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Cellular growth impacts a range of phenotypic responses. Identifying the sources of fluctuations in growth
and how they propagate across the cellular machinery can unravel mechanisms that underpin cell decisions.
We present a stochastic cell model linking gene expression, metabolism and replication to predict growth
dynamics in single bacterial cells. In addition to several population-averaged data, the model quantitatively
recovers how growth fluctuations in single cells change across nutrient conditions. We develop a framework
to analyse stochastic chemical reactions coupled with cell divisions and use it to identify sources of growth
heterogeneity. By visualising cross-correlations we then determine how such initial fluctuations propagate to
growth rate and affect other cell processes. We further study antibiotic responses and find that complex drug-
nutrient interactions can both enhance and suppress heterogeneity. Our results provide a predictive framework
to integrate single-cell and bulk data and draw testable predictions with implications for antibiotic tolerance,

evolutionary biology and synthetic biology.

I. INTRODUCTION

The rate at which cells accumulate mass and grow is
highly variable across isogenic cells'™*. Previous studies
have considered fluctuations in growth rate as one of
the major drivers of phenotypic heterogeneity* 7. Yet the
physiological origins of these fluctuations remain elusive
so far. Growth laws characterise the typical behaviour
of cell populations®, for example, the scaling of aver-
age growth rate with macromolecular composition, in-
cluding ribosome and other protein levels, or cell mass
in bacteria® ', These phenomenological relations can
give important insights into the population average be-
haviour, but may not translate to an understanding of
individual cell responses®.

There is substantial evidence that cellular noise sources
are diverse and may propagate via growth in a systemic
way. A recent experimental study showed that fluctua-
tions in the expression of enzymes caused considerable
variation in the growth rate of single cells, which then
fed back onto their expression and that of other genes'.
Cell-to-cell differences stem from intrinsic fluctuations in
biochemical reactions'!. Some of these reactions, particu-
larly those that drive cell growth, affect many other intra-
cellular processes, and so a range of cellular responses can
vary even under constant conditions'?. Gene expression,
for example, is known to be inherently stochastic at the
single-cell level''. It is less clear though how variations
affect regulatory mechanisms that control intracellular
processes'®1#, and how this translates to phenotypic dif-
ferences and cell fitness.
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Models can help us identify potential sources of
growth fluctuations and understand how they propa-
gate to cause phenotypic variation. There are various
approaches to model cellular growth. One is to invoke
growth rate optimisation'® ', others consider the coor-
dination of growth with gene expression® or combine the
two approaches'®. Such approaches have been used to
model static cell-to-cell variation by imposing parameter
variability onto the model behaviour'?:?". The sources
of growth variations, however, remain unclear, and also
how to adapt the models to explain cell responses that
fluctuate over time.

Here we present a stochastic model of single-cell bac-
terial dynamics to predict the growth rate of individual
cells. Our description of cells is based on biochemical ki-
netics, which can more amenably account for how het-
erogeneous responses arise from stochastic fluctuations
in cellular mechanisms. In this context, the magnitude of
fluctuations results from the abundance of key molecular
players®!, and so we can avoid assumptions of variability
imposed onto the model behaviour.

The model builds upon recent mechanistic insights into
population-average growth responses via a coarse-grained
description that explains Monod-growth and empirical
relations between growth rate and ribosomal contents
from the interplay of nutrient uptake, metabolism and
gene expression®?2. These processes are subject to con-
straints by cellular trade-offs such as a finite transcrip-
tome and proteome per cell as well as limited pools of
ribosomes and cellular resources. Here we consider the
finite number of intracellular molecules produced over a
cell-cycle and so explicitly account for the accumulation
of cell mass and its corresponding stochastic dynamics.
We further integrate this approach with a simple model
of bacterial cell-cycle control®®?*, as supported by re-
cent experiments®?°, and quantitatively predict emer-


mailto:p.thomas@imperial.ac.uk
mailto:andrea.weisse@ed.ac.uk
https://doi.org/10.1101/267658
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/267658; this version posted February 18, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

gent growth and division dynamics in single cells.

Along with the cell model we present a theoretical
framework to approximate stochastic growth and divi-
sion dynamics based on a small noise approximation.
The framework is general, that is, applicable to models
of reaction-division systems at large. It enables closed-
form computation of model statistics, such as mean and
variance of variables over time, and thus allows efficient
parameter estimation from single-cell data alongside a
systematic decomposition of the sources of growth vari-
ation.

Our modelling approach, in combination with the de-
veloped approximation, allows us to statistically charac-
terise the macromolecular composition, growth rate and
mass of single cells. It recovers several empirical responses
at the population- and single-cell level, thus providing
substantial validation. We quantify the contributions of
different noise sources to observed growth rate fluctu-
ations and analyse their propagation. As a result, we
identify noisy dynamics of mRNAs coding for nutrient
transporters and enzymes as a major source of growth
rate fluctuations. We moreover find that growth rate is
a source of global noise that can be transmitted to other
processes, for example, via ribosomes®2%27. Qur analysis
of cell responses to translation-inhibiting antibiotics fur-
ther indicates a strikingly complex dependence of growth
heterogeneity on environmental conditions, which may
pinpoint strategies to avoid drug tolerance.

Il. RESULTS
A. Quantifying single-cell growth

A stochastic model of single-cell growth. Developing
models that coordinate growth and division in single cells
is a major challenge because they need to integrate many
processes at different scales. We take a hybrid approach
to model growth and division of single cells by integrat-
ing DNA-replication with stochastic biomass production
(Fig. 1a).

Cellular protein content dominates biomass, and thus
the total translation rate determines the rate of biomass
production®?2. In a single cell, translation is coupled
to processes that fuel and drive gene expression. Since
these processes are stochastic, growth rates varies over
time and from cell to cell. We use a bottom-up approach
that describes the dynamics of a coarse-grained cellular
composition based on stochastic biochemical reactions,
which comprise transcription, translation, ribosome bind-
ing, mRNA degradation and metabolism (see Methods).
The model describes the accumulation of proteomic mass
— split into sectors containing transporters (t), catabolic
enzymes (e), ribosomes (r) and housekeeping proteins (q)
— along with the corresponding transcriptome, ribosome-
mRNA complexes and a resource molecule. The resource
is a coarse-grained variable describing the collection of
molecules that fuel biosynthesis, for example, energetic
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FIG. 1. Stochastic model of single-cell growth. (a)
The outer cycle illustrates the cell cycle model based on the
Cooper-Helmstetter model of bacterial replication. We as-
sume initiation of a new round of replication at a fixed concen-
tration of DNA-origins, analogous to a fixed initiation mass
per DNA-origin®*, thus growth dynamics schedule the repli-
cation events and are determined by the intracellular model
(inner circle). The latter describes import and metabolism
of resources, and how they fuel gene expression, where the
rate of protein-biosynthesis determines growth. Stochasticity
of cellular dynamics is a result of the intrinsic stochasticity
of the various reactions and the random partitioning of the
cellular content at division. (b) Stochastic simulations illus-
trate the propagation of intrinsic fluctuations in single cells:
mRNAs are synthesised at low numbers per cell (yellow &
green lines), which affects protein production and so growth
rate (red line). Fluctuations in growth lead to temporal varia-
tions in cell mass that can span several cell cycles (blue line),
causing fluctuations in the number of replication origins (teal
line), in the mass at initiation (filled circles), and consequently
in cell divisions (orange line).
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molecules such as ATP and NAD(P)H or charged tR-
NAs, depending on the nutrient limitations under con-
sideration. It can then be shown that the kinetics recover
Monod-growth, that is, growth rate saturates for increas-
ing nutrient qualities® 22

At the single-cell level, we must also account for cell
divisions. We follow the Cooper-Helmstetter model in
which cells divide after a constant period following initi-
ation of DNA replication®®. Allowing for parallel replica-
tion rounds, replication cycles couple to growth through
initiation at a fixed concentration of replication origins>*.
As a consequence, the cell mass at initiation depends
on the number of ongoing replication rounds in a given
growth condition (Methods b).

To capture the stochastic dynamics of the model we
focus on a lineage description that tracks a single cell
over many replication and division cycles. At division, all
intracellular molecules are partitioned randomly between
the two daughter cells, and we retain information about
only one daughter cell>®. We account for asymmetric cell
divisions, as for instance due to inaccurate positioning of
the division septum?®329, and assume that molecules are
partitioned according to the inherited volume fraction of
the daughter cell (SI Sec. I).

Fig. 1b illustrates the dynamic propagation of fluctu-
ations using stochastic simulations: The stochastic syn-
thesis, degradation and partitioning of mRNA molecules
lead to slow fluctuations in the growth rate and in turn to
variations in biomass production and interdivision tim-
ings. Simulations of this stochastic model are computa-
tionally expensive due to the large number of molecules
produced per division cycle. We therefore developed an
approximation method that facilitates quantitative in-
sights into a whole class of cell models involving coupled
reactions and divisions.

Stochastic analysis of reaction-division systems. Con-
sider a generic reaction-division system composed of
N intracellular species with molecule numbers = =
(21, ..,zx). The macromolecular composition of a single
cell determines its mass via

M =mTz, (1)

where the components of the vector m denote the mass
of individual molecules. At constant macromolecular den-
sity this measure is directly related to cell size. The cor-
responding intracellular concentrations are given by

x

X=—. 2

- 2)

For an intracellular reaction network comprising R reac-

tions with stoichiometric matrix v, the cell growth rate
can be obtained analytically and is given by

— mTuf(X), (3)

where f(X) is the vector of reaction rate functions (see SI
Sec. II). Because the intracellular reactions are stochas-
tic, the concentrations X fluctuate over time from which
follows that the growth rate is a stochastic process.

A(X)

We characterise the dynamics of intracellular concen-
trations, cell mass and its growth rate using a continuous
approximation that describes biochemical reactions, dilu-
tion due to overall biomass production, and partitioning
of molecules at cell division. The set of coupled Langevin
equations is

R
dX = vf(X)dt + ﬁ > v/ F(X)AW, (1)
r=1

N——
biochemical
reactions

R
—\(X)Xdt— % Z;mTVM/ fr(X)dW,.(t)

noise from biochemical reactions

——
dilution noise from biomass synthesis
M1/2 ED t)dD( ) (43)

partitioning noise

Zm v/ [r(X)dW,.(

dln M =A(X)dt + ——

M1/2
——
growth noise from biomass synthesis
1
— 54 1p)AD() + o CodD(H), (4h)

cell divisions partitioning noise

which involves a process D(t) counting the number of
divisions (see Fig. 1b, SI Sec. I), independent Gaussian
white noises W,.(t) describing the intrinsic variability of
the intracellular reactions, the random variables £p and
(p introduced from partitioning of molecules at cell di-
vision, and np from the variation in the inherited vol-
ume fraction (see SI Sec. ITA for a detailed derivation).
Specifically, for every cell division the noise terms sat-

. i X,
isty El¢p,i€p,;|X] = Xi(d;; — %%XJL), E[(hH|X, M] =

1 Zl]il m? X, and E[n?] equals the squared coefficient of
variation of the inherited volume fraction. In the deter-
ministic limit, that is, for large M, the concentration pro-
cess, Eq. (4a), is independent of cell mass. In the stochas-
tic case, however, the two processes are coupled.

In between cell divisions (dD = 0), Eq. (4b) gives the
instantaneous cell growth rate, which has two contribu-
tions: A(X), a function of intracellular concentrations,
and a second random part that stems from the mass-
producing reactions. We find that for biologically relevant
situations the second contribution is negligible due to av-
eraging over the large number of such reactions occurring
between cell divisions (SI Sec. ITA). We note that, in the
absence of growth, that is, when all reactions are mass-
conserving (mTv, = 0), Egs. (4) reduce to the standard
chemical Langevin equation®!

To gain further analytical insights we developed a small
noise approximation*?? of Egs. (4). The approximation
allows us to obtain mean concentrations and growth rate
by solving a coupled system of ODEs in steady-state con-
ditions. Concentration fluctuations lead to growth rate
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FIG. 2. The mechanistic model predicts condition-dependence of growth rate fluctuations in single cells. (a)
The stochastic model recovers common bacterial growth laws. Cell mass per number of origins (unit size) is constant in all
growth conditions. Absolute cell mass, ribosome content and total mRNA numbers per cell increase with average growth
rates. Filled markers denote measured quantities used to parametrise the model (see SI for details), empty markers denote
measurements that validate model predictions. Circles are the results of stochastic simulations and validate the employed
approximations (SNA). A longer C+D-period of 75 minutes as observed in®*° yields higher predictions for cell mass (grey line).
(b) Fluctuations, measured by the coefficient of variation (CV), in cell mass initially increase as a function of average growth
rate. Fluctuations of ribosomal mass fraction are of the order of 10 — 20%, and those of total mRNA concentrations largely
follow the trend of the mass CV. (c) Single-cell distributions of cell mass at birth and mass added between birth and division are
invariant when rescaled by their means. For intermediate to fast growth conditions (1.4-2.7 doublings per hour) distributions
collapse nearly perfectly, consistent with the stable CV in this growth regime (b), while slowly growing cells (0.7 red line)
deviate from this universal behaviour. (d) In contrast, the distributions of rescaled doubling times and growth rates broaden
gradually with decreasing medium quality, highlighting that these quantities are condition-dependent at the single-cell level.
(e) Our model quantitatively recovers variations over the whole range of experimentally accessible growth rates. In agreement
with experimental observations (squaresg, diamonds') fast growing cells display less growth variability than slow growing cells.
This dependence is well predicted by stochastic simulations (grey circles) and by the small noise approximation (SNA, solid
blue line). Colours indicate the contributions of different cellular processes to growth variations: synthesis, degradation and

random partitioning of mRNAs at cell division. The contributions from other processes such as protein translation are overall
small (grey area).

variations that can be computed in closed form (Meth-
ods b). The method provides accurate estimates of the
first two statistical moments (Fig. 2), and thus enables
efficient inference of model parameters, which is typically
infeasible using stochastic simulations®**. We discuss the
results and predictions drawn from this inference using

experimental bulk and single-cell data (Methods c) in the
following.

B. Condition-dependence of growth in single cells

Macroscopic growth laws. The macromolecular com-
position of E. coli is growth-rate dependent, and we
ask whether the cell model is consistent with several
bacterial growth laws describing these relations. Our
model predicts that mean cell mass increases exponen-

tially with mean growth rate, the Schaechter-Maalge-
Kjeldgaard growth law”, as a consequence of the cou-
pling of DNA-replication to growth?*. We moreover find
that unit size®’, in terms of mass per number of ori-
ging, is invariant across growth conditions (Methods b,
Eq. 8). If we compare the theoretical unit size with re-
cent measurements of unit volumes in E. coli*" (Fig. 2a,
first panel), the model predicts a protein density of
12x10%aa/um?, well in line with literature values®”. With
this density estimate, model predictions closely match
cell sizes reported in two different datasets®3" (Fig. 2a,
second panel). The inferred model further recovers ribo-
some abundances over the experimental range of growth
rates® (third panel) and predicts transcriptome and pro-
teome sizes that are in qualitative agreement with ex-
perimentally observed values®®:3” (fourth panel, and SI
Fig. S3b).
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FIG. 3. Nutrient uptake and catabolic limitations determine the sources of growth fluctuations. We vary catabolic
turnover rates v, relative to nutrient uptake rate v:. (a) Fluctuations in transcription of transporter mRNAs and their
stochastic partitioning dominate growth variability because nutrient uptake is growth-limiting (v¢ > vy, ). Other processes such
as translation of proteins are largely negligible. (b) When catabolism limits growth (v, > v¢), fluctuations in enzymatic mRNAs
instead explain most of the observed variation. (¢) For comparable uptake and turnover rates (v, = v¢), both transporter and
enzyme mRNA fluctuations contribute to the overall variation. The absolute size of fluctuations reduces indicating a noise

cancellation effect.

Scaling of single-cell distributions. Recent experi-
ments suggest a universal behaviour of cell size and dou-
bling time distributions when rescaled by their mean®3,
indicating that growth conditions primarily affect the
mean cell size, doubling time, and growth rate. Our
model reproduces this dependence for the cell size and
added mass in intermediate to fast growth conditions
(Fig. 2b, c). For conditions slower than those measured
in® we observe a breakdown of this scaling. In those con-
ditions, our model predicts an increase in cell size vari-
ability with growth rate (Fig. 2b) due to a shift from
single to parallel rounds of replication®*® (SI Fig. S3a).
Such increases in variations of cell mass have indeed been
observed in cells grown in the mother machine?>®. Sim-
ilarly, we observe no scale invariance for doubling times
and growth rates (Fig. 2d), indicating that their cell-to-
cell variations are condition-dependent rather than uni-
versal. The model in fact explains an empirical condition-
dependence as discussed in the following.

Condition-dependence of growth rate fluctuations.
Recent data suggest a condition-dependence of growth
rate fluctuations in single E. coli cells"?® (Fig. 2e). In line
with these observations, our model predicts growth vari-
ations to decrease with mean growth rate. This depen-
dence is well captured by the developed approximations
and stochastic simulations (Methods d). Our model pre-
dicts that fluctuations vanish as the mean growth rate
approaches its maximum. This is not because intracellu-
lar reactions stop fluctuating, but rather because growth
rate saturates and thus such fluctuations no longer trans-
late to growth variability.

C. Sources of growth rate fluctuations.

Processes contributing to growth fluctuations. Our
model allows us to investigate the sources of phenotypic

variations. We use a noise decomposition’ to study the
effect of each reaction and partitioning at division on
the overall noise levels (Methods b). We find that tran-
scription and cell division are the major determinants
of growth heterogeneity across all growth conditions
(Fig. 2e). Degradation of mRNA only becomes impor-
tant at slow growth, when its rate dominates over dilu-
tion. Nutrient uptake and metabolism, in turn, yield neg-
ligible contributions because nutrients are highly abun-
dant (SI Fig. S6). Similarly, effects of noise in translation
are mostly negligible, due to the large number of pro-
teins synthesised during a cell-cycle, and only contribute
to growth variations at very small growth rates. In such
conditions, however, regulatory mechanisms as involved
in starvation are expected to take effect which our model
does not describe.

Limiting factors to growth. The dominant contribu-
tion to growth variations stems from the synthesis and
removal of transporter mRNAs (Fig. 3a). This sug-
gests that nutrient uptake limits growth rate, consis-
tent with estimated catabolic rates exceeding those of
nutrient uptake (SI Tab. S1). Since catabolic rates can
be tuned by cofactors*', we wondered whether limit-
ing catabolic turnover could affect growth fluctuations.
When catabolic turnover is slower than nutrient up-
take, indeed, growth variations are due to the transcrip-
tion and removal of enzyme mRNAs rather than trans-
porter mRNAs (Fig. 3b). The total size of growth fluc-
tuations remains largely unaffected by whether uptake
or catabolism limits growth. Surprisingly though, when
both nutrient uptake and catabolic turnover are simulta-
neously rate limiting, growth variability dips, suggesting
a noise cancellation effect (Fig. 3¢, SI Fig. S4b). Operon
organisation of the corresponding genes does not affect
our predictions, except that the simultaneous limitation
by transport and catabolism does not lead to noise can-
cellation (SI Fig. S4).
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FIG. 4. Cross-correlation analysis reveals the propagation of fluctuations. (a) Fluctuations in the concentrations of
transporter mRNA (t-mRNA) correlate positively with growth rate at later times (red line, maximum correlation at positive
lag) indicating that they increase growth rate. Ribosome concentrations correlate positively with growth at earlier times (blue
line, maximum correlation at negative lag) indicating that they are increased by growth rate. Concentrations of enzymatic
mRNA (e-mRNA) correlate negatively, indicating that they are mainly diluted by growth (yellow line, minimum correlation at
negative lag). (b) Pairwise delays between cellular components and growth rate (red box), ordered by their delay with respect
to growth rate and computed in moderate growth conditions. (c¢) ‘Minimal delay graphs’ illustrate the information flow under
different growth limitations with comparable growth rates. A dark arrow from species A to B indicates that B has minimal delay
from A, and so species B are the first to receive fluctuations from species A. Arrows denote positive correlations at the delay,
T-arrows negative correlations, and the label denotes the delayed-correlation coefficient. We include light arrows to indicate
components with second smallest delay whenever these are not reached through subsequent steps. The graph reveals cellular
components up- and downstream of growth rate, i.e. those that affect growth and those affected by growth. When nutrient-
uptake is limiting growth, t-mRNA act as a source of fluctuations, while for catabolic limitation eemRNA are the dominant
source (cf. Fig. 3). Their corresponding proteins are upstream of growth and transmit fluctuations to growth rate under the
respective limitations. When transporters and enzymes are co-expressed from an operon these limitations are indistinguishable.
In all cases, ¢-mRNAs act as a sink due to their negative auto-regulation, g-proteins are mainly diluted (nodes labelled with
— correlate negatively with growth) while most species increase with growth (nodes labelled with + correlate positively with
growth). (d) The size of fluctuations (CV) in concentrations of the transcriptome, proteome and resources is comparable in
the above cases. The dashed line indicates measured fluctuations in intracellular ATP*.

Having identified metabolic components as limiting
factors to growth and as a major source of variation, it is
important to consider their absolute abundances, because
they determine the magnitude of noise'?. In our model,
mean abundances of transporter and enzyme mRNAs
vary in different conditions between 3 and 9 copies per
cell, with approximately 9,000 molecules of the corre-
sponding proteins (SI Fig. S6). Compared to that, nat-
ural abundances are between 1072 and 1 mRNA copies
per gene while proteins are more abundant with 1 to 10°
molecules, with products of essential genes occurring at

higher numbers*?. This suggests that transporter and en-
zyme species in our model are consistent with lumped
groups of molecules rather than a single rate-limiting
species.

D. Propagation of fluctuations

We further ask how stochastic fluctuations propagate
to growth, and how this affects the macromolecular com-
position of a single cell. Since all intracellular concentra-
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FIG. 5. Condition-dependence of antibiotic responses. (a) Ribosomal content per cell as a function of average growth
rate after treatment with chloramphenicol. Predictions (solid lines) are in quantitative agreement with experimental data®
(dots, shaded areas denote standard deviations over replicates and colours denote different nutrient conditions). (b) For any
given nutrient condition the average growth rate is predicted to decrease monotonically with antibiotic dose. (¢) Growth
heterogeneity is predicted to be highly complex in both a nutrient- and dose-dependent manner. In nutrient-rich conditions
growth heterogeneity increases with antibiotic dose, while in intermediate and poor conditions the response is non-monotonic.
Over a large range of nutrient conditions there exists a non-zero drug dose that minimises growth heterogeneity (solid white

line, b and c¢).

tions are interconnected and growth rate feeds back onto
them via dilution, it is not straightforward to determine
the flow of information. We use cross-correlation across
the different intracellular species and growth rate, com-
puted from stochastic simulations, to quantify the prop-
agation of fluctuations. Cross-correlation measures the
similarity of two quantities at different time instances.
The time at which maximal correlation is reached mea-
sures the delay between correlations and marks their
temporal order, and so cross-correlation can indicate
causality'. The model does not comprise effects that are
detrimental to growth. Any upstream components, that
is, species transmitting fluctuations to growth, are there-
fore expected to promote growth and so correlate posi-
tively with it. Growth in turn can either increase or di-
lute downstream components, and so its correlation with
downstream components may be positive or negative.

We observe a strong positive correlation of transporter
mRNA concentrations with growth rate at later times
(Fig. 4a), consistent with our previous finding that their
fluctuations are the major source of growth variations.
Ribosome concentrations also correlate positively with
growth, consistent with the increase of mean levels with
growth rate (compare Fig. 2a). Interestingly they cor-
relate at a negative delay, suggesting that fluctuations
in growth propagate to ribosomes but ribosome fluctua-
tions do not contribute substantially to growth variabil-
ity. Other species such as enzyme mRNAs correlate nega-
tively at a negative delay, indicating their concentrations
are mainly affected by dilution, a relation that we observe
more generally for their corresponding enzymes and also
for ¢-mRNA across all conditions.

To estimate the propagation of fluctuations in the up-

stream and downstream processes of growth we consider
the delay between any pair of groups (Fig. 4b). The in-
tuition behind this is that a minimal positive delay indi-
cates the species that first ‘senses’ a fluctuation, which it
then passes on to the next species. We illustrate this flow
of information in a directed graph, where edges indicate
the minimal delay relation between groups of species and
edge weights their correlation (Fig. 4c).

Consistent with the noise sources identified in Fig. 3
we find that, depending on whether nutrient uptake or
catabolism is growth-limiting, fluctuations in transporter
or enzyme mRNAs are the source of growth rate vari-
ation that propagate via their respective protein levels
and resources to growth. Further, when transporters and
enzymes are co-expressed from an operon, as in', their
common mRNA is the dominant source of growth rate
variations and the noise propagation in the two limit-
ing regimes is indistinguishable. All other components
are downstream of growth rate, steadily across different
growth conditions (SI Fig. Sha), and are thus affected by
growth. Only at high growth rates ribosomal transcripts —
but not their proteins — are upstream of growth, because
in these conditions fluctuations in ribosomes rather than
in resources dominate noise in growth rate (SI Fig. S5,
cf. Eq. (6)). Interestingly, ¢-mRNAs act as noise sinks as
they are subject to negative auto-regulatory control.

Highly abundant species have consistently lower noise
levels (Fig. 4d, SI Fig. S6) except resources, which display
an extremely high variability, likely due to their central
role in many cellular reactions. This prediction is quan-
titatively confirmed by recent experiments showing that
ATP-levels in E. coli vary up to 80%*" (compare Fig. 4d).
Our model suggests that such large fluctuations can im-
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pact growth, as has been observed in eukaryotes®. The
analysis shows that growth rate affects a large number of
downstream components, which may include, for exam-
ple, transcription factors controlling stress responses or
other phenotypic switches. Our results therefore suggest
that growth rate plays a central role as a source of global
noise driving phenotypic heterogeneity.

E. Growth heterogeneity in response to antibiotics

To showcase the utility of our approach we next exam-
ine bacterial responses to antibiotic treatment. The com-
mon route to assess the efficacy of drugs is by establishing
the dose-dependence of growth rate**. Growth hetero-
geneity, however, is also important as it gives rise to an-
tibiotic tolerance, which allows individual cells to survive
treatment through non-genetic mechanisms*>*7. Surviv-
ing cells then have sufficient time to develop and pass
on mutations that confer resistance to later treatment,
and so growth heterogeneity significantly contributes to
the rise of antibiotic resistance. Ideally, treatment should
therefore aim to minimise pathogenic growth while avoid-
ing regimes of high growth heterogeneity.

Our model correctly predicts average macroscopic
composition in various nutrient conditions and in re-
sponse to the ribosome-targeting antibiotic chloram-
phenicol (Fig. 5a). We thus use it to quantitatively
map both average growth rate and growth heterogeneity
to combinations of nutrient and antibiotic regimes. We
modelled the action of chloramphenicol via inactivation
of ribosome complexes (Methods a). Without re-fitting,
the model predicts that average growth rate increases
with nutrient quality and decreases with antibiotic dose
(Fig. 5b).

Predictions for growth heterogeneity display a more
complex response (Fig. 5¢). For all nutrient conditions
growth heterogeneity rises steeply at high drug concen-
trations. But only in very rich nutrient conditions, where
growth rate saturates, growth heterogeneity increases
monotonically with antibiotic dose, consistent with our
previous predictions that average growth and heterogene-
ity exhibit an inverse relation (cf. Fig. 2d). In all other
nutrient conditions, growth heterogeneity is highly non-
monotonic as a function of dosage: In medium-to-rich
nutrient conditions, heterogeneity first peaks and then
dips before the final rise. In low-to-medium nutrient con-
ditions the final rise is preceded by a drop in growth
heterogeneity at intermediate doses.

Our predictions suggest that avoiding regimes of high
growth heterogeneity may be achieved in different ways
depending on the location of an infection. For example,
it may be possible to treat infections in low-to-medium
nutrient conditions, such as the urinary tract or blood,
with a dose that minimises heterogeneity (Fig. 5¢, white
line). This would require more care for infections of richer
nutrient environments, such as the gut, where regimes of
increased heterogeneity should be avoided. The predic-

tions further suggest that infections of very rich envi-
ronments cannot be treated with an overall reduction of
growth heterogeneity. Notably though, heterogeneity is
mostly low in these conditions, and so an ideal dose may
be chosen high enough to sufficiently inhibit growth but
low enough to avoid regimes of significant heterogeneity.
Alternatively, treatment efficacy may be manipulated by
changing the environment of the pathogen, for example,
by constraining diet.

I1l. DISCUSSION

We presented a stochastic cell model to predict growth
and division dynamics in single bacterial cells. Our model
yields detailed predictions of measurable macroscopic
quantities including growth rate, size and macromolec-
ular composition. In contrast to previous approaches, we
predict phenotypic heterogeneity as it arises from the in-
trinsic fluctuations of biochemical reactions, and there-
fore as an emergent physiological response of single cells.
Our approach is one of the first to predict cellular physi-
ology and heterogeneity from molecular mechanisms and
in response to complex environments that include differ-
ent nutrient conditions and drug doses.

We quantitatively recover levels of growth heterogene-
ity that have been measured in individual bacterial cells,
and predictions are in good agreement with absolute pro-
teome, transcriptome and ribosomal levels per cell as re-
ported in bulk measurements. We observe scale invari-
ance of several macroscopic quantities over the range of
experimentally reported conditions, indicating that cell-
to-cell variations are independent of these growth media.
Our results moreover suggest that this scale invariance
breaks down if tested over a broader range of growth
conditions. In particular, we predict an increase of cell
size variability with growth rate, in agreement with re-
cent experiments?38.

We presented a general framework to analyse stochas-
tic reaction-division dynamics. Our theoretical analysis
enabled us to dissect the contributions of different bio-
chemical processes to the observed growth heterogene-
ity. Specifically, we identified fluctuations in the synthe-
sis, partitioning and degradation of mRNAs coding for
proteins involved in metabolism as the major source of
growth heterogeneity. The prediction is in line with ob-
servations that mRNAs of essential genes can naturally
be present at low molecule numbers per cell*? and that
fluctuations in enzyme expression can cause growth rate
variation'. In fact, expression of glucose transporters in
E. coli has been reported to be highly heterogeneous®®.

In agreement with experiments we find that over-
all growth variability is condition-dependent, decreasing
generally with mean growth rate. However, for mixed
environments that involve nutrient-drug interactions we
predict complex responses, where antibiotic doses can ei-
ther decrease or increase variability depending on nutri-
ent conditions. Our analysis moreover showed that differ-
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ent limitations to growth, including nutrient uptake and
catabolism, can result in the same growth phenotypes,
underlining the robustness of the predicted behaviour.

We analysed the propagation of stochastic fluctua-
tions. We used a novel strategy to distinguish compo-
nents upstream or downstream from growth, that is, cel-
lular components transmitting fluctuations to growth or
receiving them from growth, by building minimal de-
lay graphs from pairwise cross-correlations. Species up-
stream of growth, such as transporter mRNAs and pro-
teins as well as resources, correlate positively with growth
rate, whereas species downstream of growth either in-
crease with growth or are diluted. These predictions on
the propagation of stochastic fluctuations may be tested
using protocols similar to those employed by Kiviet et
al.l.

In particular, we identified resources to exhibit signif-
icant fluctuations, which they transmit to growth rate.
In support of this, recent experiments showed that in-
tracellular ATP levels can indeed vary substantially’,
and such variations can affect growth rate in eukaryotic
cells*®. We moreover found that ribosome levels correlate
positively with growth rate, consistent with the known
growth law®. But our model finds that ribosome fluc-
tuations follow those of growth rate, in agreement with
the observation that asymmetric ribosome partitioning
at cell division has negligible effect on growth rate*. Qur
finding that ribosome levels are set by growth rate at
the single-cell level moreover suggests that growth fluc-
tuations are a common source of cellular noise, and ri-
bosomes act as transmitters of this noise to downstream
processes®26:27,

The developed single-cell model also allowed us
to identify biological parameters that are otherwise
non-identifiable using deterministic population-averaged
approaches*. For example, total resource levels, as op-
posed to concentrations, have little to no effect on mean
growth but affect growth rate variances, which can only
be constrained by single-cell data (SI Fig. S2). Recent
work showed that such fluctuations can impact the mean
population growth*?, implying that these mechanistic pa-
rameters may be subject to evolutionary pressure. Cel-
lular physiology could seize this degree of freedom and
use it to shape noise to its benefit, for instance, as an
evolutionary bet-hedging strategy®’ 2. The model could
be put to use in in numero evolutionary experiments to
test the specific benefits of noise architectures in different
environments and retrace possible evolutionary paths.

Our framework may also prove useful to benchmark the
designs of synthetic circuits and increase their reliability.
In this context one may, for example, wish to limit the
impact of growth fluctuation on a circuit of interest®®.
Embedding such circuit in our model provides insights
to re-architecture the global cellular noise to this effect.
Finally, our results have important implications for drug
tolerance and could pinpoint strategies to potentiate clin-
ical treatment. Increased cell-to-cell variability can also
drive phenotype switching. The latter plays a crucial role

in persistence, a form of tolerance that allows bacteria to
survive antibiotic treatment by switching to a dormant
state?®, the precise mechanisms of which, however, are
still unclear.

We limited our analysis to the effect of intrinsic fluctua-
tions in the biochemical processes that underpin growth
and neglected potential variations in processes respon-
sible for DNA-replication and cell cycle control!. We
further focussed on the balance between catabolic and
biosynthetic processes®°*, where we considered effective
regulation through the dependence of transcription on
cellular resources (Methods a, see also’?) and avoided
mechanistic detail such as regulation via (p)ppGpp. In
this sense, we mostly ignored specific regulatory processes
such as involved in entering stationary phase, which may
affect the quality of our predictions for poor growth me-
dia. Despite these limitations, our model recovers various
types of data and empirical growth relations, highlighting
the predictive power of our approach.

Our cell model links the stochasticity of intracellular
mechanisms with growth variations observed in single
cells and populations. Together with a novel theory to
analyse stochastic cell and division dynamics, our work
provides a framework to draw testable predictions and
bring about a working understanding of the stochastic
physiology in living cells.

IV. METHODS

a. List of reactions. The model consists of stochas-
tic reactions, adapted from a previous deterministic
model??, that represent transcription and degradation of
mRNAs m,, their binding to free ribosomes p, to form
a ribosome-mRNA complex ¢, and translation reactions
synthesising a protein p,, where y € {t,e,r, ¢}. To ac-
count for metabolism, we include uptake of an external
nutrient s at fixed concentration by a transport protein
(pt). The internalised nutrient s;,; is then catabolised
to produce resource molecules a. In summary, the stoi-
chiometries and propensities of the reactions are:

w d
g - my, my, — O, (ha)
ku N
pr"’mch?h nya+cy = pr+my +py,  (5b)
b
Vimp Vcat
5 /2% Sint —= nga. (5¢)

The propensities of mRNA degradation, ribosome bind-
ing and unbinding are modelled using mass action ki-
netics. Transcriptional and translational propensities de-
pend on the resource a and follow w, = Mwy%_ﬁ%

_ Xa w —
for y € {r,e,t}, w, = MXaJreq 1+(Xq‘;Kq)4 and ¢, =
;—Z% for y € {t,er,q}, where X = z/M de-
note molecular concentrations. Nutrient uptake and
metabolism is modelled using quasi-steady state kinetics

. .. U Xs: .
via the propensities: vimp = psv; and vear = P X
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The instantaneous growth rate can be obtained in closed
form using Eq. (3) and is a product of the translation
elongation rate and the concentration of translating ri-
bosomes

’YmaxXa
= — g X, 6
) X+ K, v (6)
ye{t,e,r,q}

AX
assuming mass is dominated by protein content. In the
model, mean growth rate is varied through nutrient qual-
ity ms describing the number of resource units produced
per nutrient molecule.

To model operon architecture we replaced transcrip-
tion, degradation, ribosome binding and translation re-
actions for transporters and enzyme species by the fol-
lowing set of reactions: @ 2oy % I, pr + mp; %

b
Chi, Me@~+ Chi Ley Mui + Pr + Pt + Pe, where my,; is the bi-
cistronic mRNA species coding for both transporter and
enzyme proteins, p; and p., respectively.

Chloramphenicol effectively reduces the pool of elon-
gating ribosomes by binding to ribosomes and preventing
elongation®”. We model this effect using an additional re-
action:

kem Xem
Cy ” 2y,

describing ribosome inhibition by the imposed drug con-
centration X, via a complex z, that is no longer avail-
able to translation.

b. Small noise approximation. Neglecting the noise
terms in Eq. (4) reduces the Langevin equations to ODEs.
In steady state the deterministic concentrations X are
characterised by the equations

vf(X) = MX)X, (7)

describing the balance between biomolecule synthesis by
intracellular reactions and dilution of concentrations due
to cell growth. In the limit of small fluctuations, i.e. the
limit of large M, these concentrations describe the mean
behaviour from which also the mean growth rate A(X)
can be determined. Similarly, the average cell mass M
increases exponentially between divisions with determin-
istic time-intervals 7 = In2/A(X). The average mass at
cell birth follows from the delayed effect of initiation.
Denoting the concentration of origins at which initiation
of DNA-replication is triggered by O., and the time re-
quired to complete replication and trigger cell division
by 7c4+p (Fig. 1), the mean cell mass at birth and the
number of origins are exponential functions of the mean
growth rate

e)\()?)Tc+D

e)\(X)TCurD
2ln2 ’

0= "0, O =

(8)
consistent with Donachie’s result?*. This implies that the
unit size (mass per number of origins) is constant and
equal to In2/0,.. To compare against bulk data, we used

10

the relation My, = 2MyIn2 (neglecting size variation
before and after division®®).

The small noise approximation allows also to compute
the size of growth fluctuations. The time-averaged con-
centration covariance ¥ = 1 [ dt E[X (¢)XT(t)] satisfies
the following linear set of equations

_ 7% - 7T 1 v =
0=JZ+%J +2M01n2<)\(X)F+;DT>, (9)

where J(X) is the Jacobian of the deterministic ODEs
and T'(X) and D,.(X) are the noise strengths of cell divi-
sions and of the biochemical reactions, respectively (see
SI Sec. IIB-D for details). These equations determine the
size of fluctuations in growth rate via

Y 9l A(X)

iij 6ln)\()_()
81HXZ' X,’Xj Oln

CV2)\ = it (10)

<.

i,j=1

Following the lines of Komorowski et al.>’, we analyse
the sources of growth variations by decomposing Eq. (9)
and (10) into contributions of cell divisions or groups of
reactions (SI Sec. IIE).

c. Model parametrisation. We parametrised the
model with literature values for E. coli (SI Tab. I). For
predicting the variability of single cells it is important to
estimate the relative transcription rates of the involved
mRNA species. To this end, we fitted the dependence
of ribosomal mass fraction on mean growth rate against
data from bulk experiments® and the dependence of the
CV?[)\] on the mean against two recently published data
sets of single-cell time-lapse microscopy'?, allowing us
to characterise a broad range of growth rates. We further
constrained the maximal growth rate to 3.75 doublings
per hour, equivalent to a minimal doubling time of 16
minutes. For the parameter estimation we used the small
noise approximation of distribution moments combined
with MCMC parameter sampling (SI Fig. S1, ST Sec. IIT).

d. Stochastic simulations. We use a hybrid scheme
that simulates reactions either using the next-reaction
method or ODEs as described in°’. To account for
non-exponential reaction-time distributions®®, we update
propensities every 0.05 minutes. Supported by the pre-
dictions using the small noise approximation, it was suffi-
cient to simulate only those reactions stochastically that
change the lowly abundant mRNAs of transporters and
enzymes and their corresponding ribosomal complexes.
We determine growth rate using Eq. (3), which gives con-
sistent results when measured at birth or division.
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