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Abstract

Motivation: Regulatory proteins associate with the genome either by directly binding cognate DNA motifs
or via protein-protein interactions with other regulators. Each recruitment mechanism may be associated
with distinct motifs and may also result in distinct characteristic patterns in high-resolution protein-DNA
binding assays. For example, the ChIP-exo protocol precisely characterizes protein-DNA crosslinking
patterns by combining chromatin immunoprecipitation (ChIP) with 5> — 3’ exonuclease digestion. Since
different regulatory complexes will result in different protein-DNA crosslinking signatures, analysis of
ChIP-exo tag enrichment patterns should enable detection of multiple protein-DNA binding modes for a
given regulatory protein. However, current ChIP-exo analysis methods either treat all binding events as
being of a uniform type or rely on motifs to cluster binding events into subtypes.

Results: To systematically detect multiple protein-DNA interaction modes in a single ChIP-exo
experiment, we introduce the ChIP-exo mixture model (ChExMix). ChExMix probabilistically models the
genomic locations and subtype memberships of binding events using both ChIP-exo tag distribution
patterns and DNA motifs. We demonstrate that ChExMix achieves accurate detection and classification of
binding event subtypes using in silico mixed ChIP-exo data. We further demonstrate the unique analysis
abilities of ChExMix using a collection of ChIP-exo experiments that profile the binding of key
transcription factors in MCF-7 cells. In these data, ChExMix identifies possible recruitment mechanisms
of FoxA1 and ERa, thus demonstrating that ChExMix can effectively stratify ChIP-exo binding events into

biologically meaningful subtypes.

Availability: ChExMix is available from https://github.com/seqcode/chexmix
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Introduction

Sequence-specific transcription factors (TFs) recognize many of their regulatory targets by making direct
contact with their cognate DNA binding sites. However, TFs and other regulatory proteins can also
associate with DNA indirectly, via protein-protein interactions with cooperating DNA-bound regulators.
Genome-wide protein-DNA interaction assays such as ChIP-seq (Barski ef al., 2007; Johnson et al., 2007)
and ChIP-exo (Rhee and Pugh, 2011) typically rely on agents that induce both protein-DNA and protein-
protein crosslinking, and therefore do not necessarily discriminate between such direct and indirect DNA
binding modes. In fact, some studies report that up to two thirds of in vivo TF binding events, defined here
as precise locations where the TF associates with the genome, lack cognate motif instances (Wang ef al.,
2012; Starick et al., 2015). Hence, a single ChIP-seq or ChIP-exo experiment might encompass diverse
binding event types, produced by different protein-DNA interaction modes.

ChIP-exo and related assays (e.g. ChIP-nexus (He et al., 2015)) precisely define protein-DNA
crosslinking patterns with the use of lambda exonuclease (Rhee and Pugh, 2011). The exonuclease digests
DNA in a 5’ to 3’ direction and, on average, stops at 6bp before a protein-DNA crosslinking point. Since
different regulatory complexes will result in different crosslinking signatures, analysis of ChIP-exo
sequencing tag distribution patterns around a given protein’s DNA binding events should enable detection
of multiple protein-DNA binding modes. For example, Starick, ef al. characterized glucocorticoid receptor
(GR) binding using ChIP-exo and classified detected binding events using motifinformation. This approach
uncovered a subset of GR ChIP-exo peaks that contained a Forkhead TF DNA binding motif (Starick et al.,
2015). The same sites displayed a distinct ChIP-exo tag distribution pattern from that observed at peaks
containing the GR cognate binding motif. The authors thereby hypothesized that some ChIP-exo derived
GR binding events represent indirect binding to DNA via protein-protein interactions with a Forkhead TF.
Therefore, careful analysis of ChIP-exo tag distribution patterns and DNA binding motifs may enable
discrimination between a protein’s distinct DNA binding modes.

Most available approaches for discriminating between direct and indirect binding modes in a ChIP-seq
or ChIP-exo experiment rely exclusively on DNA motif analysis. For example, several methods assume
that directly bound sites should contain an instance of a cognate binding motif, while indirectly bound sites
will contain motif instances corresponding to other TFs (Bailey and MacHanick, 2012; Whitington et al.,
2011; Gordan et al., 2009; Neph et al., 2012; Keilwagen and Grau, 2015). This assumption may not always
be true. Distinct regulatory complexes may not always be associated with distinct DNA binding motifs,
although they may still be distinguishable based on variations in ChIP crosslinking patterns. Therefore,
analyzing combinations of both DNA sequence and ChIP tag distribution information may be necessary to

fully characterize the diversity of protein-DNA binding modes present in a given experiment.
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One previous approach has attempted to cluster TF binding events using ChIP-seq tag enrichment
patterns, and reports on each cluster’s associations with GO terms, motif enrichment, genomic localization,
and gene expression (Cremona et al., 2015). However, clustering ChIP-seq tag enrichment patterns is
confounded by high variance in the locations of ChIP-seq tags with respect to the protein-DNA binding
event. ChIP-seq resolution is limited by sonication, which results in broad tag distributions. As described
above, the ChIP-exo assay is more appropriate for characterizing distinct binding modes via analysis of tag
distribution shapes, because ChIP-exo tag distributions are determined by crosslinking patterns at each
binding site. However, no available method can exploit tag distribution patterns to delineate distinct protein-
DNA binding modes in a ChIP-exo experiment.

To systematically detect multiple protein-DNA interaction modes in a single ChIP-exo experiment, we
introduce the ChIP-exo mixture model (ChExMix). ChExMix discovers and characterizes binding event
subtypes in ChIP-exo data by leveraging both sequencing tag enrichment patterns and DNA motifs. In
doing so, ChExMix offers a more principled and robust approach to characterizing binding subtypes than
simply clustering binding events using motif information. For instance, ChExMix does not require that all
(or any) subtype-specific binding events be associated with motif instances, thus enabling binding subtype
classification only using ChIP-exo tag patterns.

To demonstrate its unique analysis abilities, we applied ChExMix to ChIP-exo data profiling key
regulators in estrogen receptor (ER) positive breast cancer cells. Upon estradiol treatment, FoxAl, ERa,
and CTCF co-localize at a subset of genomic locations. Our findings suggest that FoxAl likely binds to
some genomic loci via protein-protein interactions with ERa and CTCF. Conversely, indirect binding of
ERa to DNA via FoxAl interactions is also observed in ERa. ChIP-exo. These results demonstrate that
ChExMix can characterize multiple protein-DNA interaction modes in ChIP-exo data, providing us with

unique insights into interactions between transcription factors in a given cell type.

Results

ChExMix model overview

ChExMix integrates information from ChIP-exo tag distributions and DNA sequences in a probabilistic
mixture model framework to characterize multiple DNA-protein interaction modes. Initial candidate ChIP-
exo peak locations are determined using a probabilistic mixture model that doesn’t incorporate subtypes,
similar to the approach described in our previously published GPS ChIP-seq peak-finder (Guo et al., 2010)
(Figure 1A). Using these initial binding event locations, ChExMix estimates potential subtypes by
performing de novo motif discovery around the predicted binding events and/or by clustering tag
distributions in 150bp windows using Affinity Propagation (Figure 1B). Discovered subtypes that have

similar motifs and tag distributions are merged. Lastly, ChExMix assigns binding events to subtypes using
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a hierarchical mixture model (Figure 1C). ChExMix probabilistically assigns observed tags to binding
events by calculating the probabilities that each tag was generated by each binding event given the binding
events’ current locations, strengths (mixing probabilities), subtype assignments, and the tag distributions
associated with each subtype. The Expectation Maximization (EM) algorithm is used to iteratively optimize
the positions, strengths, and subtype membership of each binding event using information from both the
assigned tags and the underlying DNA sequences. In estimating the subtype probabilities for each binding
event, we incorporate the following biologically-motivated assumptions in the form of priors: 1) a
sparseness prior biases the algorithm to associate each binding event with a single binding subtype; and 2)
the presence of a particular subtype’s motif at a binding event biases the assignment of the binding event
to that subtype. ChExMix takes mapped tags (e.g. BAM files) as input and outputs binding event positions

and subtype assignments. ChExMix runs within a few hours for most datasets (Table S1).


https://doi.org/10.1101/266536
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/266536; this version posted July 7, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

A Detect ChIP-exo peaks B Identify subtypes
Via motif Motif ROC screen Subtype
» " » .' MEME motif search —>» I
LT w e 095 T
Initial tag distribution model —_ — — TA

i

4 A e v Sy
(R S Lo —a (

CE
AC

Affinity propagation clustering

—

/4 | I | | Via tag distribution clustering

Pairwise Euclidean distance
chr8: e Exemplar Subtype

Il 6,698 7,419 8,924 11,562 -'.+ ...-"'. ° Non-exemp|ar M
4 R

! e S By
. V

: >

Compare and merge
similar subtypes

C Assign binding subtypes

'b ' / 'b ".::--!! Subtype

~
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

chr8:8,734 M chr8:8,934 chr8:9,134
m | T Binding probabilities
M Binding event positions
T Subtype | | T Subtype probabilities
Subtype I | I k Motif prior
K Subtype | | r ChlP-exo reads
Subtype || | . I 1

Figure 1. Overview of the ChExMix model. A) ChExMix first detects ChIP-exo peaks genome-wide using a
probabilistic mixture model that does not incorporate subtypes. B) ChExMix defines subtypes via motif discovery
and/or by clustering tag patterns around predicted binding events. C) ChExMix uses a hierarchical mixture model to
assign binding events to subtypes and to optimize their locations. The illustration shows an example of final ChExMix

parameter values at a binding event location.

ChExMix accurately classifies binding subtypes in in silico mixed ChIP-exo datasets
ChExMix is designed to discover and model multiple binding subtypes within a single ChIP-exo dataset.
We cannot assume a priori that we know the correct assignment of TF binding events to subtypes in any

existing ChIP-exo experiment. Therefore, to test the ability of ChExMix to estimate binding subtypes and
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assign binding events to subtypes, we created datasets that mix data from two distinct ChIP-exo experiments
(and thus contain definitive assignments of binding events to two distinct “subtypes”).

Specifically, we computationally mixed ChIP-exo data from CTCF and FoxA1, two TFs that are known
to produce distinct ChIP-exo tag distribution patterns at their respective binding events (Rhee and Pugh,
2011; Serandour et al., 2013). The locations of binding events in the mixed experiments were defined by
selecting equal numbers of non-overlapping binding events for each TF (see Methods). The signal portion
of our mixed experiments was then defined by randomly selecting CTCF ChIP-exo tags from the CTCF
binding event locations and FoxA1 ChIP-exo tags from the FoxA1 binding event locations. Each simulated
experiment contains 6 million signal tags, but the relative frequency at which CTCF and FoxAl tags were
selected was varied to simulate subtypes having different relative representations in a dataset. A further set
of 24 million background tags were drawn at random from a control (input) experiment.

In the simulated setting in which there is equal representation of CTCF and FoxAl subtypes (i.e. 3
million tags drawn from each dataset), ChExMix discovers two distinct subtypes characterized by subtype-
specific DNA motifs and tag distributions associated with CTCF (Figure 2A) and FoxAl (Figure 2B).
ChExMix also achieves high performance in appropriately assigning binding events to their source CTCF
and FoxAl “subtypes” (CTCF: Figure 2C red dots, TPR=88.9%, FPR=3.5%; FoxA1: Figure 2D red dots,
TPR=96.5%, FPR=11.1%; Figure S1A,B; Figure S2A,B; Table S2). ChExMix performance in detecting
the two subtypes and appropriately assigning subtypes to binding events remains high over all relative
sampling rates tested from the CTCF and FoxAl subtypes, suggesting that subtypes do not have to be
present in equal proportions in order for ChExMix to discover them. ChExMix also maintains high
performance over various read depths (Figure S3), biological replicates (Figure S4), and simulation setting
where subtypes either have different motifs (Figure S5; Figure S6) or tag distributions (Figure S7), but not
both.

By uniquely combining both DNA motifs and ChIP-exo tag distributions to classify binding subtypes,
ChExMix outperforms alternative approaches that use one or the other source of information in subtype
assignment. For example, a motif scanning approach that classifies binding events based on the presence
of ChExMix discovered motifs fails to appropriately classify many of the FoxA1 subtype binding events
(Figure 2D green diamonds; Figure S1E,F). Similarly, a version of ChExMix that uses only tag information
in subtype assignment (subtypes are still defined using both motif discovery and tag distributions) displays
lower sensitivity than the version of ChExMix that uses both tag distributions and DNA motifs (Figure 2C
blue triangles; Figure S1C,D; Table S2). Our results thus demonstrate that ChExMix enables discovery of

binding subtypes within a single ChIP-exo dataset and accurately assigns subtypes to binding events.
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Figure 2. ChExMix learns subtype-specific tag distributions and accurately predicts binding event subtypes in
in silico mixed CTCF and FoxA1l ChIP-exo data. A) CTCF ChIP-exo tag distribution (forward strand in blue and
reverse strand in red) at CTCF motif locations (left). CTCF subtype-specific tag distribution model and motif learned
by ChExMix (right). B) FoxA1 ChIP-exo tag distribution (forward strand in blue and reverse strand in red) at FoxAl
motif locations (left). FoxA1 subtype-specific tag distribution model and motif learned by ChExMix (right). C), D)
Sensitivity in subtype assignment using ChExMix with de novo estimated tag distributions and motifs (red dots) and
ChExMix with tag distributions alone (blue triangles). Fraction of peaks containing ChExMix discovered motifs
(green diamonds). Plots show sensitivity for correctly assigning binding events to the CTCF (C) and FoxAl (D)
subtypes, as the relative proportion of signal tags is varied between the CTCF and FoxAl experiments. Each data
point represents an average performance over five simulated datasets (see Figure S1). Matching specificity plots in

Figure S2.
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ChExMix enables discovery of binding subtypes using only ChIP-exo tag distributions

ChExMix’s combined use of DNA motifs and ChIP-exo tag distributions has obvious advantages when the
regulatory protein of interest is a sequence-specific TF. However, characterizing and classifying binding
event subtypes may also be useful in the analysis of regulatory proteins that lack an obvious sequence
preference. ChExMix can characterize binding subtypes without any sequence motif information by
clustering binding event ChIP-exo tag distributions using Affinity Propagation (Dueck and Frey, 2007). To
demonstrate that ChExMix can thereby discover and assign de novo binding subtypes using only tag
distribution information, we assessed its performance in a controlled simulation setting where no specific
sequence signals were introduced.

We simulated 500 binding events from each of two distinct types by randomly drawing tags from two
pre-defined ChIP-exo distribution patterns (Figure 3A, 3B; see Methods). The 1,000 binding events were
placed at defined locations along the yeast genome. Each simulated experiment contains 100, 200, and 300
thousand signal tags (i.e. drawn from the ChIP-exo distributions in proximity to one of the simulated
binding events). The relative frequency at which each of the two subtypes’ tags were selected was varied
to simulate subtypes having different representations in a dataset. Further sets of background tags were
drawn from a yeast control (mock IP) experiment, resulting in a total of one million tags per simulation
dataset.

In the simulated setting in which there is equal representation of both subtypes (and 20% of tags are
sampled from signal regions), ChExMix successfully recovers the two distinct subtypes by clustering the
initial binding events (Figure 3C, 3D). During ChExMix training, the two estimated subtype tag
distributions are further refined (Figure 3E, 3F), and the end results closely resemble the original
distributions (Figure 3A, 3B). ChExMix achieves high performance in appropriately assigning binding
events to the two subtypes (Subtype A: Figure 3G orange dots, TPR=99.8%, FPR=5.9%; Subtype B: Figure
3H orange dots, TPR=94.1%, FPR=0.2%). ChExMix maintains this high performance in detecting and
assigning subtypes in cases where one of the subtypes has a relatively low representation in the dataset, or
when the overall signal in the ChIP-exo experiment is relatively low (Figure 3G, 3H; Figure S8). The
simulation experiments thus demonstrate that ChExMix has the unique ability to accurately identify and

assign binding event subtypes even if no distinctive DNA motifs are associated with those subtypes.
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Figure 3. ChExMix learns subtype specific tag distributions de novo and accurately predicts binding event
subtypes without motif information. A), B) Simulation data contains binding events from two distinct subtypes that
have distinct tag distributions. C), D) In the 20% signal simulation setting, ChExMix appropriately discovers two
distinct distributions via affinity propagation clustering. E), F) The de novo discovered distributions are further refined
during ChExMix training. The 5 ends of forward and reverse strand tags are shown in blue and red lines, respectively.
G), H) Sensitivity in subtype assignment using de novo estimated tag distributions with overall signal of 10% (blue
diamonds), 20% (orange dots), and 30% (green triangles). Plots show sensitivity for correctly assigning binding events
to the subtype A (Rebl distribution) (G) and subtype B (p53 distribution) (H) subtypes, as the relative proportion of

signal tags is varied between the two subtypes.
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ChExMix maintains high accuracy in predicting binding event locations

We have previously demonstrated that the probabilistic mixture modeling framework underlying GPS,
GEM, and MultiGPS enables highly accurate protein-DNA binding event detection in ChIP-seq and ChIP-
exo data (Guo et al., 2010, 2012; Mahony et al., 2014). Since ChExMix substantially modifies this
framework to account for binding event subtypes, we assessed whether these changes have negatively
impacted the ability to characterize binding locations.

We compared ChExMix performance in predicting human CTCF (Rhee and Pugh, 2011) and mouse
FoxA2 (Iwafuchi-Doi et al., 2016) binding event locations to that of nine ChIP-exo analysis methods,
including MultiGPS (Mahony et al., 2014), GEM (Guo et al., 2012), MACS2 (Zhang et al., 2008), MACE
(Wang et al., 2014), PeakXus (Hartonen et al., 2016), Peakzilla (Bardet et al., 2013), Q-nexus (Hansen et
al., 2016), DFilter (Kumar et al., 2013), and CexoR (Madrigal, 2015). We excluded ChIP-ePENS (Ye et
al.,2016) from our evaluation because it requires paired-end ChIP-exo data. Both CTCF and FoxA2 ChIP-
exo datasets consist of single-end sequencing data.

To ensure a fair comparison, we used 1,553 shared CTCEF sites that are predicted by all ten methods
and which contain an instance of the CTCF motif within 50bp. Spatial resolution is measured by the
difference between the computationally predicted locations of binding events and the nearest match to the
proximal consensus motif. Thus, by design of the comparison, all methods locate 100% of these events
within 50bp of the motif position. ChExMix exactly locates the events at the motif position in 87.5% of
these events, outperforming all other methods (Figure 4A). Similarly, we identified 835 FoxA2 sites in the
FoxA2 ChIP-exo dataset that are predicted by nine methods excluding CexoR and which contain an instance
of the FoxA2 motif within 50bp. CexoR requires replicated experiments; the FoxA2 ChIP-exo replicate has
a low sequencing depth and is not adequate for CexoR analysis. ChExMix exactly located the events at the
motif position in 64.0% of these events (Figure 4C). ChExMix binding event predictions also contain
instances of the cognate motifs at a high rate (Figure 4B, D). Similarly, ChExMix retains high resolving
power in detecting two closely placed binding events (Figure S9) as previously demonstrated in the GPS
framework. These results suggest that ChExMix maintains high accuracy in protein-DNA binding event

prediction.
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Figure 4. ChExMix accurately estimates binding event locations. A) Cumulative fraction of selected CTCF binding
event predictions that have a CTCF motif instance present within the given distance following event discovery by
ChExMix, MultiGPS, GEM, Q-nexus, CexoR, MACS2, Peakzilla, PeakXus, MACE, and DFilter. Events evaluated
were predicted by all ten methods and had a CTCF motif instance within 50bp. B) Fraction of each method’s ranked
CTCF binding event predictions that have a unique CTCF motif instance present within 50bp. C) Cumulative fraction
of selected FoxA2 binding event predictions that have a FoxA2 motif instance present within the given distance
following event discovery by ChExMix, MultiGPS, GEM, Q-nexus, MACS2, Peakzilla, PeakXus, MACE, and
DFilter. Events evaluated were predicted by all nine methods and had a FoxA2 motif instance within 50bp. D) Fraction
of each method’s ranked FoxA2 binding event predictions that have a unique FoxA2 motif instance present within

50bp.

ChExMix deconvolves regulatory molecule interactions of FoxAl, Estrogen Receptor a, and CTCF
in MCF-7 cells
To demonstrate the ability of ChExMix to discover biologically relevant binding event subtypes, we applied

ChExMix to analyze FoxA1 ChIP-exo data in MCF-7 cells. The pioneer factor FoxAl is a key determinant
of estrogen receptor function and endocrine response, and influences genome-wide accessibility in MCF-
7, thus affecting global ER binding (Hurtado ef al., 2011). CTCF is an upstream negative regulator of
FoxA1l and ER chromatin interactions (Hurtado et al., 2011; Fiorito et al., 2016). Genome-wide profiling
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suggest that these factors co-localize at a subset of binding loci, but how these factors interact with one
another and DNA at specific sites remains largely unevaluated.

ChExMix identifies three main subclasses in FoxA1l ChIP-exo data. The majority (24,749) of binding
events are associated with a subtype that contains FoxA1’s cognate DNA binding motif and a ChIP-exo tag
distribution shape highly similar to that found in previous ChIP-exo analyses of FoxA transcription factors
(Iwafuchi-Doi et al., 2016; Ye et al., 2016; Serandour et al., 2013) (Figure 5A, 5B; Figure S10A,B; Table
S3). We thus label this the “direct binding” subtype. However, 2,666 binding events are assigned to subtype
1, which contains a nuclear hormone receptor DNA binding motif similar to that bound by ERa (Figure
5A). Similarly, 2,648 events are assigned to subtype 2, which contains a CTCF-like motif. Both subclasses
are also associated with distinct tag distributions (Figure 5B).

We hypothesized that subtypes 1 & 2 represent indirect FoxAl binding to DNA via protein-protein
interactions with ERa and CTCF, respectively (Figure SE). We thus examined whether subtypes 1 & 2 are
bound by their respective predicted factors using ERa and CTCF ChlIP-exo datasets. We found that 55.4%
of subclass 1 events are located within 100bp of ERa binding events, while 37.5% of the subclass 2 events
occur within 100bp of CTCF ChIP-exo peaks (Figure 5C) (Poisson p-value < (0.001 for the overlap between
subtype 1 and ERa binding and between subtype 2 and CTCF binding). The tag distribution shape of
subtype 1 binding events in FoxA1 ChIP-exo resembles the tag distribution shape in ERa at the same sites,
peaking at the exact same base positions (Figure 5D).

We further hypothesized that if FoxA1l binding is mediated via ERa at subtype 1 locations in MCF-7
cells, we should observe FoxA1 binding to fewer subtype 1 locations in ER negative breast cancer cells. In
accordance with this hypothesis, only 30.4% (811/2,666) of FoxA1l subtype 1 binding events occur within
50bp of a FoxA1l ChIP-exo peak in MDA-MB-453 (an ER negative breast cancer cell line). In contrast,
59.6% (14,761/24,749) of FoxA1 subtype 3 events are bound in MDA-MB-453. These results are consistent
with our hypothesis of indirect FoxA 1 binding at subtype 1. We found no evidence that the various detected
subtypes correspond to differences in transcriptional behavior within MCF-7 cells (Figure S11; Figure S12).
The fact that the overlap of these subtypes with ERa and CTCF binding events is incomplete may be due
to thresholding effects, erroneous assignments of FoxA1 binding events to the relevant subtypes, or may
possibly reflect FoxAl interactions with other transcription factors that have similar binding preferences.
For example, several nuclear hormone receptors are active in MCF-7 cells, including Progesterone Receptor
and Glucocorticoid Receptor, and are expected to bind to DNA binding motifs related to that discovered at
subtype 1 binding events.
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Figure 5. ChExMix discovers site-specific recruitment of FoxA1l via ERa and CTCF in MCF-7 FoxA1 ChIP-
exo data. A) Motif, sequence color plot, and heatmap of three subtypes identified in FoxA1 ChIP-exo. Sites within
each subtype are aligned by the ChExMix-defined binding event position and orientation. Different subtypes are
aligned to each other via motif alignment. B) FoxA1 tag pattern associated with subclass 1, 2, and 3. C) Heatmaps of
ERa and CTCF ChIP-exo tags at FoxA1 binding events. D) ERa tag pattern at subclass 1 binding events and CTCF
tag pattern at subclass 2 binding events. E) Proposed TF interactions between FoxA1, ERa, and CTCF.

We next applied ChExMix to analyze ERo ChIP-exo data, discovering seven distinct subtypes (Figure
6A; Figure S10C,D; Table S3). The majority (24,914) of binding events are associated with one of six
subtypes that contains a nuclear hormone receptor motif, which ERa may be expected to directly bind.
However, 3,009 binding events are associated with subtype 4, which contains a Forkhead motif similar to
that bound by FoxA1. Subtype 4 is also associated with a distinct tag distribution shape (Figure 6B), again
suggesting a hypothesis whereby ERa binds indirectly via protein-protein interactions with FoxAl at
subtype 4 binding events (Figure 6E). Indeed, 62.8% of subclass 4 events are located within 100bp of
FoxAl binding events (Figure 6C), and the ERa ChIP-exo tag distribution at subtype 4 binding events
peaks at the same base pair positions as the FoxA1 ChIP-exo tag distribution at the same sites (Figure 6D).
These results strongly suggest that ChExMix can discover binding event subtypes representing direct and

indirect TF interactions from a single ChIP-exo experiment.
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Figure 6. ChExMix discovers FoxAl mediated ERa binding in MCF-7 ERa. ChIP-exo data. A) Motif, sequence
plot and heatmap of seven subclasses identified in ERo. ChIP-exo. Sites within each subtype are aligned by the
ChExMix-defined binding event position and orientation. Different subtypes are aligned to each other via motif
alignment. B) ERa tag patterns centered at subclass binding events. C) Heatmap of FoxA1 ChIP-exo tags centered at
ERa predicted binding events. D) FoxAl tag distribution centered at ERa subtype 4 binding events. E) Proposed
binding models of ERa subtypes.

Discussion

ChExMix provides a principled platform for elucidating diverse protein-DNA interaction modes in a single
ChIP-exo experiment by exploiting both ChIP-exo tag enrichment patterns and DNA motifs. Using a fully
integrated framework, ChExMix allows simultaneous detection of binding event locations, discovery of
binding event subtypes, and assignment of binding events to subtypes. As demonstrated above, ChExMix
provides highly accurate spatial resolution of binding event predictions and accurately assigns binding

events to subtypes. Uniquely, ChExMix can characterize binding event subtypes without requiring the
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presence of distinctive sequence features, thus potentially enabling binding subtype analysis of non-
sequence-specific regulatory proteins (e.g. chromatin modifiers, co-activators, co-repressors, etc.).

We further demonstrated that ChExMix can characterize biologically relevant binding event subtypes
in ER positive breast cancer cells. FoxAl, ERa, and CTCF have previously been shown to co-localize at
some sites, but their modes of interaction with one another remained elusive. In FoxA1 ChIP-exo data,
ChExMix identifies subtypes corresponding to ERa and CTCF motifs, and about a half of these subtypes’
binding events are bound by the ERa and CTCF proteins, respectively. Our results thus suggest that ERa
and CTCF likely mediate binding of FoxA1 via protein-protein interactions at a subset of the genomic loci
where multiple factors are co-bound. The analysis presented in the paper is restricted to the most over-
represented subtypes associated with the FoxAl and ERa ChIP-exo datasets. Because FoxAl and ERa
have been shown to co-localize with several other transcription factors, the results presented here may not
include a comprehensive set of factors with which FoxAl and ERa interact. Future improvements of the
method may include richer sequence analysis to recover motifs with lower representation, and the
application of metrics to test subtype-specific motifs based on how centrally tags are enriched around the
motifs. Another possible approach for discovering weaker subtypes is to initialize a large number of
potential subtypes using compendia of known TF binding motifs and to rely on EM training to weed out
non-significant ones.

In summary, we have demonstrated that ChExMix enables new forms of insight from a single ChIP-
exo experiment, taking analysis beyond merely cataloging binding event locations and towards a fine-
grained characterization of distinct protein-DNA binding modes. As demonstrated in our MCF-7 analyses,
integrating ChExMix analyses across collections of related ChIP-exo experiments will enable us to identify
the individual transcription factors responsible for recruiting several regulatory proteins, and thus

modulating regulatory activities, at specific genomic loci.

Methods

ChExMix hierarchical mixture model

Similar to the previously described GPS (Guo et al., 2010), GEM (Guo et al., 2012), and MultiGPS
(Mahony et al., 2014) approaches to ChIP-seq binding event detection, ChExMix models ChIP-exo
sequencing data as being generated by a mixture of binding events along the genome, and an Expectation
Maximization (EM) learning scheme is used to probabilistically assign sequencing tags to binding event

locations. The GPS, GEM, and MultiGPS frameworks assume that a single experiment-specific tag
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distribution generates all binding events in a given dataset. ChExMix breaks this assumption by modeling
multiple distributions within a single dataset. ChExMix further models binding events as a mixture of
binding subtypes, where each subtype ¢ is defined by a distinct tag distribution and possibly a distinct DNA
motif. Since the tag distributions and motifs are strand-asymmetric, each subtype has an implicit orientation.
To account for the expected equal representation of each binding event subtype on both DNA strands, we
define the subtypes in pairs, where the tag distributions and motifs in each pair are constrained to be reverse-
complements of each other.

The empirically estimated multinomial distribution Pr(r;,|x, t) gives the strand-specific probability of
observing ChIP-exo tag ;, from a binding event of subtype ¢ located at genomic coordinate x. We define a
vector of component locations # where u; ; is the genomic location of event j of the binding subtype . In
other words, the binding event’s exact location within a genomic locus is dependent on the estimated
subtype. Similarly, we introduce a vector of component subtype probabilities T, where 7; ; is the probability
of the binding event j belonging to subtype ¢. We initialize a large number of potential binding events such
that they are spaced in 30bp intervals along the genome (Figure S13). Binding event positions are re-
estimated over numerous EM training iterations, so that binding event discovery is not constrained by the
initial 30bp interval (Figure S9). Alternatively, binding events can be initialized using the predicted peak
positions of other peak callers, where potential binding events are initialized in 30bp intervals in a 500bp
window around predicted peak positions. For example, ChExMix initial binding event positions in the
MCF-7 analyses are initialized using MultiGPS results. The overall likelihood of the observed set of tags,
r, given the binding event positions, g, the binding event mixture probabilities (i.e. binding event strengths),

7, and binding subtypes T is defined as:
T

N M
Pr(r|m, 1) = 1_[ 2 2 m;Tj e Pr (i) e t)

n=1j=1t=1
M _ T _
where Yjo i =1, Y7, = 1

We incorporate biologically relevant assumptions in the form of priors on binding event strengths,
binding locations, and subtype assignment. Similar to the GEM (Guo ef al., 2012) and MultiGPS (Mahony
et al., 2014) implementations, we place a sparseness promoting negative Dirichlet prior, a, on the binding
strength 7 based on the assumption that binding events are relatively sparse throughout the genome (Neal
and Hinton, 1998). We make two prior assumptions about binding subtype assignment: 1) the presence of
subtype-specific DNA motif instances is indicative of the subtype to which a binding event belongs (i.e.

can affect subtype probabilities); and 2) a binding event should be associated with a single subtype (i.e.
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sparseness in subtype probabilities). To incorporate these assumptions, we place a Dirichlet prior 8 on the

binding subtype probabilities 7.

T
Pr (T) « H(Tt)_ﬂs+ﬁj,t’ Ig}.'s >0, ,Bj_t >0
t=1

Bs is the sparse prior parameter to adjust the degree of subtype sparseness:

T
Bs = EEN]L“
t=1

where € is a parameter to tune the effect of the sparseness prior, 0 < € < 1. In this study, we choose € =
0.05 (Figure S14, S15). B, is proportional to the number of tags assigned to the binding events.

pj+ denotes the binding subtype specific prior parameter and its value is proportional to W, , the strand
specific log likelihood score for subtype #’s motif at event ;’s location. max W, is the maximum possible

log likelihood score from the weight matrix.

'Bj'tz maxW 2

where w is a parameter to tune the effect of the motif based prior, 0 < w < 1. In this study, we choose w =
0.2 (Figure S16). N;; is the effective number of tags assigned to subtype ¢ of the binding event ;. The
rationale is that a binding event j is more likely to be associated with subtype ¢ if that subtype’s DNA motif
is present in the vicinity. The parameter f;; is scaled such that f;; can be greater than ;. Therefore, a
particular binding subtype will not be eliminated from consideration if the motif prior provides sufficient
evidence of the binding subtype.

A positional prior on the base pair locations of binding events, £, is defined directly by subtype-specific
motiflog likelihood scores. Similar to MultiGPS, we introduce a Bernoulli prior over each genomic location
where each element k;; of the parameter k corresponds to the probability that genomic location i is a binding
site of a binding type ¢. This prior assumes that there can be only one or zero binding events at a single
position and that binding positions are selected independently along the genome according to this
weighting. The positional prior is strand-specific. The prior assigns a likelihood to a set of binding sites on

a genome of size L as follows:

M
k,.
Pr(ulk)—l |k“‘€“)(1 ki) 1) = ||(1 k”)|| ”“ o<|| o
1— L 11—k,
J= ’

Binding event prediction and subtype assignment
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As in the original framework, the latent assignments of tags to binding events is represented by the vector
z, where Pr(z,, = j) = m;. The latent assignments of binding events to subtypes is represented by the vector
», where Pr(y]- = t) = 17; The joint probability of latent variables is Pr(zn =Ly = t) =TT);

The complete-data log posterior is as follows:

logPr(u,m,t|r, k, a, Bs, ,Bj)

M T

N
= 2 [2 1(z, =) 1(y]~ = t)(logn]- + logtj; + log (Pr(rn|u]-,t,t))
n=1|j=1t

=1

M

k.
logn]+2( ,85+,8]t)log‘r]t+Zlog1_ +C

j=1

The overall binding event sparsity-inducing negative Dirichlet prior a acts only on the mixing
probabilities 7r. Dirichlet priors B¢ and B} ; act only on the subtype probabilities . The positional prior acts

only on the subtype binding event locations u. The E-step thus calculates the relative responsibility of each

binding subtype at each binding event in generating each tag as follows:

0 = T e Pr (i e, t)

v(zn =)y =t) = ,
" ! Z%=1ZZ’=1(HI'TJ’I’PY‘ (Tlujrer, t'))

The maximum a posteriori probability (MAP) estimation (Figueiredo and Jain, 2002) of 7t and 7 is as

follows:

_ max (0, Xi=1 Njp) — @) s max (0, Nj_ —Bs+ Bjt) 2 v(z, = =t)
L max (0, B, Ny — @) T B max (O, Ny — Bs + B, t) e

As in the MultiGPS framework, the o parameter can be interpreted as the minimum number of ChIP-exo

tags required to support a binding event active in the model. Similarly, 85 — 8 ; is the minimum number

of ChIP-exo tags required to support a binding event being associated with a particular binding subtype.
MAP values of u; are determined by enumerating over several possible values of u; ;. Specifically,

the MAP estimation of u; ; is:

N
k
fAjr = argma { [y(z, = DlogPr(n,|x, t)] + log#

n=1 Hjt
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where x starts at the previous values of the position weighted by T and expands outwards to 30bp each side.
Each binding event is associated with a position weighted by subtype probabilities. If the maximization
step results in two components sharing the same strand and weighted positions, they are combined in the
next iteration of the algorithm.

As in our previous GPS frameworks, ChExMix requires that the number of tags associated with each
predicted binding event be significantly higher than the scaled number of tags associated with the same
binding events in a control experiment such as input or mock IP with exonuclease treatment (p < 0.001 with
Benjamini-Hochberg corrected Binomial test). The control experiment normalization factors are estimated
using the NCIS normalization method (Liang and Keles, 2012) with 10Kbp windows. Control tag counts
are associated with individual binding events via maximum likelihood assignments using the trained model

(i.e. assigning tags to binding events without changing model parameters such as  or ).

Initial subtype characterization via tag distribution clustering

Subtypes may be initialized in ChExMix using tag distribution clustering, motif discovery, or a combination
of both. To initialize subtypes via tag distribution clustering, we extract the stranded per-base tag counts in
150bp windows centered on the top 500 most enriched initial binding event positions. The per-base tag
distributions are smoothed using a Gaussian kernel (variance = 1) and normalized by dividing by the sum
of tag counts in the window. All pairs of binding event tag distributions are aligned against one another by
finding the relative orientation and offset (in the range +/- 25bp) that produces the lowest Euclidean distance
between normalized, smoothed tag distributions. Distances are converted to a pseudo-similarity score by
multiplying by -1. Affinity propagation (Dueck and Frey, 2007) is applied to the similarity matrix
(preference value = -0.1) to generate clusters. The number of clusters is automatically determined by the
affinity propagation algorithm, albeit influenced by the preference value. Initial subtype-specific tag
distributions are defined by the precomputed alignments against each cluster’s exemplar. During EM,
subtype-specific tag distributions are updated by grouping binding events according to their maximum

likelihood assigned subtypes and then combining each binding event’s assigned tag distributions.

Initial subtype characterization via motif discovery

To characterize subtype-specific DNA motifs, ChExMix uses MEME (Bailey and Elkan, 1994) to discover
a set of over-represented motifs in the top 1000 most enriched binding events (60bp windows). Motifs are
retained if they discriminate bound regions from random sequences with true-positive vs. false-positive
area under curve (AUC) above 0.7. Motif discovery is performed iteratively after removing the sequences
containing previously discovered motifs until no further motifs pass the AUC threshold. Each discovered

motif defines a subtype, and the corresponding tag distribution is defined using cumulative 5’ tag positions
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centered on motif instances within 30bp of binding events. Therefore, the number of motif-driven subtypes
is determined by the number of motifs that pass the AUC threshold. When ChExMix is run with multiple
ChIP-exo experiments, ChExMix performs a targeted motif discovery at sites where the predicted binding
events from the two experiments occur within 30bp from each other. In this way, ChExMix attempts to

identify unique motifs present in genomic regions where two proteins bind at proximal genomic loci.

Merging initial subtypes and subtype re-estimation

If motif and tag distribution similarities from a pair of subtypes are above the thresholds (motif similarity
using Pearson correlation > 0.95; tag distribution similarity using log KL divergence < -10), we retain only
the subtype that is associated with the greater number of binding events. Subtypes are re-initialized during
the second training iteration with the same approach. From the third training iteration, binding events are
grouped into subtypes using maximum likelihood estimation and a targeted motif discovery is performed
using the top 1000 most enriched subtype-specific binding events (60bp window). Subtypes are eliminated
from the model during the subtype updates if the number of subtype-specific binding events falls below 5%

of all binding events.

Assessing subtype assignment performance using in silico mixed ChIP-exo data

To computationally simulate human ChIP-exo data that contains two distinct binding event subtypes, we
mixed CTCF ChIP-exo data from HeLa cells (Rhee and Pugh, 2011), FoxAl ChIP-exo data from MDA-
MB-453 cells (Serandour et al., 2013), and an input control experiment from MCF-7 cells, all mapped to
hg19. We first defined the top 20,000 binding event locations using MultiGPS for both CTCF and FoxA1
ChIP-exo experiments. We extended the binding events to 1Kbp regions and created a set of non-
overlapping regions that contain peaks from either the CTCF or FoxA1 experiment (but not both). To reflect
the typical signal-to-noise ratio observed in real ChIP-exo experiments, 80% of the tags (24 million tags)
come from the input control data, and the remaining (6 million) tags are randomly selected from all CTCF
and FoxA1 ChIP-exo 1Kbp peak regions. We generated different datasets where the relative proportions of
tags drawn from CTCF and FoxA1 experiments are varied. In these datasets, CTCF and FoxA1 ChIP-exo
tags are always drawn randomly from all peak regions and are not preferentially drawn from the top-most
binding events.

We ran the following binding event analysis methods on the simulation data: a) ChExMix with an
option : --seqrmthres 0.3; b) ChExMix using default parameters with the exception of turning off the use
of the motif prior in assigning subtypes (subtypes are still defined using motif discovery and tag
distributions); and c) subtype assignment based on the ChExMix discovered motif hits. ChExMix

recursively finds motifs by removing sequences with the previously discovered motifs. ChExMix option “-
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-seqrmthres 0.3” (default value: 0.1) decreases the threshold to call motif hits to attempt to further deplete
sequences with the previously discovered motifs. To scan ChExMix discovered motifs, we used the
ChExMix discovered motifs to scan 60bp regions around all binding events and assigned subtypes based
on the motif hits (log-likelihood scoring threshold of 3% per base FDR defined using a 2™-order Markov
model based on human genome nucleotide frequencies). Performance of binding subtype assignment is
evaluated using labels based on whether the regions were taken from CTCF or FoxAl ChIP-exo data.
Sensitivity (TP/(TP+FN)) and specificity (TN/(TN+FP)) are used as the performance measures. The results
show the average performance over five simulated datasets. We obtained CTCF and FoxA1 cognate DNA-
binding motif rates (dashed lines in Figure 2) by scanning cis-bp database motifs (CTCF: M1957 1.02;
FoxAl: M1965 1.02) (Weirauch et al., 2014) in 60bp regions around ChExMix peaks in the 100% CTCF
and FoxA1 datasets, respectively, using 3% per base FDR.

Performance of subtype discovery and classification in synthetic ChIP-exo data
To investigate ChExMix’s ability to learn and assign binding subtypes using only tag distribution
information in a controlled setting, we wused the ChIPReadSimulator module in SeqCode

(https://github.com/seqcode/seqcode-core) to simulate two types of binding events using predefined ChIP-

exo tag distributions. The tag distribution shapes used to define subtypes in these simulations (Figure 3A,
3B) were based on tag distributions observed in yeast Rebl (subtype A) and human p53 (subtype B) ChIP-
exo experiments (Rebl and p53 distribution files available from https://github.com/seqcode/chexmix). We
first simulated two datasets on a yeast-sized genome that consisted of pure signal; one of the datasets
contained 500 subtype A binding events, while the other dataset contained 500 subtype B binding events.
The relative strength of each of these binding events was drawn randomly from a distribution of relative
tag counts observed for CTCF binding events in CTCF ChIP-seq experiments. Then, we modulated the
relative sampling rate from each signal dataset and a background (mock IP control) dataset to create each
individual simulated ChIP-exo dataset. Specifically, we varied the proportion of tags mixed between
subtypes A and B to create different relative representations of binding event subtypes. We also modulated
the proportions of tags drawn from the two signal experiments relative to that taken from the background
(input) experiment. We ran ChExMix with the option “--nomotifs --scalewin 1000 --minmodelupdateevents
10”. Performance of binding subtype assignment is evaluated using 500bp window centered at simulated
binding event locations. Sensitivity (TP/(TP+FN)) and specificity (TN/(TN+FP)) are used as the
performance measures. Sensitivity and specificity reflect the accuracy of subtype assignments and are

measured only with respect to detected binding events.

Evaluating spatial resolution of ChIP-exo binding event predictions

21


https://doi.org/10.1101/266536
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/266536; this version posted July 7, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

To evaluate the spatial resolution performance of ChIP-exo peak callers, we quantify the distance between
genomic coordinates of predicted binding events and high-scoring binding motif hits. As the center of the
motif hit may not represent the true center of a binding event, we consider the distance between the
predicted peaks to either edge of the motif. We compare spatial resolution on the set of predictions that are
called by all methods and which have the same high-scoring motif hits (log-likelihood scoring threshold of
5% per base FDR defined using a 2™-order Markov model based on the genomic nucleotide frequencies).
Only events that occur within 50bp of a motif instance are included in the calculation. GEM is run with
ChIP-exo specific parameters “--smooth 3 --mrc 20 as described in the documentation. MultiGPS is run
with parameters “--fixedbp 20” with ChIP-exo tag distribution as described in the documentation. dFilter
is run with a parameter “-ks 10” to decrease the kernel filter width. Q-nexus is run with parameters “-nexus-
mode -s 100 -v" as described in the documentation. CexoR is run with parameters “idr=0.01, N=1e6, p=1e-
9, dpeaks=c(0,150), dpairs=200 as suggested by the CexoR developer. All other software was run using

default parameters.

Public datasets

CTCF ChIP-exo in HeLa cells is obtained from SRA (SRA044886) and aligned against hg19 using Bowtie
(Langmead et al., 2009) version 1.0.1 with options “-q --best --strata -m 1 --chunkmbs 1024 -C”. FoxA2
ChIP-exo in mouse liver is obtained from GEO (GSM1384738) and aligned against mm10 using BWA (Li
and Durbin, 2009) version 0.6.2. FoxAl ChIP-exo in MDA-MB-453 and input DNA in MCF-7 are
downloaded from ERA (E-MTAB-1827) and aligned against hg19 using BWA version 0.7.12.

ChIP-exo experiments and processing
The human breast adenocarcinoma cell line, MCF7, was obtained from American Type Culture Collection
(ATCC) and cultured using DMEM with 10% heat inactivated FBS at 37°C with 5% CO; in air. MCF7
cells were incubated in phenol red-free, charcoal stripped FBS for 48 hours prior to the 1 hour treatment
with 17 S-estradiol (E2, Sigma) at 100 uM. ChIP-exo assays for FoxA1l, ERa, and CTCF were performed
as previously described (Rhee and Pugh, 2011; Serandour et al., 2013). For ChIP-exo library preparation,
affinity purified anti-FoxA1 (ab23738, Abcam; sc-514695 X, Santa Cruz), anti-ERca (ab108398, Abcam;
s¢8002 X, Santa Cruz), and anti-CTCF (07-729, Millipore) were incubated with chromatin. Mock IP control
ChIP-exo experiments in MCF-7 cells were performed using the same approach but in the absence of
antibody.

The Saccharomyces cerevisiae strain, BY4741, was obtained from Open Biosystems. Cells were grown

in yeast peptone dextrose (YPD) media at 25°C to an ODgoo=0.8-1.0. Mock IP control ChIP-exo
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experiments in yeast were performed using rabbit IgG (Sigma, i5006) in the BY4741 background strain
(which does not contain a tandem affinity purification tag sequence).

Libraries were paired-end sequenced and read pairs were mapped to the hgl9 reference or sacCer3
genome using BWA version 0.7.12 with options “mem -T 30 -h 5. Read pairs that share identical mapping
coordinates on both ends are likely to represent PCR duplicates, and so Picard
(http://broadinstitute.github.io/picard) was used to de-duplicate such pairs. Reads with MAPQ score less
than 5 are filtered out using samtools (Li et al., 2009). During analysis of the MCF7 experiments, ChExMix
was run with the following command-line parameters: --noclustering --q 0.05. ChExMix was initialized
using the results of MultiGPS analysis of the dataset collection, where MultiGPS (version 0.74) was run
using the following parameters: --q 0.05 --jointinmodel --fixedmodelrange --gaussmodelsmoothing --

gausssmoothparam 1 --minmodelupdateevents 50.

Availability
Open source code (MIT license) for ChExMix is available from https://github.com/seqcode/chexmix.

Executables and documentation are available from http://mahonylab.org/software/chexmix. All ChIP-exo

sequencing data produced in this study has been uploaded to GEO under accession GSE110502.
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Robustness of ChExMix on various synthetic ChIP-exo data

We evaluated ChExMix performance on simulated ChIP-exo data that contain subtypes with either distinct
motifs or tag distributions but not both. To simulate synthetic ChIP-exo data that have different motifs and
the same tag distributions (Supplementary Figures S5 & S6), we selected 10,000 CTCF binding event
locations for subtype A from CTCF ChIP-exo data in HeLa cells (Rhee and Pugh, 2011) and 10,000 FoxA1
binding event locations for subtype B from FoxA1 ChIP-exo data in MDA-MB-453 cells (Serandour et al.,
2013). These selected locations thus contain motif instances associated with CTCF (subtype A) and FoxA1l
(subtype B), respectively. In order to force the tag distributions at these binding locations to be equal, we
simulated ChIP-exo binding events by randomly drawing ChIP-exo tag locations according to the yeast
Rebl ChIP-exo tag distribution (Figure 3A). The relative strength of each of these binding events (and thus
the numbers of simulated tags at each binding event) was drawn randomly from a distribution of relative
tag counts observed for CTCF binding events in CTCF ChIP-seq experiments. We then modulated the
relative sampling rate from each signal dataset and a background (mock IP control) dataset to create each
individual simulated ChIP-exo dataset with 3 million tags from either of the signal experiments and 27
million tags from the background. We varied the proportion of tags mixed between subtypes A and B to
create different relative representations of binding event subtypes. We also used the same procedure to
create a second set of simulated experiments containing two subtypes with different motifs and the same
tag distribution, except this time we drew tags from the yeast Abfl tag distribution (Rebl and Abfl
distribution files available from https://github.com/seqcode/chexmix).

To generate synthetic ChIP-exo data that have same motifs and different tag distributions
(Supplementary Figure S7), we selected the top 20,000 CTCF binding event locations in CTCF ChIP-exo
data from HelLa cells (Rhee and Pugh, 2011). The CTCF binding event locations were randomly assigned
to receive subtype A or B simulated binding events, such that one simulated dataset contained 10,000
subtype A binding events, while the other dataset contained 10,000 subtype B binding events. A high
proportion of CTCF binding events contain the cognate binding motif, so therefore a large majority of the
locations assigned to both subtypes will contain the same CTCF motif. At the selected locations, we
simulated ChIP-exo binding events by randomly drawing ChIP-exo tag locations according to the yeast
Rebl (subtype A) or human p53 (subtype B) ChIP-exo tag distributions (Figure 3A, 3B). The relative
strength of each of these binding events (and thus the numbers of simulated tags at each binding event) was
drawn randomly from a distribution of relative tag counts observed for CTCF binding events in CTCF
ChIP-seq experiments. We then modulated the relative sampling rate from each signal dataset and a
background (mock IP control) dataset to create each individual simulated ChIP-exo dataset with 6 million
tags from either of the signal experiments and 24 million tags from the background. We varied the
proportion of tags mixed between subtypes A and B to create different relative representations of binding
event subtypes. Performance of binding subtype assignment is evaluated using 500bp windows centered at
simulated binding event locations. Sensitivity (TP/(TP+FN)) and specificity (TN/(TN-+FP)) are used as the
performance measures.

Robustness of ChExMix on various read depths and replicates

To evaluate ChExMix performance on various read depths, we selected the CTCF and FoxA1 mixed dataset
that has equal representations of subtypes (3 million CTCF tags and 3 million FoxA1l tags in 30 million
total tags). We subsampled this ChIP-exo data to assess the sensitivity and specificity of subtype assignment
by varying the read depth.

To evaluate the reproducibility of ChExMix results across true replicates, we used the replicate samples
available in public data. For CTCF ChIP-exo, we obtained replicate 2 and replicate 3 from the accession
number SRA044886. For FoxA1l ChIP-exo from MDA-MB-453 cells, we used a merge of replicate 2 & 4
and replicate 1 & 3 as two replicates from E-MTAB-1827, because individual replicates did not provide
enough read coverage to generate the mixed ChIP-exo data. We followed the same procedures to create
CTCEF and FoxA1 mixed datasets with various subtype representations as described in the Methods section.
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ChExMix enables deconvolution of joint events

To examine ChExMix’s ability to resolve two closely spaced events, we simulated datasets by placing
binding events at predefined intervals, and placed tags at those binding events by sampling from the
ChIP-exo tag distribution observed in yeast Reb1l ChIP-exo experiments. We simulated a total of
40,000 binding events in a human-sized genome, but constrained the locations of 1000 events to
occur within the range of 1 to 200bp from the neighboring events. The relative strength of each of
these binding events was drawn randomly from a distribution of relative tag counts observed for
CTCF binding events in CTCF ChIP-seq experiments. The simulation dataset contains 30 million tags.
To reflect the typical signal-to-noise ratio observed in real ChIP-exo experiments, 80% of the tags are
taken from the mock IP control. The remaining tags (6 million) are distributed among the binding
events. We run ChExMix using default parameters with the exception of turning off the use of
sequence information and the motif prior.

Robustness of ChExMix to various initialization conditions

We examine the performance of ChExMix on different initialization conditions. During the
initialization of binding events, ChExMix places binding components every 30 base pairs. We analyze
how different spacing of components affects the sensitivity of peak detection and running time of the
algorithm. We computationally mixed tags from CTCF ChIP-exo and input background, using an
approach similar to the in silico mixed CTCF FoxA1 ChIP-exo experiment described in the Methods
section. We created simulation data by drawing 6 million CTCF tags from 1Kbp regions centered
around CTCF binding events from CTCF ChIP-exo data and 24 million background tags from the input
control. ChExMix is run with an option “--noflanking”. This option will ensure that ChExMix will not
automatically place additional binding components during the EM iterations. ChExMix performance
is evaluated based on sensitivity of recovering predefined peaklocations. We score peaks as positive
if ChExMix peaks occur within 50bp of MultiGPS peak locations. The results show that ChExMix stably
recovers above 90% of peaks when component spacing intervals are smaller than 100 base pair
(Figure S13). The sensitivity drops significantly when the component intervals become bigger than
200 base pairs.

Sparsity and motif prior weights in subtype assignment

In this section, we examined the effect of varying the sparsity and motif prior weights on subtype
assignment. We assume that binding events should be associated with a single subtype. Hence, we
employ a sparseness promoting prior in assigning binding subtypes to encourage a single subtype to
dominate the probabilities. In assessing the effect of varying this prior, we used simulated ChIP-exo
data that mix equal proportions of CTCF and FoxA1 ChIP-exo tags (as described in Methods). We used
the F1 score to measure the performance of subtype assignment, calculated as the following using
the scikit-learn python package:

precision - recall
F1=2-

precision + recall

The results show that ChExMix performance drops significantly when the sparsity prior is above 0.1
(Figure S14). We observe equal representations of each subtype when we increase the sparseness
promoting prior above 0.1. Subtype probability distributions shift towards 1 as we change the
sparseness promoting prior to 0, 0.05, and 0.1 (Figure S15). The current default of 0.05 shifts the
maximum assignment probability distribution towards 1 with a minor decrease in performance.
Hence, we use 0.05 as the default value of the subtype sparsity prior.

Next, we evaluated how different motif weights affect ChExMix performance using the same
CTCF/FoxA1 mixed data. Motif weights control the balance between tag distribution and sequence
in subtype assignment. We measure the performance using F1 score as described above. We observe
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that performance continues to increase as the motif prior increases (Figure S16). Our current motif
prior default is 0.2 because we do not wish sequence information to dominate subtype assignment.
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Figure S1. Related to Figure 2C, D. Sensitivity in subtype assignment from five simulation datasets. Plots
show sensitivity for correctly assigning binding events to the CTCF and FoxA1 subtypes using ChExMix
with de novo estimated tag distributions and motifs (A, B), ChExMix with tag distributions alone (C, D),
and scanning ChExMix discovered motifs (E, F). The relative proportion of signal tags is varied between
the CTCF and FoxA1 experiments.
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Figure S2. Related to Figure 2C, D. Specificity in subtype assignment using ChExMix with de novo
estimated tag distributions and motifs (red dots), ChExMix with tag distributions alone (blue
triangles), and scanning ChExMix discovered motifs (green diamonds). Plots show specificity for
correctly assigning binding events to the CTCF (A) and FoxA1l (B) subtypes, which varies as the
relative proportion of signal tags is varied between the CTCF and FoxA1 experiments. Each data point
represents an average performance of five simulations.
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Figure S6. Specificity in subtype assignment with simulated datasets that have different motifs and
the same tag distribution. Plots show specificity for correctly assigning binding events to subtype A
(CTCF motif) and subtype B (FoxAl motif) (red dots) with Reb1 distribution (A, B) and Abf1
distribution (C, D) and de novo estimated motif instances alone (green diamonds) (A-D), as the
relative proportion of signal tags is varied between the two subtypes.
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Figure S7. Sensitivity (A) and specificity (B) in subtype assignment from simulation data with the
same motif and different tag distributions. Plots show sensitivity/specificity for correctly assigning
binding events to the subtype A (Reb1 distribution) (blue dots) and subtype B (p53 distribution)
(orange dots), as the relative proportion of signal tags is varied between the two subtypes.
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Figure S$8. Related to Figure 3G, H. Specificity in subtype assignment using de novo estimated tag
distributions with overall signal of 10% (blue diamonds), 20% (orange dots), and 30% (green
triangles). Plots show specificity for correctly assigning binding events to the subtype A (Rebl
distribution) (A) and subtype B (p53 distribution) (B) subtypes, as the relative proportion of signal
tags is varied between the two subtypes.
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Figure S9. ChExMix is able to resolve closely spaced binding events. Joint events are placed
between a range of 1 to 200bp apart from each other. The x-axis shows the true distance between
events. The y-axis shows the fraction of the events resolved to be two binding events. The results
are averaged every 5bp.
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Figure S10. Heatmap and tag distributions of no antibody control ChIP-exo at FoxA1 and ERa ChIP-

exo binding events. A) Heat

map of no antibody control ChIP-exo tags and B) tag distributions at
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FoxA1 subtype 1, 2 and 3 binding events. C) Heat map of no antibody control and D) tag distributions
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Figure S11. GRO-seq analysis at ERa and FoxAl ChIP-exo subtypes. A) Normalized GRO-seq tag
counts at three FoxA1 subtypes in estradiol treated MCF-7 cells. B) Normalized GRO-seq tag counts
at seven ERa subtypes in estradiol treated MCF-7 cells. C) MA plot showing GRO-seq tag counts in a
4Kbp window at ERa and FoxAl binding events, where the y-axis represents the tag count ratio
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between estradiol treated and untreated, and the x-axis represents the mean tag count. No ERa and
FoxA1 binding events displayed significant differential enrichment for GRO-seq tags (p<0.001).
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Figure S12. Microarray analysis of FoxAl and ERa ChIP-exo subtypes. We used GREAT to associate
binding events with up to two nearest genes that occur within 10Kbp (McLean et al., 2010).
Microarray gene expression of subtype 1 (with ERa like motif) and subtype 2 (with CTCF like motif)
are significantly higher than subtype 3 in FoxAl ChIP-exo (*** p-value < 0.001). No significant
differences are detected between subtype 4 (with a Forkhead motif) and the rest of the ERa ChIP-
exo subtypes.
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Figure S13. ChExMix sensitivity in detecting ChIP-exo peaks with various initialization conditions.
Potential binding event mixture components are placed in intervals; 10, 20,30, 50, 100, 200, 300, and
500bp. Performance of ChExMix is evaluated by the percentage of true peaks recovered and the
running time of the algorithm. The current default value is 30 bp (black arrow).
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Figure S14. Effect of varying sparseness promoting prior weight in ChExMix performance. Sparse
prior weights are varied between 0 to 0.5. F1 score is used to evaluate the performance of subtype
assignment. The current default of sparse prior weight is 0.05 (black arrow).
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the current default), and 0.1 (C).
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Figure S16. Effect of varying motif prior weight in ChExMix performance. The motif weights are
varied between 0 to 0.7. F1 score is used to evaluate the performance in subtype assignment. The
current default value is 0.2 (black arrow).
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Genome
Fig 2 Human (hg19)

Running time (h:m)

2:43, 2:28, 2:19, 3:40, 3:08 (10% CTCF tags)
2:29,2:34, 2:52,2:39, 2:31 (20% CTCF tags)
3:55, 3:27, 2:59, 3:14, 2:40 (30% CTCF tags)
2:46,1:52, 2:44, 2:28, 2:49 (40% CTCF tags)
3:11, 2:21, 2:37, 2:44, 2:35 (50% CTCF tags)
2:15, 2:21, 2:31, 2:54, 2:39 (60% CTCF tags)
2:00, 2:34, 3:04, 2:30, 2:38 (70% CTCF tags)
2:17,2:17, 2:39, 2:50, 2:59 (80% CTCF tags)

2:12,2:24,2:13,2:36, 2:26 (90% CTCF tags)

0:06, 0:07, 0:09, 0:10, 0:07, 0:09, 0:07, 0:07, 0:06 (10%
signal)

0:12,0:10, 0:11, 0:09, 0:09, 0:09, 0:09, 0:11, 0:09 (20%
signal)

0:09, 0:18, 0:15, 0:18, 0:11, 0:15, 0:11, 0:14, 0:15 (30%
signal)

0:56 (CTCF)

Fig 3 Yeast
(sacCer3)

Fig 4 Human (hg19)
Mouse
(mm10)

Human (hg19)

1:06 (FoxA2)
5:22 (FoxA1, ER-alpha, CTCF)

Fig5 & 6

Table S1. ChExMix running time. Jobs were run on an Intel Xeon E5-2680 v2 2.8GHz server blade
using 20 threads.

% CTCF tags ChExMix with de novo estimated ChExMix with tag distributions

tag distributions and motifs alone

CTCF subtype FoxAl subtype CTCF subtype FoxA1 subtype
10 1,1,1,2,1 4,3,1,4,5 1,1,1,2,1 4,3,1,4,5
20 1,3,2,3,2 4,1,1,3,1 1,2,1,2,2 4,2,2,4,1
30 3,2,2,3,3 3,2,4,3,3 3,1,2,33 3,3,4,3,3
40 3,1,313 1,1,1,1,1 2,1,2,1,2 2,1,2,1,2
50 3,3,3,3,3 3,3,3,1,3 3,3,3,2,3 3,3,3,2,3
60 2,1,2,2,2 3,2,3,3,4 2,1,1,2,2 3,2,4,3,4
70 2,2,3,3,4 2,3,4,2,2 1,2,3,2,3 3,3,4,3,3
80 2,2,5,2,2 2,2,3,33 2,1,5,2,2 2,3,3,33
90 2,2,1,3,2 2,3,2,2,2 1,3,1,3,2 3,2,2,2,2

Table S2. Related to Figure 2C, D. Number of subtypes discovered from five simulation datasets. The
table shows the number of CTCF- and FoxAl-related subtypes discovered by ChExMix in each
simulated dataset when using de novo estimated tag distributions and motifs (1st & 2nd columns) or
using tag distributions alone (3rd & 4th columns). The relative proportion of signal tags is varied
between the CTCF and FoxA1 experiments.
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FoxA1 ChIP-exo subtypes

Subtype 1 motif | Subtype 2 motif | Subtype 3 motif
(ERa like) (CTCEF like) (Forkhead like)
Subtype 1 1,260 320 410
2,666 sites (47.3%) (12.0%) (15.4%)
Subtype 2 163 1115 245
2,648 sites (6.2%) (42.1%) (9.3%)
Subtype 3 2037 2641 1,7204
24,749 sites (8.2%) (10.7%) (69.5%)

ERa ChIP-exo subtypes

Subtype 2 motif | Subtype 4 motif
(ERa like) (Forkhead like)
Subtype 1 823 229
2,831 sites (29.1%) (8.1%)
Subtype 2 6,683 882
9,579 sites (69.8%) (9.2%)
Subtype 3 732 230
3,749 sites (19.5%) (6.1%)
Subtype 4 366 1,574
3,009 sites (12.2%) (52.3%)
Subtype 5 448 71
1,411 sites (31.8%) (5.0%)
Subtype 6 2,767 408
5,345 sites (51.8%) (7.6%)
Subtype 7 521 132
1,999 sites (26.1%) (6.6%)

Table S3. Subtype-specific motif occurrence rates in FoxAl and ERa ChIP-exo binding events.
Subtype-specific motifs are scanned in a 100bp window around subtype-specific binding events (5%
per base FDR using a Markov model based on human nucleotide frequencies).
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