required for each land cover type with land sharing in comparison to land sparing. Not
 202 all land cover classes are included in the table and therefore individual land cover values do not sum to the total in each column. Land
 203 cover data was extracted from the global land cover map for 2015 (300m resolution)⁵⁰. See Supplemental Information Table 3 for
 204 equivalent land area estimates under weekly planning scenarios.

205 **Figure 1.** Comparison of areas prioritized for weekly and full annual cycle planning under a land
206 sharing approach allowing for the inclusion of human dominated landscapes versus a land
207 sparing approach that excludes areas of high human footprint. The prioritization is based on a
208 target of 30% of global populations of 117 species of Neotropical migratory birds when each
209 species range is considered as a single population. a) = land sharing, weekly, b) = sharing annual
210 cycle, c) = land sparing weekly, d) = land sparing annual cycle. A more detailed version of this
211 figure focusing on northern South America is SI Figure 4.

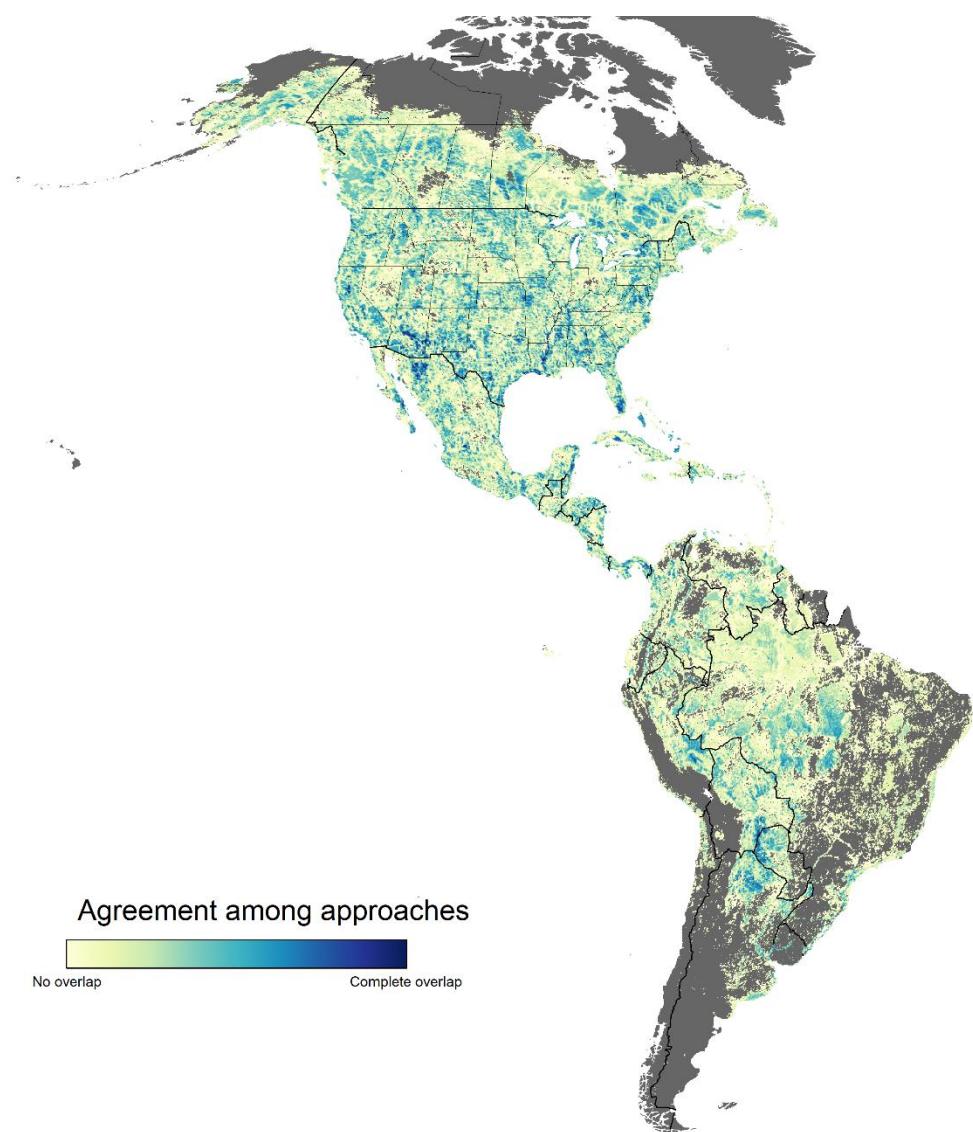
212



213

214

215 **Figure 2.** Comparison of areas prioritized for weekly and full annual cycle planning under a land
216 sharing approach allowing for the inclusion of human dominated landscapes versus a land
217 sparing approach that excludes areas of high human footprint. The prioritization is based on a
218 target of 30% of global populations of 117 species of Neotropical migratory birds when each
219 species range is considered with population structure (five regional clusters). a) = land sharing,
220 weekly, b) = sharing annual cycle, c) = land sparing weekly, d) = land sparing annual cycle. A
221 more detailed version of this figure focusing on northern South America is SI Figure 5.


222

223

224

225 **Figure 3.** Range of agreement between the eight scenarios investigated. Darker blue indicates
226 that most or all scenarios selected specific areas across the Western Hemisphere, and lighter
227 yellow indicates areas of high scenario specificity. Scenario types considered: i) summing
228 scenarios for each species in each week of the year vs. optimizing over all weeks and species in a
229 full annual cycle, ii) including vs. ignoring spatial variation in population structure and migratory
230 connectivity, and iii) incorporating vs. avoiding human-dominated landscapes in solutions.

231
232

233 **Methods**

234 *Species selection*

235 We included 117 species of Neotropical migratory passerines for our analysis
236 (Supplemental Information Table 1). These species fell into two broad groups based on their
237 breeding and stationary non-breeding ranges: 1) species where individuals breed in North
238 America north of the US-Mexico border and migrate south of the Tropic of Cancer during the
239 non-breeding period (n=101 species, SI Table 1), and 2) species with both migratory and resident
240 populations or subspecies, for which individuals from migratory populations north of the US-
241 Mexico border move south of the Tropic of Cancer during the non-breeding period (n=16
242 species).

243

244 *Approaches to conservation prioritization*

245 We created 8 planning scenarios using weekly STEM models for each of 117 focal
246 species and incorporating different assumptions about temporal scale and cost metrics employed
247 in prioritization. First, we contrasted scenarios optimizing during each week of the year
248 separately versus simultaneously over the entire annual cycle. We next created area-optimized
249 solutions to conserve 30% of the global populations of all species in each week by sampling each
250 species a) over their entire range, without accounting for population structure, or b) as 5 regional
251 population clusters identified weekly to accommodate spatial variation in population structure
252 and migratory connectivity. Third, we compared area-based conservation plans designed to
253 represent different perspectives about the potential contribution of human-modified landscapes to
254 the conservation of migratory birds, while including either the unrestricted cost metric or the

255 human footprint cost metric, to create a total of 8 scenarios (SI Fig. 3). We used the prioritizr³⁴ R
256 package for the analysis, which interfaces with the Gurobi³⁵ optimization software.

257

258 *Spatial prioritization approach*

259 Here we use the concept of systematic conservation planning³⁶, to inform choices about
260 areas to protect, in order to optimize outcomes for biodiversity while minimizing societal costs³⁷.
261 To achieve the goal to optimize the trade-off between conservation benefit and socioeconomic
262 cost, i.e. to get the most benefit for limited conservation funds, we strive to minimize an
263 objective function over a set of decision variables, subject to a series of constraints. Integer linear
264 programming (ILP) is the subset of optimization algorithms used here to solve reserve design
265 problems. The general form of an ILP problem can be expressed in matrix notation as:

266
$$\text{Minimize } c^T x \text{ subject to } Ax \geq b$$

267 Where x is a vector of decision variables, c and b are vectors of known coefficients, and A is the
268 constraint matrix. The final term specifies a series of structural constraints where relational
269 operators for the constraint can be either \geq the coefficients. In the minimum set cover problem, c
270 is a vector of costs for each planning unit, b a vector of targets for each conservation feature, the
271 relational operator would be \geq for all features, and A is the representation matrix with $A_{ij}=r_{ij}$, the
272 representation level of feature i in planning unit j. We set an objective to find the solution that
273 fulfills all the targets and constraints for the smallest area, which we use as our measure of cost
274 ¹¹. This objective is similar to that used in Marxan, the most widely used spatial conservation
275 planning tool³⁸.

276

277 *Spatiotemporal exploratory models*

278 We used spatiotemporal exploratory models (STEM)^{9,13,39} to generate estimates of
279 relative abundance for each species. STEM is a type of species distribution model created as an
280 ensemble of local regression models generated from a spatiotemporal block subsampling design.
281 Repeatedly subsampling and partitioning the study extent into grids of spatiotemporal blocks,
282 and then fitting independent regression models (base models) in each block produces an
283 ensemble of partially overlapping local models. Estimates at a given location and date are made
284 by averaging across all the local models that contain the location and date. Combining estimates
285 across the ensemble controls for inter-model variability⁴⁰ and adapts to non-stationary predictor-
286 response relationships¹³. To account for spatial variation in the density of the bird observation
287 data⁴¹, smaller spatiotemporal blocks ($10^\circ \times 10^\circ \times 30$ continuous days) were used north of 12°
288 latitude and larger blocks ($20^\circ \times 20^\circ \times 30$ continuous days) were used in the southern portion of
289 the study extent.

290 The bird observation data used to implement STEM came from the eBird citizen-science
291 database⁴². The data included species counts from complete checklists collected under the
292 “traveling”, “stationary”, and “areal” protocols from January 1, 2004 to December 31, 2016
293 within the spatial extent bounded by 180° to 30° W Longitude (as well as Alaska between 150° E
294 and 180° E). This resulted in a dataset consisting of 14 million checklists collected at 1.7 million
295 unique locations, of which 10% were withheld for model validation.

296 Within each base model, species’ occupancy and abundance was assumed to be
297 stationary. We fit zero-inflated boosted regression trees⁹ to predict the observed counts
298 (abundance) of species based on three general classes of predictors: i) spatial predictors to
299 account for spatial (and spatiotemporal) patterns; ii) temporal predictors to account for trends;

300 and iii) predictors that describe the observation/detection process, which account for variation in
301 detection rates, a nuisance when making inference about species occupancy and abundance.
302 Spatial information was captured using elevation⁴³ and NASA MODIS land⁴⁴ and water cover
303 data. The MODIS data were summarized as the proportion and spatial configuration of each of
304 the 19 cover classes within 2.8×2.8 km (784 hectare) pixels centered at each eBird location
305 using FRAGSTATS⁴⁵ and SDMTools⁴⁶. Summarizing the land-cover information at this
306 resolution reduced the impact of erroneous cover classifications, and reduced the impact of
307 inaccurate eBird checklist locations. The time of day was used to model variation in availability
308 for detection; e.g., diurnal variation in behavior, such as participation in the “dawn chorus”⁴⁷.
309 Day of the year (1-366) was used to capture day-to-day changes in occupancy, and year was
310 included to account for year-to-year differences. Finally, to account for variation in detection
311 rates variables for the number of hours spent searching for species, the length of the transect
312 traveled during the search, and the number of people in the search party were included in each
313 base model.

314 Estimates of relative abundance and occupancy were rendered at weekly temporal
315 resolution and 8.4×8.4 km spatial resolution. Each estimate was calculated as an ensemble
316 average across 50-100 base models. The quantity estimated was either the expected number of
317 birds of a given species (abundance) or the probability of the species being reported (occupancy)
318 by a typical eBird participant on a search starting from the center of the pixel from 7:00 to 8:00
319 AM while traveling 1 km.

320

321 *Sampling for Population Structure and Migratory Connectivity*

322 Many of the species used here are represented by multiple sub-species or populations known or
323 suspected to follow different migratory pathways and use different breeding or wintering
324 habitats^{5,18,48}. However, in the absence of detailed knowledge on migration pathways for the vast
325 majority of species, we developed a system of stratified sampling to represent the weekly
326 distribution and spatial structure of each of 117 focal species to insure representation across their
327 range throughout the annual cycle. To do so, we first conducted cluster analyses of weekly
328 distribution maps for all 117 species to identify 5 clusters of equal abundance that encompassed
329 the entire species range to insure representation across it. Our cluster analysis was based on a
330 dissimilarity matrix of geographic locations and abundances (which were weighted by 1/3 to
331 primarily focus on geographic effects and not bias cluster delineation toward spatially separated
332 abundance clusters), and used the CLARA algorithm, which is an extension of the k-medoids
333 technique for large datasets⁴⁹. Our use of 5 clusters was arbitrary but flexible, and could be
334 adjusted by the number of sub-species, races or sub-populations of interest.

335

336 *Land use constraints*

337 We used two metrics to constrain our systematic conservation prioritization. First, we
338 used a constant cost metric, where each planning unit was assigned a cost value of 1. Second, we
339 used human footprint (2009; 1 km resolution)¹⁹ to identify areas more and less subject to human
340 use, access or development pressures; specifically, we calculated the mean human footprint value
341 for each 8.4 x 8.4 km pixel in our study area and used it as the ‘cost’ of each pixel during
342 prioritization.

343

344 *Land cover representation*

345 After the prioritization analyses, we summarized the major land cover types for each
346 scenario that we generated. We used the 2015 data set of the global land cover map⁵⁰ at a 300m
347 resolution and clipped the original data to the study area. For each scenario, we used the
348 geospatial data abstraction library⁵¹ to warp the selected cells from the prioritization onto the
349 raster grid of the land cover dataset. There were 37 land cover classes identified across scenarios
350 and the frequency and area amount of each was summarized for all scenarios. As a final step we
351 combined similar land cover classes into broader classes (SI Table 2) and we used these to
352 examine differences in area and land cover types selected under single season vs. full annual
353 cycle planning and for land sparing vs land sharing scenarios (Table 2).

354

355 *Code availability*

356 All computer code used in analysis, files generated from the analysis and outputs such as
357 figures and tables have been deposited and will be made publicly available on publication here:
358 https://osf.io/58hgs/?view_only=4bddcf37b95e470da3d3d90ba0f260de. The STEM model
359 outputs used as inputs to the analysis will be made publicly available shortly by the Cornell Lab
360 of Ornithology.

361 **Acknowledgments:** RS is supported by a Liber Ero Fellowship, ADR by a Garvin endowment,
362 and JRB and PA by the Natural Sciences and Engineering Research Council of Canada. We also
363 thank the eBird participants for their contributions and eBird team for their support. This work
364 was funded by The Leon Levy Foundation, The Wolf Creek Charitable Foundation, NASA
365 (NNH12ZDA001N-ECOF), Microsoft Azure Research Award (CRM: 0518680), and the
366 National Science Foundation (ABI sustaining: DBI-1356308; computing support from CNS-
367 1059284 and CCF-1522054). Data, analysis scripts and full results are archived here:
368 https://osf.io/58hgs/?view_only=4bddcf37b95e470da3d3d90ba0f260de.

369 **Author Contributions** RS, SW, ADR, JRB and PA conceived the study. RS, DF and TA
370 collected data and conducted analyses. All authors contributed to writing and editing the paper.

371 **References**

- 372 1. Maxwell, S. L., Fuller, R. A., Brooks, T. M. & Watson, J. E. M. Biodiversity: The ravages of
373 guns, nets and bulldozers. *Nature* **536**, 143–145 (2016).
- 374 2. Bauer, S. & Hoye, B. J. Migratory Animals Couple Biodiversity and Ecosystem Functioning
375 Worldwide. *Science* **344**, (2014).
- 376 3. Semmens, D. J., Diffendorfer, J. E., López-Hoffman, L. & Shapiro, C. D. Accounting for the
377 ecosystem services of migratory species: Quantifying migration support and spatial
378 subsidies. *Ecological Economics* **70**, 2236–2242 (2011).
- 379 4. Wilcove, D. S. & Wikelski, M. Going, Going, Gone: Is Animal Migration Disappearing.
380 *PLoS Biology* **6**, e188 (2008).
- 381 5. Runge, C. A., Martin, T. G., Possingham, H. P., Willis, S. G. & Fuller, R. A. Conserving
382 mobile species. *Frontiers in Ecology and the Environment* **12**, 395–402 (2014).
- 383 6. Zuckerberg, B., Fink, D., La Sorte, F. A., Hochachka, W. M. & Kelling, S. Novel seasonal
384 land cover associations for eastern North American forest birds identified through dynamic
385 species distribution modelling. *Diversity and Distributions* **22**, 717–730 (2016).
- 386 7. Runge, C. A., Tulloch, A. I. T., Possingham, H. P., Tulloch, V. J. D. & Fuller, R. A.
387 Incorporating dynamic distributions into spatial prioritization. *Diversity and Distributions*
388 **22**, 332–343 (2016).
- 389 8. Harris, G., Thirgood, S., Hopcraft, J., Crome, J. & Berger, J. Global decline in
390 aggregated migrations of large terrestrial mammals. *Endangered Species Research* **7**, 55–76
391 (2009).
- 392 9. Johnston, A. *et al.* Abundance models improve spatial and temporal prioritization of
393 conservation resources. *Ecological Applications* **25**, 1749–1756 (2015).

394 10. La Sorte, F. A. *et al.* Global change and the distributional dynamics of migratory bird
395 populations wintering in Central America. *Global Change Biology* (2017).
396 doi:10.1111/gcb.13794

397 11. Beyer, H. L., Dujardin, Y., Watts, M. E. & Possingham, H. P. Solving conservation planning
398 problems with integer linear programming. *Ecological Modelling* **328**, 14–22 (2016).

399 12. Moilanen, A., Wilson, K. A. & Possingham, H. P. *Spatial conservation prioritization: 400 quantitative methods and computational tools*. **6**, (Oxford University Press Oxford, UK,
401 2009).

402 13. Fink, D. *et al.* Spatiotemporal exploratory models for broad-scale survey data. *Ecological 403 Applications* **20**, 2131–2147 (2010).

404 14. Species At Risk Act. *Bill C-5, An act respecting the protection of wildlife species at risk in 405 Canada*. (2002).

406 15. U.S. Congress. *Endangered Species Act of 1973* (16 U.S.C. 1531–1544, 87 Stat. 884).
407 (1973).

408 16. MacKinnon, D. *et al.* Canada and Aichi Biodiversity Target 11: understanding ‘other
409 effective area-based conservation measures’ in the context of the broader target. *Biodiversity
410 and Conservation* **24**, 3559–3581 (2015).

411 17. Noss, R. F. *et al.* Bolder thinking for conservation. *Conservation Biology* **26**, 1–4 (2012).

412 18. Wilson, S. *et al.* Prioritize diversity or declining species? Trade-offs and synergies in spatial
413 planning for the conservation of migratory birds. *bioRxiv* 429019 (2018).
414 doi:10.1101/429019

415 19. Venter, O. *et al.* Sixteen years of change in the global terrestrial human footprint and
416 implications for biodiversity conservation. *Nature Communications* **7**, (2016).

417 20. Phalan, B., Onial, M., Balmford, A. & Green, R. E. Reconciling food production and
418 biodiversity conservation: land sharing and land sparing compared. *Science* **333**, 1289–1291
419 (2011).

420 21. Barrett, C. B. & Arcese, P. Are integrated conservation-development projects (ICDPs)
421 sustainable? On the conservation of large mammals in sub-Saharan Africa. *World
422 development* **23**, 1073–1084 (1995).

423 22. Ban, N. C. *et al.* A social–ecological approach to conservation planning: embedding social
424 considerations. *Frontiers in Ecology and the Environment* **11**, 194–202 (2013).

425 23. Schwartz, M. W. *et al.* Decision Support Frameworks and Tools for Conservation.
426 *Conservation Letters* **11**, e12385 (2018).

427 24. Webster, M. S., Marra, P. P., Haig, S. M., Bensch, S. & Holmes, R. T. Links between
428 worlds: unraveling migratory connectivity. *Trends in Ecology & Evolution* **17**, 76–83 (2002).

429 25. Bay, R. A. *et al.* Genomic signals of selection predict climate-driven population declines in a
430 migratory bird. *Science* **359**, 83–86 (2018).

431 26. Haddad, N. M. *et al.* Habitat fragmentation and its lasting impact on Earth{\textquoteright}s
432 ecosystems. *Science Advances* **1**, (2015).

433 27. Loss, S. R., Will, T. & Marra, P. P. Direct Mortality of Birds from Anthropogenic Causes.
434 *Annual Review of Ecology, Evolution, and Systematics* **46**, 99–120 (2015).

435 28. Jenkins, C. N., Pimm, S. L. & Joppa, L. N. Global patterns of terrestrial vertebrate diversity
436 and conservation. *Proceedings of the National Academy of Sciences* **110**, E2602–E2610
437 (2013).

438 29. Kenis, M., Hurley, B. P., Hajek, A. E. & Cock, M. J. W. Classical biological control of
439 insect pests of trees: facts and figures. *Biological Invasions* 1–17 (2017).

440 30. Arcese, P. & Keller, L. Population Structure. in *Ornithology: Foundation, Analysis, and*
441 *Application* (eds. Morrison, M. L., Rodewald, A. D., Voelker, G., Colón, M. R. & Prather, J.
442 F.) (JHU Press, 2018).

443 31. McCarthy, D. P. *et al.* Financial costs of meeting global biodiversity conservation targets:
444 current spending and unmet needs. *Science* **338**, 946–949 (2012).

445 32. Bottrill, M. C. *et al.* Is conservation triage just smart decision making? *Trends in Ecology &*
446 *Evolution* **23**, 649–654 (2008).

447 33. Faaborg, J. *et al.* Recent advances in understanding migration systems of New World land
448 birds. *Ecological Monographs* **80**, 3–48 (2010).

449 34. Hanson, J. *et al.* prioritizr: Systematic Conservation Prioritization in R, Version 3.0.3.
450 (2017).

451 35. Gurobi Optimization Inc. Gurobi Optimizer Reference Manual, Version 7.5.1. (2017).

452 36. Margules, C. R. & Pressey, R. L. Systematic conservation planning. *Nature* **405**, 243–53
453 (2000).

454 37. McIntosh, E. J., Pressey, R. L., Lloyd, S., Smith, R. & Grenyer, R. The Impact of Systematic
455 Conservation Planning. *Annual Review of Environment and Resources* **42**, annurev-environ-
456 102016-060902 (2017).

457 38. Ball, I. R. R., Possingham, H. P. P. & Watts, M. E. E. Marxan and relatives: Software for
458 spatial conservation prioritisation. in *Spatial conservation prioritisation: Quantitative*
459 *methods and computational tools*. (eds. Moilanen, A., Wilson, K. & Possingham, H. P.) 185–
460 195 (Oxford University Press, 2009).

461 39. Fink, D. *et al.* Crowdsourcing meets ecology: hemisphere-wide spatiotemporal species
462 distribution models. *AI magazine* **35**, 19–30 (2014).

463 40. Efron, B. Estimation and accuracy after model selection. *Journal of the American Statistical*
464 *Association* **109**, 991–1007 (2014).

465 41. Fink, D., Damoulas, T. & Dave, J. Adaptive Spatio-Temporal Exploratory Models:
466 Hemisphere-wide species distributions from massively crowdsourced eBird data. in *AAAI*
467 (2013).

468 42. Sullivan, B. L. *et al.* The eBird enterprise: an integrated approach to development and
469 application of citizen science. *Biological Conservation* **169**, 31–40 (2014).

470 43. Amatulli, G. *et al.* A suite of global, cross-scale topographic variables for environmental and
471 biodiversity modeling. *Scientific Data* **In press**, (2017).

472 44. Friedl, M. A. *et al.* MODIS Collection 5 global land cover: Algorithm refinements and
473 characterization of new datasets. *Remote sensing of Environment* **114**, 168–182 (2010).

474 45. McGarigal, K., Cushman, S. A. & Ene, E. FRAGSTATS v4: spatial pattern analysis program
475 for categorical and continuous maps. University of Massachusetts, Amherst, Massachusetts,
476 USA. *goo. gl/aAEbMk* (2012).

477 46. VanDerWal, J., Falconi, L., Januchowski, S., Shoo, L. & Storlie, C. SDMTools: Species
478 Distribution Modelling Tools: Tools for processing data associated with species distribution
479 modelling exercises. *R package version 1* (2014).

480 47. Diefenbach, D. R., Marshall, M. R., Mattice, J. A. & Brauning, D. W. Incorporating
481 availability for detection in estimates of bird abundance. *The Auk* **124**, 96–106 (2007).

482 48. Martin, T. G. *et al.* Optimal conservation of migratory species. *PLoS One* **2**, 751 (2007).

483 49. Kaufman, L. & Rousseeuw, P. J. Partitioning around medoids (program pam). *Finding*
484 *groups in data: an introduction to cluster analysis* 68–125 (1990).

485 50. ESA Climate Change Initiative. Global land cover map 300m resolution for 2015. (2017).

486 Available at: <http://maps.elie.ucl.ac.be/CCI/viewer/download.php>.

487 51. Warmerdam, F. The geospatial data abstraction library. in *Open source approaches in*

488 *spatial data handling* 87–104 (Springer, 2008).

489