

Natoli et al Functional characterisation of the Retinal CD45+ population after sterile injury.

1 **Dynamic interplay of innate and adaptive immunity during sterile retinal**
2 **inflammation: Insights from the transcriptome**
3

4 Riccardo Natoli^{1,2}, Elizabeth Mason³, Haihan Jiao¹, Aaron Chuah¹, Hardip Patel¹, Nilisha
5 Fernando¹, Krisztina Valter^{1,2}, Christine A. Wells³, Jan Provis^{1,2} and Matt Rutar³

6 ¹The John Curtin School of Medical Research, The Australian National University, Canberra,
7 ACT, Australia;

8 ²ANU Medical School, The Australian National University, Canberra, ACT, Australia.

9 ³The Centre for Stem Cell Systems, Department of Anatomy and Neuroscience, The University
10 of Melbourne, Victoria, Australia;

11

12

13

14

15 Corresponding Author:

16 Matt Rutar

17 The Centre for Stem Cell Systems, MDHS,

18 The University of Melbourne, Victoria 3010 Australia

19 Email: matthew.rutar@unimelb.edu.au

20

21

22

23

24

25

26

27

28

29

30

Natoli et al Functional characterisation of the Retinal CD45+ population after sterile injury.

31 **Abstract**

32 The pathogenesis of many retinal degenerations, such as age-related macular degeneration
33 (AMD), is punctuated by an ill-defined network of sterile inflammatory responses. The
34 delineation of innate and adaptive immune milieu amongst the broad leukocyte infiltrate, and
35 the gene networks which construct these responses, are poorly described in the eye. Using
36 photo-oxidative damage in a rodent model of subretinal inflammation, we employed a novel
37 RNA-sequencing framework to map the global gene network signature of retinal leukocytes.
38 This revealed a previously uncharted interplay of adaptive immunity during subretinal
39 inflammation, including prolonged enrichment of myeloid and lymphocyte migration, antigen
40 presentation, and the alternative arm of the complement cascade involving *Factor B*. We
41 demonstrate *Factor B*-deficient mice are protected against macrophage infiltration and
42 subretinal inflammation. Suppressing the drivers of retinal leukocyte proliferation, or their
43 capacity to elicit complement responses, may help preserve retinal structure and function
44 during sterile inflammation in diseases such as AMD.

45

46

47

48

49

50

51

52

53

54

55

56

57

58

Natoli et al Functional characterisation of the Retinal CD45+ population after sterile injury.

59 **Introduction**

60 Leukocyte activation and recruitment is a key process in the progression of a variety of
61 neurodegenerative diseases, including those affecting the retina (reviewed in [1]). Microglia
62 are resident macrophages of the central nervous system, derived in early development from
63 yolk sac myeloid cells [2, 3]. Microglia contribute to the normal physiological state of the
64 central nervous system through constant surveillance of the parenchyma. They control a variety
65 of processes including phagocytosis of neurons during development [4], maintenance of
66 healthy retinal synapses [5] and tissue repair [6]. Age-Related Macular Degeneration (AMD),
67 is a retinal disease whose hallmark is progressive loss of photoreceptors and retinal pigment
68 epithelium (RPE), accompanied by inflammation and influx of leukocytes, including
69 monocyte-derived macrophages [7]. Recruited macrophages, as well as resident microglia
70 contribute to the pathogenesis of the degenerating retina (reviewed in [8, 9]), includes AMD
71 [10-13], retinitis pigmentosa [11, 14], retinal detachment [15, 16], glaucoma [17-19] and
72 diabetic retinopathy [17, 20]. The long-standing assumption, derived from rodent models of
73 brain injury, is that resident microglia are the primary source of inflammatory mediators in the
74 brain, and that recruited leukocytes do not play a long-term role in tissue repair (reviewed in
75 [21]). However, it is also clear from recent transcriptome studies that microglia derived from
76 different parts of the CNS have distinct molecular and functional attributes [22].

77 Chemokine signalling mediates monocyte migration in several CNS disorders
78 including AMD, multiple sclerosis, Alzheimer's disease, and brain ischemia and trauma
79 (reviewed in [23-26]). In the photo-oxidative damage (PD) model of focal retinal degeneration
80 we used a broad spectrum chemokine inhibitor, and reduced sub-retinal macrophage
81 accumulation and associated photoreceptor cell death [27], indicating the key role of
82 chemokines in retinal degenerations. Studies of Ccl2 show that ablation of Ccl2 or the Ccr2
83 receptor reduces monocyte infiltration and retinal degeneration in experimental choroidal
84 neovascularization (CNV) [28] and in PD-treated Cx3cr1^{-/-} mice [29]. Further, we have
85 shown that expression of Ccl2 is upregulated in Müller cells in PD [30], and that targeted
86 knockdown of Ccl2 using siRNA reduces recruitment of microglia/macrophages,
87 photoreceptor death and complement deposition [31]. The release of endogenous triggers like
88 Ccl2 alerts monocytes and promotes proliferation, migration, enhanced phagocytosis, as well
89 as secretion of cytokines, chemokines, and neurotoxins (reviewed in [32]). This process of
90 monocyte activation can promote CNS degeneration including phagocytosis of neurons that
91 otherwise might survive [33, 34] and initiation of pro-apoptotic events [35]. The detrimental

Natoli et al Functional characterisation of the Retinal CD45+ population after sterile injury.

92 effects of macrophage aggregation in the outer retina have been directly implicated in retinal
93 models of neovascular-AMD [36], PD [37, 38], diabetic retinopathy [39, 40], and glaucoma
94 [41].

95 Despite the growing understanding of the role of macrophages in retinal degenerations,
96 little is known about the molecular profile of these cells, nor of the contribution that other
97 leukocytes types may have in progression of retinal disease. While macrophages are the
98 predominant inflammatory cell in the retina, a growing body of evidence teases a broader
99 contribution of immune responses in AMD (reviewed in [42]). Here, we report an analysis of
100 gene expression in CD45⁺ leukocytes isolated from retina following experimental PD in a
101 rodent model. Our constructed functional networks reveal diverse transcriptional regulation of
102 genes involved in leukocyte activation, chemokine signalling and the complement cascade in
103 retinal degenerations. We propose that the initial inflammatory response which primarily
104 involves the retinal microglia/macrophages, leads to a progression in inflammatory activity,
105 including the activation of other leukocyte subsets, initiation of an adaptive immune response,
106 and complement activation, which contribute to subretinal inflammation and progressive
107 photoreceptor cell death.

108 **Methods**

109 **Animals**

110 All work was conducted using either young adult Sprague-Dawley (SD) albino rats, or
111 C57/Bl6J mice. Additionally, Cfb^{-/-} mice (B6;129-Cfb^{tm1Hrc}/Apb) were also obtained from the
112 Australian Phonemics Facility (APF), and which were bred on the B6 background. All animal
113 experimentation was conducted in accordance with the ARVO Statement for the Use of
114 Animals in Ophthalmic and Vision Research and with the approval of the Animal Ethics
115 Committee at the Australian National University, Canberra (Protocols - A2012/07 and
116 A2014/56). Animals were raised and experiments were conducted in cyclic 5 lux light:dark
117 (12hrs:12hrs), unless otherwise stated. All animals were culled using an overdose (60mg/kg
118 bodyweight) of barbiturate (Valabarb; Virbac, Australia) given as intraperitoneal injection. All
119 culling was performed at 9am to control for possible circadian effects.

120 **Photo-oxidative damage model**

121 For the rat PD model, animals, housed and exposed to bright (1000 lux) light for 24hrs
122 in accordance with our previous protocols. Exposure began and ended at 9am on successive

Natoli et al Functional characterisation of the Retinal CD45+ population after sterile injury.

123 days. Rats were euthanized for tissue collection either immediately following PD (0 days), or
124 after a further 3 or 7 days in cyclic dim light. Dim-reared animals were collected as non-light
125 exposed controls for comparison.

126 The mouse PD model was performed following our previously established
127 methodology [43]. In brief, age-matched wild type (C57BL/6) and complement knockout
128 animals were housed in Perspex boxes coated with a reflective interior, and exposed to 100K
129 lux of natural white LED for up to 7 days, with access to food and water ad libitum. Each
130 animal was administered with pupil dilator eye drops (0.1% atropine sulphate, Bausch and
131 Lomb, Australia) two times a day during light exposure. Animals were either euthanized or
132 subjected to electroretinogram (ERG) recordings after 3, 5, 7 days of photo-oxidative damage.

133 **Animal tissue collection and processing for histology and RNA extraction**

134 Eyes from some animals were marked at the superior surface for orientation, then
135 enucleated and immediately immersion-fixed in 4% paraformaldehyde in 0.1 M PBS (pH 7.3)
136 for 3hrs at room temperature, then processed for cryosectioning as previously described for
137 histological analysis [44]. From other animals (n≥6), retinas were excised through a corneal
138 incision and prepared for cell sorting and RNA extraction.

139 **Analysis of Cell Death**

140 Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was used to
141 quantify photoreceptor apoptosis in cryosections for each experimental group, using a
142 previously published protocol [45]. Counts of TUNEL-positive cells in the outer nuclear layer
143 (ONL) were carried out along the full length of retinal sections cut in the parasagittal plane
144 (superior-inferior), within the vertical meridian. The total count from each retina is the average
145 of four sections at comparable locations.

146 **Outer nuclear layer (ONL) thickness measurements**

147 Thickness of the ONL in each experimental group was measured in increments of 1mm
148 along the full length of retinal cryosections cut in the parasagittal plane (superior-inferior),
149 which were in close proximity to the vertical meridian. The DNA-specific dye bisbenzimide
150 (Sigma-Aldrich, MO, USA) was used to visualize the cellular layers. The ONL thickness ratio
151 was calculated as the thickness of the ONL relative to the distance between the ganglion cell

Natoli et al Functional characterisation of the Retinal CD45+ population after sterile injury.

152 layer (GCL) and ONL, to take into account any obliquely cut sections. The ONL thickness
153 ratio for each retina is the average of two retinal sections at comparable locations.

154 **Immunohistochemistry**

155 To detect and localise CD45⁺ cells in retinal cryosections, immunohistochemistry was
156 performed using a CD45 primary antibody (Biolegend, San Diego, CA, USA) or IBA1 (1:500,
157 Wako, #019-19741), as described in our previous protocols with minor modifications [46, 47].
158 Sections were counterstained with a DNA label (Bisbenzimide; Sigma-Aldrich) for
159 visualisation of the retinal layers. Fluorescence in retinal sections was visualised under a laser-
160 scanning A1⁺ confocal microscope (Nikon, Tokyo, Japan), and images were acquired using the
161 NIS-Elements AR software (Nikon). Images were processed using Photoshop CS6 software
162 (Adobe Systems, CA, USA).

163 **Flow cytometry for retinal leukocyte sub-populations**

164 Retinal cell and dissociation and flow cytometry were conducted as per our previous
165 protocol [43], with some modifications. Retinas from each animal were pooled and
166 immediately placed dissociation cocktail that included 0.2% papain, and were then digested
167 until a single cell suspension was obtained. Permeabilization was not conducted. The samples
168 were then incubated in FC block, followed by an incubation antibody staining buffer for 45
169 minutes at 4°C, which contained the following cocktail of markers: CD11b-PE, 1:200,
170 Biolegend; CD45-Alexa-647, 1:200, Biolegend; CD3-Pacific Blue, 1:400, Biolegend;
171 CD45RA-FITC, 1:200, Biolegend; Gr1-PE, 1:200, BD Biosciences, Franklin Lakes, NJ.
172 Samples were run through a BD Fortessa flow cytometer (BD Biosciences). The data were
173 analysed using FloJo software (version 10.4.1). Statistical analysis was performed using Prism
174 6 (GraphPad Software, CA, USA). Unless specifically stated either a two-way ANOVA with
175 Tukey's multiple comparison post-test or an unpaired Student *t* test was utilised to determine
176 the statistical outcome, with a *P* value of <0.05 considered statistically significant.

177 **Fluorescence-activated cell sorting of CD45+ Leukocytes**

178 Retinas from each animal were pooled and immediately placed in chilled HBSS (n = 3
179 per time point) and then subjected to light mechanical separation using a razor blade. Samples
180 were transferred into 0.2% papain digestion cocktail [47] and incubated at 8°C for 45 minutes,
181 then 28°C for 7 minutes. The resulting homogenate was centrifuged at 250 g for 5 minutes at
182 4°C, and the pellet was resuspended in neutralization buffer. The homogenate was centrifuged

Natoli et al Functional characterisation of the Retinal CD45+ population after sterile injury.

183 again at 420g for 5 minutes at 4°C, and the pellet resuspended in staining buffer containing
184 1.0% bovine serum albumin (BSA), and 0.1% azide. The samples were incubated in staining
185 buffer containing anti-CD45-Alexa 647 (Biolegend) for 45 minutes at 4°C, then washed twice
186 in HBBS and resuspended in staining buffer. The resultant CD45-stained samples were run
187 through a fluorescence-activated cell sorter (FACS) (BD FACSaria II; BD Biosciences,
188 Franklin Lakes, NJ, USA). Viability of the sorted cells was assessed by labeling with DAPI.
189 The isolated CD45+ cells were collected in staining buffer and kept chilled on ice until RNA
190 extraction could be commenced. To prepare for RNA extraction, isolated samples were
191 centrifuged at 420 g for 5 minutes at 4°C, and the supernatant removed. RNA extraction was
192 performed with a combination of TRIzol Reagent (Life Technologies, Carlsbad, CA, USA) and
193 an RNAqueous-small scale kit (Life Technologies, Carlsbad, CA, USA) utilized in tandem to
194 extract and purify the RNA respectively. Isolated total RNA was analysed for quantity and
195 purity with a ND-1000 spectrophotometer (Nanodrop Technologies, Wilmington, DE, USA).

196 **RNA-seq sample preparation**

197 RNA samples were prepared for RNA-seq by the Australian Cancer Research
198 Foundation (ACRF) Biomolecular Resource Facility (BRF) (John Curtin School of Medical
199 Research, Australian National University, Canberra, Australia). cDNA library preparation was
200 performed using the SMARTer Low RNA Kit (Clontech, Mountain View, CA, USA) as per
201 the manufacturer's instructions, using 679pg of RNA per sample was used as starting material
202 for the preparation of the cDNA libraries. Following library preparation, DNA was
203 simultaneously fragmented and tagged with sequencing adaptors using an adapted Nextera
204 DNA Sample preparation protocol (Illumina Technologies, San Diego, CA, USA – Revision
205 A), using Ampure beads for purification (Agilent Technologies, Santa Clara, CA, USA).
206 Concentrations of libraries were checked on the Agilent Bioanalyzer (Agilent Technologies)
207 and pooled to equimolar amounts. Fragmented samples were run on the HiSeq2500 (Illumina
208 Technologies), using TruSeq® Rapid PE Cluster Kit 2500 (Illumina Technologies) and
209 TruSeq® Rapid SBS Kit 2500 - 200 cycles - (Illumina Technologies). 100bp paired end
210 sequencing was performed on all samples (12 sample, 4 data points in triplicate – 18.33 million
211 reads per sample).

212 **RNA-seq alignment and analysis**

213 All sequenced data was assessed for quality using FastQC software [48] followed by
214 filtering of low quality data using Trimmomatic software (version 0.27, LEADING:15

Natoli et al Functional characterisation of the Retinal CD45+ population after sterile injury.

215 TRAILING:15 SLIDINGWINDOW:4:20 MINLEN:60 trimming parameters) [49]. All
216 sequence data remaining as paired data after quality filter were mapped to the Rat genome
217 (assembly version Rnor_5.0) using TopHat software (v2.0.10, --b2-very-sensitive mapping
218 parameter) [50] against gene annotations obtained from the Ensembl v75 database. Samtools
219 (v0.1.19.0) was then used to remove unmapped reads and secondary alignments from TopHat
220 output (fixmate -r parameters) [51]. HTSeq was used for obtaining tag counts for each
221 annotated gene using default parameters for non-strand specific library [52]. Tag counts were
222 normalized for library composition and library size using Trimmed Mean of M-values (TMM)
223 method as implemented in edgeR package to obtain counts per million (CPM) [53, 54] Sum of
224 tag counts in each sample was used as the effective library. All RNAseq data for this project is
225 available on NCBI Short Read Archive with the BioProject ID SRP133267.

226 Differential expression analysis compared the normalised CPM values of the light-
227 treated groups to the control cohort (dim), over a time course of 0, 3, and 7 days in a pair-wise
228 manner. Genes were considered differentially expressed if they had a p-value if < 0.05 and
229 false discovery rate (FDR) of < 0.05 (One-way ANOVA); a fold change cut-off of 1.5 was also
230 applied. The relatedness of the individual samples was assessed with principal component
231 analysis (PCA) on the log2 cpm of the DEGs derived from each comparison, and which utilised
232 the scatterplot3d package in R (v3.2.2). Venn-diagrams were also created to illustrate overlap
233 between data points in these gene sets (Venny, v2.1). Gene co-regulation across the time course
234 was assessed by K-means clustering analysis on the log2 cpm of the DEGs using the Stats
235 Bioconductor package in R (v2.15.0) (scripting available upon request). The data were further
236 examined with heatmaps using hierarchical clustering via Euclidian distance, which was
237 conducted with heatmap [55].

238 Gene ontology (GO) term enrichment analysis was performed using the online
239 bioinformatics resource Panther (v13.0) to identify overrepresented biological processes at
240 each time point. GO analysis was conducted using statistical overrepresentation, with a
241 Bonferroni correction applied to account for multiple testing. Additionally, pathway analysis
242 was performed using the Reactome online database (v62) to interrogate the data for statistically
243 enriched pathways, as ranked by FDR (<0.05). To improve the interpretation of the GO terms
244 obtained from Panther, an integrated network analysis was employed using ClueGO (v2.3.3),
245 a plug-in for Cytoscape Software (v3.5.1) [56], using DEGs from each comparison. Networks
246 were constructed using GO terms for biological process, and used enrichment/depletion hyper-

Natoli et al Functional characterisation of the Retinal CD45+ population after sterile injury.

247 geometric distribution tests with an adjusted p-value of <0.05 (Bonferroni) for terms and
248 groups. Kappa-statistics score threshold was set to 0.5 to define the functional grouping, while
249 the leading term for groups was selected based on highest significance. GO term fusion was
250 applied to reduce the redundancy of the terms included in the networks.

251 **Electroretinogram recordings**

252 Full-field scotopic ERG recording assessed the retinal function between CfB-/- and Wt
253 mice, and used our previously published methodology [43]. Briefly, a flash stimuli for mixed
254 responses were provided by an LED-based system (FS-250A Enhanced Ganzfeld, Photometric
255 Solutions International, Melbourne), over a stimulus intensity range of 6.3 log cd·s·m⁻² (range
256 -4.4 - 1.9 log cd·s·m⁻²). The a-wave amplitude was measured from the baseline to the trough
257 of the a-wave response and the b-wave amplitude was measured from the trough of the a-wave
258 to the peak of the b-wave. Data are expressed as the mean response amplitude ± SEM (μV).
259 Two-way ANOVA, with Tukey's multiple comparisons Post-hoc test, was performed to
260 compare the responses over the flash stimulus range.

261 **Western blotting for C3d**

262 Whole retinas from euthanized Wt or C3b-/- mice were collected at 4°C in CellLytic M
263 buffer (Sigma, Australia) containing protease inhibitor cocktail (Roche), and spun down at
264 13,000g to obtain the extract protein. Concentration of samples was determined by Bradford
265 assay (Bio-Rad), and equal amounts of total proteins were loaded onto 4-20% Mini-PROTEAN
266 Tris-Glycine gels (Bio-Rad). Following electrophoresis (200V for 35 min), proteins were
267 transferred to nitrocellulose membranes (Bio-Rad) in semi-dry transfer system for 30 min -2
268 hr depending on the size of protein. Blots were blocked with 3% BSA, 0.01% Tween 20, and
269 probed overnight at 4°C with antibodies for either C3d (1:500, #AF2655-SP, R&D Systems)
270 or the loading control GAPDH (1:4000, #G9545, Sigma Aldrich). Immunoblots were incubated
271 with HRP-conjugated secondary antibodies for 2 hr at room temperature and developed using
272 Clarity ECL Western Blotting Substrate (Bio-Rad). Visualization and imaging of blots was
273 performed on ChemiDoc MP Imaging System (Bio-Rad).

274

275

276

Natoli et al Functional characterisation of the Retinal CD45+ population after sterile injury.

277 **Results**

278 **Photoreceptor cell apoptosis and degeneration**

279 Exposure to PD led to an increase in TUNEL-positive cells in the ONL (**Figure 1A**),
280 and a subsequent decrease in ONL thickness (**Figure 1B**) compared to dim-reared controls. At
281 7 days post-exposure, persistent ONL thinning and photoreceptor cell death was observed,
282 consistent with photoreceptor death, as described previously [57]. Photoreceptor cell death
283 was correlated with both increased numbers and altered distribution of CD45⁺ leukocytes in
284 the retina (**Figure 2A-D**). CD45⁺ cells in retinas of dim-reared control animals showed
285 localisation of ramified leukocytes predominantly in the inner retina, with some cells present
286 in the choriocapillaris (**Figure 2A**). At 7 days post-PD, CD45⁺ cells had an activated/rounded
287 in morphology, and were distributed throughout all layers of the retina including the ONL and
288 the subretinal space (**Figure 2B-D**). Quantification of total retinal leukocytes by flow
289 cytometry showed increased numbers of CD45⁺ cells following PD, with highest numbers
290 detected at 7 days (**Figure 2E**). In dim-reared control animals the percentage of CD45⁺ cells
291 in the total retinal population was 0.85% compared with to 6.2% 7 days post-damage (P<0.05,
292 ANOVA).

293 **Temporal profiling of retinal CD45⁺ leukocytes and subpopulations**

294 Common lineage markers for macrophages (CD11b), granulocytes (Gr1), T cells
295 (CD3), and B cells (CD45RA) were used to investigate the major subsets of CD45⁺ leukocytes
296 in the retina over the damage time course (**Figure 2F-H**). The CD11b⁺ macrophages were
297 found to increase relative to the retinal population over the experimental time course. This
298 peaked at 7 days post-exposure (P<0.05, ANOVA), and detected on 5.1% of the retinal cell
299 population (**Figure 2F**). In control samples, 57% of CD45⁺ cells positive for CD11b, while at
300 7 days 85% of the CD45⁺ cells were also CD11b⁺, indicating that changes in the CD45⁺
301 population broadly reflects the changes present in the CD11b⁺ population. The subset of
302 GR1⁺CD11b⁺ granulocytes, broadly encompassing neutrophils and eosinophils, were shown
303 to increase from near zero in dim-reared controls to ~1.5% of the retinal population at 7 days
304 post- damage (P<0.05 ANOVA) (**Figure 2G**). The subset of CD3⁺ T cells displayed
305 progressive increase over time, and by 7 days comprised 20% of the CD45⁺CD11b⁻
306 population, which was almost quadruple the proportion in the dim-reared controls (P<0.05
307 ANOVA) (**Figure 2H**). CD45RA⁺ B cells in contrast were barely dateable and showed no
308 appreciable change across the PD time course (**Figure 2H**).

Natoli et al Functional characterisation of the Retinal CD45+ population after sterile injury.

309 **Transcriptome profile of isolated CD45⁺ retinal leukocytes**

310 RNAseq was performed on CD45⁺ cells isolated from the retinas over 0, 3 and 7 days post-PD
311 to construct a temporal transcriptional fingerprint of immune modulation. PCA was performed
312 on the individual samples for all expressed genes (**Figure 3**). The scree plot demonstrated that
313 most of the variance was observed in the first 3 principle components (**Figure 3A**). The PCA
314 indicated a strong correlation between sample replicates, and highlights a rapid divergence in
315 transcriptional profile between dim-reared control leukocytes, and those isolated at the point
316 of initial injury at 0 days (Figure 3B). Though distinct, the 3 and 7 day groups appeared more
317 closely clustered together than 0 days, and the 7-day grouping appeared the most similar to the
318 control cluster (**Figure 3B**).

319 When compared to control samples, 2193 genes were found to be significantly
320 differentially expressed in the light-treated groups (adjusted p<0.05, **Supplementary Table**
321 **S1**) with 1818 DEGs identified at 0 days, and progressive decline to 656 genes at 3 days, and
322 155 genes at 7 days. As this variance in number of DEGs has the potential to heavily bias
323 downstream comparisons, we took the top 100 most significant DEGs for each time point, as
324 illustrated in the volcano plots and PCA in **Supplementary Figure S1** to take forward for
325 comparative functional enrichment analysis. These were representative of the trend in both
326 Venn and PCA analyses that were drawn from entire DEG list (**Supplementary Figure S2**).
327 Of the combined total of 300 DEGs, relatively few genes were identified in more than one time
328 point, resulting in a final representative snapshot of 246 unique DEGs (**Figure 3C**). Of these,
329 82 (33.3%) were found exclusively at 0 days, compared to 58 (23.6%) and 61 (24.8%) for 3
330 and 7 day groups respectively. The 3 and 7 day groups were also found to share the most DEGs
331 (27, 11%), as opposed to a total of only 9 (3.7%) with the 0 days group. These patterns indicate
332 the greatest transcriptional changes in retinal leukocytes occurring within the first 24 hours,
333 and most of these are acutely resolved within a week after injury.

334 **Network analysis of CD45⁺ leukocyte transcriptome**

335 To gain insight into the biological processes (BP) which mark the temporal shift in the
336 CD45⁺ transcriptome over the course of pathology, GO analysis was performed on the list of
337 Top 100 DEGs at each point (**Supplementary Table S2**). Lists of GO:BP terms to showcase
338 the Top 10 terms ranked by significance for each point (**Table 1**, adj. p<0.05). A striking
339 observation from this analysis, however, was the extent to which these enriched biological
340 processes were being driven by small clusters of genes (**Table 1**, network genes). This was
341 particularly evident at the 0 day point, wherein a subset of chemokines (*Ccl2*, *Cxcl16*, *Cxcl11*,

Natoli et al Functional characterisation of the Retinal CD45+ population after sterile injury.

342 *Ccl12, Ccl7, Ccl22, and Ccl17* was shown to underscore almost all the biology illustrated by
343 the top ranked terms.

344 To facilitate a better understanding of the biological significance of the data, we used
345 ClueGO to integrate enriched GO:BP terms from each point and organise them into a combined
346 functional network (**Figure 4**). This enabled us to explore functional interrelationships across
347 a broad biological network, whilst also understanding redundancy of terms between related
348 functions. **Figure 4A** represents the global functional network of retinal CD45+ population
349 using GO:BP terms constructed from the combined Top 100 DEGs from each time point, and
350 showcase functional grouped clusters such as lymphocyte migration, positive regulation of
351 hemopoiesis, and nuclear division. In **Figure 4B**, enrichment of specific points across the
352 network is displayed as proportion (%) of associated genes (complete readout of GO terms and
353 gene are tabulated in **Supplementary Table S3**). Here, the data reveal a shift in enrichment
354 over the course of PD. The 0 days point was most represented in the lymphocyte migration
355 functional group (69.2%), as well as networked terms for monocyte and neutrophil migration
356 (61.4, 66.7%), extravasation (100%) interleukin 1 (80%), conversely, there was pronounced
357 enrichment of functional groups that underscore cellular proliferation and metabolism,
358 including nuclear division (89.4%) and glycolytic process (68.3%). After 7 days, there was a
359 shift toward adaptive immune response, with pronounced representation of terms relating to
360 antigen processing and presentation (74%), including MHC class I (100%), and T cell receptor
361 signalling pathway (77.4%). Individual functional networks were also constructed for the
362 individual time points (**Supplementary Figure S3**), though were found to explain the data in
363 a largely similar fashion to the combined network.

364 **Gene co-regulation using K-means clustering**

365 The co-regulation of DEGs over the damage time course was assessing using K-means
366 clustering, which was performed on the combined list of 246 unique DEGs. The analysis
367 identified 4 major clusters as shown in heat maps and graphs in **Figure 5**; more detailed heat-
368 maps showing the specific genes in each cluster are located in **Supplementary Figure S4**.
369 Based on their temporal expression profile, the clusters were variously classed as Early Up (**A**),
370 Mid Up (**B**), Late Up (**C**), and Global down (**D**), and GO:BP and Reactome Pathway (RP)
371 analysis were performed on each to identify significantly enriched terms and pathways. The
372 Top 10 entries for each analysis (ranked by adj. P value) are listed in **Figure 5A-D** the
373 (complete list is available in **Supplementary Table S4**).

Natoli et al Functional characterisation of the Retinal CD45+ population after sterile injury.

374 The Early Up cluster (**Figure 5A**) identified DEGs that exhibited peak up-regulation at
375 0 days, and mainly comprised GO terms associated with recruitment, including leukocyte
376 migration (GO:0050900), monocyte chemotaxis (GO:0002548), and granulocyte chemotaxis
377 (GO:0071621). These consisted of many overlapping chemokines such as *Ccl2*, *Ccl3*, *Ccl7*,
378 *Ccl12*, as well as the pro-inflammatory regulators *Anxa1* (Annexin A1) and *Spp1*
379 (Osteopontin), and the immune suppressor *lgals1* (Galectin-1). Pathway analysis, conversely,
380 identified many apoptosis-related entries such as caspase-mediated cleavage of cytoskeletal
381 proteins (R-RNO-264870) and apoptotic execution phase (R-RNO-75153). These enriched
382 chemokine pathways are representative of the entire DEG list at the 0 days timepoint
383 (**Supplementary Figure S5**).

384 Mid Up (**Figure 5B**) correlated with peak up-regulation at 3 days. Both GO terms and
385 pathways associated with this time point were dominated by proliferative responses, including
386 mitotic cell cycle (GO:0000278) and Mitotic Spindle Checkpoint (R-RNO-69618). Also
387 enriched, however, was lymphocyte chemotaxis (GO:0048247), consisting of the *Adam8* and
388 the chemokines *Cxcl9*, *Cxcl11*, *Ccl22*, and *Ccl17*. Other chemokines in this cluster also include
389 the *Xcl1-Xcr1* signalling axis (**Supplementary Figure 3A**). Late up (**Figure 5C**) clustered
390 DEGs that exhibited peak upregulation at 7 days, and revealed terms for antigen processing
391 and presentation of peptide antigen (GO:0048002), and pathways associated with T-cell
392 activation, including Translocation of ZAP-70 to Immunological synapse (R-RNO-202430),
393 Phosphorylation of CD3 and T cell receptor (TCR) zeta chains (R-RNO-202427). Strikingly,
394 the complement activator Factor B (*cfb*) was also present in the Late-up cluster, alongside an
395 enrichment of pathways associated with Alternative complement activation (R-RNO-173736)
396 and Activation of C3 and C5 (R-RNO-174577); these are further illustrated in pathway
397 diagrams depicted in **Figure 6**. The Global-DOWN Cluster (**Figure 5D**), unlike the other
398 groupings, did not return any significantly enrich terms for GO:BP.

399 **Effect of Factor B ablation on subretinal inflammation following PD**

400 The pronounced enrichment of alternative complement pathway and Factor B within
401 the K-means data led us to further explore its role in subretinal inflammation and photoreceptor
402 degeneration after photo-oxidative damage. Interrogation of the full list of 2193 DEGs revealed
403 further significant differences in the complement genes, including alternative Factor D (*Cfd*),
404 and classical components *C1qa*, *C1qb*, and *C1qc* (**Figure 7C**). Hierarchical clustering on the
405 genes revealed an early decrease (0 days) in the cluster of C1q components, while both the

Natoli et al Functional characterisation of the Retinal CD45+ population after sterile injury.

406 alternative pathway Factors B and D showed increased expression at 7 days, in agreement with
407 the K-means pathway analysis.

408 To investigate a possible functional role, we utilised a *Cfb*−/− knockout strain and a
409 murine photo-oxidative damage model that we had previously shown exhibits a similar
410 magnitude of photoreceptor death and sterile inflammation to the rat model, over a 7-day time
411 course of bright-light exposure [43]. We examined the expression of Factor B in whole mouse
412 retinas after 3, 5, or 7 days' PD, and observed its persistent up-regulation compared to dim-
413 reared retinas (**Figure 7A**; P<0.05). This correlated with increased number of TUNEL+
414 photoreceptors, following PD over the same period (**Figure 7A**; P<0.05).

415 The link between photoreceptor viability and complement factor B was further
416 examined in Wt and *Cfb*−/− mice using TUNEL, ONL thickness, and ERG recordings (**Figure**
417 **7B-H**). After 7 days' exposure to PD, fewer TUNEL+ photoreceptors and more surviving
418 photoreceptor rows were observed in *Cfb*−/− mice, compared to Wt (**Figure 7B-D**; P<0.05). In
419 conjunction, ERG analysis indicated significantly better retinal function in the *Cfb*−/− cohort,
420 which had higher mixed a- and b- wave flash responses than the Wt group (**Figure 7E-H**;
421 P<0.05). The status of complement within retinas of *Cfb*−/− and Wt was inferred by Western
422 blotting for C3d (**Figure 7I**), a relatively long-lived by-product of C3 proteolysis whose
423 accumulation infers activation of the cascade [58]. After 7 days' PD, there were significantly
424 lower levels of C3d in retinas of *Cfb*−/− mice, compared to Wt (P<0.05), accompanied by fewer
425 infiltrating IBA1-immunoreactive macrophages in the ONL/subretinal space (P<0.05, **Figure**
426 **7J**). IBA1+ macrophages in the Wt cohort more frequently exhibited a reactive amoeboid-type
427 morphology (**Figure 7J**, representative images), indicative of an activated state.

428 **Discussion**

429 In this study we provide the first detailed characterisation of the functional dynamic of
430 the retinal leukocyte population in sterile retinal inflammation, combining flow-cytometry
431 analysis with RNA-seq of retinal CD45+ transcriptome. Whole-genome transcriptional
432 profiling has been used previously to facilitate high-resolution analysis of the host gene
433 response to cellular changes in the retina [59-61], though these studies have lacked the
434 necessary resolution to dissect the leukocyte populations driving tissue damage after sterile
435 injury. Here, we show that the major leukocyte cell type, and associated molecular changes are
436 consistent with a mononuclear phagocyte subpopulation, most likely tissue resident microglia
437 and macrophages. Photo-oxidative damage induced an early pro-inflammatory and chemokine-

Natoli et al Functional characterisation of the Retinal CD45+ population after sterile injury.

438 driven response that laid the foundation for progressive and varied migration of myeloid cells,
439 granulocytes, and T lymphocytes at later stages, which was coincident with photoreceptor cell
440 loss. In assessing the gene expression changes using a functional network approach, we
441 uncovered shifts in the retinal leukocyte transcriptome following sterile injury, predicting the
442 major drivers of the degenerative process are mediated by a sustained inflammatory response.
443 Specifically, early myeloid-driven, acute pro-inflammatory responses preceded any later
444 involvement of complement, T-cell activation, antigen presentation.

445 Network analysis predicted a role for alternative complement pathway during the late
446 stage of degeneration, and indicated that this was driven by leukocytes at 3-7 days post injury.
447 Factor B is crucial to the assembly of the alternative pathway C3-convertase, which promotes
448 the rapid and prodigious accumulation of C3b/C3d, and ultimately, the assembly of the
449 membrane attack complex (MAC), that in turn may trigger cytolysis or apoptosis of target cells
450 [62, 63]. Factor B expression is increased in retinal macrophages/microglia in aged mice [64],
451 though the implications of this expression, particularly in the context of sterile inflammation,
452 has not previously been assessed. Here, we present several lines of evidence indicating that
453 increased expression of Factor B promotes local activation of the alternative complement
454 pathway, including deposition of complement C3, and that this is mediated by subretinal
455 macrophage infiltration.

466 AMD is considered a chronic inflammatory disease exacerbated by dysfunction and
467 dysregulation of the complement cascade (reviewed in [65, 66]). Much attention has been
468 placed on the regulation of Complement Factor H (*Cfh*), and thus the alternative pathway
469 (reviewed in [67]), due to the strong genetic link between *Cfh* dysregulation and AMD
470 pathogenesis [68-71]. The alternative pathway has been implicated in complement activation
471 and retinal pathology in several animal models (reviewed in [72]). This relates favourably to
472 our previous observations, showing that C3 is expressed by infiltrating mononuclear
473 phagocytes following PD, and that this expression is integral to the pathogenic activation of
474 complement within the retina [73].

475 It is well known that the major leukocytes in the central nervous system are microglia,
476 the resident macrophages (reviewed in [74]). Previous studies have used CD11b⁺ as a leukocyte
477 marker for isolating retinal macrophage populations [75], and have shown that this population
478 accounts for 5-20% of the glial population [76]. Despite CNS microglia being classed as
479 CD45^{lo} expressed [77, 78], in the current study we found that CD45 labelling produced a

Natoli et al Functional characterisation of the Retinal CD45+ population after sterile injury.

470 similar profile to CD11b, but comprise a broader pool of cells, therefore providing a better
471 perspective on the leukocyte expressome. Our data shows that while in control animals (reared
472 in dim light) CD11b⁺ cells are ~0.495% ($^{+/-}0.09$ SEM) of the retinal population, CD45⁺ cells
473 comprise ~0.853% ($^{+/-}0.23$ SEM). However, at 7 days after light damage CD11b⁺ cells were
474 5.07% ($^{+/-}0.530$ SEM) while CD45⁺ cells 6.21% ($^{+/-}0.730$ SEM) of the retinal cell population,
475 respectively. The data indicates that the molecular profile of the CD45⁺ cell population changes
476 with retinal degeneration. Moreover, the early expression of chemokines suggests that the
477 increase in the proportion of CD45⁺ cells is due to a recruitment of monocytes as well as a
478 change in the local retinal environment.

479 Previous studies have demonstrated that recruited macrophages do not contribute to the
480 microglial pool under normal physiological conditions [79]. However, recent evidence from
481 Ma and colleagues in an NaIO₃-induced model of RPE loss indicates that recruited
482 macrophages may aid in replenishing the microglial pool of the inner retina during injury. In
483 that study, recruited macrophages were found to seed the inner retina in a Ccr2-dependant
484 fashion following RPE degeneration, and adopt a long-lived phenotype synonymous with
485 resident microglial cells [80]. Our gene expression data support this finding in showing that
486 microglia-associated markers transmembrane protein 119 (*Tmem119*), P2Y purinoceptor 12
487 (*P2ry12*), and Sal-like protein 1 (*Sall1*) are all transiently down-regulated in the CD45⁺
488 population, at 0 days (**Supplementary Table S1**), suggestive of a dilution of the microglial
489 pool with the rapid recruitment of non-resident mononuclear phagocytes. Despite these
490 collective findings, the dissection of the respective functional roles of resident vs recruited
491 macrophage populations in the retina remains elusive. Fate mapping strategies, such as that
492 reported recently by O'Koren and colleagues [78] may further assist in contrasting the roles
493 these populations in future studies.

494 Network analysis of leukocyte gene expression also highlighted waves of chemokine
495 mediated cell recruitment. Chemokines play a pivotal role in leukocyte migration and
496 activation [81] and are implicated in experimental models of retinal degeneration [47, 82] and
497 in AMD disease progression [29, 83]. These small molecules are grouped according to the
498 relative position of their first N terminal cysteine residues, into C (γ chemokines), CC (β
499 chemokines), CXC (α chemokines), and CX3C (δ chemokines) [23, 84, 85]. Many of the
500 receptors show a degree of redundancy, although generally interactions are restricted to within
501 chemokine family subclasses [23]. We find significant changes in expression of a number of
502 chemokines by CD45⁺ cells in retinal degeneration, covering the gamut of myeloid and T

Natoli et al Functional characterisation of the Retinal CD45+ population after sterile injury.

503 lymphocyte chemotaxis. The significant increases in *Ccl2*, *Ccl3*, and *Ccl7* at 0 days corroborate
504 findings from our previous studies of whole retinas [30, 47]. Here we show in addition that
505 *Ccl12*, *Ccl17*, *Ccl22*, as well as *Cxcl4*, *Cxcl10*, *Cxcl11*, *Cxcl13*, *Cxcl16* are expressed by
506 leucocyte subsets in the retina at early stage of degeneration. The chemokine expression profile
507 at 3-7 days also indicated some striking novel patterns, including strong upregulation of *Cxcl9*,
508 *Xcl1*, and *Xcr1* axis. In a previous study, a downregulation of *Cxcl9* was observed in IFN- β -
509 treated RPE cells, and suggested to be an immune-suppressive mechanism that protects the
510 retina from excessive inflammation [86]. The ligand *Xcl1* is expressed primarily by activated
511 CD8+ T cells in peripheral blood, while its cognate receptor *Xcr1* is present mainly on dendritic
512 cells (reviewed in [87]). This signalling axis augments T cell survival and promotes cytotoxic
513 immune responses [88, 89].

514 Our network analysis showed that CD45+ expression profile at the later stage of sterile
515 inflammation heavily skewed towards antigen-presentation and processing via MHC I and
516 MHC II, as well as activation and signalling through the T cell receptor. In human forms of
517 sterile retinal inflammation, such as AMD, the evidence linking disease progression to the
518 adaptive immune system has been poorly investigated, even though the presence of anti-retinal
519 antibodies in AMD patients has been reported [90-92]. Others have suggested that AMD should
520 be considered an autoimmune disease (reviewed in [93]), noting that evaluations of AMD
521 lesions demonstrate the presence of both mast cells and lymphocytes [94]. Because the retina
522 is not routinely surveyed by B- and T-cells under physiological conditions, any involvement
523 of the adaptive immune system to retinal degenerations will most likely involve retinal antigen
524 presentation and indirect autoantibody function [42]. T-cells and neutrophil participation in
525 RPE degenerations has also been reported [95, 96], while others have implicated the
526 complement system as the bridge between the adaptive and innate immune system [97, 98],
527 leading to the recruitment of $\gamma\delta$ T-cells [99]. A study that induced AMD-like retinal
528 degeneration through the use of carboxyethylpyrrole-modified albumin (CEP) [100], suggests
529 that an antibody-mediated response to CEP is required to initiate degeneration, and implicates
530 T-cells and B-cells. Further, this CEP-immunised AMD-like model demonstrates macrophage
531 recruitment to the site of injury and complement activation in the Bruch's membrane, also
532 suggesting activation of the classical pathway [100]. The study also shows that CEP-
533 immunised *Rag*^{-/-} mice, which lack intact adaptive immunity and mature T-cells and B-cells,
534 produced no anti-CEP.

535

Natoli et al Functional characterisation of the Retinal CD45+ population after sterile injury.

536 **Conclusion**

537 Sterile inflammation punctuates the degenerative process of many ocular pathologies,
538 though despite this the breadth and scope of this response in the context of the retinal
539 environment are poorly characterised. Though mononuclear phagocytes comprise the bulk
540 leukocyte infiltrate, profiling the CD45+ subset did reveal an early and pronounced enrichment
541 of terms pertaining to T-cell chemotaxis and migration, while proliferation, T-cell activation,
542 antigen presentation, and complement dominated ontologies at the later time points. Finally,
543 our mechanistic data strongly support a key role of leukocytes, and in particular mononuclear
544 phagocytes, in propagating the subretinal inflammation and complement deposition via the
545 activation of the alternative pathway. Together, these data greatly extend our understanding of
546 the factors that shape the course of sterile retinal inflammation, which has relevance to the
547 therapeutic targeting of these pathways in diseases such AMD.

548 **Acknowledgments and funding**

549 We would like to thank the members of the ANU Bioinformatics Consultancy Unit, JCSMR,
550 for their help in the analysis of the RNAseq data as well as the funding agency Retina Australia
551 for supporting this work.

552 **Figure Legends**

553 **Figure 1: Changes in photoreceptor apoptosis and degeneration following photo-
554 oxidative damage. A:** TUNEL+ photoreceptors were quantified across retinal sections for
555 each replicate in each group. There was immediately increase in TUNEL+ photoreceptors
556 following photo-oxidative damage, at 0 days, which remained significantly elevated at 3 and 7
557 days post-exposure ($P<0.05$). **B:** ONL thickness was averaged across retinal sections and
558 expressed as a ratio of the total retinal thickness, for each sample. There was a progressive
559 decrease in ONL thickness from 0 days to 7 days post-exposure ($P<0.05$). Representative
560 images are taken from the superior retina, approximately 500 μ m from the optic nerve head.
561 The data depict a sample size of $n=5$ per group. Asterisks equates to p-value of <0.05 , as
562 determined by Tukey's post-hoc test. ONL, outer nuclear layer; OS, outer segments; INL, inner
563 nuclear layer; C, choroid.

564 **Figure 2. Characterisation of major CD45 leukocyte subsets in the retina following photo-
565 oxidative damage. A-D:** Representative labelling of CD45+ cells (green) by
566 immunohistochemistry on retinal sections, with DAPI (blue) as the background stain. In dim-

Natoli et al Functional characterisation of the Retinal CD45+ population after sterile injury.

567 reared controls, staining for CD45 was restricted to ramified microglia in the inner plexiform
568 layer IPL (A,C). By 7 days post damage, there were numerous CD45+ cells distributed in the
569 ONL and subretinal space following damage (B,D). **E:** Graphing and representative plots for
570 fluorescence activated cell sorting (FACS) of CD45+ cells, which show progressive increases
571 over time, relative to the retinal population ($P<0.05$, ANOVA). **F-H:** Categorisation of CD45
572 subpopulations in the retina over the timecourse, using flow cytometry. **F:** The proportion of
573 CD11b+ macrophages comprised the bulk of the CD45+ population (F, left, $P<0.05$, ANOVA),
574 and continually increased throughout the timecourse relative to the retinal population (F, right,
575 $P<0.05$, ANOVA). **G:** Graphing and representative plots showcase CD11b and Gr1 staining
576 amongst CD45 cells, relative to the retinal population. CD11b+Gr1+ granulocytes were found
577 exhibit late increase at 3 and 7 days (ANOVA $P<0.05$), comprising a smaller proportion than
578 the CD11b+Gr1- macrophage subset. The representative SSC/FSC plots at 3 and 7 days show
579 increased SSC of CD11b+Gr1+ Granulocytes compared to CD11b+Gr1-. **H:** Staining for
580 CD3+ T cells and C45RA+ B cells is presented in graphs and representative plots as a
581 proportion of the CD45+CD11b- parent population. The subset of CD3+ cells displayed
582 progressive increase over time, and peaking at 7 days ($P<0.05$ ANOVA); CD45RA+ cells in
583 contrast showed no appreciable change across the timecourse. All datasets represent a sample
584 size of $n=4$ per group. C, choroid; FACS fluorescence activated cell sorting; INL, inner nuclear
585 layer; ONL, outer nuclear layer; OS, outer segments.

586 **Figure 3. Principle Component Analysis of the RNAseq dataset of isolated CD45+ retinal
587 leukocytes.** PCA was conducted on the log2cpm of all expressed genes. **A:** The scree plot
588 showcases the variance across 10 PCs; the vast majority of the variance is explained in first 3
589 PCs (highlighted in black). **B:** PCA graphed the PCs 1-3 for all sample groups in triplicate, and
590 indicated distinct clustering for replicates among respective groups. **C:** Venn diagram depicts
591 the distribution and interrelation of the top 100 DEGs at each of the post-damage time points.
592 DEG, differentially expressed gene; PC, principle component; PCA, principle component
593 analysis.

594 **Figure 4. Functionally grouped network analysis of enriched GO terms for CD45
595 Population over the timecourse.** **A:** The top 100 DEGs from each timepoint were used to
596 generate enriched GO terms for biological process, which were then integrated into a
597 functionally grouped network. GO:BP terms are represented as nodes, while their size
598 illustrates the significance of the term enrichment; the edges reflect the degree of connectivity
599 and grouping between the terms. The leading term in each functional grouping is selected based

Natoli et al Functional characterisation of the Retinal CD45+ population after sterile injury.

600 on the highest significance (Bonferroni adj. $P<0.05$). **B:** The network is overlayed with the
601 enrichment of the timepoints across the functional groupings; nodes in which more than 50%
602 of the genes are attributed to a given timepoint are colour-coded accordingly. BP, biological
603 process; DEG, differentially expressed gene; GO, gene ontology.

604 **Figure 5. Analysis of co-regulated DEGs within the CD45 Population following photo-
605 oxidative damage. A-D:** K-means clustering was performed on the log2cpm of 246 DEGs that
606 were derived from the combined Top 100 DEGs in each timepoint. 4 major clusters were
607 identified, as illustrated in the heat maps and box and whiskers plots, and variously termed **(A)**
608 Early UP, **(B)** Mid UP, **(C)** Late UP, and **(D)** Global DOWN, based on their temporal
609 expression pattern. The DEGs in each cluster were assessed for enriched terms and pathways
610 using GO:BP and Reactome, respectively; the Top entries for each are displayed, which were
611 ranked according to the adjusted P value. BP, biological process; DEG, differentially expressed
612 gene; GO, gene ontology.

613 **Figure 6. Enrichment of the complement pathway in the CD45 Transcriptome. A-B:**
614 Reactome pathway diagrams showcase overrepresentation ($FDR<0.05$) of complement
615 interactions in the Late UP K-means Cluster (Figure 5). Yellow-colouring in the nodes denotes
616 a gene in the expression list that matches a protein within the pathway diagram, while the
617 degree of colouring represents the coverage. **A:** Pathway diagram depicts the entire
618 complement cascade, which are broadly classified subcomponents for Initial triggering of
619 complement (blue), Terminal pathway of complement (green), Activation of C3 and C5 (red),
620 and Regulation of the complement cascade (grey). **B:** Activation of C3 and C5 was found to
621 show significant enrichment Factor B (*cfb*) in the expression list (yellow-colouring). **C:** Heat
622 maps with hierarchical clustering on significant complement DEGs derived from the full gene
623 expression list (2193). Asterisks denote significant differential expression ($FDR<0.05$)
624 compared to control (dim). DEG, differentially expressed gene.

625 **Figure 7. Effect of *Cfb* ablation on retinal degeneration complement activation, and
626 macrophage infiltration following photo-oxidative damage. A:** Temporal relation of retinal
627 *cfb* expression and TUNEL+ photoreceptor counts PD was assessed in Wt mice after 3, 5, and
628 7 Days PD. The expression of *Cfb* showed continual up-regulation following PD, compared to
629 dim-reared ($P<0.05$), and was in concert with increase in TUNEL+ photoreceptors ($P<0.05$).
630 Representative fluorescent images showcase TUNEL staining (red) over the timecourse of PD.
631 **B-D:** Change in TUNEL-photoreceptor counts and ONL thickness in Wt vs *Cfb*-/- mice, after

Natoli et al Functional characterisation of the Retinal CD45+ population after sterile injury.

632 7 days PD. TUNEL+ across the full length of retinal sections were quantified and found to be
633 reduced in *Cfb*-/ mice (B, P<0.05); these are depicted in representative images. ONL thickness
634 was extrapolated on the same sections as function of the number of photoreceptor rows (C-D).
635 When quantified over sections (C), there more surviving photoreceptors in *Cfb*-/ mice,
636 compared Wt (P<0.05), and was particularly pronounced in mid-periphery (~1 to 1.5mm
637 eccentricity, D). **E-H:** ERGs recordings capture a flash intensity series (-4.4 - 1.9 cd.s/ms²)
638 conducted on Wt and *Cfb*-/ cohorts after 7 days PD. The trend for both analysed b- and b-
639 waves across this series was higher Cfb mice than Wt (E-F), in addition to highest flash
640 intensity (G, P<0.05). The cone-derived b wave was analysed at from a twin-flash stimulus at
641 1.9 cd.s/ ms², and was also significantly higher in the *Cfb*-/ cohort (H, P<0.05). **I:**
642 Representative immunoblots illustrate bands for complement C3d protein and loading control
643 GAPDH in whole retinas, from CfB-/ and WT cohorts after 7 days PD. Densitometry
644 quantified C3d levels, normalised to GAPDH, and indicated reduced C3d levels in the *Cfb*-/
645 cohort (P<0.05). **J:** Immunohistochemistry for IBA1+ macrophages/microglia (green) in
646 retinal sections of Wt vs *Cfb*-/ mice after 7 days PD, as shown in representative images. The
647 graph illustrates the quantification of IBA1+ cells in the ONL and subretinal space across
648 retinal sections, and show a significant decrease in the *Cfb*-/ cohort, compared to Wt (P<0.05).
649 Statistical significance was determined by student t-test or ANOVA accompanied with post-
650 hoc multiple comparison (*P< 0.05). A-H: N=5 per group; I-J: N= 4 and 11 per group. ERG,
651 electroretinogram; INL: inner nuclear layer; ONL: outer nuclear layer; PD, Photo-oxidative
652 damage. Scale bars equal to 50μm.

653

654

655

656

657

658

659

660

661

Natoli et al Functional characterisation of the Retinal CD45+ population after sterile injury.

662 **References**

- 663 1. Cuenca, N., et al., *Cellular responses following retinal injuries and therapeutic*
664 *approaches for neurodegenerative diseases.* Prog Retin Eye Res, 2014. **43**: p. 17-75.
- 665 2. Gomez Perdiguero, E., et al., *Tissue-resident macrophages originate from yolk-sac-*
666 *derived erythro-myeloid progenitors.* Nature, 2015. **518**(7540): p. 547-51.
- 667 3. Ginhoux, F., et al., *Fate mapping analysis reveals that adult microglia derive from*
668 *primitive macrophages.* Science, 2010. **330**(6005): p. 841-5.
- 669 4. Marin-Teva, J.L., et al., *Microglia promote the death of developing Purkinje cells.*
670 *Neuron*, 2004. **41**(4): p. 535-47.
- 671 5. Wang, X., et al., *Requirement for Microglia for the Maintenance of Synaptic Function*
672 *and Integrity in the Mature Retina.* J Neurosci, 2016. **36**(9): p. 2827-42.
- 673 6. Michell-Robinson, M.A., et al., *Roles of microglia in brain development, tissue*
674 *maintenance and repair.* Brain, 2015. **138**(Pt 5): p. 1138-59.
- 675 7. Dick, A.D., et al., *Flow cytometric identification of a minority population of MHC*
676 *class II positive cells in the normal rat retina distinct from*
677 *CD45lowCD11b/c+CD4low parenchymal microglia.* Br J Ophthalmol, 1995. **79**(9):
678 p. 834-40.
- 679 8. Madeira, M.H., et al., *Contribution of microglia-mediated neuroinflammation to*
680 *retinal degenerative diseases.* Mediators Inflamm, 2015. **2015**: p. 673090.
- 681 9. Langmann, T., *Microglia activation in retinal degeneration.* J Leukoc Biol, 2007.
682 **81**(6): p. 1345-51.
- 683 10. Ezzat, M.K., et al., *Immune cells in the human choroid.* Br J Ophthalmol, 2008. **92**(7):
684 p. 976-80.
- 685 11. Gupta, N., K.E. Brown, and A.H. Milam, *Activated microglia in human retinitis*
686 *pigmentosa, late-onset retinal degeneration, and age-related macular degeneration.*
687 *Experimental Eye Research*, 2003. **76**(4): p. 463-471.
- 688 12. Penfold, P.L., M.C. Killingsworth, and S.H. Sarks, *Senile macular degeneration. The*
689 *involvement of giant cells in atrophy of the retinal pigment epithelium.* Invest
690 *Ophthalmol Vis Sci*, 1986. **27**(3): p. 364-71.
- 691 13. Cherepanoff, S., et al., *Bruch's membrane and choroidal macrophages in early and*
692 *advanced age-related macular degeneration.* Br J Ophthalmol, 2010. **94**(7): p. 918-
693 25.

Natoli et al Functional characterisation of the Retinal CD45+ population after sterile injury.

694 14. Zhao, L., et al., *Microglial phagocytosis of living photoreceptors contributes to*
695 *inherited retinal degeneration*. EMBO Mol Med, 2015. **7**(9): p. 1179-97.

696 15. Lewis, G.P., et al., *Microglial cell activation following retinal detachment: a*
697 *comparison between species*. Mol Vis, 2005. **11**: p. 491-500.

698 16. Nakazawa, T., et al., *Monocyte chemoattractant protein 1 mediates retinal*
699 *detachment-induced photoreceptor apoptosis*. Proc Natl Acad Sci U S A, 2007.
700 **104**(7): p. 2425-30.

701 17. Vrabec, F., *Activated human retinal microglia under pathological conditions*.
702 Albrecht Von Graefes Arch Klin Exp Ophthalmol, 1975. **196**(1): p. 49-60.

703 18. Yuan, L. and A.H. Neufeld, *Activated microglia in the human glaucomatous optic*
704 *nerve head*. J Neurosci Res, 2001. **64**(5): p. 523-32.

705 19. Neufeld, A.H., *Microglia in the optic nerve head and the region of parapapillary*
706 *chorioretinal atrophy in glaucoma*. Arch Ophthalmol, 1999. **117**(8): p. 1050-6.

707 20. Zeng, H.Y., W.R. Green, and M.O. Tso, *Microglial activation in human diabetic*
708 *retinopathy*. Arch Ophthalmol, 2008. **126**(2): p. 227-32.

709 21. Li, Q. and B.A. Barres, *Microglia and macrophages in brain homeostasis and*
710 *disease*. Nat Rev Immunol, 2017.

711 22. Mrdjen, D., et al., *High-Dimensional Single-Cell Mapping of Central Nervous System*
712 *Immune Cells Reveals Distinct Myeloid Subsets in Health, Aging, and Disease*.
713 Immunity, 2018.

714 23. Bajetto, A., et al., *Characterization of chemokines and their receptors in the central*
715 *nervous system: physiopathological implications*. J Neurochem, 2002. **82**(6): p. 1311-
716 29.

717 24. Ransohoff, R.M., A. Glabinski, and M. Tani, *Chemokines in immune-mediated*
718 *inflammation of the central nervous system*. Cytokine Growth Factor Rev, 1996. **7**(1):
719 p. 35-46.

720 25. Luster, A.D., *Chemokines--chemotactic cytokines that mediate inflammation*. N Engl
721 J Med, 1998. **338**(7): p. 436-45.

722 26. Karlstetter, M., et al., *Retinal microglia: just bystander or target for therapy?* Prog
723 Retin Eye Res, 2015. **45**: p. 30-57.

724 27. Fernando, N., et al., *The broad-spectrum chemokine inhibitor NR58-3.14.3 modulates*
725 *macrophage-mediated inflammation in the diseased retina*. J Neuroinflammation,
726 2016. **13**: p. 47.

Natoli et al Functional characterisation of the Retinal CD45+ population after sterile injury.

727 28. Tsutsumi, C., et al., *The critical role of ocular-infiltrating macrophages in the*
728 *development of choroidal neovascularization.* J Leukoc Biol, 2003. **74**(1): p. 25-32.

729 29. Sennlaub, F., et al., *CCR2(+) monocytes infiltrate atrophic lesions in age-related*
730 *macular disease and mediate photoreceptor degeneration in experimental subretinal*
731 *inflammation in Cx3cr1 deficient mice.* EMBO Mol Med, 2013. **5**(11): p. 1775-93.

732 30. Rutar, M., et al., *Early focal expression of the chemokine Ccl2 by Muller cells during*
733 *exposure to damage-inducing bright continuous light.* Invest Ophthalmol Vis Sci,
734 2011. **52**(5): p. 2379-88.

735 31. Rutar, M., R. Natoli, and J.M. Provis, *Small interfering RNA-mediated suppression of*
736 *Ccl2 in Muller cells attenuates microglial recruitment and photoreceptor death*
737 *following retinal degeneration.* J Neuroinflammation, 2012. **9**: p. 221.

738 32. Grunin, M., S. Hagbi-Levi, and I. Chowers, *The role of monocytes and macrophages*
739 *in age-related macular degeneration.* Adv Exp Med Biol, 2014. **801**: p. 199-205.

740 33. Li, L., N. Eter, and P. Heiduschka, *The microglia in healthy and diseased retina.* Exp
741 Eye Res, 2015. **136**: p. 116-30.

742 34. Zhao, L., et al., *Microglial phagocytosis of living photoreceptors contributes to*
743 *inherited retinal degeneration.* EMBO Molecular Medicine, 2015. **7**(9): p. 1179-1197.

744 35. Xu, H., M. Chen, and J.V. Forrester, *Para-inflammation in the aging retina.* Prog
745 Retin Eye Res, 2009. **28**(5): p. 348-68.

746 36. Kataoka, K., et al., *The roles of vitreal macrophages and circulating leukocytes in*
747 *retinal neovascularization.* Invest Ophthalmol Vis Sci, 2011. **52**(3): p. 1431-8.

748 37. Ni, Y.Q., et al., *Neuroprotective effects of naloxone against light-induced*
749 *photoreceptor degeneration through inhibiting retinal microglial activation.* Invest
750 Ophthalmol Vis Sci, 2008. **49**(6): p. 2589-98.

751 38. Chang, C.J., et al., *Minocycline partially inhibits caspase-3 activation and*
752 *photoreceptor degeneration after photic injury.* Ophthalmic Res, 2005. **37**(4): p. 202-
753 13.

754 39. Grigsby, J.G., et al., *The role of microglia in diabetic retinopathy.* J Ophthalmol,
755 2014. **2014**: p. 705783.

756 40. Omri, S., et al., *Microglia/macrophages migrate through retinal epithelium barrier by*
757 *a transcellular route in diabetic retinopathy: role of PKCzeta in the Goto Kakizaki rat*
758 *model.* Am J Pathol, 2011. **179**(2): p. 942-53.

Natoli et al Functional characterisation of the Retinal CD45+ population after sterile injury.

759 41. Bosco, A., et al., *Reduced retina microglial activation and improved optic nerve*
760 *integrity with minocycline treatment in the DBA/2J mouse model of glaucoma*. Invest
761 Ophthalmol Vis Sci, 2008. **49**(4): p. 1437-46.

762 42. Ambati, J., J.P. Atkinson, and B.D. Gelfand, *Immunology of age-related macular*
763 *degeneration*. Nat Rev Immunol, 2013. **13**(6): p. 438-51.

764 43. Natoli, R., et al., *A model of progressive photo-oxidative degeneration and*
765 *inflammation in the pigmented C57BL/6J mouse retina*. Exp Eye Res, 2016. **147**: p.
766 114-27.

767 44. Rutar, M., J.M. Provis, and K. Valter, *Brief exposure to damaging light causes focal*
768 *recruitment of macrophages, and long-term destabilization of photoreceptors in the*
769 *albino rat retina*. Curr Eye Res, 2010. **35**(7): p. 631-43.

770 45. Maslim, J., et al., *Tissue oxygen during a critical developmental period controls the*
771 *death and survival of photoreceptors*. Invest Ophthalmol Vis Sci, 1997. **38**(9): p.
772 1667-77.

773 46. Rutar, M., J.M. Provis, and K. Valter, *Brief exposure to damaging light causes focal*
774 *recruitment of macrophages, and long-term destabilization of photoreceptors in the*
775 *albino rat retina*. Curr Eye Res, 2010. **35**(7): p. 631-43.

776 47. Rutar, M., et al., *Chemokine-mediated inflammation in the degenerating retina is*
777 *coordinated by Muller cells, activated microglia, and retinal pigment epithelium*. J
778 Neuroinflammation, 2015. **12**: p. 8.

779 48. Sunagar, K., et al., *Molecular evolution of vertebrate neurotrophins: co-option of the*
780 *highly conserved nerve growth factor gene into the advanced snake venom arsenal*.
781 PLoS One, 2013. **8**(11): p. e81827.

782 49. Bolger, A.M., M. Lohse, and B. Usadel, *Trimmomatic: a flexible trimmer for Illumina*
783 *sequence data*. Bioinformatics, 2014. **30**(15): p. 2114-20.

784 50. Trapnell, C., L. Pachter, and S.L. Salzberg, *TopHat: discovering splice junctions with*
785 *RNA-Seq*. Bioinformatics, 2009. **25**(9): p. 1105-11.

786 51. Li, H., et al., *The Sequence Alignment/Map format and SAMtools*. Bioinformatics,
787 2009. **25**(16): p. 2078-9.

788 52. Anders, S., P.T. Pyl, and W. Huber, *HTSeq--a Python framework to work with high-*
789 *throughput sequencing data*. Bioinformatics, 2015. **31**(2): p. 166-9.

790 53. Robinson, M.D., D.J. McCarthy, and G.K. Smyth, *edgeR: a Bioconductor package*
791 *for differential expression analysis of digital gene expression data*. Bioinformatics,
792 2010. **26**(1): p. 139-40.

Natoli et al Functional characterisation of the Retinal CD45+ population after sterile injury.

793 54. Robinson, M.D. and A. Oshlack, *A scaling normalization method for differential*
794 *expression analysis of RNA-seq data*. *Genome Biol*, 2010. **11**(3): p. R25.

795 55. Babicki, S., et al., *Heatmapper: web-enabled heat mapping for all*. *Nucleic Acids*
796 *Res*, 2016. **44**(W1): p. W147-53.

797 56. Bindea, G., et al., *ClueGO: a Cytoscape plug-in to decipher functionally grouped*
798 *gene ontology and pathway annotation networks*. *Bioinformatics*, 2009. **25**(8): p.
799 1091-3.

800 57. Rutar, M., et al., *Chemokine-mediated inflammation in the degenerating retina is*
801 *coordinated by Muller cells, activated microglia, and retinal pigment epithelium*. *J*
802 *Neuroinflammation*, 2015. **12**(1): p. 8.

803 58. Nilsson, B. and K.N. Ekdahl, *Complement diagnostics: concepts, indications, and*
804 *practical guidelines*. *Clin Dev Immunol*, 2012. **2012**: p. 962702.

805 59. Tian, L., et al., *Transcriptome of the human retina, retinal pigmented epithelium and*
806 *choroid*. *Genomics*, 2015. **105**(5-6): p. 253-64.

807 60. Cai, L. and Y.L. Lyu, *Analysis of Retinal Development and Diseases Using RNA-Seq*.
808 *Cell Dev Biol*, 2012. **1**(5).

809 61. Mustafi, D., et al., *Inflammatory priming predisposes mice to age-related retinal*
810 *degeneration*. *J Clin Invest*, 2012. **122**(8): p. 2989-3001.

811 62. Walport, M.J., *Complement: First of two parts*. *New England Journal of Medicine*,
812 2001. **344**(14): p. 1058-1066.

813 63. Walport, M.J., *Complement: Second of two parts*. *New England Journal of Medicine*,
814 2001. **344**(15): p. 1140-1144.

815 64. Ma, W., et al., *Gene expression changes in aging retinal microglia: relationship to*
816 *microglial support functions and regulation of activation*. *Neurobiol Aging*, 2013.
817 **34**(10): p. 2310-21.

818 65. Zipfel, P.F., N. Lauer, and C. Skerka, *The role of complement in AMD*. *Adv Exp Med*
819 *Biol*, 2010. **703**: p. 9-24.

820 66. Anderson, D.H., et al., *The pivotal role of the complement system in aging and age-*
821 *related macular degeneration: Hypothesis re-visited*. *Progress in Retinal and Eye*
822 *Research*, 2010. **29**(2): p. 95-112.

823 67. Calippe, B., X. Guillonneau, and F. Sennlaub, *Complement factor H and related*
824 *proteins in age-related macular degeneration*. *C R Biol*, 2014. **337**(3): p. 178-84.

825 68. Edwards, A.O., et al., *Complement factor H polymorphism and age-related macular*
826 *degeneration*. *Science*, 2005. **308**(5720): p. 421-424.

Natoli et al Functional characterisation of the Retinal CD45+ population after sterile injury.

827 69. Hageman, G.S., et al., *A common haplotype in the complement regulatory gene factor*
828 *H (HF1/CFH) predisposes individuals to age-related macular degeneration.*
829 Proceedings of the National Academy of Sciences of the United States of America,
830 2005. **102**(20): p. 7227-7232.

831 70. Haines, J.L., et al., *Complement factor H variant increases the risk of age-related*
832 *macular degeneration.* Science, 2005. **308**(5720): p. 419-421.

833 71. Klein, R.J., et al., *Complement factor H polymorphism in age-related macular*
834 *degeneration.* Science, 2005. **308**(5720): p. 385-389.

835 72. Pujol-Lereis, L.M., et al., *Interrelation Between Oxidative Stress and Complement*
836 *Activation in Models of Age-Related Macular Degeneration.* Adv Exp Med Biol,
837 2016. **854**: p. 87-93.

838 73. Natoli, R., et al., *Retinal Macrophages Synthesize C3 and Activate Complement in*
839 *AMD and in Models of Focal Retinal Degeneration.* Invest Ophthalmol Vis Sci, 2017.
840 **58**(7): p. 2977-2990.

841 74. Ginhoux, F., et al., *Origin and differentiation of microglia.* Front Cell Neurosci, 2013.
842 7: p. 45.

843 75. Portillo, J.A., et al., *Identification of primary retinal cells and ex vivo detection of*
844 *proinflammatory molecules using flow cytometry.* Mol Vis, 2009. **15**: p. 1383-9.

845 76. Perry, V.H., *A revised view of the central nervous system microenvironment and*
846 *major histocompatibility complex class II antigen presentation.* J Neuroimmunol,
847 1998. **90**(2): p. 113-21.

848 77. Prinz, M., et al., *Heterogeneity of CNS myeloid cells and their roles in*
849 *neurodegeneration.* Nat Neurosci, 2011. **14**(10): p. 1227-35.

850 78. O'Koren, E.G., R. Mathew, and D.R. Saban, *Fate mapping reveals that microglia and*
851 *recruited monocyte-derived macrophages are definitively distinguishable by*
852 *phenotype in the retina.* Sci Rep, 2016. **6**: p. 20636.

853 79. Ajami, B., et al., *Local self-renewal can sustain CNS microglia maintenance and*
854 *function throughout adult life.* Nat Neurosci, 2007. **10**(12): p. 1538-43.

855 80. Ma, W., et al., *Monocyte infiltration and proliferation reestablish myeloid cell*
856 *homeostasis in the mouse retina following retinal pigment epithelial cell injury.* Sci
857 Rep, 2017. **7**(1): p. 8433.

858 81. Moser, B. and P. Loetscher, *Lymphocyte traffic control by chemokines.* Nat Immunol,
859 2001. **2**(2): p. 123-8.

Natoli et al Functional characterisation of the Retinal CD45+ population after sterile injury.

860 82. Zhang, C., et al., *Activation of microglia and chemokines in light-induced retinal*
861 *degeneration*. Mol Vis, 2005. **11**: p. 887-95.

862 83. Newman, A.M., et al., *Systems-level analysis of age-related macular degeneration*
863 *reveals global biomarkers and phenotype-specific functional networks*. Genome Med,
864 2012. **4**(2): p. 16.

865 84. Loetscher, P., B. Moser, and M. Bagliolini, *Chemokines and their receptors in*
866 *lymphocyte traffic and HIV infection*. Adv Immunol, 2000. **74**: p. 127-80.

867 85. Bagliolini, M. and P. Loetscher, *Chemokines in inflammation and immunity*.
868 Immunol Today, 2000. **21**(9): p. 418-20.

869 86. Hooks, J.J., et al., *IFN-beta provides immuno-protection in the retina by inhibiting*
870 *ICAM-1 and CXCL9 in retinal pigment epithelial cells*. J Immunol, 2008. **180**(6): p.
871 3789-96.

872 87. Ohta, T., et al., *Crucial roles of XCR1-expressing dendritic cells and the XCR1-XCL1*
873 *chemokine axis in intestinal immune homeostasis*. Sci Rep, 2016. **6**: p. 23505.

874 88. Lei, Y. and Y. Takahama, *XCL1 and XCR1 in the immune system*. Microbes Infect,
875 2012. **14**(3): p. 262-7.

876 89. Yamazaki, C., et al., *Conservation of a chemokine system, XCR1 and its ligand,*
877 *XCL1, between human and mice*. Biochem Biophys Res Commun, 2010. **397**(4): p.
878 756-61.

879 90. Penfold, P.L., et al., *Autoantibodies to retinal astrocytes associated with age-related*
880 *macular degeneration*. Graefes Arch Clin Exp Ophthalmol, 1990. **228**(3): p. 270-4.

881 91. Morohoshi, K., et al., *Identification of anti-retinal antibodies in patients with age-*
882 *related macular degeneration*. Exp Mol Pathol, 2012. **93**(2): p. 193-9.

883 92. Patel, N., et al., *Circulating anti-retinal antibodies as immune markers in age-related*
884 *macular degeneration*. Immunology, 2005. **115**(3): p. 422-30.

885 93. Camelo, S., *Potential Sources and Roles of Adaptive Immunity in Age-Related*
886 *Macular Degeneration: Shall We Rename AMD into Autoimmune Macular Disease?*
887 Autoimmune Dis, 2014. **2014**: p. 532487.

888 94. Penfold, P.L., M.C. Killingsworth, and S.H. Sarks, *Senile macular degeneration: the*
889 *involvement of immunocompetent cells*. Graefes Arch Clin Exp Ophthalmol, 1985.
890 **223**(2): p. 69-76.

891 95. Camelo, S., et al., *Thinning of the RPE and choroid associated with T lymphocyte*
892 *recruitment in aged and light-challenged mice*. Mol Vis, 2015. **21**: p. 1051-9.

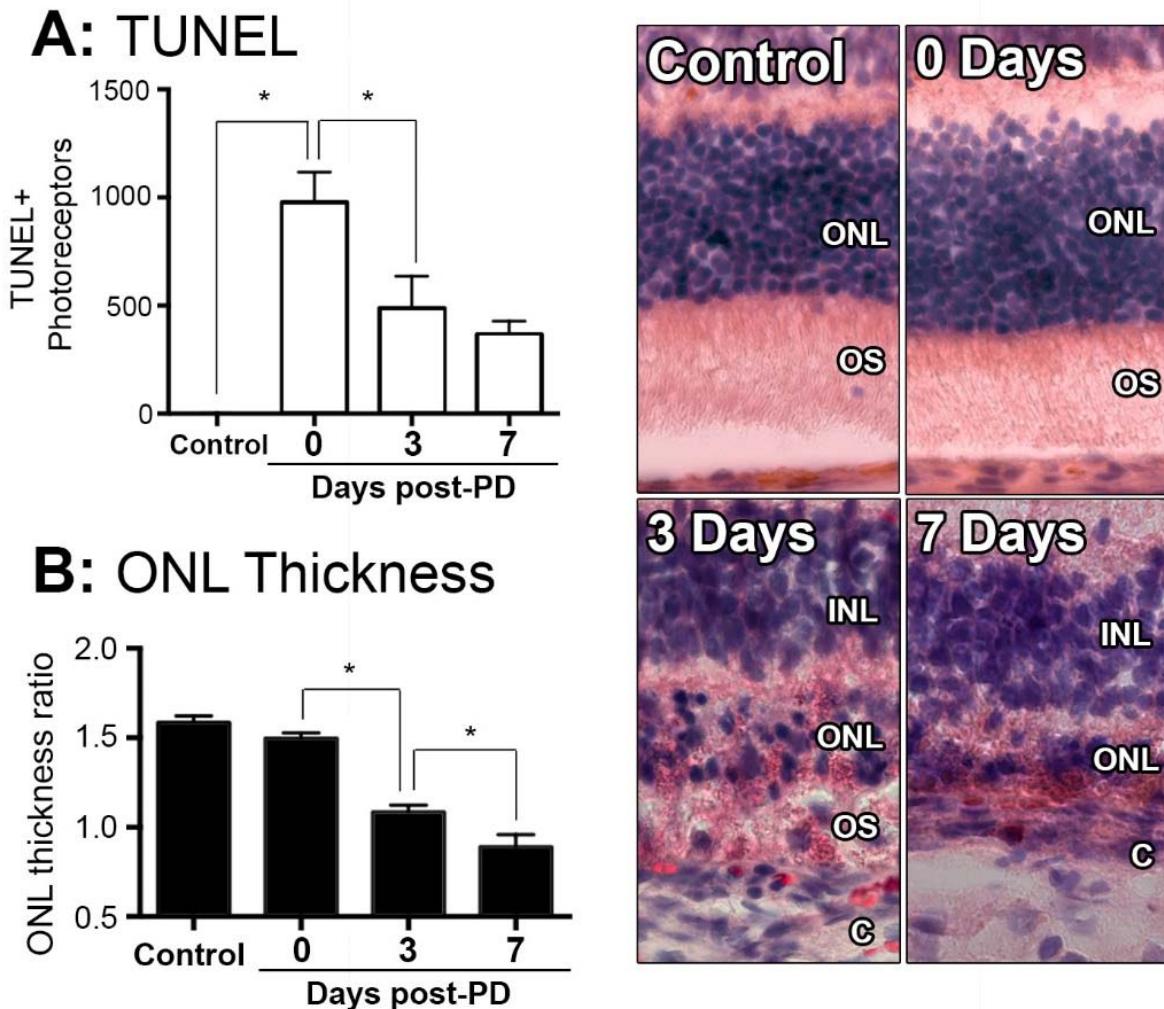
Natoli et al Functional characterisation of the Retinal CD45+ population after sterile injury.

893 96. Zhou, J., et al., *Neutrophils compromise retinal pigment epithelial barrier integrity*. J
894 Biomed Biotechnol, 2010. **2010**: p. 289360.

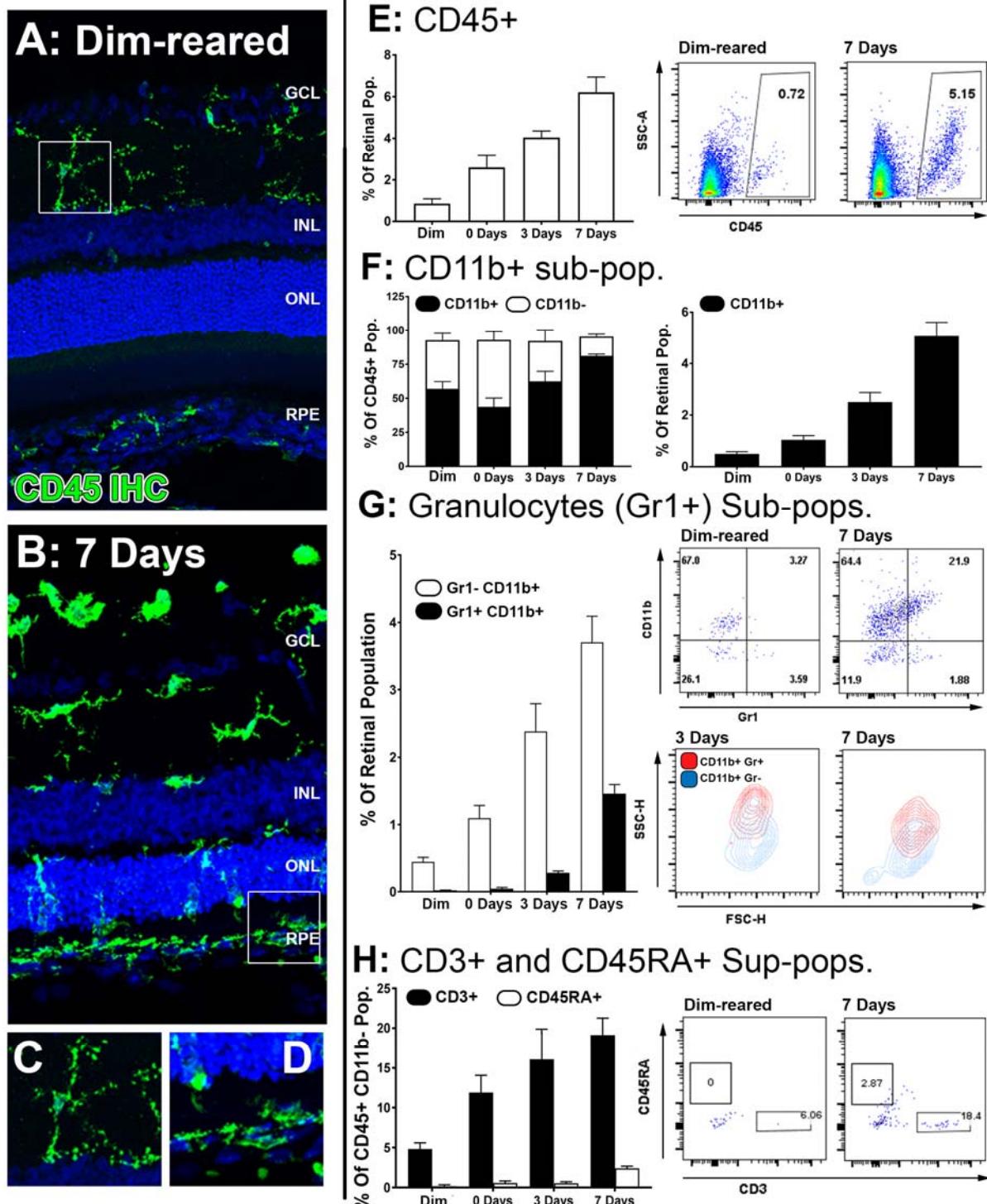
895 97. Dunkelberger, J.R. and W.C. Song, *Complement and its role in innate and adaptive*
896 *immune responses*. Cell Res, 2010. **20**(1): p. 34-50.

897 98. Toapanta, F.R. and T.M. Ross, *Complement-mediated activation of the adaptive*
898 *immune responses: role of C3d in linking the innate and adaptive immunity*. Immunol
899 Res, 2006. **36**(1-3): p. 197-210.

900 99. Coughlin, B., et al., *Connecting the innate and adaptive immune responses in mouse*
901 *choroidal neovascularization via the anaphylatoxin C5a and gammadeltaT-cells*. Sci
902 Rep, 2016. **6**: p. 23794.


903 100. Hollyfield, J.G., et al., *Oxidative damage-induced inflammation initiates age-related*
904 *macular degeneration*. Nat Med, 2008. **14**(2): p. 194-8.

905


Table 1: Functional Overrepresentation of GO:BP Terms in Panther

GO biological process complete	Background Set	Network Set	Network Fold Enrichment	Adjusted p-value	Network Genes
Control vs 0 Days					
lymphocyte chemotaxis (GO:0048247)	34	8	69.26	5.14E-09	Adam8, Ccl2, Cxcl16, Cxcl11, Ccl12, Ccl7, Ccl22, Ccl17
T cell migration (GO:0072678)	19	4	61.97	6.73E-03	Ccl2, Cxcl16, Cxcl11, Itgb7
lymphocyte migration (GO:0072676)	45	9	58.87	7.12E-10	Adam8, Ccl2, Cxcl16, Cxcl11, Ccl12, Ccl7, Itgb7, Ccl22, Ccl17
monocyte chemotaxis (GO:0002548)	30	6	58.87	1.24E-05	Anxa1, Ccl2, Ccl12, Ccl7, Ccl22, Ccl17
mononuclear cell migration (GO:0071674)	33	6	53.52	2.18E-05	Anxa1, Ccl2, Ccl12, Ccl7, Ccl22, Ccl17
granulocyte chemotaxis (GO:0071621)	65	7	31.7	3.38E-05	Anxa1, Ccl2, Spp1, Ccl12, Ccl7, Ccl22, Ccl17
neutrophil chemotaxis (GO:0030593)	58	6	30.45	6.00E-04	Ccl2, Spp1, Ccl12, Ccl7, Ccl22, Ccl17
granulocyte migration (GO:0097530)	71	7	29.02	6.17E-05	Anxa1, Ccl2, Spp1, Ccl12, Ccl7, Ccl22, Ccl17
chemokine-mediated signaling pathway (GO:0070098)	61	6	28.95	8.05E-04	Ccl2, Cxcl11, Ccl12, Ccl7, Ccl22, Ccl17
neutrophil migration (GO:1990266)	63	6	28.03	9.72E-04	Ccl2, Spp1, Ccl12, Ccl7, Ccl22, Ccl17
Control vs 3 Days					
regulation of chromosome segregation (GO:0051983)	86	6	19.99	6.93E-03	Ube2c, Dusp1, Pttg1, Knstrn, Bub1b, Spag
mitotic sister chromatid segregation (GO:0000070)	95	6	18.1	1.23E-02	Aurk, Pttg1, Knstrn, Kif22, Cxc20, Spag5
mitotic nuclear division (GO:0140014)	131	8	17.5	2.38E-04	Ube2c, Aurkb, Pttg1, Knstrn, Tpx2, Kif22, Cdc20, Spag5
sister chromatid segregation (GO:00000819)	119	7	16.86	2.42E-03	Ube2c, Pttg1, Knstrn, Bub1b, Kif22, Cdc20, Spag5
spindle organization (GO:0007051)	122	7	16.44	2.86E-03	Ube2c, Cep72, Knstrn, Stmn1, Tpx2, Cdc20, Spag5
nuclear division (GO:0000280)	263	11	11.99	2.35E-05	Ube2c, Aurkb, Rad51, Pttg1, Knstrn, Bub1b, Tpx2, Kif22, Cdc20, Spag5
regulation of nuclear division (GO:0051783)	170	7	11.8	2.55E-02	Ube2c, Tnf, Dusp1, Pttg1, Bub1b, Cdc20, Ifg1
mitotic cell cycle process (GO:1903047)	395	16	11.61	5.61E-09	Ube2c, Aurkb, Iqgap3, Rad51, Kif20a, Pttg1, Knstrn, Bub1b, Stmn1, Cdkn3, Tpx2, Kif22, Ier3, Cdc20, Spag5
mitotic cell cycle (GO:0000278)	457	18	11.29	2.58E-10	Ube2c, Aurkb, Iqgap3, Nuf1, Rad51, Kif20a, Pttg1, Cenpw, Knstrn, Bub1b, Stmn1, Cdkn3, Tpx2, Kif22, Ier3, Cdc20, Spag5
organelle fission (GO:0048285)	294	11	10.72	7.35E-05	Ube2c, Aurkb, Rad51, Pttg1, Knstrn, Bub1b, Tpx2, Kif22, Cdc20, Spag5
Control vs 7 Days					
antigen processing and presentation of peptide antigen via MHC class I (GO:0002474)	29	4	46.22	2.11E-02	RT1-T24-4, RT1-CE10, RT1-CE5, RT1-CE5
antigen processing and presentation of peptide antigen (GO:0048002)	47	6	42.78	7.93E-05	RT1-T24-4, RT1-CE10, RT1-CE5, Cd74, RT1-CE5, RT1-Da
antigen processing and presentation (GO:0019882)	79	6	25.45	1.66E-03	RT1-T24-4, RT1-CE10, RT1-CE5, Cd74, RT1-CE5, RT1-Da
cell adhesion (GO:0007155)	654	11	5.64	3.79E-02	Itgae, Tnf, Gpnmb, Axl, Rom1, Cd63, Mfge8, Cldn1, Lgals3bp, Cdh17, Cd96
biological adhesion (GO:0022610)	663	11	5.56	4.32E-02	Itgae, Tnf, Gpnmb, Axl, Rom1, Cd63, Mfge8, Cldn1, Lgals3bp, Cdh17, Cd96
immune response (GO:0006955)	798	13	5.46	6.23E-03	Fut7, Tnf, RT1-T24-4, Cfb, Cxcl13, Cldn1, RT1-CE5, Cd74, Cdh17, RT1-CE5, Skap1, RT1-Da
cell surface receptor signaling pathway (GO:0007166)	1591	18	3.79	6.48E-03	Itgae, Tnf, Card14, Axl, Csf2ra, Sulf1, Evc, Rom1, Cd63, Adgre5, Cxcl13, Plxnc1, Cxcr6, Cxcr3, Cd74, Cdh17, Cd3e, Skap1
immune system process (GO:0002376)	1607	18	3.75	7.50E-03	Ctnnb1, Fut7, Tnf, Axl, RT1-T24-4, Cfb, Ifitm1, Cxcl13, Cldn1, RT1-CE10, Cxcr3, RT1-CE5, Cd74, Cdh17, RT1-CE5 Cd3e, Skap1, RT1-Da

Figure 1.

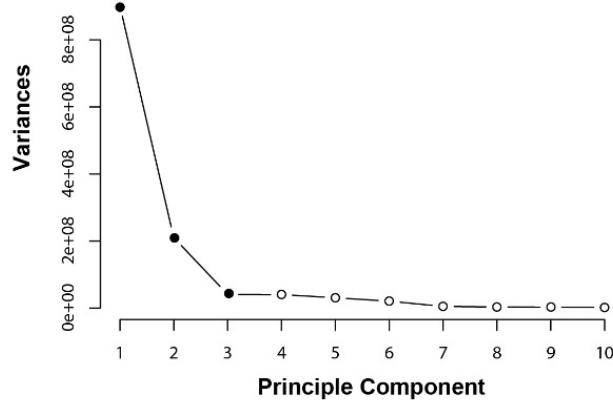


Figure 2.

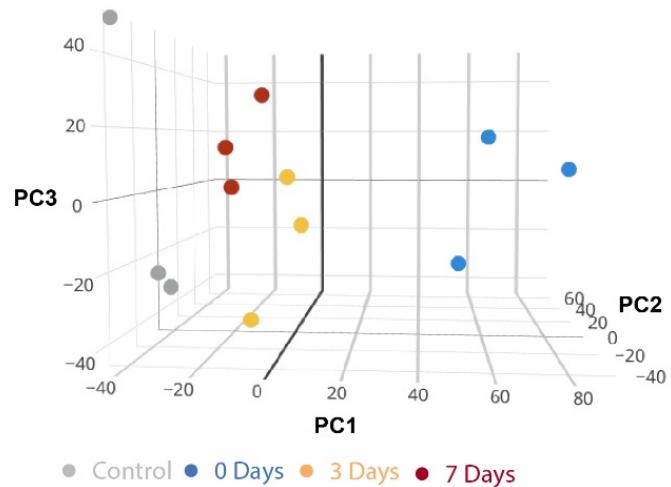
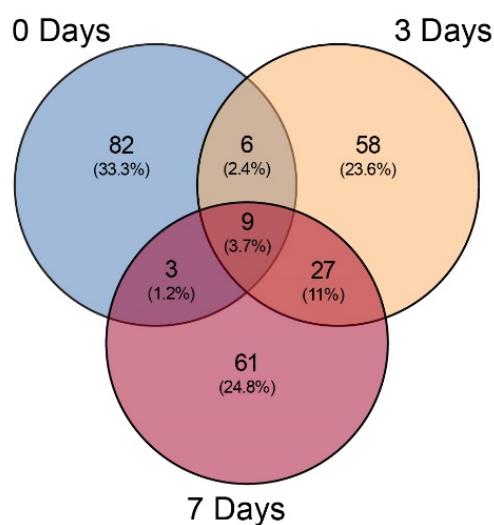
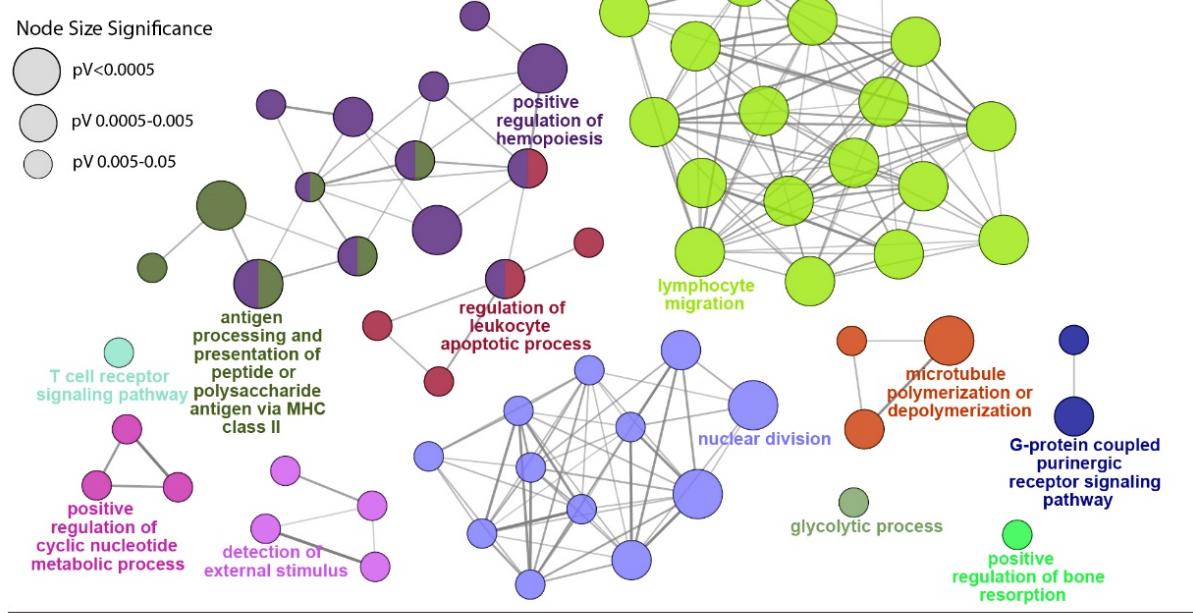


Figure 3.


A: Scree Plot

B: PCA



C: Venn

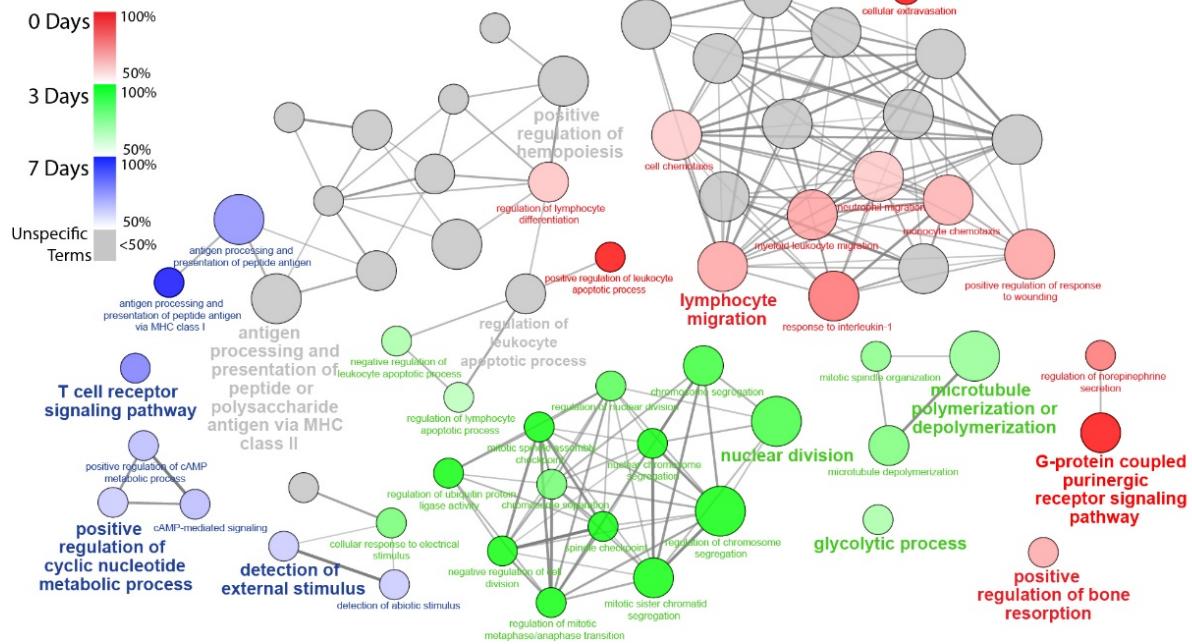
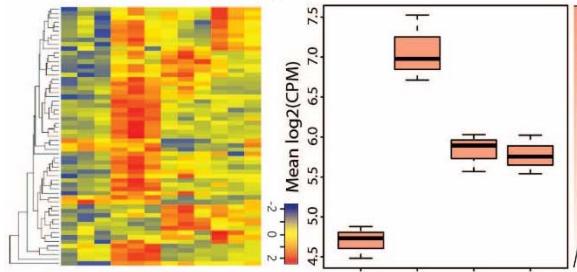
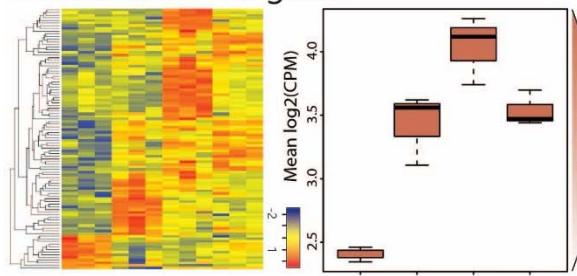


Figure 4.

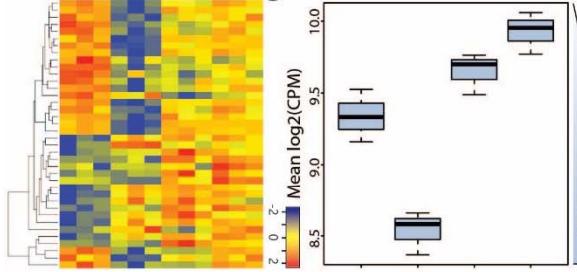
A: Grouped Network



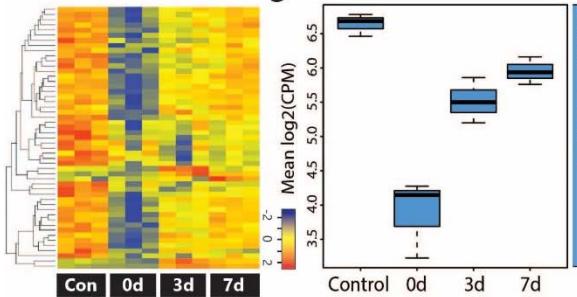
B: Clustered Timepoints


Figure 5.

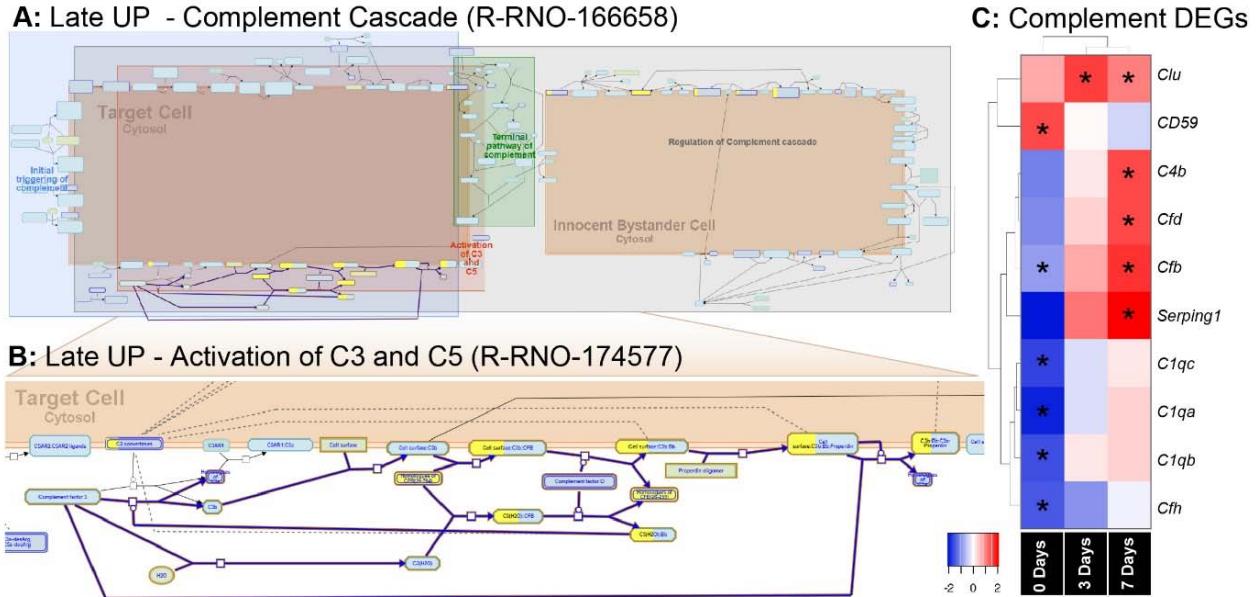
A: Cluster 1 - 59 genes


GO Biological Process	Adj. p-Value	Reactome Pathway	Adj. p-Value
Leukocyte migration	7.65E-08	Caspase-mediated cleavage of cytoskeletal proteins	8.29E-11
Response to external stimulus	1.18E-07	Type I hemidesmosome assembly	8.29E-11
Eosinophil chemotaxis	5.25E-07	Extracellular matrix organization	3.67E-09
Monocyte chemotaxis	7.41E-07	Apoptotic cleavage of cellular proteins	3.36E-08
Eosinophil migration	8.10E-07	Apoptotic execution phase	1.36E-07
Granulocyte chemotaxis	1.27E-06	Assembly of collagen fibrils and other multimeric structures	7.25E-07
Mononuclear cell migration	1.31E-06	Cell junction organization	1.56E-06
Leukocyte chemotaxis	1.36E-06	Collagen formation	1.15E-05
Granulocyte migration	2.33E-06	Cell-Cell communication	1.81E-05
Cell surface receptor signaling pathway	2.54E-06	Apoptosis	1.81E-05

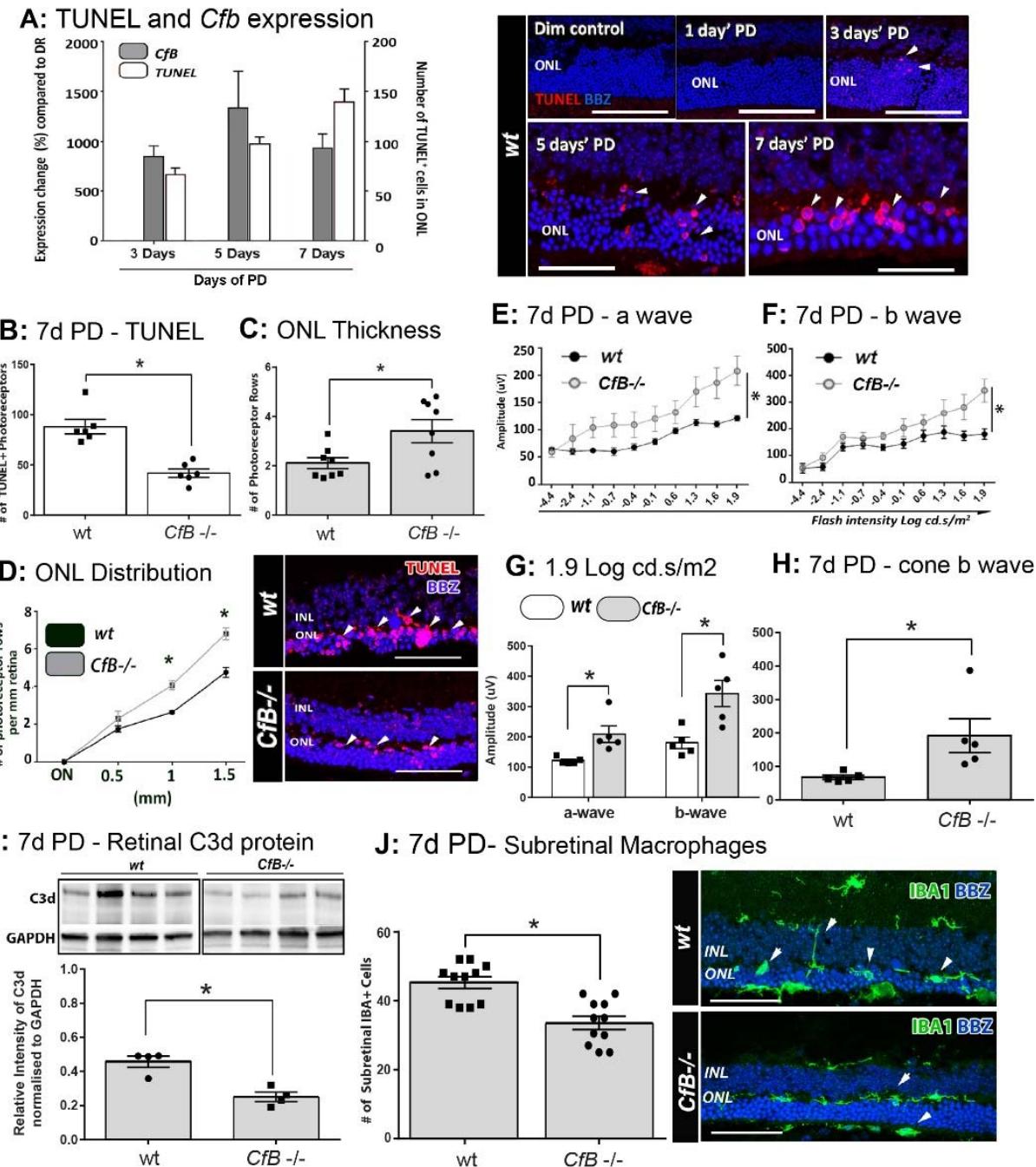
B: Cluster 2 - 98 genes


GO Biological Process	Adj. p-Value	Reactome Pathway	Adj. p-Value
Mitotic cell cycle	3.29E-07	Mitotic Spindle Checkpoint	3.07E-06
Mitotic cell cycle process	7.60E-06	Separation of Sister Chromatids	1.28E-05
Nuclear division	1.51E-05	Mitotic Anaphase	1.28E-05
Cell cycle	3.36E-05	Mitotic Metaphase and Anaphase	1.28E-05
Organelle fission	4.74E-05	Amplification of signal from unattached kinetochores via a MAD2 inhibitory signal	1.28E-05
Mitotic nuclear division	1.72E-04	Amplification of signal from the kinetochores	1.28E-05
Cell cycle process	5.87E-04	Resolution of Sister Chromatid Cohesion	3.72E-05
Lymphocyte chemotaxis	1.35E-03	RHO GTPases Activate Formins	4.82E-05
Sister chromatid segregation	1.83E-03	Mitotic Prometaphase	4.07E-04
Lymphocyte migration	5.34E-03	M Phase	5.23E-04

C: Cluster 3 - 38 genes


GO Biological Process	Adj. p-Value	Reactome Pathway	Adj. p-Value
Immune system process	4.34E-03	Translocation of ZAP-70 to Immunological synapse	1.35E-13
Processing and presentation of peptide antigen	5.23E-03	Phosphorylation of CD3 and TCR zeta chains	1.35E-13
Cell adhesion	1.71E-02	MHC class II antigen presentation	1.35E-13
Biological adhesion	1.89E-02	PD-1 signaling	1.35E-13
Antigen processing and presentation	4.05E-02	Generation of second messenger molecules	2.01E-12
		Costimulation by the CD28 family	1.01E-09
		Downstream TCR signaling	6.94E-09
		TCR signaling	2.87E-08
		Alternative complement activation	4.94E-07
		Activation of C3 and C5	5.12E-06

D: Cluster 4 - 51 genes



GO Biological Process	Adj. p-Value	Reactome Pathway	Adj. p-Value
-	-	Inactivation, recovery and regulation of the phototransduction cascade	0.0026
-	-	The phototransduction cascade	0.0026
-	-	Synthesis of Lipoxins (LX)	0.0103
-	-	GABA synthesis, release, reuptake and degradation	0.0103
-	-	Acetylcholine Neurotransmitter Release Cycle	0.0103
-	-	Norepinephrine Neurotransmitter Release Cycle	0.0103
-	-	Synthesis of 5-eicosatetraenoic acids	0.0103
-	-	Glutamate Neurotransmitter Release Cycle	0.0233
-	-	Activation of the phototransduction cascade	0.0238
-	-	Visual phototransduction	0.0253

Figure 6.

Figure 7.

