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Abstract 
Motivation: Regulatory proteins associate with the genome either by directly binding cognate DNA motifs 

or via protein-protein interactions with other regulators. Each recruitment mechanism may be associated 

with distinct motifs and may also result in distinct characteristic patterns in high-resolution protein-DNA 

binding assays. For example, the ChIP-exo protocol precisely characterizes protein-DNA crosslinking 

patterns by combining chromatin immunoprecipitation (ChIP) with 5’ → 3’ exonuclease digestion. Since 

different regulatory complexes will result in different protein-DNA crosslinking signatures, analysis of 

ChIP-exo tag enrichment patterns should enable detection of multiple protein-DNA binding modes for a 

given regulatory protein. However, current ChIP-exo analysis methods either treat all binding events as 

being of a uniform type or rely on motifs to cluster binding events into subtypes.  

Results: To systematically detect multiple protein-DNA interaction modes in a single ChIP-exo 

experiment, we introduce the ChIP-exo mixture model (ChExMix). ChExMix probabilistically models the 

genomic locations and subtype memberships of binding events using both ChIP-exo tag distribution 

patterns and DNA motifs. We demonstrate that ChExMix achieves accurate detection and classification of 

binding event subtypes using in silico mixed ChIP-exo data. We further demonstrate the unique analysis 

abilities of ChExMix using a collection of ChIP-exo experiments that profile the binding of key 

transcription factors in MCF-7 cells. In these data, ChExMix identifies possible recruitment mechanisms 

of FoxA1 and ERa, thus demonstrating that ChExMix can effectively stratify ChIP-exo binding events into 

biologically meaningful subtypes.  

Availability: ChExMix is available from https://github.com/seqcode/chexmix 

Contact: mahony@psu.edu  
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Introduction 

Sequence-specific transcription factors (TFs) recognize many of their regulatory targets by making direct 

contact with their cognate DNA binding sites. However, TFs and other regulatory proteins can also 

associate with DNA indirectly, via protein-protein interactions with cooperating DNA-bound regulators. 

Genome-wide protein-DNA interaction assays such as ChIP-seq (Barski et al., 2007; Johnson et al., 2007) 

and ChIP-exo (Rhee and Pugh, 2011) typically rely on agents that induce both protein-DNA and protein-

protein crosslinking, and therefore do not necessarily discriminate between such direct and indirect DNA 

binding modes. In fact, some studies report that up to two thirds of in vivo TF binding events, defined here 

as precise locations where the TF associates with the genome, lack cognate motif instances (Wang et al., 

2012; Starick et al., 2015). Hence, a single ChIP-seq or ChIP-exo experiment might encompass diverse 

binding event types, produced by different protein-DNA interaction modes.  

ChIP-exo and related assays (e.g. ChIP-nexus (He et al., 2015)) precisely define protein-DNA 

crosslinking patterns with the use of lambda exonuclease (Rhee and Pugh, 2011). The exonuclease digests 

DNA in a 5’ to 3’ direction and, on average, stops at 6bp before a protein-DNA crosslinking point. Since 

different regulatory complexes will result in different crosslinking signatures, analysis of ChIP-exo 

sequencing tag distribution patterns around a given protein’s DNA binding events should enable detection 

of multiple protein-DNA binding modes. For example, Starick, et al. characterized glucocorticoid receptor 

(GR) binding using ChIP-exo and classified detected binding events using motif information. This approach 

uncovered a subset of GR ChIP-exo peaks that contained a Forkhead TF DNA binding motif (Starick et al., 

2015). The same sites displayed a distinct ChIP-exo tag distribution pattern from that observed at peaks 

containing the GR cognate binding motif. The authors thereby hypothesized that some ChIP-exo derived 

GR binding events represent indirect binding to DNA via protein-protein interactions with a Forkhead TF. 

Therefore, careful analysis of ChIP-exo tag distribution patterns and DNA binding motifs may enable 

discrimination between a protein’s distinct DNA binding modes.  

Most available approaches for discriminating between direct and indirect binding modes in a ChIP-seq 

or ChIP-exo experiment rely exclusively on DNA motif analysis. For example, several methods assume 

that directly bound sites should contain an instance of a cognate binding motif, while indirectly bound sites 

will contain motif instances corresponding to other TFs (Bailey and MacHanick, 2012; Whitington et al., 

2011; Gordân et al., 2009; Neph et al., 2012; Keilwagen and Grau, 2015). This assumption may not always 

be true. Distinct regulatory complexes may not always be associated with distinct DNA binding motifs, 

although they may still be distinguishable based on variations in ChIP crosslinking patterns. Therefore, 

analyzing combinations of both DNA sequence and ChIP tag distribution information may be necessary to 

fully characterize the diversity of protein-DNA binding modes present in a given experiment.  
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One previous approach has attempted to cluster TF binding events using ChIP-seq tag enrichment 

patterns, and reports on each cluster’s associations with GO terms, motif enrichment, genomic localization, 

and gene expression (Cremona et al., 2015). However, clustering ChIP-seq tag enrichment patterns is 

confounded by high variance in the locations of ChIP-seq tags with respect to the protein-DNA binding 

event. ChIP-seq resolution is limited by sonication, which results in broad tag distributions. As described 

above, the ChIP-exo assay is more appropriate for characterizing distinct binding modes via analysis of tag 

distribution shapes, because ChIP-exo tag distributions are determined by crosslinking patterns at each 

binding site. However, no available method can exploit tag distribution patterns to delineate distinct protein-

DNA binding modes in a ChIP-exo experiment. 

To systematically detect multiple protein-DNA interaction modes in a single ChIP-exo experiment, we 

introduce the ChIP-exo mixture model (ChExMix). ChExMix discovers and characterizes binding event 

subtypes in ChIP-exo data by leveraging both sequencing tag enrichment patterns and DNA motifs. In 

doing so, ChExMix offers a more principled and robust approach to characterizing binding subtypes than 

simply clustering binding events using motif information. For instance, ChExMix does not require that all 

(or any) subtype-specific binding events be associated with motif instances, thus enabling binding subtype 

classification only using ChIP-exo tag patterns.  

To demonstrate its unique analysis abilities, we applied ChExMix to ChIP-exo data profiling key 

regulators in estrogen receptor (ER) positive breast cancer cells. Upon estradiol treatment, FoxA1, ERa, 

and CTCF co-localize at a subset of genomic locations. Our findings suggest that FoxA1 likely binds to 

some genomic loci via protein-protein interactions with ERa and CTCF. Conversely, indirect binding of 

ERa to DNA via FoxA1 interactions is also observed in ERa ChIP-exo. These results demonstrate that 

ChExMix can characterize multiple protein-DNA interaction modes in ChIP-exo data, providing us with 

unique insights into interactions between transcription factors in a given cell type.  

 

Results 

ChExMix model overview 

ChExMix integrates information from ChIP-exo tag distributions and DNA sequences in a probabilistic 

mixture model framework to characterize multiple DNA-protein interaction modes. Initial candidate ChIP-

exo peak locations are determined using a probabilistic mixture model that doesn’t incorporate subtypes, 

similar to the approach described in our previously published GPS ChIP-seq peak-finder (Guo et al., 2010) 

(Figure 1A). Using these initial binding event locations, ChExMix estimates potential subtypes by 

performing de novo motif discovery around the predicted binding events and/or by clustering tag 

distributions in 150bp windows using Affinity Propagation (Figure 1B). Discovered subtypes that have 

similar motifs and tag distributions are merged. Lastly, ChExMix assigns binding events to subtypes using 
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a hierarchical mixture model (Figure 1C). ChExMix probabilistically assigns observed tags to binding 

events by calculating the probabilities that each tag was generated by each binding event given the binding 

events’ current locations, strengths (mixing probabilities), subtype assignments, and the tag distributions 

associated with each subtype. The Expectation Maximization (EM) algorithm is used to iteratively optimize 

the positions, strengths, and subtype membership of each binding event using information from both the 

assigned tags and the underlying DNA sequences. In estimating the subtype probabilities for each binding 

event, we incorporate the following biologically-motivated assumptions in the form of priors: 1) a 

sparseness prior biases the algorithm to associate each binding event with a single binding subtype; and 2) 

the presence of a particular subtype’s motif at a binding event biases the assignment of the binding event 

to that subtype. ChExMix takes mapped tags (e.g. BAM files) as input and outputs binding event positions 

and subtype assignments. ChExMix runs within a few hours for most datasets (Table S1). 
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Figure 1. Overview of the ChExMix model. A) ChExMix first detects ChIP-exo peaks genome-wide using a 

probabilistic mixture model that does not incorporate subtypes. B) ChExMix defines subtypes via motif discovery 

and/or by clustering tag patterns around predicted binding events. C) ChExMix uses a hierarchical mixture model to 

assign binding events to subtypes and to optimize their locations. The illustration shows an example of final ChExMix 

parameter values at a binding event location.  
 

ChExMix accurately classifies binding subtypes in in silico mixed ChIP-exo datasets  

ChExMix is designed to discover and model multiple binding subtypes within a single ChIP-exo dataset. 

We cannot assume a priori that we know the correct assignment of TF binding events to subtypes in any 

existing ChIP-exo experiment. Therefore, to test the ability of ChExMix to estimate binding subtypes and 
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assign binding events to subtypes, we created datasets that mix data from two distinct ChIP-exo experiments 

(and thus contain definitive assignments of binding events to two distinct “subtypes”).  

Specifically, we computationally mixed ChIP-exo data from CTCF and FoxA1, two TFs that are known 

to produce distinct ChIP-exo tag distribution patterns at their respective binding events (Rhee and Pugh, 

2011; Serandour et al., 2013). The locations of binding events in the mixed experiments were defined by 

selecting equal numbers of non-overlapping binding events for each TF (see Methods). The signal portion 

of our mixed experiments was then defined by randomly selecting CTCF ChIP-exo tags from the CTCF 

binding event locations and FoxA1 ChIP-exo tags from the FoxA1 binding event locations. Each simulated 

experiment contains 6 million signal tags, but the relative frequency at which CTCF and FoxA1 tags were 

selected was varied to simulate subtypes having different relative representations in a dataset. A further set 

of 24 million background tags were drawn at random from a control (input) experiment.  

In the simulated setting in which there is equal representation of CTCF and FoxA1 subtypes (i.e. 3 

million tags drawn from each dataset), ChExMix discovers two distinct subtypes characterized by subtype-

specific DNA motifs and tag distributions associated with CTCF (Figure 2A) and FoxA1 (Figure 2B). 

ChExMix also achieves high performance in appropriately assigning binding events to their source CTCF 

and FoxA1 “subtypes” (CTCF: Figure 2C red dots, TPR=88.9%, FPR=3.5%; FoxA1: Figure 2D red dots, 

TPR=96.5%, FPR=11.1%; Figure S1A,B; Figure S2A,B; Table S2). ChExMix performance in detecting 

the two subtypes and appropriately assigning subtypes to binding events remains high over all relative 

sampling rates tested from the CTCF and FoxA1 subtypes, suggesting that subtypes do not have to be 

present in equal proportions in order for ChExMix to discover them. ChExMix also maintains high 

performance over various read depths (Figure S3), biological replicates (Figure S4), and simulation setting 

where subtypes either have different motifs (Figure S5; Figure S6) or tag distributions (Figure S7), but not 

both.  

By uniquely combining both DNA motifs and ChIP-exo tag distributions to classify binding subtypes, 

ChExMix outperforms alternative approaches that use one or the other source of information in subtype 

assignment. For example, a motif scanning approach that classifies binding events based on the presence 

of ChExMix discovered motifs fails to appropriately classify many of the FoxA1 subtype binding events 

(Figure 2D green diamonds; Figure S1E,F). Similarly, a version of ChExMix that uses only tag information 

in subtype assignment (subtypes are still defined using both motif discovery and tag distributions) displays 

lower sensitivity than the version of ChExMix that uses both tag distributions and DNA motifs (Figure 2C 

blue triangles; Figure S1C,D; Table S2). Our results thus demonstrate that ChExMix enables discovery of 

binding subtypes within a single ChIP-exo dataset and accurately assigns subtypes to binding events. 
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Figure 2. ChExMix learns subtype-specific tag distributions and accurately predicts binding event subtypes in 

in silico mixed CTCF and FoxA1 ChIP-exo data. A) CTCF ChIP-exo tag distribution (forward strand in blue and 

reverse strand in red) at CTCF motif locations (left). CTCF subtype-specific tag distribution model and motif learned 

by ChExMix (right). B) FoxA1 ChIP-exo tag distribution (forward strand in blue and reverse strand in red) at FoxA1 

motif locations (left). FoxA1 subtype-specific tag distribution model and motif learned by ChExMix (right). C), D) 

Sensitivity in subtype assignment using ChExMix with de novo estimated tag distributions and motifs (red dots) and 

ChExMix with tag distributions alone (blue triangles). Fraction of peaks containing ChExMix discovered motifs 

(green diamonds). Plots show sensitivity for correctly assigning binding events to the CTCF (C) and FoxA1 (D) 

subtypes, as the relative proportion of signal tags is varied between the CTCF and FoxA1 experiments. Each data 

point represents an average performance over five simulated datasets (see Figure S1). Matching specificity plots in 

Figure S2.  
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ChExMix enables discovery of binding subtypes using only ChIP-exo tag distributions 

ChExMix’s combined use of DNA motifs and ChIP-exo tag distributions has obvious advantages when the 

regulatory protein of interest is a sequence-specific TF. However, characterizing and classifying binding 

event subtypes may also be useful in the analysis of regulatory proteins that lack an obvious sequence 

preference. ChExMix can characterize binding subtypes without any sequence motif information by 

clustering binding event ChIP-exo tag distributions using Affinity Propagation (Dueck and Frey, 2007). To 

demonstrate that ChExMix can thereby discover and assign de novo binding subtypes using only tag 

distribution information, we assessed its performance in a controlled simulation setting where no specific 

sequence signals were introduced.  

We simulated 500 binding events from each of two distinct types by randomly drawing tags from two 

pre-defined ChIP-exo distribution patterns (Figure 3A, 3B; see Methods). The 1,000 binding events were 

placed at defined locations along the yeast genome. Each simulated experiment contains 100, 200, and 300 

thousand signal tags (i.e. drawn from the ChIP-exo distributions in proximity to one of the simulated 

binding events). The relative frequency at which each of the two subtypes’ tags were selected was varied 

to simulate subtypes having different representations in a dataset. Further sets of background tags were 

drawn from a yeast control (mock IP) experiment, resulting in a total of one million tags per simulation 

dataset.  

In the simulated setting in which there is equal representation of both subtypes (and 20% of tags are 

sampled from signal regions), ChExMix successfully recovers the two distinct subtypes by clustering the 

initial binding events (Figure 3C, 3D). During ChExMix training, the two estimated subtype tag 

distributions are further refined (Figure 3E, 3F), and the end results closely resemble the original 

distributions (Figure 3A, 3B). ChExMix achieves high performance in appropriately assigning binding 

events to the two subtypes (Subtype A: Figure 3G orange dots, TPR=99.8%, FPR=5.9%; Subtype B: Figure 

3H orange dots, TPR=94.1%, FPR=0.2%). ChExMix maintains this high performance in detecting and 

assigning subtypes in cases where one of the subtypes has a relatively low representation in the dataset, or 

when the overall signal in the ChIP-exo experiment is relatively low (Figure 3G, 3H; Figure S8). The 

simulation experiments thus demonstrate that ChExMix has the unique ability to accurately identify and 

assign binding event subtypes even if no distinctive DNA motifs are associated with those subtypes. 
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Figure 3. ChExMix learns subtype specific tag distributions de novo and accurately predicts binding event 

subtypes without motif information. A), B) Simulation data contains binding events from two distinct subtypes that 

have distinct tag distributions. C), D) In the 20% signal simulation setting, ChExMix appropriately discovers two 

distinct distributions via affinity propagation clustering. E), F) The de novo discovered distributions are further refined 

during ChExMix training. The 5’ ends of forward and reverse strand tags are shown in blue and red lines, respectively.  

G), H) Sensitivity in subtype assignment using de novo estimated tag distributions with overall signal of 10% (blue 

diamonds), 20% (orange dots), and 30% (green triangles). Plots show sensitivity for correctly assigning binding events 

to the subtype A (Reb1 distribution) (G) and subtype B (p53 distribution) (H) subtypes, as the relative proportion of 

signal tags is varied between the two subtypes.  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 7, 2018. ; https://doi.org/10.1101/266536doi: bioRxiv preprint 

https://doi.org/10.1101/266536
http://creativecommons.org/licenses/by-nc-nd/4.0/


	10 

 

ChExMix maintains high accuracy in predicting binding event locations 

We have previously demonstrated that the probabilistic mixture modeling framework underlying GPS, 

GEM, and MultiGPS enables highly accurate protein-DNA binding event detection in ChIP-seq and ChIP-

exo data (Guo et al., 2010, 2012; Mahony et al., 2014). Since ChExMix substantially modifies this 

framework to account for binding event subtypes, we assessed whether these changes have negatively 

impacted the ability to characterize binding locations.  

We compared ChExMix performance in predicting human CTCF (Rhee and Pugh, 2011) and mouse 

FoxA2 (Iwafuchi-Doi et al., 2016) binding event locations to that of nine ChIP-exo analysis methods, 

including MultiGPS (Mahony et al., 2014), GEM (Guo et al., 2012), MACS2 (Zhang et al., 2008), MACE 

(Wang et al., 2014), PeakXus (Hartonen et al., 2016), Peakzilla (Bardet et al., 2013), Q-nexus (Hansen et 

al., 2016), DFilter (Kumar et al., 2013), and CexoR (Madrigal, 2015). We excluded ChIP-ePENS (Ye et 

al., 2016) from our evaluation because it requires paired-end ChIP-exo data. Both CTCF and FoxA2 ChIP-

exo datasets consist of single-end sequencing data.  

To ensure a fair comparison, we used 1,553 shared CTCF sites that are predicted by all ten methods 

and which contain an instance of the CTCF motif within 50bp. Spatial resolution is measured by the 

difference between the computationally predicted locations of binding events and the nearest match to the 

proximal consensus motif. Thus, by design of the comparison, all methods locate 100% of these events 

within 50bp of the motif position. ChExMix exactly locates the events at the motif position in 87.5% of 

these events, outperforming all other methods (Figure 4A). Similarly, we identified 835 FoxA2 sites in the 

FoxA2 ChIP-exo dataset that are predicted by nine methods excluding CexoR and which contain an instance 

of the FoxA2 motif within 50bp. CexoR requires replicated experiments; the FoxA2 ChIP-exo replicate has 

a low sequencing depth and is not adequate for CexoR analysis. ChExMix exactly located the events at the 

motif position in 64.0% of these events (Figure 4C). ChExMix binding event predictions also contain 

instances of the cognate motifs at a high rate (Figure 4B, D). Similarly, ChExMix retains high resolving 

power in detecting two closely placed binding events (Figure S9) as previously demonstrated in the GPS 

framework. These results suggest that ChExMix maintains high accuracy in protein-DNA binding event 

prediction. 
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Figure 4. ChExMix accurately estimates binding event locations. A) Cumulative fraction of selected CTCF binding 

event predictions that have a CTCF motif instance present within the given distance following event discovery by 

ChExMix, MultiGPS, GEM, Q-nexus, CexoR, MACS2, Peakzilla, PeakXus, MACE, and DFilter. Events evaluated 

were predicted by all ten methods and had a CTCF motif instance within 50bp. B) Fraction of each method’s ranked 

CTCF binding event predictions that have a unique CTCF motif instance present within 50bp. C) Cumulative fraction 

of selected FoxA2 binding event predictions that have a FoxA2 motif instance present within the given distance 

following event discovery by ChExMix, MultiGPS, GEM, Q-nexus, MACS2, Peakzilla, PeakXus, MACE, and 

DFilter. Events evaluated were predicted by all nine methods and had a FoxA2 motif instance within 50bp. D) Fraction 

of each method’s ranked FoxA2 binding event predictions that have a unique FoxA2 motif instance present within 

50bp. 

 

ChExMix deconvolves regulatory molecule interactions of FoxA1, Estrogen Receptor a, and CTCF 
in MCF-7 cells 
To demonstrate the ability of ChExMix to discover biologically relevant binding event subtypes, we applied 

ChExMix to analyze FoxA1 ChIP-exo data in MCF-7 cells. The pioneer factor FoxA1 is a key determinant 

of estrogen receptor function and endocrine response, and influences genome-wide accessibility in MCF-

7, thus affecting global ER binding (Hurtado et al., 2011). CTCF is an upstream negative regulator of 

FoxA1 and ER chromatin interactions (Hurtado et al., 2011; Fiorito et al., 2016). Genome-wide profiling 
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suggest that these factors co-localize at a subset of binding loci, but how these factors interact with one 

another and DNA at specific sites remains largely unevaluated.  

ChExMix identifies three main subclasses in FoxA1 ChIP-exo data. The majority (24,749) of binding 

events are associated with a subtype that contains FoxA1’s cognate DNA binding motif and a ChIP-exo tag 

distribution shape highly similar to that found in previous ChIP-exo analyses of FoxA transcription factors 

(Iwafuchi-Doi et al., 2016; Ye et al., 2016; Serandour et al., 2013) (Figure 5A, 5B; Figure S10A,B; Table 

S3). We thus label this the “direct binding” subtype. However, 2,666 binding events are assigned to subtype 

1, which contains a nuclear hormone receptor DNA binding motif similar to that bound by ERa (Figure 

5A). Similarly, 2,648 events are assigned to subtype 2, which contains a CTCF-like motif. Both subclasses 

are also associated with distinct tag distributions (Figure 5B).  

We hypothesized that subtypes 1 & 2 represent indirect FoxA1 binding to DNA via protein-protein 

interactions with ERa and CTCF, respectively (Figure 5E). We thus examined whether subtypes 1 & 2 are 

bound by their respective predicted factors using ERa and CTCF ChIP-exo datasets. We found that 55.4% 

of subclass 1 events are located within 100bp of ERa binding events, while 37.5% of the subclass 2 events 

occur within 100bp of CTCF ChIP-exo peaks (Figure 5C) (Poisson p-value < 0.001 for the overlap between 

subtype 1 and ERa binding and between subtype 2 and CTCF binding). The tag distribution shape of 

subtype 1 binding events in FoxA1 ChIP-exo resembles the tag distribution shape in ERa at the same sites, 

peaking at the exact same base positions (Figure 5D).  

We further hypothesized that if FoxA1 binding is mediated via ERa at subtype 1 locations in MCF-7 

cells, we should observe FoxA1 binding to fewer subtype 1 locations in ER negative breast cancer cells. In 

accordance with this hypothesis, only 30.4% (811/2,666) of FoxA1 subtype 1 binding events occur within 

50bp of a FoxA1 ChIP-exo peak in MDA-MB-453 (an ER negative breast cancer cell line). In contrast, 

59.6% (14,761/24,749) of FoxA1 subtype 3 events are bound in MDA-MB-453. These results are consistent 

with our hypothesis of indirect FoxA1 binding at subtype 1. We found no evidence that the various detected 

subtypes correspond to differences in transcriptional behavior within MCF-7 cells (Figure S11; Figure S12). 

The fact that the overlap of these subtypes with ERa and CTCF binding events is incomplete may be due 

to thresholding effects, erroneous assignments of FoxA1 binding events to the relevant subtypes, or may 

possibly reflect FoxA1 interactions with other transcription factors that have similar binding preferences. 

For example, several nuclear hormone receptors are active in MCF-7 cells, including Progesterone Receptor 

and Glucocorticoid Receptor, and are expected to bind to DNA binding motifs related to that discovered at 

subtype 1 binding events.  
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Figure 5. ChExMix discovers site-specific recruitment of FoxA1 via ERa and CTCF in MCF-7 FoxA1 ChIP-

exo data. A) Motif, sequence color plot, and heatmap of three subtypes identified in FoxA1 ChIP-exo. Sites within 

each subtype are aligned by the ChExMix-defined binding event position and orientation. Different subtypes are 

aligned to each other via motif alignment. B) FoxA1 tag pattern associated with subclass 1, 2, and 3. C) Heatmaps of 

ERa and CTCF ChIP-exo tags at FoxA1 binding events. D) ERa tag pattern at subclass 1 binding events and CTCF 

tag pattern at subclass 2 binding events. E) Proposed TF interactions between FoxA1, ERa, and CTCF.  

 

We next applied ChExMix to analyze ERa ChIP-exo data, discovering seven distinct subtypes (Figure 

6A; Figure S10C,D; Table S3). The majority (24,914) of binding events are associated with one of six 

subtypes that contains a nuclear hormone receptor motif, which ERa may be expected to directly bind. 

However, 3,009 binding events are associated with subtype 4, which contains a Forkhead motif similar to 

that bound by FoxA1. Subtype 4 is also associated with a distinct tag distribution shape (Figure 6B), again 

suggesting a hypothesis whereby ERa binds indirectly via protein-protein interactions with FoxA1 at 

subtype 4 binding events (Figure 6E). Indeed, 62.8% of subclass 4 events are located within 100bp of 

FoxA1 binding events (Figure 6C), and the ERa ChIP-exo tag distribution at subtype 4 binding events 

peaks at the same base pair positions as the FoxA1 ChIP-exo tag distribution at the same sites (Figure 6D). 

These results strongly suggest that ChExMix can discover binding event subtypes representing direct and 

indirect TF interactions from a single ChIP-exo experiment. 
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Figure 6. ChExMix discovers FoxA1 mediated ERa binding in MCF-7 ERa ChIP-exo data. A) Motif, sequence 

plot and heatmap of seven subclasses identified in ERa ChIP-exo. Sites within each subtype are aligned by the 

ChExMix-defined binding event position and orientation. Different subtypes are aligned to each other via motif 

alignment. B) ERa tag patterns centered at subclass binding events. C) Heatmap of FoxA1 ChIP-exo tags centered at 

ERa predicted binding events. D) FoxA1 tag distribution centered at ERa subtype 4 binding events. E) Proposed 

binding models of ERa subtypes. 

 

 

Discussion 
ChExMix provides a principled platform for elucidating diverse protein-DNA interaction modes in a single 

ChIP-exo experiment by exploiting both ChIP-exo tag enrichment patterns and DNA motifs. Using a fully 

integrated framework, ChExMix allows simultaneous detection of binding event locations, discovery of 

binding event subtypes, and assignment of binding events to subtypes. As demonstrated above, ChExMix 

provides highly accurate spatial resolution of binding event predictions and accurately assigns binding 

events to subtypes. Uniquely, ChExMix can characterize binding event subtypes without requiring the 
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presence of distinctive sequence features, thus potentially enabling binding subtype analysis of non-

sequence-specific regulatory proteins (e.g. chromatin modifiers, co-activators, co-repressors, etc.).  

We further demonstrated that ChExMix can characterize biologically relevant binding event subtypes 

in ER positive breast cancer cells. FoxA1, ERa, and CTCF have previously been shown to co-localize at 

some sites, but their modes of interaction with one another remained elusive. In FoxA1 ChIP-exo data, 

ChExMix identifies subtypes corresponding to ERa and CTCF motifs, and about a half of these subtypes’ 

binding events are bound by the ERa and CTCF proteins, respectively. Our results thus suggest that ERa 

and CTCF likely mediate binding of FoxA1 via protein-protein interactions at a subset of the genomic loci 

where multiple factors are co-bound. The analysis presented in the paper is restricted to the most over-

represented subtypes associated with the FoxA1 and ERa ChIP-exo datasets. Because FoxA1 and ERa 

have been shown to co-localize with several other transcription factors, the results presented here may not 

include a comprehensive set of factors with which FoxA1 and ERa interact. Future improvements of the 

method may include richer sequence analysis to recover motifs with lower representation, and the 

application of metrics to test subtype-specific motifs based on how centrally tags are enriched around the 

motifs. Another possible approach for discovering weaker subtypes is to initialize a large number of 

potential subtypes using compendia of known TF binding motifs and to rely on EM training to weed out 

non-significant ones. 

In summary, we have demonstrated that ChExMix enables new forms of insight from a single ChIP-

exo experiment, taking analysis beyond merely cataloging binding event locations and towards a fine-

grained characterization of distinct protein-DNA binding modes. As demonstrated in our MCF-7 analyses, 

integrating ChExMix analyses across collections of related ChIP-exo experiments will enable us to identify 

the individual transcription factors responsible for recruiting several regulatory proteins, and thus 

modulating regulatory activities, at specific genomic loci. 

 

 

Methods 
 

ChExMix hierarchical mixture model 

Similar to the previously described GPS (Guo et al., 2010), GEM (Guo et al., 2012), and MultiGPS 

(Mahony et al., 2014) approaches to ChIP-seq binding event detection, ChExMix models ChIP-exo 

sequencing data as being generated by a mixture of binding events along the genome, and an Expectation 

Maximization (EM) learning scheme is used to probabilistically assign sequencing tags to binding event 

locations. The GPS, GEM, and MultiGPS frameworks assume that a single experiment-specific tag 
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distribution generates all binding events in a given dataset. ChExMix breaks this assumption by modeling 

multiple distributions within a single dataset. ChExMix further models binding events as a mixture of 

binding subtypes, where each subtype t is defined by a distinct tag distribution and possibly a distinct DNA 

motif. Since the tag distributions and motifs are strand-asymmetric, each subtype has an implicit orientation. 

To account for the expected equal representation of each binding event subtype on both DNA strands, we 

define the subtypes in pairs, where the tag distributions and motifs in each pair are constrained to be reverse-

complements of each other.  

The empirically estimated multinomial distribution Pr(𝑟%|𝑥, 𝑡) gives the strand-specific probability of 

observing ChIP-exo tag 𝑟% from a binding event of subtype t located at genomic coordinate x. We define a 

vector of component locations µ where 𝜇,,- is the genomic location of event j of the binding subtype t. In 

other words, the binding event’s exact location within a genomic locus is dependent on the estimated 

subtype. Similarly, we introduce a vector of component subtype probabilities 𝝉, where 𝜏,,- is the probability 

of the binding event j belonging to subtype t. We initialize a large number of potential binding events such 

that they are spaced in 30bp intervals along the genome (Figure S13). Binding event positions are re-

estimated over numerous EM training iterations, so that binding event discovery is not constrained by the 

initial 30bp interval (Figure S9). Alternatively, binding events can be initialized using the predicted peak 

positions of other peak callers, where potential binding events are initialized in 30bp intervals in a 500bp 

window around predicted peak positions. For example, ChExMix initial binding event positions in the 

MCF-7 analyses are initialized using MultiGPS results. The overall likelihood of the observed set of tags, 

r, given the binding event positions, µ, the binding event mixture probabilities (i.e. binding event strengths), 

𝝅, and binding subtypes 𝝉 is defined as:  

Pr(𝒓|𝝅, 𝝉, 𝝁) =455𝜋,𝜏,,-

7

-89

Pr	(𝑟%|𝜇,,- , 𝑡)
;

,89

<

%89

 

 

where ∑ 𝜋, = 1;
,89 , ∑ 𝜏,,- = 17

-89  

 

We incorporate biologically relevant assumptions in the form of priors on binding event strengths, 

binding locations, and subtype assignment. Similar to the GEM (Guo et al., 2012) and MultiGPS (Mahony 

et al., 2014) implementations, we place a sparseness promoting negative Dirichlet prior, 𝛼, on the binding 

strength 𝝅 based on the assumption that binding events are relatively sparse throughout the genome (Neal 

and Hinton, 1998). We make two prior assumptions about binding subtype assignment: 1) the presence of 

subtype-specific DNA motif instances is indicative of the subtype to which a binding event belongs (i.e. 

can affect subtype probabilities); and 2) a binding event should be associated with a single subtype (i.e. 
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sparseness in subtype probabilities). To incorporate these assumptions, we place a Dirichlet prior 𝛽	on the 

binding subtype probabilities 𝝉.  

Pr	(𝝉) ∝4(𝜏-)BCDECF,G, 			𝛽,,H > 0, 𝛽,,- > 0
7

-89

 

𝛽H is the sparse prior parameter to adjust the degree of subtype sparseness: 

𝛽H = 𝜖5𝑁,,-

7

-89

 

where 𝜖 is a parameter to tune the effect of the sparseness prior, 0 ≤ 𝜖 ≤ 1. In this study, we choose 𝜖 =

0.05 (Figure S14, S15). 𝛽H is proportional to the number of tags assigned to the binding events. 

𝛽,,- denotes the binding subtype specific prior parameter and its value is proportional to 𝑊,,- , the strand 

specific log likelihood score for subtype t’s motif at event j’s location. 𝑚𝑎𝑥𝑊,,-  is the maximum possible 

log likelihood score from the weight matrix.  

𝛽,,- = 𝜔
𝑊,,-

max	𝑊,,-
5𝑁,,-

7

-89

 

where 𝜔 is a parameter to tune the effect of the motif based prior, 0 ≤ 𝜔 ≤ 1. In this study, we choose 𝜔 =

0.2 (Figure S16). 𝑁,,-  is the effective number of tags assigned to subtype t of the binding event j. The 

rationale is that a binding event j is more likely to be associated with subtype t if that subtype’s DNA motif 

is present in the vicinity. The parameter 𝛽,,- is scaled such that 𝛽,,- can be greater than 𝛽H. Therefore, a 

particular binding subtype will not be eliminated from consideration if the motif prior provides sufficient 

evidence of the binding subtype.  

A positional prior on the base pair locations of binding events, k, is defined directly by subtype-specific 

motif log likelihood scores. Similar to MultiGPS, we introduce a Bernoulli prior over each genomic location 

where each element ki,t of the parameter k corresponds to the probability that genomic location i is a binding 

site of a binding type t. This prior assumes that there can be only one or zero binding events at a single 

position and that binding positions are selected independently along the genome according to this 

weighting. The positional prior is strand-specific. The prior assigns a likelihood to a set of binding sites on 

a genome of size L as follows: 

Pr(𝜇|𝑘) =4𝑘Y,-
9(Y∈[)

\

Y89

(1 − 𝑘Y,-)9(Y∉[) = 	4(1 −
\

Y89

𝑘Y,-)4
𝑘[F,G

1 − 𝑘[F,G

;

,89

∝4
𝑘[F,G

1 − 𝑘[F,G

;

,89

 

 

Binding event prediction and subtype assignment  
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As in the original framework, the latent assignments of tags to binding events is represented by the vector 

z, where Pr(𝑧% = 𝑗) = 𝜋, . The latent assignments of binding events to subtypes is represented by the vector 

y, where Pra𝑦, = 𝑡c = 𝜏,,-  The joint probability of latent variables is Pra𝑧% = 𝑗, 𝑦, = 𝑡c = 𝜋,𝜏,,- .  

The complete-data log posterior is as follows: 

 

𝑙𝑜𝑔𝑃𝑟a𝜇, 𝜋, 𝜏h𝑟, 𝑘, 𝛼, 𝛽H, 𝛽,c

= 5 i551(𝑧% = 𝑗)
7

-89

1a𝑦, = 𝑡c(𝑙𝑜𝑔𝜋, + 𝑙𝑜𝑔𝜏,,- + log	(Pra𝑟%h𝜇,,- , 𝑡c)
;

,89

n
<

%89

− 𝛼5𝑙𝑜𝑔𝜋, +5(−𝛽H + 𝛽,,-)
7

-89

𝑙𝑜𝑔𝜏,,- +5𝑙𝑜𝑔
𝑘[F,-

1 − 𝑘[F,-

;

,89

;

,89

+ 𝐶 

 

The overall binding event sparsity-inducing negative Dirichlet prior 𝛼  acts only on the mixing 

probabilities 𝝅. Dirichlet priors 𝛽H and 𝛽,,- act only on the subtype probabilities 𝝉. The positional prior acts 

only on the subtype binding event locations 𝝁. The E-step thus calculates the relative responsibility of each 

binding subtype at each binding event in generating each tag as follows:  

 

𝛾a𝑧% = 𝑗, 𝑦, = 𝑡c =
𝜋,𝜏,,-Pr	(𝑟%|𝜇,,- , 𝑡)

∑ ∑ (7
-q89 𝜋,q𝜏,q,-qPr	(𝑟%|𝜇,q,-q , 𝑡r));

,q89
 

 

The maximum a posteriori probability (MAP) estimation (Figueiredo and Jain, 2002) of 𝝅 and 𝝉 is as 

follows:  

 

𝜋s, =
max	(0, (∑ 𝑁,,-7

-89 ) − 𝛼)
∑ max	(0, (∑ 𝑁,r,-7

-89 ) − 𝛼);
,q89

, 𝜏̂,,- =
max	(0, 𝑁,,- − 𝛽H + 𝛽,,-)

∑ max	(0, 𝑁,,- − 𝛽H + 𝛽,,-)7
-89

, 𝑁,,- = 5𝛾(𝑧% = 𝑗, 𝑦, = 𝑡)
<

%89

 

 

As in the MultiGPS framework, the a parameter can be interpreted as the minimum number of ChIP-exo 

tags required to support a binding event active in the model. Similarly, 𝛽H − 𝛽,,-	is the minimum number 

of ChIP-exo tags required to support a binding event being associated with a particular binding subtype.  

MAP values of 𝜇,,- are determined by enumerating over several possible values of 𝜇,,- . Specifically, 

the MAP estimation of 𝜇,,- is:  

𝜇̂,,- = argmax
u

v5[𝛾(𝑧% = 1)𝑙𝑜𝑔𝑃𝑟(𝑟%|𝑥, 𝑡)] + 𝑙𝑜𝑔
𝑘[F,G

1 − 𝑘[F,G

<

%89

y 
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where x starts at the previous values of the position weighted by 𝝉 and expands outwards to 30bp each side. 

Each binding event is associated with a position weighted by subtype probabilities. If the maximization 

step results in two components sharing the same strand and weighted positions, they are combined in the 

next iteration of the algorithm.  

As in our previous GPS frameworks, ChExMix requires that the number of tags associated with each 

predicted binding event be significantly higher than the scaled number of tags associated with the same 

binding events in a control experiment such as input or mock IP with exonuclease treatment (p < 0.001 with 

Benjamini-Hochberg corrected Binomial test). The control experiment normalization factors are estimated 

using the NCIS normalization method (Liang and Keles, 2012) with 10Kbp windows. Control tag counts 

are associated with individual binding events via maximum likelihood assignments using the trained model 

(i.e. assigning tags to binding events without changing model parameters such as 𝝉	or 𝝁). 

  

Initial subtype characterization via tag distribution clustering 

Subtypes may be initialized in ChExMix using tag distribution clustering, motif discovery, or a combination 

of both. To initialize subtypes via tag distribution clustering, we extract the stranded per-base tag counts in 

150bp windows centered on the top 500 most enriched initial binding event positions. The per-base tag 

distributions are smoothed using a Gaussian kernel (variance = 1) and normalized by dividing by the sum 

of tag counts in the window. All pairs of binding event tag distributions are aligned against one another by 

finding the relative orientation and offset (in the range +/- 25bp) that produces the lowest Euclidean distance 

between normalized, smoothed tag distributions. Distances are converted to a pseudo-similarity score by 

multiplying by -1. Affinity propagation (Dueck and Frey, 2007) is applied to the similarity matrix 

(preference value = -0.1) to generate clusters. The number of clusters is automatically determined by the 

affinity propagation algorithm, albeit influenced by the preference value. Initial subtype-specific tag 

distributions are defined by the precomputed alignments against each cluster’s exemplar. During EM, 

subtype-specific tag distributions are updated by grouping binding events according to their maximum 

likelihood assigned subtypes and then combining each binding event’s assigned tag distributions.  

 

Initial subtype characterization via motif discovery 

To characterize subtype-specific DNA motifs, ChExMix uses MEME (Bailey and Elkan, 1994) to discover 

a set of over-represented motifs in the top 1000 most enriched binding events (60bp windows). Motifs are 

retained if they discriminate bound regions from random sequences with true-positive vs. false-positive 

area under curve (AUC) above 0.7. Motif discovery is performed iteratively after removing the sequences 

containing previously discovered motifs until no further motifs pass the AUC threshold. Each discovered 

motif defines a subtype, and the corresponding tag distribution is defined using cumulative 5’ tag positions 
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centered on motif instances within 30bp of binding events. Therefore, the number of motif-driven subtypes 

is determined by the number of motifs that pass the AUC threshold. When ChExMix is run with multiple 

ChIP-exo experiments, ChExMix performs a targeted motif discovery at sites where the predicted binding 

events from the two experiments occur within 30bp from each other. In this way, ChExMix attempts to 

identify unique motifs present in genomic regions where two proteins bind at proximal genomic loci. 

 

Merging initial subtypes and subtype re-estimation 

If motif and tag distribution similarities from a pair of subtypes are above the thresholds (motif similarity 

using Pearson correlation > 0.95; tag distribution similarity using log KL divergence < -10), we retain only 

the subtype that is associated with the greater number of binding events. Subtypes are re-initialized during 

the second training iteration with the same approach. From the third training iteration, binding events are 

grouped into subtypes using maximum likelihood estimation and a targeted motif discovery is performed 

using the top 1000 most enriched subtype-specific binding events (60bp window). Subtypes are eliminated 

from the model during the subtype updates if the number of subtype-specific binding events falls below 5% 

of all binding events.  

 

Assessing subtype assignment performance using in silico mixed ChIP-exo data  

To computationally simulate human ChIP-exo data that contains two distinct binding event subtypes, we 

mixed CTCF ChIP-exo data from HeLa cells (Rhee and Pugh, 2011), FoxA1 ChIP-exo data from MDA-

MB-453 cells (Serandour et al., 2013), and an input control experiment from MCF-7 cells, all mapped to 

hg19. We first defined the top 20,000 binding event locations using MultiGPS for both CTCF and FoxA1 

ChIP-exo experiments. We extended the binding events to 1Kbp regions and created a set of non-

overlapping regions that contain peaks from either the CTCF or FoxA1 experiment (but not both). To reflect 

the typical signal-to-noise ratio observed in real ChIP-exo experiments, 80% of the tags (24 million tags) 

come from the input control data, and the remaining (6 million) tags are randomly selected from all CTCF 

and FoxA1 ChIP-exo 1Kbp peak regions. We generated different datasets where the relative proportions of 

tags drawn from CTCF and FoxA1 experiments are varied. In these datasets, CTCF and FoxA1 ChIP-exo 

tags are always drawn randomly from all peak regions and are not preferentially drawn from the top-most 

binding events.  

We ran the following binding event analysis methods on the simulation data: a) ChExMix with an 

option : --seqrmthres 0.3; b) ChExMix using default parameters with the exception of turning off the use 

of the motif prior in assigning subtypes (subtypes are still defined using motif discovery and tag 

distributions); and c) subtype assignment based on the ChExMix discovered motif hits. ChExMix 

recursively finds motifs by removing sequences with the previously discovered motifs. ChExMix option “-
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-seqrmthres 0.3” (default value: 0.1) decreases the threshold to call motif hits to attempt to further deplete 

sequences with the previously discovered motifs. To scan ChExMix discovered motifs, we used the 

ChExMix discovered motifs to scan 60bp regions around all binding events and assigned subtypes based 

on the motif hits (log-likelihood scoring threshold of 3% per base FDR defined using a 2nd-order Markov 

model based on human genome nucleotide frequencies). Performance of binding subtype assignment is 

evaluated using labels based on whether the regions were taken from CTCF or FoxA1 ChIP-exo data. 

Sensitivity (TP/(TP+FN)) and specificity (TN/(TN+FP)) are used as the performance measures. The results 

show the average performance over five simulated datasets. We obtained CTCF and FoxA1 cognate DNA-

binding motif rates (dashed lines in Figure 2) by scanning cis-bp database motifs (CTCF: M1957_1.02; 

FoxA1: M1965_1.02) (Weirauch et al., 2014) in 60bp regions around ChExMix peaks in the 100% CTCF 

and FoxA1 datasets, respectively, using 3% per base FDR. 

 

Performance of subtype discovery and classification in synthetic ChIP-exo data 

To investigate ChExMix’s ability to learn and assign binding subtypes using only tag distribution 

information in a controlled setting, we used the ChIPReadSimulator module in SeqCode 

(https://github.com/seqcode/seqcode-core) to simulate two types of binding events using predefined ChIP-

exo tag distributions. The tag distribution shapes used to define subtypes in these simulations (Figure 3A, 

3B) were based on tag distributions observed in yeast Reb1 (subtype A) and human p53 (subtype B) ChIP-

exo experiments (Reb1 and p53 distribution files available from https://github.com/seqcode/chexmix). We 

first simulated two datasets on a yeast-sized genome that consisted of pure signal; one of the datasets 

contained 500 subtype A binding events, while the other dataset contained 500 subtype B binding events. 

The relative strength of each of these binding events was drawn randomly from a distribution of relative 

tag counts observed for CTCF binding events in CTCF ChIP-seq experiments. Then, we modulated the 

relative sampling rate from each signal dataset and a background (mock IP control) dataset to create each 

individual simulated ChIP-exo dataset. Specifically, we varied the proportion of tags mixed between 

subtypes A and B to create different relative representations of binding event subtypes. We also modulated 

the proportions of tags drawn from the two signal experiments relative to that taken from the background 

(input) experiment. We ran ChExMix with the option “--nomotifs --scalewin 1000 --minmodelupdateevents 

10”. Performance of binding subtype assignment is evaluated using 500bp window centered at simulated 

binding event locations. Sensitivity (TP/(TP+FN)) and specificity (TN/(TN+FP)) are used as the 

performance measures. Sensitivity and specificity reflect the accuracy of subtype assignments and are 

measured only with respect to detected binding events.  

 

Evaluating spatial resolution of ChIP-exo binding event predictions 
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To evaluate the spatial resolution performance of ChIP-exo peak callers, we quantify the distance between 

genomic coordinates of predicted binding events and high-scoring binding motif hits. As the center of the 

motif hit may not represent the true center of a binding event, we consider the distance between the 

predicted peaks to either edge of the motif. We compare spatial resolution on the set of predictions that are 

called by all methods and which have the same high-scoring motif hits (log-likelihood scoring threshold of 

5% per base FDR defined using a 2nd-order Markov model based on the genomic nucleotide frequencies). 

Only events that occur within 50bp of a motif instance are included in the calculation. GEM is run with 

ChIP-exo specific parameters “--smooth 3 --mrc 20” as described in the documentation. MultiGPS is run 

with parameters “--fixedbp 20” with ChIP-exo tag distribution as described in the documentation. dFilter 

is run with a parameter “-ks 10” to decrease the kernel filter width. Q-nexus is run with parameters “-nexus-

mode -s 100 -v" as described in the documentation. CexoR is run with parameters “idr=0.01, N=1e6, p=1e-

9, dpeaks=c(0,150), dpairs=200” as suggested by the CexoR developer. All other software was run using 

default parameters.  

 

Public datasets 

CTCF ChIP-exo in HeLa cells is obtained from SRA (SRA044886) and aligned against hg19 using Bowtie 

(Langmead et al., 2009) version 1.0.1 with options “-q --best --strata -m 1 --chunkmbs 1024 -C”. FoxA2 

ChIP-exo in mouse liver is obtained from GEO (GSM1384738) and aligned against mm10 using BWA (Li 

and Durbin, 2009) version 0.6.2. FoxA1 ChIP-exo in MDA-MB-453 and input DNA in MCF-7 are 

downloaded from ERA (E-MTAB-1827) and aligned against hg19 using BWA version 0.7.12. 

 

ChIP-exo experiments and processing 

The human breast adenocarcinoma cell line, MCF7, was obtained from American Type Culture Collection 

(ATCC) and cultured using DMEM with 10% heat inactivated FBS at 37°C with 5% CO2 in air. MCF7 

cells were incubated in phenol red-free, charcoal stripped FBS for 48 hours prior to the 1 hour treatment 

with 17 𝛽-estradiol (E2, Sigma) at 100 𝜇M. ChIP-exo assays for FoxA1, ERa, and CTCF were performed 

as previously described (Rhee and Pugh, 2011; Serandour et al., 2013). For ChIP-exo library preparation, 

affinity purified anti-FoxA1 (ab23738, Abcam; sc-514695 X, Santa Cruz), anti-ERa (ab108398, Abcam; 

sc8002 X, Santa Cruz), and anti-CTCF (07-729, Millipore) were incubated with chromatin. Mock IP control 

ChIP-exo experiments in MCF-7 cells were performed using the same approach but in the absence of 

antibody.  

The Saccharomyces cerevisiae strain, BY4741, was obtained from Open Biosystems. Cells were grown 

in yeast peptone dextrose (YPD) media at 25°C to an OD600=0.8-1.0. Mock IP control ChIP-exo 
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experiments in yeast were performed using rabbit IgG (Sigma, i5006) in the BY4741 background strain 

(which does not contain a tandem affinity purification tag sequence).  

Libraries were paired-end sequenced and read pairs were mapped to the hg19 reference or sacCer3 

genome using BWA version 0.7.12 with options “mem -T 30 -h 5”. Read pairs that share identical mapping 

coordinates on both ends are likely to represent PCR duplicates, and so Picard 

(http://broadinstitute.github.io/picard) was used to de-duplicate such pairs. Reads with MAPQ score less 

than 5 are filtered out using samtools (Li et al., 2009). During analysis of the MCF7 experiments, ChExMix 

was run with the following command-line parameters: --noclustering --q 0.05. ChExMix was initialized 

using the results of MultiGPS analysis of the dataset collection, where MultiGPS (version 0.74) was run 

using the following parameters: --q 0.05 --jointinmodel --fixedmodelrange --gaussmodelsmoothing --

gausssmoothparam 1 --minmodelupdateevents 50. 

 

Availability  

Open source code (MIT license) for ChExMix is available from https://github.com/seqcode/chexmix. 

Executables and documentation are available from http://mahonylab.org/software/chexmix. All ChIP-exo 

sequencing data produced in this study has been uploaded to GEO under accession GSE110502.  
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Robustness of ChExMix on various synthetic ChIP-exo data  
We evaluated ChExMix performance on simulated ChIP-exo data that contain subtypes with either distinct 
motifs or tag distributions but not both. To simulate synthetic ChIP-exo data that have different motifs and 
the same tag distributions (Supplementary Figures S5 & S6), we selected 10,000 CTCF binding event 
locations for subtype A from CTCF ChIP-exo data in HeLa cells (Rhee and Pugh, 2011) and 10,000 FoxA1 
binding event locations for subtype B from FoxA1 ChIP-exo data in MDA-MB-453 cells (Serandour et al., 
2013). These selected locations thus contain motif instances associated with CTCF (subtype A) and FoxA1 
(subtype B), respectively. In order to force the tag distributions at these binding locations to be equal, we 
simulated ChIP-exo binding events by randomly drawing ChIP-exo tag locations according to the yeast 
Reb1 ChIP-exo tag distribution (Figure 3A). The relative strength of each of these binding events (and thus 
the numbers of simulated tags at each binding event) was drawn randomly from a distribution of relative 
tag counts observed for CTCF binding events in CTCF ChIP-seq experiments. We then modulated the 
relative sampling rate from each signal dataset and a background (mock IP control) dataset to create each 
individual simulated ChIP-exo dataset with 3 million tags from either of the signal experiments and 27 
million tags from the background. We varied the proportion of tags mixed between subtypes A and B to 
create different relative representations of binding event subtypes. We also used the same procedure to 
create a second set of simulated experiments containing two subtypes with different motifs and the same 
tag distribution, except this time we drew tags from the yeast Abf1 tag distribution (Reb1 and Abf1 
distribution files available from https://github.com/seqcode/chexmix). 

To generate synthetic ChIP-exo data that have same motifs and different tag distributions 
(Supplementary Figure S7), we selected the top 20,000 CTCF binding event locations in CTCF ChIP-exo 
data from HeLa cells (Rhee and Pugh, 2011). The CTCF binding event locations were randomly assigned 
to receive subtype A or B simulated binding events, such that one simulated dataset contained 10,000 
subtype A binding events, while the other dataset contained 10,000 subtype B binding events. A high 
proportion of CTCF binding events contain the cognate binding motif, so therefore a large majority of the 
locations assigned to both subtypes will contain the same CTCF motif. At the selected locations, we 
simulated ChIP-exo binding events by randomly drawing ChIP-exo tag locations according to the yeast 
Reb1 (subtype A) or human p53 (subtype B) ChIP-exo tag distributions (Figure 3A, 3B). The relative 
strength of each of these binding events (and thus the numbers of simulated tags at each binding event) was 
drawn randomly from a distribution of relative tag counts observed for CTCF binding events in CTCF 
ChIP-seq experiments. We then modulated the relative sampling rate from each signal dataset and a 
background (mock IP control) dataset to create each individual simulated ChIP-exo dataset with 6 million 
tags from either of the signal experiments and 24 million tags from the background. We varied the 
proportion of tags mixed between subtypes A and B to create different relative representations of binding 
event subtypes. Performance of binding subtype assignment is evaluated using 500bp windows centered at 
simulated binding event locations. Sensitivity (TP/(TP+FN)) and specificity (TN/(TN+FP)) are used as the 
performance measures. 
  
Robustness of ChExMix on various read depths and replicates 
To evaluate ChExMix performance on various read depths, we selected the CTCF and FoxA1 mixed dataset 
that has equal representations of subtypes (3 million CTCF tags and 3 million FoxA1 tags in 30 million 
total tags). We subsampled this ChIP-exo data to assess the sensitivity and specificity of subtype assignment 
by varying the read depth. 

To evaluate the reproducibility of ChExMix results across true replicates, we used the replicate samples 
available in public data. For CTCF ChIP-exo, we obtained replicate 2 and replicate 3 from the accession 
number SRA044886. For FoxA1 ChIP-exo from MDA-MB-453 cells, we used a merge of replicate 2 & 4 
and replicate 1 & 3 as two replicates from E-MTAB-1827, because individual replicates did not provide 
enough read coverage to generate the mixed ChIP-exo data. We followed the same procedures to create 
CTCF and FoxA1 mixed datasets with various subtype representations as described in the Methods section. 
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ChExMix	enables	deconvolution	of	joint	events	
To	examine	ChExMix’s	ability	to	resolve	two	closely	spaced	events,	we	simulated	datasets	by	placing	
binding	events	at	predefined	intervals,	and	placed	tags	at	those	binding	events	by	sampling	from	the	
ChIP-exo	 tag	distribution	 observed	 in	 yeast	 Reb1	ChIP-exo	 experiments.	We	 simulated	 a	 total	 of	
40,000	binding	events	in	a	human-sized	genome,	but	constrained	 the	 locations	of	1000	events	to	
occur	within	the	range	of	1	to	200bp	from	the	neighboring	events.	The	relative	strength	of	each	of	
these	binding	events	was	drawn	randomly	from	a	distribution	of	relative	tag	counts	observed	for	
CTCF	binding	events	in	CTCF	ChIP-seq	experiments.	The	simulation	dataset	contains	30	million	tags.	
To	reflect	the	typical	signal-to-noise	ratio	observed	in	real	ChIP-exo	experiments,	80%	of	the	tags	are	
taken	from	the	mock	IP	control.	The	remaining	tags	(6	million)	are	distributed	among	the	binding	
events.	 We	 run	 ChExMix	 using	 default	 parameters	 with	 the	 exception	 of	 turning	 off	 the	 use	 of	
sequence	information	and	the	motif	prior.		 		
	
Robustness	of	ChExMix	to	various	initialization	conditions	
We	 examine	 the	 performance	 of	 ChExMix	 on	 different	 initialization	 conditions.	 During	 the	
initialization	of	binding	events,	ChExMix	places	binding	components	every	30	base	pairs.	We	analyze	
how	different	spacing	of	components	affects	the	sensitivity	of	peak	detection	and	running	time	of	the	
algorithm.	We	 computationally	mixed	 tags	 from	 CTCF	 ChIP-exo	 and	 input	 background,	 using	 an	
approach	similar	to	the	in	silico	mixed	CTCF	FoxA1	ChIP-exo	experiment	described	in	the	Methods	
section.	We	created	simulation	data	by	drawing	6	million	CTCF	tags	 from	1Kbp	regions	centered	
around	CTCF	binding	events	from	CTCF	ChIP-exo	data	and	24	million	background	tags	from	the	input	
control.	ChExMix	is	run	with	an	option	“--noflanking”.	This	option	will	ensure	that	ChExMix	will	not	
automatically	place	additional	binding	components	during	the	EM	iterations.	ChExMix	performance	
is	evaluated	based	on	sensitivity	of	recovering	predefined	peak	locations.	We	score	peaks	as	positive	
if	ChExMix	peaks	occur	within	50bp	of	MultiGPS	peak	locations.	The	results	show	that	ChExMix	stably	
recovers	 above	90%	of	peaks	when	 component	spacing	 intervals	 are	 smaller	 than	100	base	pair	
(Figure	S13).	The	sensitivity	drops	significantly	when	the	component	intervals	become	bigger	than	
200	base	pairs.			
	
Sparsity	and	motif	prior	weights	in	subtype	assignment	
In	this	section,	we	examined	the	effect	of	varying	the	sparsity	and	motif	prior	weights	on	subtype	
assignment.	We	assume	that	binding	events	should	be	associated	with	a	single	subtype.	Hence,	we	
employ	a	sparseness	promoting	prior	in	assigning	binding	subtypes	to	encourage	a	single	subtype	to	
dominate	the	probabilities.	In	assessing	the	effect	of	varying	this	prior,	we	used	simulated	ChIP-exo	
data	that	mix	equal	proportions	of	CTCF	and	FoxA1	ChIP-exo	tags	(as	described	in	Methods).	We	used	
the	F1	score	to	measure	the	performance	of	subtype	assignment,	calculated	as	the	following	using	
the	scikit-learn	python	package:	
	

𝐹1 = 2 ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙	

	
The	results	show	that	ChExMix	performance	drops	significantly	when	the	sparsity	prior	is	above	0.1	
(Figure	S14).	We	observe	equal	representations	of	each	subtype	when	we	increase	the	sparseness	
promoting	 prior	 above	 0.1.	 Subtype	 probability	 distributions	 shift	 towards	 1	 as	 we	 change	 the	
sparseness	promoting	prior	to	0,	0.05,	and	0.1	(Figure	S15).	The	current	default	of	0.05	shifts	the	
maximum	 assignment	probability	 distribution	 towards	 1	with	 a	minor	decrease	 in	performance.	
Hence,	we	use	0.05	as	the	default	value	of	the	subtype	sparsity	prior.		

Next,	we	 evaluated	 how	 different	motif	weights	 affect	 ChExMix	 performance	 using	 the	 same	
CTCF/FoxA1	mixed	data.	Motif	weights	control	the	balance	between	tag	distribution	and	sequence	
in	subtype	assignment.	We	measure	the	performance	using	F1	score	as	described	above.	We	observe	
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that	performance	continues	to	increase	as	the	motif	prior	increases	(Figure	S16).	Our	current	motif	
prior	default	is	0.2	because	we	do	not	wish	sequence	information	to	dominate	subtype	assignment.		
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Figure S1. Related to Figure 2C, D. Sensitivity in subtype assignment from five simulation datasets. Plots 
show sensitivity for correctly assigning binding events to the CTCF and FoxA1 subtypes using ChExMix 
with de novo estimated tag distributions and motifs (A, B), ChExMix with tag distributions alone (C, D), 
and scanning ChExMix discovered motifs (E, F). The relative proportion of signal tags is varied between 
the CTCF and FoxA1 experiments. 

	
Figure	S2.	Related	to	Figure	2C,	D.	Specificity	in	subtype	assignment	using	ChExMix	with	de	novo	
estimated	 tag	 distributions	 and	 motifs	 (red	 dots),	 ChExMix	 with	 tag	 distributions	 alone	 (blue	
triangles),	 and	 scanning	 ChExMix	discovered	motifs	 (green	 diamonds).	 Plots	 show	 specificity	 for	
correctly	 assigning	 binding	 events	 to	 the	 CTCF	 (A)	 and	 FoxA1	 (B)	 subtypes,	which	 varies	 as	 the	
relative	proportion	of	signal	tags	is	varied	between	the	CTCF	and	FoxA1	experiments.	Each	data	point	
represents	an	average	performance	of	five	simulations.	
	

	
Figure	S3.	Sensitivity	(A)	and	specificity	(B)	of	subtype	assignment	across	various	read	depths	of	
simulation	datasets.	Plots	show	sensitivity	for	correctly	assigning	binding	events	to	the	CTCF	subtype	
(red	dots)	and	FoxA1	subtype	(orange	dots),	as	the	read	depth	of	the	experiments	is	varied.	
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Figure	S4.	 Sensitivity	 (A)	 and	 specificity	 (B)	of	 subtype	 assignment	 from	biological	 replicates	of	
simulation	datasets.	Plots	show	sensitivity/specificity	for	correctly	assigning	binding	events	to	the	
CTCF	subtype	in	replicate	1	(red	dots)	&	replicate	2	(red	triangles)	and	FoxA1	subtype	in	replicate	1	
(orange	 dots)	&	 replicate	2	 (orange	 triangles),	 as	 the	 relative	 proportion	 of	 signal	 tags	 is	 varied	
between	the	two	subtypes.	
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Figure	S5.	Sensitivity	in	subtype	assignment	with	simulated	datasets	that	have	different	motifs	and	
the	same	tag	distribution.	Plots	show	sensitivity	for	correctly	assigning	binding	events	to	subtype	A	
(CTCF	 motif)	 and	 subtype	 B	 (FoxA1	 motif)	 (red	 dots)	 with	 Reb1	 distribution	 (A,	 B)	 and	 Abf1	
distribution	 (C,	 D)	 and	 de	 novo	 estimated	motif	 instances	 alone	 (green	 diamonds)	 (A-D),	 as	 the	
relative	proportion	of	signal	tags	is	varied	between	the	two	subtypes.	
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Figure	S6.	Specificity	in	subtype	assignment	with	simulated	datasets	that	have	different	motifs	and	
the	same	tag	distribution.	Plots	show	specificity	for	correctly	assigning	binding	events	to	subtype	A	
(CTCF	 motif)	 and	 subtype	 B	 (FoxA1	 motif)	 (red	 dots)	 with	 Reb1	 distribution	 (A,	 B)	 and	 Abf1	
distribution	 (C,	 D)	 and	 de	 novo	 estimated	motif	 instances	 alone	 (green	 diamonds)	 (A-D),	 as	 the	
relative	proportion	of	signal	tags	is	varied	between	the	two	subtypes.	
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Figure	S7.	Sensitivity	(A)	and	specificity	(B)	in	subtype	assignment	from	simulation	data	with	the	
same	motif	and	different	tag	distributions.	Plots	show	sensitivity/specificity	for	correctly	assigning	
binding	events	to	 the	subtype	A	(Reb1	distribution)	(blue	dots)	and	subtype	B	(p53	distribution)	
(orange	dots),	as	the	relative	proportion	of	signal	tags	is	varied	between	the	two	subtypes.		
	

	
Figure	S8.	Related	to	Figure	3G,	H.	Specificity	in	subtype	assignment	using	de	novo	estimated	tag	
distributions	 with	 overall	 signal	 of	 10%	 (blue	 diamonds),	 20%	 (orange	 dots),	 and	 30%	 (green	
triangles).	 Plots	 show	 specificity	 for	 correctly	 assigning	 binding	 events	 to	 the	 subtype	 A	 (Reb1	
distribution)	(A)	and	subtype	B	(p53	distribution)	(B)	subtypes,	as	the	relative	proportion	of	signal	
tags	is	varied	between	the	two	subtypes.	
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Figure	S9.	ChExMix	is	able	to	resolve	closely	spaced	binding	events.	Joint	events	are	placed	
between	a	range	of	1	to	200bp	apart	from	each	other.	The	x-axis	shows	the	true	distance	between	
events.	The	y-axis	shows	the	fraction	of	the	events	resolved	to	be	two	binding	events.	The	results	
are	averaged	every	5bp.	
	

	
Figure	S10.	Heatmap	and	tag	distributions	of	no	antibody	control	ChIP-exo	at	FoxA1	and	ERa	ChIP-
exo	binding	events.	A)	Heat	map	of	no	antibody	control	ChIP-exo	 tags	and	B)	tag	distributions	at	
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FoxA1	subtype	1,	2	and	3	binding	events.	C)	Heat	map	of	no	antibody	control	and	D)	tag	distributions	
at	ERa	subtypes	1	to	7.		
	

	
Figure	S11.	 GRO-seq	 analysis	at	ERa	 and	FoxA1	ChIP-exo	 subtypes.	A)	Normalized	GRO-seq	 tag	
counts	at	three	FoxA1	subtypes	in	estradiol	treated	MCF-7	cells.	B)	Normalized	GRO-seq	tag	counts	
at	seven	ERa	subtypes	in	estradiol	treated	MCF-7	cells.	C)	MA	plot	showing	GRO-seq	tag	counts	in	a	
4Kbp	window	at	ERa	 and	FoxA1	binding	 events,	where	 the	 y-axis	 represents	 the	 tag	 count	 ratio	
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between	estradiol	treated	and	untreated,	and	the	x-axis	represents	the	mean	tag	count.	No	ERa	and	
FoxA1	binding	events	displayed	significant	differential	enrichment	for	GRO-seq	tags	(p<0.001).	
	

	
Figure	S12.	Microarray	analysis	of	FoxA1	and	ERa	ChIP-exo	subtypes.	We	used	GREAT	to	associate	
binding	 events	 with	 up	 to	 two	 nearest	 genes	 that	 occur	 within	 10Kbp	 	 (McLean	 et	 al.,	 2010).	
Microarray	gene	expression	of	subtype	1	(with	ERa	like	motif)	and	subtype	2	(with	CTCF	like	motif)	
are	 significantly	 higher	 than	 subtype	 3	 in	 FoxA1	 ChIP-exo	 (***	 p-value	 <	 0.001).	 No	 significant	
differences	are	detected	between	subtype	4	(with	a	Forkhead	motif)	and	the	rest	of	the	ERa	ChIP-
exo	subtypes.	
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Figure	S13.	ChExMix	sensitivity	in	detecting	ChIP-exo	peaks	with	various	initialization	conditions.	
Potential	binding	event	mixture	components	are	placed	in	intervals;	10,	20,30,	50,	100,	200,	300,	and	
500bp.	Performance	of	ChExMix	 is	 evaluated	by	 the	percentage	of	 true	peaks	 recovered	and	 the	
running	time	of	the	algorithm.	The	current	default	value	is	30	bp	(black	arrow).		

	
Figure	S14.	Effect	of	varying	sparseness	promoting	prior	weight	in	ChExMix	performance.	Sparse	
prior	weights	are	varied	between	0	to	0.5.	F1	score	is	used	to	evaluate	the	performance	of	subtype	
assignment.	The	current	default	of	sparse	prior	weight	is	0.05	(black	arrow).		
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Figure	S15.	Effect	of	varying	sparseness	promoting	prior	weight	in	maximum	subtype	probabilities.	
Plots	show	the	distributions	of	maximum	subtype	probabilities	at	the	motif	weight	of	0	(A),	0.05	(B;	
the	current	default),	and	0.1	(C).	
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Figure	S16.	Effect	of	 varying	motif	prior	weight	 in	ChExMix	performance.	The	motif	weights	are	
varied	between	0	to	0.7.	F1	score	is	used	to	evaluate	the	performance	in	subtype	assignment.	The	
current	default	value	is	0.2	(black	arrow).	
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	 Genome	 Running	time	(h:m)	
Fig	2	 Human	(hg19)	 2:43,	2:28,	2:19,	3:40,	3:08	(10%	CTCF	tags)	

2:29,	2:34,	2:52,	2:39,	2:31	(20%	CTCF	tags)	
3:55,	3:27,	2:59,	3:14,	2:40	(30%	CTCF	tags)	
2:46,	1:52,	2:44,	2:28,	2:49	(40%	CTCF	tags)	
3:11,	2:21,	2:37,	2:44,	2:35	(50%	CTCF	tags)	
2:15,	2:21,	2:31,	2:54,	2:39	(60%	CTCF	tags)	
2:00,	2:34,	3:04,	2:30,	2:38	(70%	CTCF	tags)	
2:17,	2:17,	2:39,	2:50,	2:59	(80%	CTCF	tags)	
2:12,	2:24,	2:13,	2:36,	2:26	(90%	CTCF	tags)	

Fig	3	 Yeast	
(sacCer3)	

0:06,	0:07,	0:09,	0:10,	0:07,	0:09,	0:07,	0:07,	0:06	(10%	
signal)	
0:12,	0:10,	0:11,	0:09,	0:09,	0:09,	0:09,	0:11,	0:09	(20%	
signal)	
0:09,	0:18,	0:15,	0:18,	0:11,	0:15,	0:11,	0:14,	0:15	(30%	
signal)	

Fig	4	 Human	(hg19)	 0:56	(CTCF)	
Mouse	
(mm10)	 1:06	(FoxA2)	

Fig	5	&	6	 Human	(hg19)	 5:22	(FoxA1,	ER-alpha,	CTCF)	
	
Table	S1.	ChExMix	running	time.	Jobs	were	run	on	an	Intel	Xeon	E5-2680	v2	2.8GHz	server	blade	
using	20	threads.	
	
%	CTCF	tags	 ChExMix	with	de	novo	estimated	

tag	distributions	and	motifs	
ChExMix	with	tag	distributions	
alone		

CTCF	subtype	 FoxA1	subtype	 CTCF	subtype	 FoxA1	subtype	
10	 1,	1,	1,	2,	1	 4,	3,	1,	4,	5	 1,	1,	1,	2,	1	 4,	3,	1,	4,	5	
20	 1,	3,	2,	3,	2	 4,	1,	1,	3,	1	 1,	2,	1,	2,	2	 4,	2,	2,	4,	1	
30	 3,	2,	2,	3,	3		 3,	2,	4,	3,	3	 3,	1,	2,	3,	3	 3,	3,	4,	3,	3	
40	 3,	1,	3,	1,	3	 1,	1,	1,	1,	1	 2,	1,	2,	1,	2	 2,	1,	2,	1,	2	
50	 3,	3,	3,	3,	3	 3,	3,	3,	1,	3	 3,	3,	3,	2,	3	 3,	3,	3,	2,	3	
60	 2,	1,	2,	2,	2	 3,	2,	3,	3,	4	 2,	1,	1,	2,	2	 3,	2,	4,	3,	4	
70	 2,	2,	3,	3,	4	 2,	3,	4,	2,	2		 1,	2,	3,	2,	3	 3,	3,	4,	3,	3	
80	 2,	2,	5,	2,	2	 2,	2,	3,	3,	3	 2,	1,	5,	2,	2	 2,	3,	3,	3,	3	
90	 2,	2,	1,	3,	2	 2,	3,	2,	2,	2	 1,	3,	1,	3,	2	 3,	2,	2,	2,	2	
	
Table	S2.	Related	to	Figure	2C,	D.	Number	of	subtypes	discovered	from	five	simulation	datasets.	The	
table	 shows	 the	 number	 of	 CTCF-	 and	 FoxA1-related	 subtypes	 discovered	 by	 ChExMix	 in	 each	
simulated	dataset	when	using	de	novo	estimated	tag	distributions	and	motifs	(1st	&	2nd	columns)	or	
using	tag	distributions	alone	(3rd	&	4th	columns).	The	relative	proportion	of	signal	tags	is	varied	
between	the	CTCF	and	FoxA1	experiments.		
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Table	 S3.	 Subtype-specific	 motif	 occurrence	 rates	 in	 FoxA1	 and	 ERa	 ChIP-exo	 binding	 events.	
Subtype-specific	motifs	are	scanned	in	a	100bp	window	around	subtype-specific	binding	events	(5%	
per	base	FDR	using	a	Markov	model	based	on	human	nucleotide	frequencies).	
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