

1 **Targeted mutation detection in breast cancer using MammaSeq™**

2 **Authors:** Nicholas G. Smith¹, Rekha Gyanchandani¹, Grzegorz Gurda², Peter C.

3 Lucas³, Ryan J. Hartmaier¹, Adam M. Brufsky⁴, Shannon Puhalla⁴, Amir Bahreini⁵,

4 Karthik Kota⁴, Abigail I. Wald³, Yuri E. Nikiforov³, Marina N. Nikiforova³, Steffi

5 Oesterrich¹, Adrian V. Lee¹

6 **Affiliations:**

7 ¹Department of Pharmacology and Chemical Biology, and Human Genetics, UPMC

8 Hillman Cancer Center, Magee-Womens Research Institute, University of Pittsburgh,

9 Pittsburgh, PA

10 ²Gundersen Health System, La Crosse, WI

11 ³Department of Pathology, University of Pittsburgh, Pittsburgh, PA

12 ⁴Department of Medicine, University of Pittsburgh, Pittsburgh, PA

13 ⁵Department of Genetics and Molecular Biology, School of Medicine, Isfahan

14 University of Medical Sciences, Isfahan, Iran

15

16 **Corresponding author:**

17 Adrian V. Lee, Ph.D.

18 UPMC Hillman Cancer Center

19 Department of Pharmacology and Chemical Biology

20 Magee-Womens Research Institute

21 204 Craft Avenue

22 Pittsburgh, PA 15213

23 leeav@upmc.edu

24 **Abstract:**

25 **Background:** Breast cancer is the most common invasive cancer among women
26 worldwide. Next-generation sequencing (NGS) has revolutionized the study of cancer
27 across research labs around the globe, however genomic testing in clinical settings
28 remain limited. Advances in sequencing reliability, pipeline analysis, accumulation of
29 relevant data, and the reduction of costs are rapidly increasing the feasibility of NGS-
30 based clinical decision making.

31 **Methods:** We report the development of MammaSeq, a breast cancer specific NGS
32 panel, targeting 79 genes and 1369 mutations, optimized for use in primary and
33 metastatic breast cancer. To validate the panel, 46 solid tumor and 14 plasma
34 circulating-free cfDNA samples were sequenced to a mean depth of 2311X and 1820
35 X respectively. Variants were called using Ion Torrent Suite 4.0 and annotated with
36 cravat CHASM. CNVKit was used to call copy number variants in the solid tumor
37 cohort. The oncoKB Precision Oncology Database was used to identify clinically
38 actionable variants. ddPCR was used to validate select cfDNA mutations.

39 **Results:** In cohorts of 46 solid tumors and 14 cfDNA samples from patients with
40 advanced breast cancer we identified 592 and 43 protein coding mutations.
41 Mutations per sample in the solid tumor cohort ranged from 1 to 128 (median 3) and
42 the cfDNA cohort ranged from 0 to 26 (median 2.5). Copy number analysis in the solid
43 tumor cohort identified 46 amplifications and 35 deletions. We identified 26 clinically
44 actionable variants (levels 1-3) annotated by OncoKB, distributed across 20 out of 46

45 cases (40%), in the solid tumor cohort. Allele frequencies of ESR1 and FOXA1
46 mutations correlated with CA.27.29 levels in patient matched blood draws.

47 **Conclusions:** In solid tumors biopsies and cfDNA, MammaSeq detects clinically
48 actionable mutations (oncoKB levels 1-3) in 22/46 (48%) solid tumors and in 4/14
49 (29%) of cfDNA samples. MammaSeq is a targeted panel suitable for clinically
50 actionable mutation detection in breast cancer.

51 **Keywords:** Breast Cancer – Targeted Sequencing – cfDNA – Clinical Utility – tumor
52 burden

53 **Background**

54 Advanced breast cancer is currently incurable. Selection of systematic therapies is
55 primarily based on clinical and histological features and molecular subtype, as
56 defined by clinical assays [1]. Large-scale genomic studies have shed light into the
57 heterogeneity of breast cancer and its evolution to advanced disease [2, 3], and
58 coupled with the rapid advancement of targeted therapies, highlights the need for
59 more sophisticated diagnostics in cancer management [4].

60 Next-generation sequencing (NGS) based diagnostics allow clinicians to identify
61 specific putative driver events in individual tumors. Correctly identifying disease
62 drivers may enable clinicians to better predict treatment responses, and significantly
63 improve patient care [5]. However, to date, the use of NGS as a clinical diagnostic
64 remains limited [6]. Published data regarding prognostic utility, and utilization for
65 selection of targeted therapies or enrolment clinical trials is lacking.

66 The original 46 gene AmpliSeq Cancer Hotspot Panel (Thermo Fisher Scientific) was
67 shown to have a diagnostic suitability in primary lung, colon, and pancreatic cancers
68 [7], however, our previous report that surveyed the clinical usefulness of the 50 gene
69 AmpliSeq Cancer Hotspot Panel V2 in breast cancer found that the panel lacks
70 numerous key known drivers of advanced breast cancer [8]. For example, the panel
71 does not include any amplicons in *ESR1*, which harbor mutations which are known to
72 contribute to hormone therapy resistance (for review see [9]), and lacks coverage of
73 the majority of known driver mutations in *ERBB2* [10].

74 The lack of any reported breast cancer specific diagnostic NGS test inspired the
75 development of MammaSeqTM, an amplicon based NGS panel built specifically for use
76 in advanced breast cancer. 46 solid tumor samples from women with advanced breast
77 cancer, plus an additional 14 samples of circulating-free DNA (cfDNA) from patients
78 with metastatic breast cancer were used in this pilot study to define the clinical utility
79 of the panel. The patient cohort encompassed all 3 major molecular subtypes of breast
80 cancer (luminal, ERBB2 positive and triple negative), and both lobular and ductal
81 carcinomas (Table 1).

82 **Methods:**

83 **Patient Sample Collection**

84 For MammaSeq NGS testing, this study utilized breast tumors from 46 patients and
85 blood samples from 7 patients. The research was performed under the University of
86 Pittsburgh IRB approved protocol PRO16030066. The general patient characteristics
87 are shown in Table 1 and more detailed patient information is shown in Supplemental
88 Table 1. We utilized 46 of the 48 breast cancer cases previously described in a report
89 by Gurda et al [8]. All of these cases underwent AmpliSeq Cancer Hotspot Panel v2
90 NGS testing between January 1, 2013 and March 31, 2015 within the UPMC health
91 system. MammaSeq™ was performed on the identical genomic DNA isolated from
92 these tumor specimens that was originally used for initial clinical testing. 2 cases were
93 excluded due to insufficient DNA. In addition, a cohort of 7 patients with metastatic
94 breast cancer (MBC) had 20ml venous blood drawn in Streck Cell-Free DNA tubes
95 between July 1, 2014 and March 29, 2016. All patients signed informed consent, and
96 samples were acquired under the University of Pittsburgh IRB approved protocol
97 (IRB0502025). We previously reported on the detection of ESR1 mutations in cfDNA
98 from these 7 patients using ddPCR [11]. Serial blood draws (range; 2-5) were
99 available for 4 patients. A total of 14 blood samples from 7 patients were utilized for
100 cfDNA and buffy coat DNA isolation, followed by NGS testing.

101 **Patient Sample Processing**

102 cfDNA was isolated as described previously [11]. Blood was processed to separate
103 plasma and buffy coat by double centrifugation within 4 days of blood collection. 1ml
104 to 4ml of plasma was used for isolation of cfDNA using QIAamp Circulating Nucleic
105 Acid kit (Qiagen). cfDNA was quantified using Qubit dsDNA HS assay kit
106 (ThermoFisher Scientific). Genomic DNA was isolated from buffy coat using DNeasy
107 Blood & Tissue Kit (Qiagen) for use as germline DNA control. Buffy coat DNA was
108 quantified using Qubit dsDNA BR assay kit (ThermoFisher Scientific).

109 **Ion Torrent Sequencing**

110 20ng of DNA (10ng per amplicon pool) was used for library preparation using Ion
111 AmpliSeq™ Library Kit 2.0 (Thermo Fisher Scientific) and the custom designed
112 MammaSeq™ primer panel (Supplementary Data File 1). Template preparation by
113 emulsion PCR and enrichment was performed on the Ion OneTouch 2 system
114 (ThermoFisher Scientific). Template positive Ion Sphere particles (ISP) were loaded
115 onto Ion chips and sequenced. Tumor DNA and cfDNA samples were sequenced using
116 P1 chips (60 million reads) on the Ion Proton™ (ThermoFisher Scientific) at
117 empirical depths of 1000x and 5000x respectively. Buffy coat DNA was sequenced
118 using 318 chip (6 million reads) on the Ion Torrent Personal Genome Machine
119 (PGM™) (ThermoFisher Scientific) at 500x.

120 **Variant Calling**

121 Ion Torrent Suite V4.0 was used to align raw fastq files to the hg19 reference genome
122 and generate VCF files (4.0% AF cutoff for tumor samples, 1.0% AF cutoff for cfDNA

123 samples). Cravat CHASM-v4.3 (<http://hg19.cravat.us/CRAVAT/>) was used to
124 annotate variants with resulting protein changes and SNP annotation from ExAC [12]
125 and 1000Genomes [13]. Variant calls from buffy coat DNA were used to remove
126 germline variants from the 14 cfDNA samples in a patient matched manner. SNP and
127 sequencing artifact filtering, data organization, and figure preparation were
128 performed in R (v3.4.2). The R package ComplexHeatmaps was used to generate
129 figures 1 and 3A [14]. CNVKit was used to call copy number across all genes, however
130 only genes containing more than 3 amplicons were reported (Table 2) [15]. DNA from
131 the buffy coat of the cfDNA cohort was used to generate a single copy-number
132 reference which was used as a baseline for copy number calling on the solid tumor
133 cohort. CNVKit reports copy number as a log₂ ratio change. CNV were considered
134 significant above an absolute copy number above 6 (log₂(6/2)=1.58) or below 1
135 (log₂(1/2) = -1).

136 **Data and code**

137 Annotated, unfiltered, mutation and CNV data, along with R code related to this study,
138 are deposited on GitHub. (<https://github.com/smithng1215>)

139 **ddPCR**

140 2 ng of cfDNA or buffy coat DNA was subjected to targeted high-fidelity
141 preamplification for 15 cycles using custom designed primers (Supplemental Table
142 2) and PCR conditions previously described [11]. Targeted preamplification products
143 were purified using QIAquick PCR Purification kit (Qiagen) and diluted at 1:20 before

144 use in ddPCR reaction. 1.5ul of diluted preamplified DNA was used as input for ddPCR
145 reaction. ddPCR was performed for ESR1-D538G, FOXA1-Y175C, and PIK3CA-
146 H1047R mutations. Custom ddPCR assays were developed for ESR1-D538G
147 (Integrated DNA Technologies) and FOXA1-Y175C (ThermoFisher Scientific).
148 Sequences are described in Supplementary Table 3 . PIK3CA-H1047R was analyzed
149 using PrimePCR ddPCR assay (Bio-Rad Laboratories) dHsaCP2000078 (PIK3CA)/
150 dHsaCP2000077 (H1047R). Nuclease-free water and buffy coat-derived wildtype
151 genomic DNA as negative controls, and oligonucleotides carrying mutation of interest
152 or DNA from a cell line with mutation as positive controls were included in each run
153 to eliminate potential false positive mutant signals. An allele frequency of 0.1% was
154 used as a lower limit of detection.

155 **Statistical Analysis**

156 All statistical analysis was performed in R 3.4.2. To determine if there was a
157 significant correlation between mutational burden and copy number burden, we
158 calculated the pearson correlation coefficient between the number of somatic
159 mutations in each sample, with the number of significant copy number changes in
160 each sample.

161 **Results**

162 **Development of MammaSeq™ Panel**

163 To build a comprehensive list of somatic mutations in breast cancer, we combined
164 mutation calls from primary tumors in TCGA (curated list level 2.1.0.0) and limited
165 studies focused on metastatic breast cancer [16-18]. The biological function and
166 druggability of mutated genes were investigated via Gene Ontology (GO) [19] and
167 DGIdb (v2.0) databases [20]. The information regarding FDA approved drugs was
168 downloaded from “<https://www.fda.gov/Drugs>” and added to our list. We used the
169 following criteria to prioritize the clinically important mutated genes:

170 • The mutated gene is among significantly mutated genes (SMGs) in primary
171 and metastatic samples.

172 • The mutated gene is clinically actionable (e.g. there is available FDA-approved
173 drug(s) against it).

174 • The mutated gene is of functional importance in cancer (e.g. kinase genes
175 were scored higher in the list).

176 • The mutation has been found in more than 5 primary tumors OR 2 metastatic
177 tumors.

178 • The mutation has been found in both primary and metastatic lesions.

179 The final mutation list was then curated and narrowed down to 80 genes and 1398
180 mutations. Additional amplicons were added to select genes to ensure sufficient
181 coverage of genes known to harbor functional copy-number variants. Amplicon probe

182 design was unsuccessful for 29 mutations, including all 3 mutations in the gene HLA-
183 A, yielding a final panel consisting of 688 amplicons targeting 1369 mutations across
184 79 genes. (Selected genes described in Table 2. Gene coverage depicted in
185 Supplemental Figure 1. Panel design described in supplemental data file 1).

186 The panel includes 34 of the 50 (68%) genes incorporated in AmpliSeq Cancer
187 Hotspot Panel v2. Genes that were not mutated in breast cancer (TCGA and in-house
188 data) and genes that were not considered to be clinically actionable were not
189 included. The MammaSeq™ panel includes 8 of the 10 (80%) genes and ~ 91% of the
190 hotspots targeted by the Thermo Oncomine Breast cfDNA assay. MammaSeq™ covers
191 14% of the base pairs covered by the Qiagen Human Breast Cancer GeneRead DNAseq
192 Targeted Array, however, it covers hotspots in over half of the genes (57%) (plus an
193 additional 34 genes). Of these panels, MammaSeq is the only one that includes CDK4
194 and CDK6, both of which can be targeted with FDA approved CDK4/6 inhibitors [21].
195 Additional genes unique to MammaSeq include common drivers, CCND1, MTOR, and
196 FGFR4. Finally, MammaSeq covers 68 of 315 genes targeted by the larger pan cancer
197 Foundation Medicine, FoundationOne panel. Supplemental figure 2 details the
198 overlap in coverage between MammaSeq™ and above mentioned commercially
199 available panels.

200 **Characterization of Genetic Variants detected by Mammaseq in a Solid Tumor
201 Cohort**

202 To evaluate performance in mutation detection by the MammaSeq™ panel,
203 sequencing was carried out on a cohort of 46 solid tumor samples, with a mean read

204 depth of 2311X (Supplemental Figure 3). 4970 total variants (mean: 106, median:
205 82) were called across all patient samples. We removed identical genomic variants
206 that were present in more than 10 samples as these were likely to be sequencing
207 artifacts or common SNPs. Removing non-coding and synonymous variants yielded
208 1433 and 901 variants, respectively. To filter out less common polymorphisms, we
209 removed variants annotated in ExAC [12] or the 1000Genomes [13] databases in
210 more than 1% of the population. We removed variants with an allele frequency above
211 90% as these were likely germline. Finally, to focus on high confidence mutations, we
212 removed variants with a strand bias outside of the range of 0.5-0.6, yielding a total of
213 592 protein coding mutations (mean 12.9, median 3, IQR 3) (Figure 1).

214 Interestingly, as noted by the variation between the mean and median, the total
215 number of mutations was skewed toward a subset of samples (Figure 1-top panel).
216 408 of the 592 mutations (69%) were found in just 4 of the 46 samples (Supplemental
217 Figure 4). These 4 samples are by definition outliers, as they are all more than 1.5
218 times the IQR plus the median. 3 of these 4 samples with high mutational burden were
219 of triple negative subtype, the fourth being ER⁺/HER2⁺. The most common mutated
220 genes were TP53 (57%) and PIK3CA (43%). We also noted common mutations in
221 ESR1 (21%), ATM (21%) and ERBB2 (17%).

222 To examine CNV changes, we established a baseline for pull down and amplification
223 efficiency by performing MammaSeqTM on normal germline DNA from 14 samples (7
224 patients – 6 additional). CNVkit [15] was used to pool the normal samples into single
225 reference and then call CNV in the solid tumor cohort (Figure 1). CNV were identified

226 in many common oncogenes including *CCND1*, *MYC*, *FGFR1* and others. 2 of the 3
227 *ERBB2*⁺ samples (via clinical assay) showed CNV by MammaSeq. *FGF19* and *CCND1*
228 were co-amplified in 9 of the 46 (20%) solid tumors. Both genes are located on 11q13,
229 a band identified in GWA studies as harboring variants, including amplifications,
230 associated with ER⁺ breast cancers [22]. There wasn't a correlation between
231 mutational burden and copy number burden (pearson correlation p-value = 0.7445).

232 **Clinical Utility of Genetic Variants Detected by MammaSeq**

233 To determine how many of the mutations have putative clinical utility, we utilized the
234 OncoKB precision oncology knowledge database [23]. 25 of the genes in the
235 MammaSeqTM panel (32% of the panel) harbor clinically actionable variants with
236 supporting clinical evidence (OncoKB levels 1-3). In total, we identified 28 actionable
237 variants (26 SNV and 2 *ERBB2* amplifications) that have supporting clinical evidence
238 (level 1-3) and an additional 3 actionable variants supported by substantial research
239 evidence (level 4) in the solid tumor cohort (Table 3). The 26 SNVs were distributed
240 across 20 of the 46 cases (43%) (Figure 2). Consistent with the report detailing the
241 development of the OncoKB database [24], the vast majority of actionable variants in
242 breast cancer are annotated at level 3, indicating that variants have been used as
243 biomarkers in Clinical Trials, however they are not FDA approved. In fact, the only
244 level 1 annotated variant in breast cancer is *ERBB2* amplification.

245 **Characterization of Genetic Variants detected by Mammaseq in cfDNA**

246 To examine the potential of MammaSeq™ to detect variants in cfDNA, we sequenced
247 14 cfDNA samples isolated from 7 patients with metastatic disease. cfDNA samples
248 were sequenced to a mean depth of 1810X, while matched buffy gDNA was sequenced
249 to a mean depth of 425X (Supplemental figure 4) .

250 We applied the same filtering pipeline to the cfDNA variants and solid tumor variants,
251 except in the smaller cohort we removed all identical variants found in more than 4
252 samples, and lowered the minimum allele frequency to 1.0%. We identified a total of
253 43 somatic mutations across the 14 cfDNA samples (mean: 3.1, median 1, IQR 1.75)
254 (Figure 3A). Similar to the solid tumor cohort, a single draw from 1 patient (CF_28-
255 Draw 1) harbored 25 of the 13 (58%) total mutations. Using the same definition, this
256 sample is also an outlier. Similar to the solid tumor cohort, PIK3CA and ESR1 were
257 among the most commonly mutated genes.

258 Two of the identified somatic mutations (each identified in 2 draws from 1 patient)
259 are annotated at level 3 in the OncoKB database, ESR1 - D538G and PIK3CA - H1047R
260 (Figure 3A). The ESR1 mutation was identified in 2 separate blood draws from patient
261 CF_28 taken 13 months apart. Interestingly, the FOXA1 – Y175C mutation was also
262 identified in the same draws from patient CF_28 (Figure 3B). The allele frequencies
263 of these mutations strongly correlate with levels of cancer antigen 27-29 (CA-27.29),
264 indicating that the mutation frequencies are likely an indicator of disease burden.
265 Mutations identified in all three genes (ESR1, PIK3CA, and FOXA1) were
266 independently validated using ddPCR (Supplemental Figure 5).

267 **Discussion**

268 Advances in the accuracy, cost, and analysis of NGS make it an ideal platform to
269 develop diagnostics that can be used to precisely identify treatment options.
270 MammaSeq was developed to comprehensively cover known driver mutation
271 hotspots specifically in primary and metastasis breast cancer that would identify
272 mutations with potential prognostic value. Typically, NGS diagnostics are reserved
273 for late stage disease. As a result, (as noted in our previous publication[8]), the solid
274 tumor cohort was significantly enriched for metastatic disease and markers of poor
275 prognosis - triple negative subtype, late presentation, and therapy resistance.

276 Consistent with previous mutational studies, we report that a small subset of breast
277 cancers harbor high mutational burden [25]. Across a variety of cancers, groups have
278 demonstrated the correlation between the tumor mutation burden (TMB) and the
279 efficacy of immunotherapy checkpoint inhibitors (reviewed here [26]). However, the
280 ability to accurately depict tumor mutation burden is dependent on the percentage of
281 the covered exome. Illumina have shown that the TruSight Tumor 170 panel (170
282 genes and 0.524 Mb) begins to skew the TMB upwards, when used on samples that
283 contain relatively few mutations [27]. A previous study by Chalmers et al. used a
284 computational model to show that below 0.5Mb, TMB measurements are highly
285 variable and unreliable [28]. The MammaSeq™ panel covers just 82,035bp (0.08Mb),
286 and we speculate that it cannot be used to calculate a mutational burden comparable
287 to whole exome based studies. That being said, the stark difference in the total

288 number of mutations identified in the subset of 4 tumor samples, suggests that they
289 may be suited for immunotherapy.

290 Liquid biopsies are beginning to be utilized clinically after numerous proof-of-
291 principle studies have demonstrated the potential of circulating cell-free DNA
292 (cfDNA) for prognostication, molecular profiling, and monitoring disease burden [11,
293 29-33]. We have demonstrated that the MammaSeq™ panel can be used to identify
294 mutations in cfDNA. For one patient (CF_28), we have cfDNA data from 5 blood draws
295 taken over the course of 13 months. The sharp drop-off in the number of somatic
296 mutations identified between the first and second draws co-occurs with a decrease in
297 CA.27.29 levels, suggesting that the patient may have responded well to treatment,
298 leading to disappearance of sensitive clones. In the later blood draws, we did not
299 observe an increase in the total number of somatic mutations, however, we did find
300 an increase in the allele frequency of ESR1-D538G and FOXA1-Y175C mutations,
301 which may be caused by therapeutic selection of resistant clones.

302 High-throughput genotyping of solid tumors and continual monitoring of disease
303 burden through sequencing of cfDNA represent potential clinical applications for NGS
304 technologies. It should be noted that targeted DNA sequencing panels such as
305 MammaSeq™ are far less comprehensive than whole exome sequencing and they do
306 not allow for evaluation of structural variants, which can often lead to gene fusions
307 that function as drivers [34]. Nevertheless, as a focused panels represent cost-
308 effective and useful alternatives to whole exome sequencing for targeted mutation
309 detection.

310 **Conclusions**

311 Here we report the development of MammaSeqTM, a targeted sequencing panel
312 designed based on current knowledge of the most common, impactful, and targetable
313 drivers of metastatic breast cancer. This data provides further evidence for the use of
314 NGS diagnostics in the management of advanced breast cancers.

315 **List of Abbreviations**

316 cfDNA: circulating-free cfDNA

317 CNV: Copy Number Variants

318 ddPCR: Droplet Digital PCR

319 dgIDB: Drug-Gene Interaction Database

320 gDNA: Genomic DNA

321 GO: Gene Ontology

322 GWAs: Genome Wide Association studies

323 IDC: Invasive Ductal Carcinoma

324 ILC: Invasive Lobular Carcinoma

325 ISP: Ion Sphere particles

326 MBC: Metastatic Breast Cancer

327 NGS: Next Generation Sequencing

328 PGM: Ion Torrent Personal Genome Machine

329 SMG: Significantly Mutated Gene

330 SNP: Single Nucleotide Polymorphism

331 SNV: Single Nucleotide Variant

332 TCGA: The Cancer Genome Atlas

333 TMB: Tumor Mutational Burden

334 **Declarations**

335 **Ethics approval and consent to participate**

336 The research was performed under the University of Pittsburgh IRB approved
337 protocol PRO16030066.

338 **Consent for publication**

339 Not applicable.

340 **Availability of data and material**

341 Annotated, unfiltered, mutation and CNV data, along with R code related to this study,
342 are deposited on GitHub (<https://github.com/smithng1215>).

343 **Competing Interests**

344 RJH received salary and has ownership interest (including patents) in Foundation
345 Medicine and is currently an employee at AstraZeneca. Other authors declare that
346 they have no conflict of interests to report.

347 **Funding**

348 Research funding for this project was provided in part by a Susan G. Komen Scholar
349 award to AVL and to SO, the Breast Cancer Research Foundation (AVL and SO), the
350 Fashion Footwear Association of New York (SO and AVL), and a research grant from
351 Glimmer of Hope.

352 **Author Contributions**

353 RJH, AB and AVL designed the MammaSeq panel. NGS and RG analyzed data and wrote
354 manuscript. AMB, SP, and KK collected samples. AIW, PCL, and GG performed sample
355 processing, quality control, and sequencing. NGS, RG, and AVL analyzed data and
356 wrote the manuscript. SO, YEN, and MNN provided critical feedback on panel design
357 and manuscript writing. All authors read and approved the final manuscript.

358 **Acknowledgements**

359 We are thankful to the patients who generously provided tumor tissue for our studies
360 and to the surgical, pathology, and tissue bank colleagues for their substantial
361 assistance and support. This project used the University of Pittsburgh HSCRF
362 Genomics Research Core, and the UPCI Tissue and Research Pathology Services that
363 is supported in part by award P30CA047904. We thank Lousie Mazur and the UPMC
364 Cancer Registry for clinical abstraction.

365 **Figure Legends**

366 **Fig 1: Genetic alterations identified by the MammaSeqTM gene panel in a test**
367 **cohort of 46 breast cancers.** Oncoprint depicting the distribution of somatic
368 mutations, copy-number amplifications (absolute copy-number greater than 6), and
369 deletions (absolute copy-number less than 1).

370 **Fig 2: Clinical Actionality of MammaSeqTM identified somatic alterations. (A.)**
371 Annotation levels, adapted from OncoKB[23] **(B.)** Samples were categorized based on
372 the most actionable alteration. Specific alterations and associated drugs are depicted
373 in Table 3.

374 **Fig 3: Genetic alterations identified in cfDNA from a test cohort of 7 patients**
375 **with metastatic invasive ductal carcinoma. (A.)** Oncoprint of somatic mutations
376 identified in 14 cfDNA samples. **(B.)** Clinical timeline and mutant allele frequency of
377 ESR1-D538G and FOXA1-Y175C mutations in serial blood draws from patient CF28.
378 The timeline starts with diagnosis of metastasis and shows tumor marker
379 assessments (CA 27.29 antigen line graph), mutant allele frequency (bar graphs),
380 LLoD (dotted line), blood draws (syringe), and treatments received. Treatment
381 abbreviations: AI (aromatase inhibitor), SERD (selective estrogen receptor
382 degrader), Ev. (Everolimus), Antimb. (Antimetabolite), Platin (Platinum-based
383 chemotherapy).

384 **Supplemental Figure 1:** MammaSeqTM gene coverage. The percentage of protein
385 coding bases pairs in each gene that is sequenced by the MammaSeqTM panel.

386 **Supplemental Figure 2:** Coverage overlap between MammaSeq™ and select
387 commercially available panels used in breast cancer. Overlap of genes present in the
388 MammaSeq™ panel and the **(A.)** Foundation Medicine FoundationOne panel **(B.)**
389 Thermo Ion AmpliSeq Cancer Hotspot Panel (v2) **(C.)** Qiagen GeneRead Human
390 Breast Cancer Panel and the **(D.)** Thermo Oncomine Breast cfDNA Assay. Overlap of
391 the number of base pairs covered for the **(E.)** Qiagen GeneRead and **(F.)** Thermo
392 Oncomine panels were calculated as these panel designs are publicly available.

393 **Supplemental Figure 3:** Mean sequencing read depth for **(A.)** the 46 solid tumor
394 cohort. **(B.)** isolated mononuclear cells from the 14 cfDNA draws and **(C.)** the 14
395 cfDNA samples.

396 **Supplemental Figure 4:** Tumor mutational burden across all samples in the 46 solid
397 tumor cohort. **(A.)** Total detected mutations for each sample.

398 **Supplemental Figure 5:** ddPCR validation of mutations identified by MammaSeq™
399 is indicated along with mutant allele frequencies for **(A.)** ESR1-D538G, **(B.)** FOXA1-
400 Y175C, and **(C.)** PIK3CA-H1047R.

401 **References:**

- 402 1. Harbeck, N., C. Thomssen, and M. Gnant, *St. Gallen 2013: brief preliminary*
403 *summary of the consensus discussion.* Breast Care (Basel), 2013. **8**(2): p. 102-
404 9.
- 405 2. Koren, S. and M. Bentires-Alj, *Breast Tumor Heterogeneity: Source of Fitness,*
406 *Hurdle for Therapy.* Mol Cell, 2015. **60**(4): p. 537-46.
- 407 3. Cancer Genome Atlas, N., *Comprehensive molecular portraits of human breast*
408 *tumours.* Nature, 2012. **490**(7418): p. 61-70.
- 409 4. Hyman, D.M., B.S. Taylor, and J. Baselga, *Implementing Genome-Driven*
410 *Oncology.* Cell, 2017. **168**(4): p. 584-599.
- 411 5. Kamps, R., et al., *Next-Generation Sequencing in Oncology: Genetic Diagnosis,*
412 *Risk Prediction and Cancer Classification.* Int J Mol Sci, 2017. **18**(2).
- 413 6. Pezo, R.C., et al., *Impact of multi-gene mutational profiling on clinical trial*
414 *outcomes in metastatic breast cancer.* Breast Cancer Res Treat, 2017.
- 415 7. Boland, M.G., et al., *Clinical next generation sequencing to identify actionable*
416 *aberrations in phase I program.* Oncotarget, 2015. **6**(24).
- 417 8. Gurda, G.T., et al., *Characterizing Molecular Variants and Clinical Utilization of*
418 *Next-generation Sequencing in Advanced Breast Cancer.* Appl
419 Immunohistochem Mol Morphol, 2016. **00**(00).
- 420 9. Reinert, T., et al., *Clinical Implications of ESR1 Mutations in Hormone*
421 *Receptor-Positive Advanced Breast Cancer.* Frontiers in Oncology, 2017.
422 7(26).
- 423 10. Bose, R., et al., *Activating HER2 mutations in HER2 gene amplification negative*
424 *breast cancer.* Cancer Discov, 2013. **3**(2): p. 224-37.
- 425 11. Wang, P., et al., *Sensitive Detection of Mono- and Polyclonal ESR1 Mutations in*
426 *Primary Tumors, Metastatic Lesions, and Cell-Free DNA of Breast Cancer*
427 *Patients.* Clin Cancer Res, 2016. **22**(5): p. 1130-7.
- 428 12. Lek, M., et al., *Analysis of protein-coding genetic variation in 60,706 humans.*
429 Nature, 2016. **536**(7616): p. 285-91.
- 430 13. Genomes Project, C., et al., *A global reference for human genetic variation.*
431 Nature, 2015. **526**(7571): p. 68-74.
- 432 14. Gu, Z., R. Eils, and M. Schlesner, *Complex heatmaps reveal patterns and*
433 *correlations in multidimensional genomic data.* Bioinformatics, 2016. **32**(18):
434 p. 2847-2849.
- 435 15. Talevich, E., et al., *CNVkit: Genome-Wide Copy Number Detection and*
436 *Visualization from Targeted DNA Sequencing.* PLoS Comput Biol, 2016. **12**(4):
437 p. e1004873.
- 438 16. Toy, W., et al., *ESR1 ligand-binding domain mutations in hormone-resistant*
439 *breast cancer.* Nat Genet, 2013. **45**(12): p. 1439-45.
- 440 17. Robinson, D.R., et al., *Activating ESR1 mutations in hormone-resistant*
441 *metastatic breast cancer.* Nat Genet, 2013. **45**(12): p. 1446-51.
- 442 18. Craig, D.W., et al., *Genome and transcriptome sequencing in prospective*
443 *metastatic triple-negative breast cancer uncovers therapeutic vulnerabilities.*
444 Mol Cancer Ther, 2013. **12**(1): p. 104-16.

445 19. Michael Ashburner, C.A.B., Judith A. Blake, David Botstein, Heather Butler1, J.
446 Michael Cherry, Allan P. Davis, Kara Dolinski, Selina S. Dwight, Janan T. Eppig,
447 Midori A. Harris, David P. Hill4, Laurie Issel-Tarver, Andrew Kasarskis,
448 Suzanna Lewis, John C. Matese, Joel E. Richardson, Martin Ringwald, Gerald
449 M. Rubin & Gavin Sherlock, *Gene Ontology: toll for the unification of biology*.
450 *Nature Genetics*, 2000. **25**.

451 20. Wagner, A.H., et al., *DGIdb 2.0: mining clinically relevant drug-gene*
452 *interactions*. *Nucleic Acids Res*, 2016. **44**(D1): p. D1036-44.

453 21. Bilgin, B., et al., *A current and comprehensive review of cyclin-dependent kinase*
454 *inhibitors for the treatment of metastatic breast cancer*. *Curr Med Res Opin*,
455 2017. **33**(9): p. 1559-1569.

456 22. Turnbull, C., et al., *Genome-wide association study identifies five new breast*
457 *cancer susceptibility loci*. *Nat Genet*, 2010. **42**(6): p. 504-7.

458 23. Chakravarty, D., et al., *OncoKB: A Precision Oncology Knowledge Base*. *JCO |*
459 *Precision Oncology*, 2017.

460 24. Zehir, A., et al., *Mutational landscape of metastatic cancer revealed from*
461 *prospective clinical sequencing of 10,000 patients*. *Nat Med*, 2017. **23**(6): p.
462 703-713.

463 25. Nik-Zainal, S., et al., *Landscape of somatic mutations in 560 breast cancer*
464 *whole-genome sequences*. *Nature*, 2016. **534**(7605): p. 47-54.

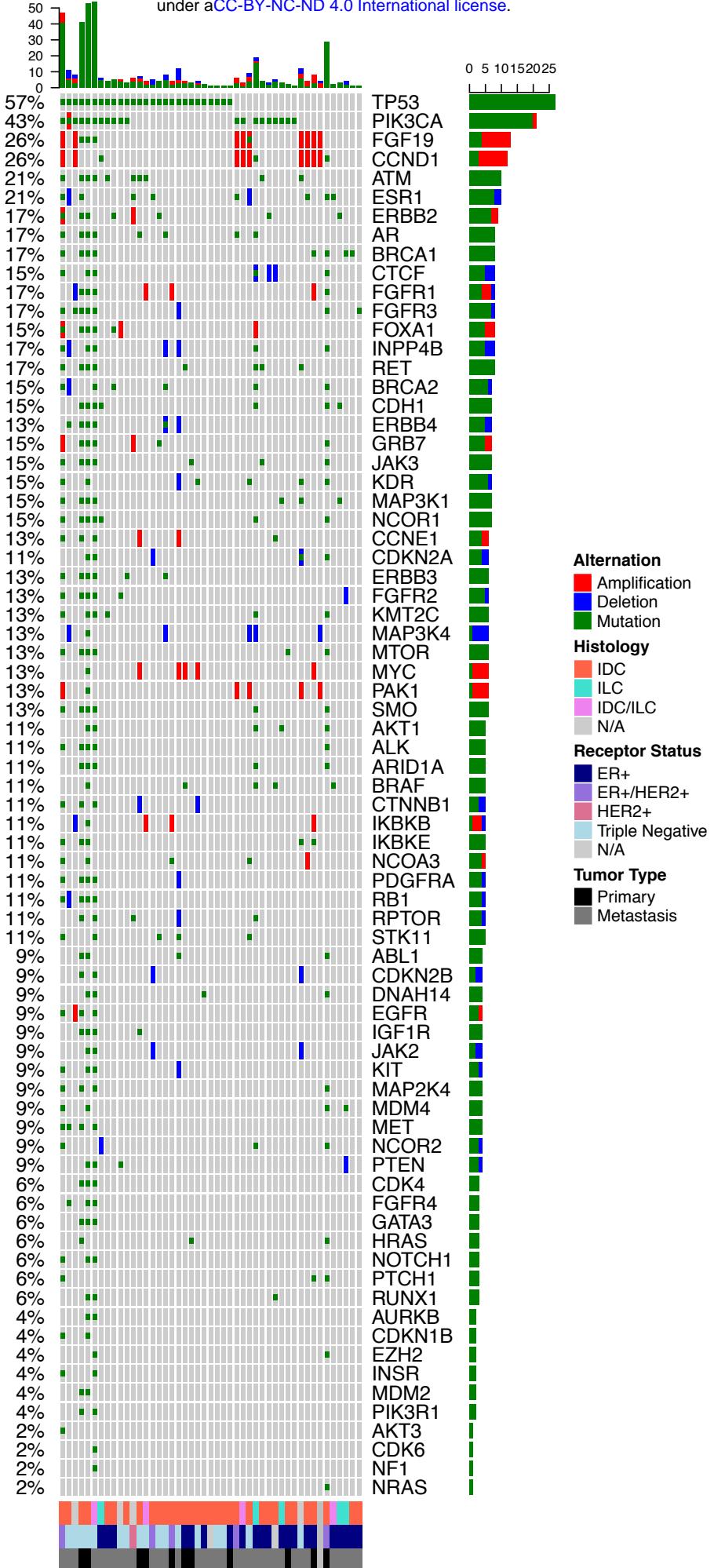
465 26. Nishino, M., et al., *Monitoring immune-checkpoint blockade: response*
466 *evaluation and biomarker development*. *Nat Rev Clin Oncol*, 2017. **14**(11): p.
467 655-668.

468 27. *Analysis of Tumor Mutational Burden with TruSight Tumor 170*. Illumina.

469 28. Chalmers, Z.R., et al., *Analysis of 100,000 human cancer genomes reveals the*
470 *landscape of tumor mutational burden*. *Genome Med*, 2017. **9**(1): p. 34.

471 29. Dawson, S.J., et al., *Analysis of circulating tumor DNA to monitor metastatic*
472 *breast cancer*. *N Engl J Med*, 2013. **368**(13): p. 1199-209.

473 30. Bettegowda, C., et al., *Detection of circulating tumor DNA in early- and late-*
474 *stage human malignancies*. *Sci Transl Med*, 2014. **6**(224): p. 224ra24.

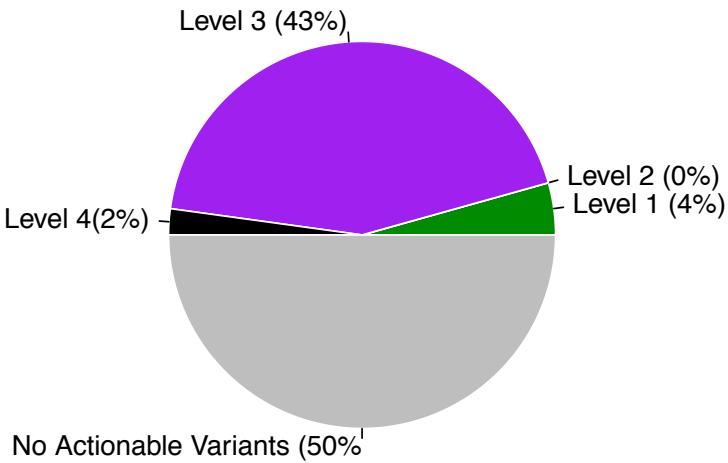

475 31. Rothe, F., et al., *Plasma circulating tumor DNA as an alternative to metastatic*
476 *biopsies for mutational analysis in breast cancer*. *Ann Oncol*, 2014. **25**(10): p.
477 1959-65.

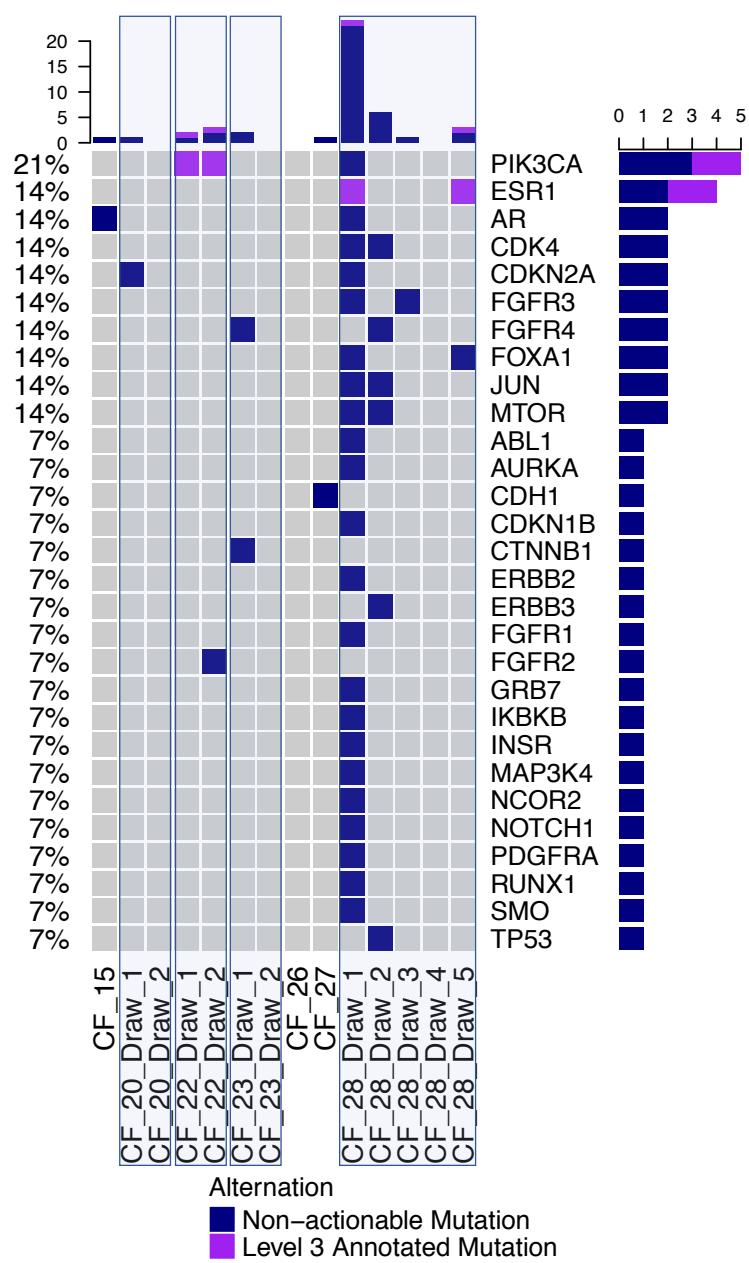
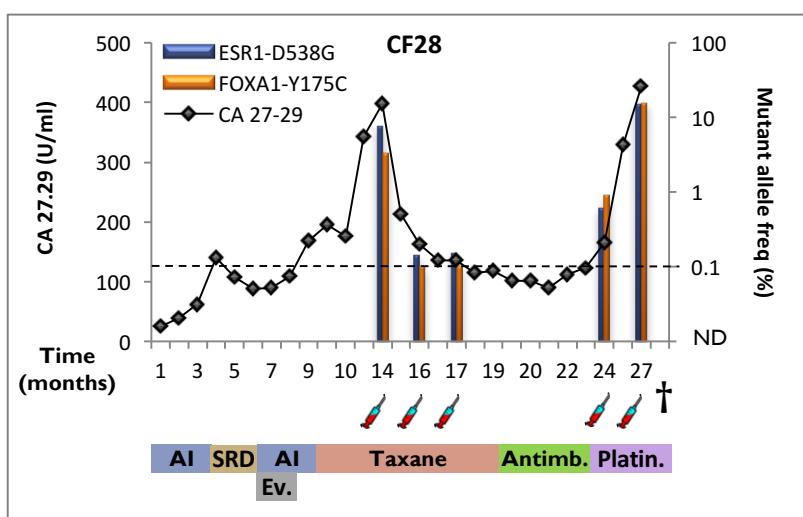
478 32. Garcia-Murillas, I., et al., *Mutation tracking in circulating tumor DNA predicts*
479 *relapse in early breast cancer*. *Sci Transl Med*, 2015. **7**(302): p. 302ra133.

480 33. Gyanchandani, R., et al., *Detection of ESR1 mutations in circulating cell-free*
481 *DNA from patients with metastatic breast cancer treated with palbociclib and*
482 *letrozole*. *Oncotarget*, 2017. **8**(40): p. 66901-66911.

483 34. Hartmaier, R.J., et al., *Recurrent hyperactive ESR1 fusion proteins in endocrine*
484 *therapy resistant breast cancer*. *Ann Oncol*, 2018.

Figure 1





Figure 2

A

- Level 1:** FDA recognized biomarker predictive of response to an FDA approved drug
- Level 2:** Standard of care biomarker predictive of a response to an FDA approved drug
- Level 3:** Compelling clinical evidence supports the biomarker as being predictive of a response to a drug
- Level 4:** Compelling biological evidence supports the biomarker as being predictive of a response to a drug

B

Figure 3**A****B**

Table 1: Patient and Specimen Characteristics.

	Patients with available tumor tissue (n=46)
Age	
Median age (yrs)	45
Range (yrs)	31-71
Race	
White	45 (97.8%)
Black	1 (2.2%)
Site	
Primary	10 (21.7%)
Metastatic	36 (78.3%)
Stage (Dx)	
I	10 (21.7%)
II	8 (17.4%)
III	13 (28.3%)
IV	4 (8.7%)
Unknown	11 (23.9%)
Hormone-receptor	
HR + and HER2 -	19 (41.3%)
HR + and HER2 +	5 (10.9%)
HR + and HER2 Unknown	1 (2.2%)
HR - and HER2 +	1 (2.2%)
HR - and HER2 -	17 (36.9%)
Both Unknown	2 (4.3%)
Histopathology	
Ductal	34 (73.9%)
Lobular	5 (10.9%)
Mixed	3 (6.5%)
Other/Unknown	4 (8.7%)

Table 2: 79 Genes incorporated in the MammaSeqTM gene panel.

ABL1	CDK6	FGFR3	KDR	NOTCH1
AKT1	CDKN1B	FGFR4	KIT	NRAS
AKT3	CDKN2A	FOXA1	KMT2C	PAK1
ALK	CDKN2B	GATA3	KRAS*	PDGFRA
AR	CTCF	GRB7	MAP2K4	PIK3CA
ARID1A	CTNNB1	HIST2H2BE*	MAP3K1	PIK3R1
ATM	DNAH14	HRAS*	MAP3K4	PTCH1
AURKA	EGFR	IDH1*	MDM2	PTEN
AURKB	ERBB2	IGF1R	MDM4	RB1
BRAF	ERBB3	IKBKB	MET	RET
BRCA1	ERBB4	IKBKE	MTOR	RPTOR
BRCA2	ESR1	INPP4B	MYC	RUNX1
CCND1	EZH2*	INSR	NCOA3	SMO
CCNE1	FGF19	JAK2	NCOR1	STK11
CDH1	FGFR1	JAK3	NCOR2	TP53
CDK4	FGFR2	JUN*	NF1	

* denotes genes with less than 3 amplicons, for which copy number changes were not reported

Table 3: Identified variants in annotated in OncoKB with corresponding targeted therapeutics.

Sample ID	Gene	Protein Sequence Change	Allele Frequency	Level	Drugs
MET_03	ERBB2	Amplification	-	1	Lapatinib + Trastuzumab, Pertuzumab + Trastuzumab, Ado-trastuzumab emtansine, Lapatinib, Trastuzumab
MET_33	ERBB2	Amplification	-	1	
MET_39	AKT1	E17K	0.25	3	AZD5363
MET_18	ERBB2	I654V	0.122222	3	
MET_32	ERBB2	I654V	0.461731	3	Neratinib
MET_49	ERBB2	I654V	0.495495	3	
MET_07	ESR1	D538G	0.477717	3	
MET_21	ESR1	D538G	0.335884	3	
MET_28	ESR1	D538G	0.454271	3	AZD9496, Fulvestrant
MET_27	ESR1	Y537S	0.376441	3	
MET_22	PIK3CA	E453K	0.444722	3	
MET_10	PIK3CA	E542K	0.106212	3	
MET_21	PIK3CA	E542K	0.501912	3	
MET_41	PIK3CA	E542K	0.073183	3	
MET_49	PIK3CA	E542K	0.467702	3	
MET_08	PIK3CA	E545K	0.204327	3	
MET_34	PIK3CA	E545K	0.0871914	3	Buparlisib, Serabelisib, Alpelisib
MET_40	PIK3CA	E545K	0.844344	3	+ Fulvestrant, Copanlisib, GDC-0077, Alpelisib, Taselisib +
MET_25	PIK3CA	H1047R	0.341171	3	Fulvestrant, Buparlisib +
MET_29	PIK3CA	H1047R	0.180681	3	Taselisib
MET_32	PIK3CA	H1047R	0.2785	3	
MET_33	PIK3CA	H1047R	0.413998	3	
MET_38	PIK3CA	H1047R	0.384692	3	
MET_44	PIK3CA	H1047R	0.60054	3	
MET_06	PIK3CA	N345K	0.376571	3	
MET_35	PIK3CA	Q546R	0.435484	3	
PR_26	BRAF	G469A	0.52028	4	LTT462, BVD-523, KO-994
MET_34	KRAS	G12D	0.074	4	LY3214996, KO-947, GDC-1014
MET_22	PTEN	C136Y	0.756233	4	
MET_01	PTEN	R130Q	0.116279	4	AZD6482 + Alpelisib
CF_28_Draw_1	ESR1	D538G	0.0746562	3	
CF_28_Draw_5	ESR1	D538G	0.146853	3	AZD9496, Fulvestrant
CF_22_Draw_1	PIK3CA	H1047R	0.320088	3	Buparlisib, Serabelisib, Alpelisib + Fulvestrant, Copanlisib, GDC-0077, Alpelisib, Taselisib +
CF_22_Draw_2	PIK3CA	H1047R	0.402402	3	Fulvestrant, Buparlisib + Fulvestrant, Taselisib