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Abstract  23 

Limited knowledge of the distribution, abundance, and habitat associations of migratory species 24 

introduces uncertainty about the most effective conservation actions. We used Neotropical 25 

migratory birds as a model group to evaluate contrasting approaches to land prioritization to 26 

support ≥30% of the global abundances of 117 species throughout the annual cycle in the 27 

Western hemisphere. Conservation targets were achieved in 43% less land area in plans based on 28 

annual vs. weekly optimizations. Plans agnostic to population structure required comparatively 29 

less land area to meet targets, but at the expense of representation. Less land area was also 30 

needed to meet conservation targets when human-dominated lands were included rather than 31 

excluded from solutions. Our results point to key trade-offs between efforts minimizing the 32 

opportunity costs of conservation vs. those ensuring spatiotemporal representation of 33 

populations, and demonstrate a novel approach to the conservation of migratory species based on 34 

leading-edge abundance models and linear programming to identify portfolios of priority 35 

landscapes and inform conservation planners.  36 

 37 

Land-use change is a key threat to the conservation of biodiversity, ecosystems1, and the services 38 

they provide globally2,3, and migratory species are particularly vulnerable to such change given 39 

the vast geographic areas they occupy over the annual cycle4,5. Indeed, a recent global 40 

assessment indicated that protected areas adequately protect the ranges of just 9% of migratory 41 

bird species5. Strategic approaches to identify and conserve habitats critical to the persistence of 42 

migratory species are therefore sorely needed.  43 

Unfortunately, substantial gaps in knowledge of the abundance, distribution, and 44 

demography of most migratory species6 have hampered strategic planning and led to uncertainty 45 
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about the optimal allocation of conservation effort5,7. Given that populations of many migratory 46 

species continue to decline4,8, there is an urgent need to identify portfolios of lands critical to the 47 

persistence of target species, and amenable to management in support of species conservation 48 

without compromising human well-being. 49 

Multi-species decision support tools can facilitate the identification of areas crucial to the 50 

conservation of migratory species but have remained intractable due to limits on knowledge and 51 

computing power. We capitalized on advances in crowd-sourced models of bird species 52 

abundance and distribution9,10 and linear programing techniques11 to develop a robust multi-53 

species planning tool to estimate the land area needed to conserve 117 Nearctic-Neotropical 54 

migratory songbirds throughout the annual cycle (SI Table 1). Specifically, we combined fine-55 

scale, predictive models of distribution and abundance estimated weekly throughout the year 56 

with spatial optimization techniques12 to identify the amount and type of land needed to reach 57 

our conservation targets given alternative planning scenarios at hemispheric scales.  58 

We first estimated the abundance and distribution of 117 migratory bird species weekly, 59 

using spatiotemporal exploratory models9,13 to calculate the relative abundance of each species 60 

throughout the annual cycle (SI Fig. 1). We next recorded and compared the geographic area 61 

requirements and land cover types selected when optimizing during each week of the annual 62 

cycle (hereafter, “weekly”), versus simultaneously over the entire annual cycle (hereafter, “full 63 

annual cycle”). Because all existing conservation plans consider stationary phases of the 64 

breeding and non-breeding periods separately14,15, our analysis is the first example of spatial 65 

optimization scenarios which track populations over their full annual cycle.  66 

We next created area-optimized solutions designed to conserve lands used by 30% of the 67 

global populations of all 117 species in each of 52 weeks by sampling species a) over their entire 68 
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range, without accounting for population structure, or b) by sampling within 5 regional 69 

population clusters, identified weekly to accommodate spatial variation in population structure 70 

and migratory connectivity. Our 30% target is arbitrary, but intermediate to the 17% of terrestrial 71 

ecosystems targeted by the Convention on Biodiversity16 and 50% targets suggested by 72 

comparative analysis17, and it can be easily modified to reflect strategic goals18.  73 

Last, we compared area-based conservation plans designed to represent different 74 

perspectives about the potential contribution of human-modified lands to the conservation of 75 

migratory birds. Our ‘land-sparing’ approach emphasized the protection of relatively intact 76 

habitat as indicated by a low human footprint index19 (SI Fig. 2), whereas our ‘land sharing’ 77 

approach permitted the inclusion of landscapes converted to more intensive use by humans20. 78 

Exploring such constraints represents a critical step in conservation planning, given that human 79 

cultural history, values, and well-being can all affect conservation success and represent critical 80 

inputs into structured decisions about the most efficacious actions21–23. 81 

 82 

Results and Discussion 83 

The land area required to achieve conservation targets declined by 56% on average when 84 

prioritizations were conducted over the full annual cycle rather than weekly (range = 49% to 85 

65%; Table 1). Full annual cycle solutions also resulted in less land area being prioritized in 86 

land-sharing and land-sparing scenarios as compared to solution based on weekly approaches 87 

(62% and 49%, respectively; Table 1, Fig. 1, 2). These area reductions under full annual cycle 88 

planning generally result from cases such as the inclusion of sites used by a single species in two 89 

or more weeks of the year, or by two or more species in during two or more weeks.  90 
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Because population structure – let alone its consequences for movement or connectivity – 91 

is poorly understood in most migratory species24, we developed an innovative approach to 92 

account for structure statistically. Specifically, we delineated the populations of each species into 93 

5 spatial clusters and stratified our weekly sampling among clusters to capture the full 94 

geographic distribution of each species. As expected, the area required to reach our conservation 95 

targets increased when we accommodated population structure, though relatively less so under a 96 

land-sparing (13% increase) compared to a land-sharing (26% increase) scenario (Table 1, Figs. 97 

1, 2). Although we currently lack empirical data with which our spatial clusters can be validated, 98 

our predictions can be tested directly as tracking and genetic mapping techniques improve to 99 

allow comparisons of observed and predicted migration routes. That said, our current method 100 

provides a useful approach to ensure geographic representation of population structure of a broad 101 

suite of species using publicly-available citizen science data in spatial planning tools.  102 

Many conservation interventions, including land protection, are constrained by limits on 103 

fiscal or human resources and the opportunity costs of development. Our results indicate that 104 

land area represents one of the key trade-offs in conservation designed to account for population 105 

structure and migratory connectivity. In particular, we showed that sampling populations across 106 

the species range each week required almost twice the amount of land compared to plans based 107 

on the relative abundance of species mapped over the full annual cycle. Our work thus offers the 108 

first empirical evidence to support recent calls to assess conservation needs of migratory species 109 

across the annual cycle in ways that conserve regional representation, species diversity, and 110 

adaptive potential5,7,10,25. These findings suggest a need to re-evaluate conservation planning 111 

processes based on less precise methods. For example, government and non-governmental 112 

organizations allocate up to $1 billion annually to bird conservation based on aspatial targets and 113 
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expert elicitation, with most actions directed to breeding habitat14,15. Our results suggest an 114 

alternative approach that stands to meet conservation targets at lower land management cost and, 115 

potentially, more compatible with human-dominated lands potentially serving a dual purpose of 116 

supporting migratory species and human livelihoods.  117 

Another key result of our work is that incorporating conservation objectives in human-118 

dominated habitats may dramatically improve the efficiency of conservation area designs if the 119 

demographic performance of migrants is similar in ‘working’ and ‘intact’ landscapes. We found 120 

that land-sharing approaches required 27% and 18% less land area, respectively, than land-121 

sparing approaches including or ignoring population structure (Table 1). Our findings thus add to 122 

a growing body of literature indicating the need to broaden the lens through which we view 123 

conservation to both accommodate human livelihoods and conserve valued species21–23.  124 

Our comparisons of land-sharing and land-sparing approaches identified other 125 

geographical or ecosystem-related factors that might influence conservation decisions. Most 126 

notably, land-sparing approaches selected larger areas of needle-leaved forest in boreal and 127 

mountainous zones of western Canada, and more broad-leaved evergreen forest in the eastern 128 

Andes and western Amazon basin (Fig. 1,2; Table 2). Weekly and full annual cycle approaches 129 

to land-sparing resulted in geographically similar outcomes (Fig. 1,2), but also differed in land 130 

cover types selected (Table 2). Whereas annual cycle planning with land sparing consistently 131 

increased the amount of land prioritized over most types of land cover, weekly approaches with 132 

and without land sparing resulted in large increases in area requirement for some cover-types and 133 

decreases in others (e.g., Table 2 and Table S1). In particular, a weekly, land-sparing approach 134 

favored broadleaf evergreen over mixed and broadleaf deciduous forest. Overall, these results 135 

illustrate potential trade-offs that conservation practitioners considering optimized portfolios 136 
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must consider as additional targets and constraints are identified and incorporated in higher-level 137 

management models23. Even without consensus among conservation practitioners on which 138 

scenario to focus on, there is still a considerable amount of land selected in at least six of the 139 

eight scenarios investigated, illustrating priority areas that most approaches agree on (126, 000 140 

km2, Figure 3). 141 

Several additional caveats arise from our results, particularly with respect to land-sharing 142 

and sparing. Implementing conservation action in working landscapes may be more challenging 143 

than in areas with less human activity if the opportunity costs of management are higher in 144 

developed than undeveloped landscapes. For example, even if identified as a high-priority site 145 

for conservation in our land-sharing scenarios, land already converted to human use may be 146 

more vulnerable to degradation in the future than more intact areas26. Such habitat degradation, 147 

especially if combined with other anthropogenic stressors that may directly or indirectly reduce 148 

survival or performance of wildlife27, could make it difficult to reach population goals for 149 

species even if area needs are lower compared to less developed landscapes. In practice, both 150 

approaches are likely to be utilized given that target species will differ in their reliance on more 151 

or less developed habitats28. Therefore, our approach to prioritization provides planners with 152 

guidance on the approximate locations and requirements for land needed to meet our stated 153 

targets under a range of scenarios. With such portfolios in hand, planners can then more readily 154 

assess the cost-effectiveness of alternate approaches to land management and socio-economic 155 

policies most favorable to conservation and human well-being21–23. We also emphasize that the 156 

30% target used here is illustrative only. In some cases, higher targets may be needed to avoid 157 

range contraction or the local extinction of sub-populations, to conserve ecological function such 158 

as seed dispersal or pest control29, or to maintain the evolutionary potential of locally-adapted  159 
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populations25,30. Nevertheless, our 30% target returned solutions in all cases which vastly exceed 160 

the areal extent of existing conservation plans in support of Neotropical migrant birds.  161 

 162 

Conclusion 163 

Ongoing declines in the abundance and distribution of many migratory species amid severe 164 

constraints on financial and human resources31 points to an urgent need for area-based plans that 165 

optimize the efficiency of conservation investments in ways that achieve conservation targets 166 

while minimizing the opportunity costs of land conservation and impacts on human livelihood21–167 

23,32. Our solutions minimized the total land area prioritized for conservation to provide an area-168 

efficient portfolio of lands for further consideration by conservation planners. Three key lessons 169 

can be derived from our results. First, scenarios based on the distributions of abundance of all 170 

117 species over the entire annual cycle required less land area to meet conservation targets than 171 

scenarios based on optimizations that used the weekly distributions of those species throughout 172 

the year. Second, accounting for population structure through stratified sampling across the 173 

entire distribution of species increased the total land area required to achieve conservation 174 

targets. Despite requiring more land area, ensuring geographic representation may be necessary 175 

to the long-term persistence of species, particularly in widely-distributed species with population 176 

genetic structure potentially reflecting local adaptation to climatic conditions25,30. Third, area-177 

based plans that accommodated human activity (land-sharing) were more efficient than land-178 

sparing approaches that avoided areas with a high human footprint. However, because migrants 179 

vary spatially and temporally in their tolerance of human-impacted landscapes33, achieving 180 

conservation goals will likely require a portfolio of sites located in both intact and disturbed 181 

landscapes. Third, although our planning scenarios focused on Neotropical migratory birds, our 182 
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approach could be easily adjusted and replicated in other migratory species and systems with 183 

sufficient data. In the case of birds, citizen science data and advanced prioritization tools allowed 184 

us to reveal marked efficiencies in area-based plans spanning the full annual cycle and multiple 185 

jurisdictions to conserve 117 individual species simultaneously.  186 

 187 

Table 1. Area requirements to meet a 30% population target for 117 Neotropical migrant bird 188 

species for different prioritization approaches under land sharing and land sparing scenarios.  189 

Area Constraint 

Single Population Population Structure 

Weekly Annual Cycle Weekly Annual Cycle 

Land Sharing 14.38 5.51 20.03 6.93 

Land Sparing 14.54 7.45 16.44 8.45 

 190 

Table entries show the area needed to meet targets (million km2). Weekly prioritizes the most 191 

efficient target for each week of the year independently and sums the total area across all weeks. 192 

Annual cycle prioritizes the most efficient target for all weeks combined. Single population 193 

identifies the 30% area target for each species from anywhere within the species range. 194 

Population structure identifies population sub-structure using a clustering approach to ensure 195 

representation from across the range of each species in each week of the year.196 
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Table 2. Area selected (1000 km2) for major land cover types using full annual cycle planning for land sharing vs. sparing scenarios 197 

and for single population vs population structure approaches.  198 

Land cover Area 

available  

Single Population Population Structure 

 

 Land 

Sparing 

Land 

Sharing 

% 

reduction 

Land 

Sparing 

Land 

Sharing 

% 

reduction 

Cropland/Mosaic Cropland 2269 339 313 8 445 439 1 

Grassland 5555 1198 1088 9 1313 1238 6 

Urban areas 205 9 95 -956 25 74 -196 

Broadleaf Deciduous Forest 1994 627 637 -2 619 548 11 

Broadleaf Evergreen Forest 6921 1595 735 54 2024 1433 29 

Needleleaf Forest 4599 1359 1006 26 1395 1160 17 

Mixed Forest 966 310 246 21 311 285 8 

Mosaic Forest 934 207 160 23 229 194 15 

Flooded Forest 540 148 97 34 162 136 16 

Shrubland 4226 912 643 29 1135 864 24 

Wetland 468 144 74 49 159 107 33 

Barren 1053 207 79 62 208 109 48 

Total 31615 7055 5174 27 8025 6586 18 

 199 

Area available is the total amount of each land cover available based on all cells throughout the year where > 1 species was present. % 200 

reduction is the percentage decrease in the area required for each land cover type with land sharing in comparison to land sparing. Not 201 

all land cover classes are included in the table and therefore individual land cover values do not sum to the total in each column. Land 202 

cover data was extracted from the global land cover map for 2015 (300m resolution)50. See Supplemental Information Table 3 for 203 

equivalent land area estimates under weekly planning scenarios.204 
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Figure 1. Comparison of areas prioritized for weekly and full annual cycle planning under a land 205 

sharing approach allowing for the inclusion of human dominated landscapes versus a land 206 

sparing approach that excludes areas of high human footprint. The prioritization is based on a 207 

target of 30% of global populations of 117 species of Neotropical migratory birds when each 208 

species range is considered as a single population. a) = land sharing, weekly, b) = sharing annual 209 

cycle, c) = land sparing weekly, d) = land sparing annual cycle. A more detailed version of this 210 

figure focusing on northern South America is SI Figure 4. 211 

 212 

 213 

 214 
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Figure 2. Comparison of areas prioritized for weekly and full annual cycle planning under a land 215 

sharing approach allowing for the inclusion of human dominated landscapes versus a land 216 

sparing approach that excludes areas of high human footprint. The prioritization is based on a 217 

target of 30% of global populations of 117 species of Neotropical migratory birds when each 218 

species range is considered with population structure (five regional clusters). a) = land sharing, 219 

weekly, b) = sharing annual cycle, c) = land sparing weekly, d) = land sparing annual cycle. A 220 

more detailed version of this figure focusing on northern South America is SI Figure 5. 221 

 222 

 223 

 224 
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Figure 3. Range of agreement between the eight scenarios investigated. Darker blue indicates 225 

that most or all scenarios selected specific areas across the Western Hemisphere, and lighter 226 

yellow indicates areas of high scenario specificity. Scenario types considered: i) summing 227 

scenarios for each species in each week of the year vs. optimizing over all weeks and species in a 228 

full annual cycle, ii) including vs. ignoring spatial variation in population structure and migratory 229 

connectivity, and iii) incorporating vs. avoiding human-dominated landscapes in solutions. 230 

 231 

  232 
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Methods 233 

Species selection 234 

  We included 117 species of Neotropical migratory passerines for our analysis 235 

(Supplemental Information Table 1). These species fell into two broad groups based on their 236 

breeding and stationary non-breeding ranges: 1) species where individuals breed in North 237 

America north of the US-Mexico border and migrate south of the Tropic of Cancer during the 238 

non-breeding period (n=101 species, SI Table 1), and 2) species with both migratory and resident 239 

populations or subspecies, for which individuals from migratory populations north of the US-240 

Mexico border move south of the Tropic of Cancer during the non-breeding period (n=16 241 

species).  242 

 243 

Approaches to conservation prioritization  244 

We created 8 planning scenarios using weekly STEM models for each of 117 focal 245 

species and incorporating different assumptions about temporal scale and cost metrics employed 246 

in prioritization. First, we contrasted scenarios optimizing during each week of the year 247 

separately versus simultaneously over the entire annual cycle. We next created area-optimized 248 

solutions to conserve 30% of the global populations of all species in each week by sampling each 249 

species a) over their entire range, without accounting for population structure, or b) as 5 regional 250 

population clusters identified weekly to accommodate spatial variation in population structure 251 

and migratory connectivity. Third, we compared area-based conservation plans designed to 252 

represent different perspectives about the potential contribution of human-modified landscapes to 253 

the conservation of migratory birds, while including either the unrestricted cost metric or the 254 
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human footprint cost metric, to create a total of 8 scenarios (SI Fig. 3). We used the prioritzr34 R 255 

package for the analysis, which interfaces with the Gurobi35 optimization software.  256 

 257 

Spatial prioritization approach 258 

Here we use the concept of systematic conservation planning36, to inform choices about 259 

areas to protect, in order to optimize outcomes for biodiversity while minimizing societal costs37. 260 

To achieve the goal to optimize the trade-off between conservation benefit and socioeconomic 261 

cost, i.e. to get the most benefit for limited conservation funds, we strive to minimize an 262 

objective function over a set of decision variables, subject to a series of constraints. Integer linear 263 

programming (ILP) is the subset of optimization algorithms used here to solve reserve design 264 

problems. The general form of an ILP problem can be expressed in matrix notation as: 265 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑐𝑇𝑥 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐴𝑥 ≥  𝑏 266 

Where x is a vector of decision variables, c and b are vectors of known coefficients, and A is the 267 

constraint matrix. The final term specifies a series of structural constraints where relational 268 

operators for the constraint can be either ≥ the coefficients. In the minimum set cover problem, c 269 

is a vector of costs for each planning unit, b a vector of targets for each conservation feature, the 270 

relational operator would be ≥ for all features, and A is the representation matrix with Aij=rij, the 271 

representation level of feature i in planning unit j. We set an objective to find the solution that 272 

fulfills all the targets and constraints for the smallest area, which we use as our measure of cost 273 

11. This objective is similar to that used in Marxan, the most widely used spatial conservation 274 

planning tool38. 275 

 276 
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Spatiotemporal exploratory models 277 

We used spatiotemporal exploratory models (STEM)9,13,39 to generate estimates of 278 

relative abundance for each species. STEM is a type of species distribution model created as an 279 

ensemble of local regression models generated from a spatiotemporal block subsampling design. 280 

Repeatedly subsampling and partitioning the study extent into grids of spatiotemporal blocks, 281 

and then fitting independent regression models (base models) in each block produces an 282 

ensemble of partially overlapping local models. Estimates at a given location and date are made 283 

by averaging across all the local models that contain the location and date. Combining estimates 284 

across the ensemble controls for inter-model variability40 and adapts to non-stationary predictor–285 

response relationships13. To account for spatial variation in the density of the bird observation 286 

data41, smaller spatiotemporal blocks (10° × 10° × 30 continuous days) were used north of 12° 287 

latitude and larger blocks (20° × 20° × 30 continuous days) were used in the southern portion of 288 

the study extent.  289 

The bird observation data used to implement STEM came from the eBird citizen-science 290 

database42. The data included species counts from complete checklists collected under the 291 

“traveling”, “stationary”, and “areal” protocols from January 1, 2004 to December 31, 2016 292 

within the spatial extent bounded by 180° to 30° W Longitude (as well as Alaska between 150° E 293 

and 180° E). This resulted in a dataset consisting of 14 million checklists collected at 1.7 million 294 

unique locations, of which 10% were withheld for model validation.  295 

Within each base model, species’ occupancy and abundance was assumed to be 296 

stationary. We fit zero-inflated boosted regression trees9 to predict the observed counts 297 

(abundance) of species based on three general classes of predictors: i) spatial predictors to 298 

account for spatial (and spatiotemporal) patterns; ii) temporal predictors to account for trends; 299 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 28, 2018. ; https://doi.org/10.1101/268805doi: bioRxiv preprint 

https://doi.org/10.1101/268805
http://creativecommons.org/licenses/by/4.0/


 

 

and iii) predictors that describe the observation/detection process, which account for variation in 300 

detection rates, a nuisance when making inference about species occupancy and abundance. 301 

Spatial information was captured using elevation43 and NASA MODIS land44 and water cover 302 

data. The MODIS data were summarized as the proportion and spatial configuration of each of 303 

the 19 cover classes within 2.8 × 2.8 km (784 hectare) pixels centered at each eBird location 304 

using FRAGSTATS45 and SDMTools46. Summarizing the land-cover information at this 305 

resolution reduced the impact of erroneous cover classifications, and reduced the impact of 306 

inaccurate eBird checklist locations. The time of day was used to model variation in availability 307 

for detection; e.g., diurnal variation in behavior, such as participation in the “dawn chorus”47. 308 

Day of the year (1-366) was used to capture day-to-day changes in occupancy, and year was 309 

included to account for year-to-year differences. Finally, to account for variation in detection 310 

rates variables for the number of hours spent searching for species, the length of the transect 311 

traveled during the search, and the number of people in the search party were included in each 312 

base model.  313 

Estimates of relative abundance and occupancy were rendered at weekly temporal 314 

resolution and 8.4 × 8.4 km spatial resolution. Each estimate was calculated as an ensemble 315 

average across 50-100 base models. The quantity estimated was either the expected number of 316 

birds of a given species (abundance) or the probability of the species being reported (occupancy) 317 

by a typical eBird participant on a search starting from the center of the pixel from 7:00 to 8:00 318 

AM while traveling 1 km.  319 

 320 

Sampling for Population Structure and Migratory Connectivity  321 
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Many of the species used here are represented by multiple sub-species or populations known or 322 

suspected to follow different migratory pathways and use different breeding or wintering 323 

habitats5,18,48. However, in the absence of detailed knowledge on migration pathways for the vast 324 

majority of species, we developed a system of stratified sampling to represent the weekly 325 

distribution and spatial structure of each of 117 focal species to insure representation across their 326 

range throughout the annual cycle. To do so, we first conducted cluster analyses of weekly 327 

distribution maps for all 117 species to identify 5 clusters of equal abundance that encompassed 328 

the entire species range to insure representation across it. Our cluster analysis was based on a 329 

dissimilarity matrix of geographic locations and abundances (which were weighted by 1/3 to 330 

primarily focus on geographic effects and not bias cluster delineation toward spatially separated 331 

abundance clusters), and used the CLARA algorithm, which is an extension of the k-medoids 332 

technique for large datasets49. Our use of 5 clusters was arbitrary but flexible, and could be 333 

adjusted by the number of sub-species, races or sub-populations of interest.  334 

 335 

Land use constraints 336 

We used two metrics to constrain our systematic conservation prioritization. First, we 337 

used a constant cost metric, where each planning unit was assigned a cost value of 1. Second, we 338 

used human footprint (2009; 1 km resolution)19 to identify areas more and less subject to human 339 

use, access or development pressures; specifically, we calculated the mean human footprint value 340 

for each 8.4 x 8.4 km pixel in our study area and used it as the ‘cost’ of each pixel during 341 

prioritization.  342 

 343 

Land cover representation 344 
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After the prioritization analyses, we summarized the major land cover types for each 345 

scenario that we generated. We used the 2015 data set of the global land cover map50 at a 300m 346 

resolution and clipped the original data to the study area. For each scenario, we used the 347 

geospatial data abstraction library51 to warp the selected cells from the prioritization onto the 348 

raster grid of the land cover dataset. There were 37 land cover classes identified across scenarios 349 

and the frequency and area amount of each was summarized for all scenarios. As a final step we 350 

combined similar land cover classes into broader classes (SI Table 2) and we used these to 351 

examine differences in area and land cover types selected under single season vs. full annual 352 

cycle planning and for land sparing vs land sharing scenarios (Table 2).  353 

 354 

Code availability  355 

All computer code used in analysis, files generated from the analysis and outputs such as 356 

figures and tables have been deposited and will be made publicly available on publication here: 357 

https://osf.io/58hgs/?view_only=4bddcf37b95e470da3d3d90ba0f260de. The STEM model 358 

outputs used as inputs to the analysis will be made publicly available shortly by the Cornell Lab 359 

of Ornithology.  360 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 28, 2018. ; https://doi.org/10.1101/268805doi: bioRxiv preprint 

https://osf.io/58hgs/?view_only=4bddcf37b95e470da3d3d90ba0f260de
https://doi.org/10.1101/268805
http://creativecommons.org/licenses/by/4.0/


 

 

Acknowledgments: RS is supported by a Liber Ero Fellowship, ADR by a Garvin endowment, 361 

and JRB and PA by the Natural Sciences and Engineering Research Council of Canada. We also 362 

thank the eBird participants for their contributions and eBird team for their support. This work 363 

was funded by The Leon Levy Foundation, The Wolf Creek Charitable Foundation, NASA 364 

(NNH12ZDA001N-ECOF), Microsoft Azure Research Award (CRM: 0518680), and the 365 

National Science Foundation (ABI sustaining: DBI-1356308; computing support from CNS-366 

1059284 and CCF-1522054). Data, analysis scripts and full results are archived here: 367 

https://osf.io/58hgs/?view_only=4bddcf37b95e470da3d3d90ba0f260de.  368 

Author Contributions RS, SW, ADR, JRB and PA conceived the study. RS, DF and TA 369 

collected data and conducted analyses. All authors contributed to writing and editing the paper.  370 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 28, 2018. ; https://doi.org/10.1101/268805doi: bioRxiv preprint 

https://doi.org/10.1101/268805
http://creativecommons.org/licenses/by/4.0/


 

 

References  371 

1. Maxwell, S. L., Fuller, R. A., Brooks, T. M. & Watson, J. E. M. Biodiversity: The ravages of 372 

guns, nets and bulldozers. Nature 536, 143–145 (2016). 373 

2. Bauer, S. & Hoye, B. J. Migratory Animals Couple Biodiversity and Ecosystem Functioning 374 

Worldwide. Science 344, (2014). 375 

3. Semmens, D. J., Diffendorfer, J. E., López-Hoffman, L. & Shapiro, C. D. Accounting for the 376 

ecosystem services of migratory species: Quantifying migration support and spatial 377 

subsidies. Ecological Economics 70, 2236–2242 (2011). 378 

4. Wilcove, D. S. & Wikelski, M. Going, Going, Gone: Is Animal Migration Disappearing. 379 

PLoS Biology 6, e188 (2008). 380 

5. Runge, C. A., Martin, T. G., Possingham, H. P., Willis, S. G. & Fuller, R. A. Conserving 381 

mobile species. Frontiers in Ecology and the Environment 12, 395–402 (2014). 382 

6. Zuckerberg, B., Fink, D., La Sorte, F. A., Hochachka, W. M. & Kelling, S. Novel seasonal 383 

land cover associations for eastern North American forest birds identified through dynamic 384 

species distribution modelling. Diversity and Distributions 22, 717–730 (2016). 385 

7. Runge, C. A., Tulloch, A. I. T., Possingham, H. P., Tulloch, V. J. D. & Fuller, R. A. 386 

Incorporating dynamic distributions into spatial prioritization. Diversity and Distributions 387 

22, 332–343 (2016). 388 

8. Harris, G., Thirgood, S., Hopcraft, J., Cromsight, J. & Berger, J. Global decline in 389 

aggregated migrations of large terrestrial mammals. Endangered Species Research 7, 55–76 390 

(2009). 391 

9. Johnston, A. et al. Abundance models improve spatial and temporal prioritization of 392 

conservation resources. Ecological Applications 25, 1749–1756 (2015). 393 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 28, 2018. ; https://doi.org/10.1101/268805doi: bioRxiv preprint 

https://doi.org/10.1101/268805
http://creativecommons.org/licenses/by/4.0/


 

 

10. La Sorte, F. A. et al. Global change and the distributional dynamics of migratory bird 394 

populations wintering in Central America. Global Change Biology (2017). 395 

doi:10.1111/gcb.13794 396 

11. Beyer, H. L., Dujardin, Y., Watts, M. E. & Possingham, H. P. Solving conservation planning 397 

problems with integer linear programming. Ecological Modelling 328, 14–22 (2016). 398 

12. Moilanen, A., Wilson, K. A. & Possingham, H. P. Spatial conservation prioritization: 399 

quantitative methods and computational tools. 6, (Oxford University Press Oxford, UK, 400 

2009). 401 

13. Fink, D. et al. Spatiotemporal exploratory models for broad-scale survey data. Ecological 402 

Applications 20, 2131–2147 (2010). 403 

14. Species At Risk Act. Bill C-5, An act respecting the protection of wildlife species at risk in 404 

Canada. (2002). 405 

15. U.S. Congress. Endangered Species Act of 1973 (16 U.S.C. 1531–1544, 87 Stat. 884). 406 

(1973). 407 

16. MacKinnon, D. et al. Canada and Aichi Biodiversity Target 11: understanding `other 408 

effective area-based conservation measures’ in the context of the broader target. Biodiversity 409 

and Conservation 24, 3559–3581 (2015). 410 

17. Noss, R. F. et al. Bolder thinking for conservation. Conservation Biology 26, 1–4 (2012). 411 

18. Wilson, S. et al. Prioritize diversity or declining species? Trade-offs and synergies in spatial 412 

planning for the conservation of migratory birds. bioRxiv 429019 (2018). 413 

doi:10.1101/429019 414 

19. Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and 415 

implications for biodiversity conservation. Nature Communications 7, (2016). 416 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 28, 2018. ; https://doi.org/10.1101/268805doi: bioRxiv preprint 

https://doi.org/10.1101/268805
http://creativecommons.org/licenses/by/4.0/


 

 

20. Phalan, B., Onial, M., Balmford, A. & Green, R. E. Reconciling food production and 417 

biodiversity conservation: land sharing and land sparing compared. Science 333, 1289–1291 418 

(2011). 419 

21. Barrett, C. B. & Arcese, P. Are integrated conservation-development projects (ICDPs) 420 

sustainable? On the conservation of large mammals in sub-Saharan Africa. World 421 

development 23, 1073–1084 (1995). 422 

22. Ban, N. C. et al. A social–ecological approach to conservation planning: embedding social 423 

considerations. Frontiers in Ecology and the Environment 11, 194–202 (2013). 424 

23. Schwartz, M. W. et al. Decision Support Frameworks and Tools for Conservation. 425 

Conservation Letters 11, e12385 (2018). 426 

24. Webster, M. S., Marra, P. P., Haig, S. M., Bensch, S. & Holmes, R. T. Links between 427 

worlds: unraveling migratory connectivity. Trends in Ecology & Evolution 17, 76–83 (2002). 428 

25. Bay, R. A. et al. Genomic signals of selection predict climate-driven population declines in a 429 

migratory bird. Science 359, 83–86 (2018). 430 

26. Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth{\textquoteright}s 431 

ecosystems. Science Advances 1, (2015). 432 

27. Loss, S. R., Will, T. & Marra, P. P. Direct Mortality of Birds from Anthropogenic Causes. 433 

Annual Review of Ecology, Evolution, and Systematics 46, 99–120 (2015). 434 

28. Jenkins, C. N., Pimm, S. L. & Joppa, L. N. Global patterns of terrestrial vertebrate diversity 435 

and conservation. Proceedings of the National Academy of Sciences  110, E2602–E2610 436 

(2013). 437 

29. Kenis, M., Hurley, B. P., Hajek, A. E. & Cock, M. J. W. Classical biological control of 438 

insect pests of trees: facts and figures. Biological Invasions 1–17 (2017). 439 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 28, 2018. ; https://doi.org/10.1101/268805doi: bioRxiv preprint 

https://doi.org/10.1101/268805
http://creativecommons.org/licenses/by/4.0/


 

 

30. Arcese, P. & Keller, L. Population Structure. in Ornithology: Foundation, Analysis, and 440 

Application (eds. Morrison, M. L., Rodewald, A. D., Voelker, G., Colón, M. R. & Prather, J. 441 

F.) (JHU Press, 2018). 442 

31. McCarthy, D. P. et al. Financial costs of meeting global biodiversity conservation targets: 443 

current spending and unmet needs. Science 338, 946–949 (2012). 444 

32. Bottrill, M. C. et al. Is conservation triage just smart decision making? Trends in Ecology & 445 

Evolution 23, 649–654 (2008). 446 

33. Faaborg, J. et al. Recent advances in understanding migration systems of New World land 447 

birds. Ecological Monographs 80, 3–48 (2010). 448 

34. Hanson, J. et al. prioritizr: Systematic Conservation Prioritization in R, Version 3.0.3. 449 

(2017). 450 

35. Gurobi Optimization Inc. Gurobi Optimizer Reference Manual, Version 7.5.1. (2017). 451 

36. Margules, C. R. & Pressey, R. L. Systematic conservation planning. Nature 405, 243–53 452 

(2000). 453 

37. McIntosh, E. J., Pressey, R. L., Lloyd, S., Smith, R. & Grenyer, R. The Impact of Systematic 454 

Conservation Planning. Annual Review of Environment and Resources 42, annurev-environ-455 

102016-060902 (2017). 456 

38. Ball, I. R. R., Possingham, H. P. P. & Watts, M. E. E. Marxan and relatives: Software for 457 

spatial conservation prioritisation. in Spatial conservation prioritisation: Quantitative 458 

methods and computational tools. (eds. Moilanen, A., Wilson, K. & Possingham, H. P.) 185–459 

195 (Oxford University Press, 2009). 460 

39. Fink, D. et al. Crowdsourcing meets ecology: hemisphere-wide spatiotemporal species 461 

distribution models. AI magazine 35, 19–30 (2014). 462 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 28, 2018. ; https://doi.org/10.1101/268805doi: bioRxiv preprint 

https://doi.org/10.1101/268805
http://creativecommons.org/licenses/by/4.0/


 

 

40. Efron, B. Estimation and accuracy after model selection. Journal of the American Statistical 463 

Association 109, 991–1007 (2014). 464 

41. Fink, D., Damoulas, T. & Dave, J. Adaptive Spatio-Temporal Exploratory Models: 465 

Hemisphere-wide species distributions from massively crowdsourced eBird data. in AAAI 466 

(2013). 467 

42. Sullivan, B. L. et al. The eBird enterprise: an integrated approach to development and 468 

application of citizen science. Biological Conservation 169, 31–40 (2014). 469 

43. Amatulli, G. et al. A suite of global, cross-scale topographic variables for environmental and 470 

biodiversity modeling. Scientific Data In press, (2017). 471 

44. Friedl, M. A. et al. MODIS Collection 5 global land cover: Algorithm refinements and 472 

characterization of new datasets. Remote sensing of Environment 114, 168–182 (2010). 473 

45. McGarigal, K., Cushman, S. A. & Ene, E. FRAGSTATS v4: spatial pattern analysis program 474 

for categorical and continuous maps. University of Massachusetts, Amherst, Massachusetts, 475 

USA. goo. gl/aAEbMk (2012). 476 

46. VanDerWal, J., Falconi, L., Januchowski, S., Shoo, L. & Storlie, C. SDMTools: Species 477 

Distribution Modelling Tools: Tools for processing data associated with species distribution 478 

modelling exercises. R package version 1 (2014). 479 

47. Diefenbach, D. R., Marshall, M. R., Mattice, J. A. & Brauning, D. W. Incorporating 480 

availability for detection in estimates of bird abundance. The Auk 124, 96–106 (2007). 481 

48. Martin, T. G. et al. Optimal conservation of migratory species. PLoS One 2, 751 (2007). 482 

49. Kaufman, L. & Rousseeuw, P. J. Partitioning around medoids (program pam). Finding 483 

groups in data: an introduction to cluster analysis 68–125 (1990). 484 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 28, 2018. ; https://doi.org/10.1101/268805doi: bioRxiv preprint 

https://doi.org/10.1101/268805
http://creativecommons.org/licenses/by/4.0/


 

 

50. ESA Climate Change Initiative. Global land cover map 300m resolution for 2015. (2017). 485 

Available at: http://maps.elie.ucl.ac.be/CCI/viewer/download.php.  486 

51. Warmerdam, F. The geospatial data abstraction library. in Open source approaches in 487 

spatial data handling 87–104 (Springer, 2008). 488 

 489 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 28, 2018. ; https://doi.org/10.1101/268805doi: bioRxiv preprint 

https://doi.org/10.1101/268805
http://creativecommons.org/licenses/by/4.0/

