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Abstract

Cancer is a complex and heterogeneous disease. It is crucial to identify the key driver genes and their
role in cancer mechanisms with attention to different cancer stages, types or subtypes. Cancer driver
genes are elusive and their discovery is complicated by the fact that the same gene can play a diverse
role in different contexts. Key biological processes, such as cell proliferation and cell death, have been
linked to cancer progression. Thus, in principle, they can be exploited to classify the cancer genes and
unveil their role. Here, we present a new method, Moonlight, that exploit expression data to classify
cancer genes. Moonlight relies on the integration of functional enrichment analysis, gene regulatory
networks and upstream regulator analysis from expression data to score the importance of biological
cancer-related processes taking into account either the inter- or intra-tumor heterogeneity. We then
employed these scores to predict if each gene acts as a tumor suppressor gene (TSG) or as an
oncogene (OCG). Our methodology also allow to predict genes with dual role, i.e. the moonlight genes
(TSG in one cancer type or stage and OCG in another), as well as to elucidate the underlying biological

processes. Availability: https://bioconductor.org/packages/MoonlightR &

https://github.com/ibsquare/MoonlightR/
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Introduction

Cancer development is influenced by mutations in two distinct categories of genes, known as
tumor suppressor genes (TSG) and oncogenes (OCG). The occurrence of mutations in TSGs
generally leads to increased cell proliferation, whereas mutations in OCGs could alter or

increase their biological activity.

The gain-of-function of OCGs together with the loss-of-function of TSGs determine the

processes that control the tumor formation and development (Hahn and Weinberg, 2002).

The Cancer Gene Census (CGC) (Futreal et al., 2004) is a catalog of somatic mutations that
provides a list of currently known cancer driver genes following the OCGs / TSGs definition. The
CGC contains some 600 genes implicated in cancer, but more recently, the availability of
different “omics” technologies from large international consortia, such as the The Cancer
Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) have suggested many additional
genes that may be involved in cancer and have brought new challenges to the field of cancer
research (Vogelstein et al., 2013). These consortia included data of somatic mutations, gene
expression, methylation and copy number alterations, along with clinical data. They share the
ambitious goal of detecting crucial genes and molecular mechanisms underlying tumorigenesis

in any major cancer type (Cancer Genome Atlas Research Network, 2008).

Several methods implemented so far used mutation data to detect candidates cancer drivers
(Davoli et al., 2013) , (Schroeder et al., 2014) (Schroeder et al., 2014; de Souza et al., 2014))
but although all these methods were demonstrated as effective, it remains critical to clarify the
consequences of each mutation and to link these patterns with possible underlying biological
interpretation. For example, some mutations bring premature stop codon and carry out reduced
dosage of mMRNA transcripts. Other mutations affect protein activities through can act as either

an oncogene or tumor suppressor gene in different cancer types or during cancer progression.

For instance, most of the recent studies demonstrated that DEAD-box RNA helicase 3 (DDX3)
acts as an oncogenic role in breast cancer (Bol et al., 2013), but some studies (Su et al., 2015)
(Zhao et al., 2016) also showed that its downregulation promotes metastasis in colorectal

cancer indicating a potential role as TSG.

Another example of a moonlight gene is represented by MMP12, a member of the

matrix-metalloproteinase (MMP) family. The MMPs cause degradation of the extracellular matrix
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and basement membranes, contributing to the pathogenesis of tissue destructive processes in a
wide variety of diseases. It has been proposed as an oncogene in breast cancer, (Hegedus et
al., 2008), (Shin et al., 2005), hepatocellular carcinoma (Ng et al., 2011), gastric carcinoma
(Cheng et al., 2010) and lung adenocarcinoma. (Lv et al., 2015). Viceversa, in colorectal
cancer, overexpression of MMP-12 is associated with increased survival of the patient,
presumably as a result of an inhibitory effect on angiogenesis (Nocito et al., 2008). These data

suggest that MMP-12 has a tumor suppressor role in this context.

Why is it important to know if a gene has an oncogenic role or a tumor suppressor role in a
specific tumor? A careful evaluation of the functional status of a dual-role gene and the
context-dependent role in response to specific treatments in different tumors might be
fundamental to guide therapeutic decisions. The identification of genes with a dual role can also
be used to define common genetic profiles shared by subgroups of patients who may benefit
from targeted treatment strategies. For example, ERBB2 is amplified and h changing amino acid
sequences. Furthermore, tumor mutation rates can be of several orders of magnitude, but it
does not necessarily mean that all of the abnormal genes are also involved in the development

of cancers (Lawrence et al., 2013).

Therefore, mutations and genes must be characterized together to identify biologically relevant
mutations; an integration with functional enrichment analysis is essential in the interpretation of

the disease.

However, to our knowledge, no study focuses on the methods to detect genes with dual role i.e.
the moonlight genes. With the term ‘moonlight gene’ we mean a gene that overexpressed in 20
% to 25% of breast cancer and is the target of the monoclonal antibody trastuzumab, a drug that

is effective only when ERBB2 is amplified and overexpressed (Fackenthal and Olopade, 2007).

We here propose MoonlightR as a new approach to define TSGs and OCGs based on
functional enrichment analysis, inferred gene regulatory networks and upstream regulator
analysis to score the importance of key biological processes that are related to cancer, such as
apoptosis or cellular proliferation, with respect to the studied cancer. In addition, the Functional
Enrichment Analysis (FEA) and Upstream regulator Analysis (URA), used in the Moonlight
protocol, can suggest enriched biological functions for experimental validation extracting the

relevant signaling pathways from differentially expressed genes.
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METHOD DETAILS
The Moonlight protocol aims:

1. To identify biological processes enriched by a gene set of differentially expressed genes
(DEGSs) between two conditions by means of FEA;

2. To Identify the upstream regulators of those biological processes that are enriched
significantly in the comparison by means of URA;

3. To identify ‘driver genes’ with dual role that acts as TSG or OCG in different cancer

contexts (i.e., different cancer types, subtypes or stages).
Availability

The MoonlightR package is released under GPLv3 License.

MoonlightR is freely available within the Bioconductor project at
http://bioconductor.org/packages/MoonlightR/.

Data preparation and analysis

The legacy level-3 data of the PanCancer studies (18 cancer types) from the The Cancer
Genome Atlas (TCGA) cohort deposited in the Genomic Data Commons (GDC) Data Portal
were used in this study and downloaded in May 2017.

RNA-seq raw counts of 7364 cases (6652 TP and 712NT samples) as legacy archive, and
using the reference of the hg19 genome were downloaded, normalized and filtered using the
R/Bioconductor package TCGAbiolinks version 2.5.9 (Colaprico et al., 2016) using GDCquery(),
GDCdownload() and GDCprepare() functions for tumor types (level 3, and platform
"llluminaHiSeq_RNASeqV2"), as well as using data.type as “Gene expression quantification”
and file.type as "results". This allowed to pull out the raw expression signal for expression of a
gene for each case following the TCGA pipeline used to create Level 3 expression data from
RNA Sequence data that uses MapSplice (Wang et al., 2010) to do the alignment and RSEM to
perform the quantification (Li et al., 2010). Integrative analysis using mutation, clinical and gene
expression were performed following our recent TCGA’s workflow (Silva et al., 2016).

For the case study n.2 and n.3 we used Breast invasive carcinoma (BRCA) from TCGA as

deposited in the GDC Data Portal. In particular, RNA-seq raw counts of 1211 BRCA cases as
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legacy archive, and using the reference of hg19 were downloaded, normalized and filtered using
the R/Bioconductor package TCGAbiolinks following the above pipeline. Among BRCA
samples 1097 were Primary solid Tumor (TP) and 114 solid Tissue Normal (NT). The
aggregation of the two matrices (tumor and normal) for both tumor types was then normalized
using within-lane normalization to adjust for GC-content effect on read counts and
upper-quantile between-lane normalization for distributional differences between lanes applying
the TCGAanalyze_Normalization() function adopting the EDASeq protocol (Risso et al., 2011)
and (Bullard et al., 2010).

Molecular subtypes, mutation data and clinical data were pulled using TCGAbiolinks and the
following functions: TCGAquery_subtype(), GDCquery_maf() retrieving somatic variants that
were called by the MuTect2 pipeline, and GDCquery_clinic() respectively.

For BRCA tumors with PAM50 classification (Ciriello et al., 2015) were stratified in 5 molecular
subtypes: Basal-like (98), HERZ2-enriched (58), Luminal A (231), Luminal B (127) and
Normal-like (8). Normal-like samples were not considered in this analysis due for the limited
number of samples availability.

Tumor stages information was retrieved from the clinical data grouping to main stages (I,11,111,1V)

each subgroups la, llb, llic etc.
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Databases

Gene Programs used for Moonlight analysis were expert-based selected considering biological
functions enriched by the PanCancer comparison, using the differential expressed genes

between tumor samples and normal samples.

Furthermore we used the Molecular Signatures Database (MSigDB) considering the following
collections to perform the Gene Set Enrichment Analysis (GSEA) analysis. (Subramanian et al.,
2005) .

Collections FileName

H: hallmark gene sets h.all.v6.1.symbols.gmt.txt

C2: BIOCARTA pathway database c2.cp.biocarta.v6.1.symbols.gmt.txt
C2: KEGG pathway database c2.cp.kegg.v6.1.symbols.gmt.txt
C2: REACTOME pathway database c2.cp.reactome.v6.1.symbols.gmt.txt
C3 TFT: transcription factor targets c4.all.v6.1.symbols.gmt.txt

C5 BP: GO biological process ¢5.bp.v6.1.symbols.gmt.txt

C5 CC: GO cellular component c5.cc.v6.1.symbols.gmt.txt

C5 MF: GO molecular function c5.mf.v6.1.symbols.gmt.txt

C6: oncogenic signatures c6.all.v6.1.symbols.gmt.txt

C7: immunologic signatures c7.all.v6.1.symbols.gmt.txt

Gold-standard of known driver genes (OCG and TSG)

A recent review has argued that a comparative assessment of role prediction methods is not
straightforward due to the lack of a clear gold-standard of known OCGs and TSGs (Tokheim et
al., 2016). To create the best currently available training set of known OCGs and TSGs we

added those genes to our training set that are verified by at least two sources.
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We retrieved a list of validated OCGs and TSGs from the Catalogue of somatic mutations in
cancer (COSMIC) (Forbes et al., 2008) . The list consists of 84 OCGs, 55 TSGs, 17 dual role
genes and 439 genes without validated role. The list provides additional information such as the
type of mu- tation dominant (448), recessive (134), dominant/recessive (7) and undeclared (3).
Crossing these two types of information shows that all OCGs are linked to dominant mutation

and most TSGs are linked to recessive mutations (42), nine are linked to dominant mutations.

A second list was published in (Vogelstein et al., 2013), it consists of 54 OCGs and 71 TSG.

Table 1: TCGA and GEO PanCancer data used in this study

TCGA GEO Validation
Cancer TP NT | DEG* Dataset TP NT Platform DEG** Common
BLCA 408 19 | 2937 GSE13507 165 10 GPL65000 2099 896
BRCA 1097 | 114 | 3390 GSE39004 61 47 GPL6244 2449 1248
CHOL 36 9 5015 GSE26566 104 59 GPL6104 3983 2587
COAD 286 41 | 3788 GSE41657 25 12 GPL6480 3523 1367
ESCA 184 11 | 2525 GSE20347 17 17 GPL571 1316 406
GBM 156 5 4828 GSE50161 34 13 GPL570 4504 2660
HNSC 520 44 | 2973 GSE6631 22 22 GPL8300 142 129
KICH 66 25 | 4355 GSE15641 6 23 GPL96 1789 680
KIRC 533 72 | 3618 GSE15641 32 23 GPL96 2911 939
KIRP 290 32 | 3748 GSE15641 11 23 GPL96 2020 756
LIHC 371 50 | 3043 GSE45267 46 41 GPL570 1583 860
LUAD 515 59 | 3498 GSE10072 58 49 GPL96 666 555
LUSC 503 51 | 4984 GSE33479 14 27 GPL6480 3729 1706
PRAD 497 52 | 1860 GSE6919 81 90 GPL8300 246 149
READ 94 10 | 3628 GSE20842 65 65 GPL4133 2172 1261
STAD 415 35 | 2622 GSE2685 10 10 GPL80 487 164
THCA 505 59 | 1994 GSE33630 60 45 GPL570 1451 781
UCEC 176 24 | 4183 GSE17025 11 53 GPL570 2487 955
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Functionalities overview
The Moonlight pipeline tool / suite provides well-known and new functionalities as illustrated in

(Figure 1), in particular here follows the details and each of the functions to be employed:
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1. Data Collection using the functions getDataTCGA & getDataGEO, allow the end-user
to retrieve gene expression data from TCGA / GDC and GEO data portal, respectively.

2. Differential Phenotype Analysis (DPA) to identify genes or regions that are significantly
different when two conditions are compared such as normal and tumor, or normal and a

certain cancer stage, or even normal and a specific molecular cancer subtype.

3. Functional Enrichment Analysis (FEA), using Fisher’s test, to identify gene sets (with
biological functions linked to the cancer study) and that are significantly enriched in the
regulated genes (RGs). The principle behind FEA consists in i) evaluate if some of those
DEGs are involved in a BP through an assessment of the overlap between the list of
DEGs and genes relevant to this BP determined by literature mining; ii) detect the BPs
mainly enriched by DEGs a Fisher Exact Test is used to calculate the probability of each
BP is enriched by the entire list of DEGs.

4. Gene Regulatory Network (GRN) inferred between each single DEG (sDEG) and all
genes by means of mutual information, obtaining for each DEG a list of regulated genes
(RG).

5. Upstream Regulator Analysis (URA) for DEGs. In each enriched gene set, we defined a
Moonlight Z-score as the ratio between the sum of all predicted effects for all the gene

involved in the specific function and the square-root of the number of all genes.

6. Pattern Recognition Analysis (PRA) identifies candidate TSGs (down) and OCGs (up).

We either use user defined biological processes or random forests.

7. We applied the above procedure to multiple cancer types to obtain cancer-specific lists
of TCGs and OCGs. We compared the lists for each cancer: if a sDEG was TSG in a
cancer and OCG in another we defined it as dual-role TSG-OCG. Otherwise if we found
a sDEG defined as OCG or TSG only in one tissue we defined it tissue specific

biomarker.

8. We used the COSMIC database to define a list of gold standard TSG and OCGs to

assess the accuracy of the proposed methods.


https://doi.org/10.1101/265322
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/265322; this version posted February 14, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

ROMA score for pathway activity

For the pathway activity evaluation, Representation and quantification Of Module Activity
(ROMA) (See https://github.com/sysbio-curie/Roma) (Martignetti et al., 2016) was also
employed as alternative to the Moonlight Z-score. For each module under analysis, the
algorithm applies Principal Component Analysis (PCA) to the sub-matrix composed of the
expression values of the signature genes across samples. Then ROMA evaluates the module
overdispersion by verifying if the amount of variance explained by the first principal component
of the expression sub-matrix (L1 value in ROMA) is significantly larger than that of a random set
of genes of the same size. This thus represents an unsupervised approach, that can be also

used in combination to the supervised Z-score to detect concordant signals.
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RESULTS
Case study n.1a (FEA using TCGA BRCA gene expression)

In this case study using we defined a gene expression signature (GeS) after running
TCGAanalyzeDEA between breast cancer samples BRCA TP and NT obtained 3390 DEGs
namely the differentially expressed genes (DEGs). Figure 2 showed the top 32 BPs enriched
significantly with [Moonlight-score| >=1 and FDR <= 0.01 using the above GeS. Increased levels
reported in yellow and decreased in purple, and in green showing the -logFDR / 10. A negative
Z-score indicates that the process’ activity is decreased. A positive Z-score indicates that the

process’ activity is increased.
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Case study n.1b (Upstream regulator analysis (URA) using TCGA BRCA gene expression)

We performed Upstream regulator analysis (URA) using the GeS (n=3390 DEGSs) defined in
case study n.1a to identify the cause of a downstream effect in cellular biology. The
identification of upstream regulator molecules and their related biological processes can help to
better understand the detected expression changes by the DEA.

In the figure below (Figure 3) we applied also the Pattern recognition Analysis on the URA
obtained from the BRCA considering as apoptosis of tumor cell lines and proliferation of cells as

the interested biological process for the definition of upstream regulators.
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Case study n.1c (Quantification of genes effect on Biological Functions (BF) data-driven
by ROMA-score

We computed the activity score of biological processes potentially modulated by OCG and TSG
using ROMA (Representation and quantification Of Module Activities) (Martignetti et al., 2016),
a gene-set-based quantification algorithm, for more details see Methods. As a case study, we
applied ROMA to the BRCA dataset of TCGA (table: module_scores.xls). This approach

revealed substantial similarity with the results obtained by Moonlight Z-score.
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Case study n. 2: Characterize intertumoral (between tumors) genomic epigenomic and
transcriptomic heterogeneity in cancer tissue by identifying dual role genes.

In this case study, we used the expression levels of genes in all the samples obtained from
TCGA / GDC with llluminaHiSeq RNASeqV2 in 18 normal tissues (NT) and 18 cancer tissues
(CT) according to the TCGA criteria (Table 1). We applied the complete Moonlight pipeline
(FEA-URA-PRA) to extract those genes that were significantly increasing or decreasing
biological processes such as proliferation of cells and apoptosis.

(Figure 4) showed the results of the moonlight pipeline for case study n.2 that can be visualized

with a circos plot using the function plotCircos.
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Case study n.3: Characterize intratumoral (within a tumor) genomic epigenomic and
transcriptomic heterogeneity in cancer tissue by identifying dual role genes.

In this case study Figure 5 (a) Comparison between BRCA normal samples and specific stages
samples. (‘c) Comparison between normal samples and specific BRCA molecular subtypes
samples. (b) (d) Circos plots for stages and molecular subtypes respectively, of moonlight genes
predicted using expert knowledge PRA with two selected biological processes (BP) such as
apoptosis and proliferation of cells. Outer to inner layer OCG in green TSG in yellow, reporting
in purple, orange, the number for each stage, mutations inframe deletion, inframe insertion,
missense. Connecting gene-gene links between two cancer stages, green in OCG in both,
yellow TSG in both, red moonlight genes playing dual role OCG in one and TSG in the other.e
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Figure Legends

Figure 1: Moonlight pipeline. Proposed Moonlight functionalities for functional biological

process and driver genes discovery.

Figure 2. Case study n.1a (Functional Enrichment Analyisis) using TCGA BRCA gene
expression. Barplot showing the top 32 BPs enriched significantly with |[Moonlight-score| >=1
and FDR <= 0.01. Increased levels reported in yellow and decreased in purple, and in green
showing the -logFDR / 10. A negative Z-score indicates that the process’ activity is decreased. A

positive Z-score indicates that the process’ activity is increased.

Figure 3: Case study n.1b (Upstream regulator analysis (URA) using TCGA BRCA gene
expression). Heatmap showing to 40 differentially expressed upstream regulators of the
biological process from case study n.1a. applying Hierarchical cluster analysis based after

computing the distance matrix by euclidean method.

Figure 4: Case study n. 2: Characterize intertumoral (between tumors) genomic
epigenomic and transcriptomic heterogeneity in cancer tissue by identifying dual role
genes. Circos Plot showing an integrative analysis of 18 TCGA cancer types. Outer ring: color
by cancer type, Inner ring: OCGs and TSGs, Inner connections: green: common OCGs yellow:
common TSGs red: possible dual role. Reporting in purple, orange, the number for each stage,

mutations inframe deletion, inframe insertion, missense.

Figure 5: Case study n.3: Characterize intratumoral (within a tumor) genomic epigenomic
and transcriptomic heterogeneity in cancer tissue by identifying dual role genes.

(a) Comparison between BRCA normal samples and specific stages samples. (‘c) Comparison
between normal samples and specific BRCA molecular subtypes samples. (b) (d) Circos plots
for stages and molecular subtypes respectively, of moonlight genes predicted using expert
knowledge PRA with two selected biological processes (BP) such as apoptosis and proliferation
of cells. Outer to inner layer OCG in green TSG in yellow, reporting in purple, orange, the
number for each stage, mutations inframe deletion, inframe insertion, missense. Connecting
gene-gene links between two cancer stages, green in OCG in both, yellow TSG in both, red

moonlight genes playing dual role OCG in one and TSG in the other.
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Conclusion

In this paper, we proposed a new methodology called Moonlight to identify driver cancer genes
and their specific role in different contexts. In particular, our method can predict oncogenes (or
tumor suppressor genes) as those genes that increase (decrease) biological processes related
to cancer growth while at the same time decrease (increase) biological processes that are
blocking cancer growth. Moreover, our approach sounds promising to identify those genes with
a dual role i.e., the moonlight genes. These genes are emerging in cancer studies and they are
elusive to identify due to their context-dependent role, i.e. they could act as an oncogene in a
certain cancer type or stage, as well as a tumor suppressor in other contexts. They thus
challenges the development of targeted therapies and treatments, emphasizing the needs of
new methods to accurately identifying them. Examples of processes related to cancer growth
included in our study are cell proliferation and cell survival, examples of processes related to
cancer blocking are homeostasis and cell death. A process is increased (decreased) if the
associated functional enrichment analysis (FEA) yields positive (negative) Z-score values, i.e.
high correlation (high anti-correlation) between the gene expression pattern and the
literature-curated information. Then we determine whether a gene is increasing (decreasing) the
biological process using an inferred gene regulatory network and subsequent Upstream
Regulator Analysis (URA)
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