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Abstract

Motivation: Accurately predicting drug-target interactions (DTIs) in silico can guide the drug discovery
process and thus facilitate drug development. Computational approaches for DTI prediction that adopt the
systems biology perspective generally exploit the rationale that the properties of drugs and targets can be
characterized by their functional roles in biological networks.
Results: Inspired by recent advance of information passing and aggregation techniques that generalize the
convolution neural networks (CNNs) to mine large-scale graph data and greatly improve the performance
of many network-related prediction tasks, we develop a new nonlinear end-to-end learning model, called
NeoDTI, that integrates diverse information from heterogeneous network data and automatically learns
topology-preserving representations of drugs and targets to facilitate DTI prediction. The substantial
prediction performance improvement over other state-of-the-art DTI prediction methods as well as
several novel predicted DTIs with evidence supports from previous studies have demonstrated the
superior predictive power of NeoDTI. In addition, NeoDTI is robust against a wide range of choices of
hyperparameters and is ready to integrate more drug and target related information (e.g., compound-
protein binding affinity data). All these results suggest that NeoDTI can offer a powerful and robust tool for
drug development and drug repositioning.
Availability and implementation: The source code and data used in NeoDTI are available at:
https://github.com/FangpingWan/NeoDTI.
Contact: zengjy321@tsinghua.edu.cn
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Identifying drug-target interactions (DTIs) through computational
approaches can greatly narrow down the large search space of drug
candidates for downstream experimental validation, and thus significantly
reduce the high cost and the long period of developing a new drug
(Langley et al., 2017). Currently, the structure based (Morris et al.,
2009), ligand-similarity based (Keiser et al., 2007) and machine learning

based methods (Yuan et al., 2016; Luo et al., 2017) are three main
classes of prediction approaches in computational aided drug screening.
The structure based methods generally require the three-dimensional
(3D) structures of proteins and have limited performance for those
proteins with unknown structures, which unfortunately is the case for
a majority of targets. The ligand-similarity based methods exploit the
common knowledge of known interacting ligands to make prediction. Such
approaches cannot lead to confident prediction results if the compound of
interest is not indicated in the library of reference ligands. Recently, the
machine learning based methods (Bleakley and Yamanishi, 2009; Luo
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et al., 2017), which fully exploit the latent correlations among the related
features of drugs and targets have become a highly promising strategy for
DTI prediction. For instance, the DTI network data have been integrated
with the drug structure and protein sequence information into a network-
based machine learning model (e.g., a regularized least squares framework)
for predicting new DTIs (Xia et al., 2010; van Laarhoven et al., 2011; van
Laarhoven and Marchiori, 2013). Inspired by the recent surge of deep
learning techniques, models with higher predictive capacity have also
been developed in various drug discovery settings (e.g., compound-protein
interaction prediction, drug discovery with one-shot learning) (Wang and
Zeng, 2013; Wan and Zeng, 2016; Hamanaka et al., 2017; Tian et al., 2016;
Altae-Tran et al., 2017; Xu et al., 2017).

In addition to known DTI data, chemical structure, protein sequence
information, and other properties of drugs and targets can also be
characterized by their various functional roles in biological systems (e.g.,
protein-protein interactions and drug-disease associations). Indeed, by
integrating diverse information from heterogeneous data sources, methods
like DTINet (Luo et al., 2017), MSCMF (Zheng et al., 2013), HNM
(Wang et al., 2014) can further improve the accuracy of DTI prediction.
However, these methods still suffer from certain limitations that need
to be addressed. For example, in MSCMF (Zheng et al., 2013), the
employed matrix factorization operation of a given drug-target interaction
network is regularized by the corresponding drug and protein similarity
matrices, which are obtained by integrating multiple data sources through
a weighted averaging scheme. Under such a data integration strategy,
substantial loss of information may occur and thus result in a sub-optimal
solution. DTINet (Luo et al., 2017) first uses an unsupervised manner
to automatically learn low-dimensional feature representations of drugs
and targets from heterogeneous network data, and then applies inductive
matrix completion (Natarajan and Dhillon, 2014) to predict new DTIs
based on the learnt features. In such a framework, separating feature
learning from the prediction task at hand may not yield the optimal
solution, as the features learnt from the unsupervised learning procedure
may not be the most suitable representations of drugs or targets for
the final DTI prediction task. In addition, by constraining the learning
models to only take relatively simple forms (e.g., bilinear or log-bilinear
functions), these methods may not be sufficient enough to capture the
complex hidden features behind the heterogeneous data. Recent advance
of information passing and aggregation techniques that generalize the
conventional convolution neural networks (CNNs) to large-scale graph
data have shown substantial performance improvement on the network-
related prediction tasks (Hamilton et al., 2017; Gilmer et al., 2017). This
inspires us to incorporates deeper learning models to extract complex
information from a highly heterogeneous network and discover new DTIs.

In this paper, we propose a new framework, called NeoDTI (NEural
integration of neighbOr information for DTI prediction) to predict new
drug-target interactions from heterogeneous data. NeoDTI integrates
neighborhood information of the heterogeneous network constructed
from diverse data sources via a number of information passing and
aggregation operations, which are achieved through the nonlinear feature
extraction by neural networks. After that, NeoDTI applies a network
topology-preserving learning procedure to enforce the extracted feature
representations of drugs and targets to match the observed networks.
Comprehensive tests on several challenging and realistic scenarios in DTI
prediction have demonstrated that our end-to-end prediction model can
significantly outperform several baseline prediction methods. Moreover,
several novel DTIs predicted by NeoDTI with evidence supports from
previous studies in the literature further indicate the strong predictive power
of NeoDTI. In addition, the robustness of NeoDTI and its extendability
to integrate more heterogeneous data (e.g., compound-protein binding
affinity data) have been examined through various tests. All these results
suggest that NeoDTI can provide a powerful and useful tool in predicting

Fig. 1. The schematic workflow of NeoDTI. (a) NeoDTI uses eight individual drug or
target related networks (see Section 3.1 for more details of the used datasets). (b) NeoDTI
first constructs a heterogeneous network from these eight networks. Different types of
nodes are connected by distinct types of edges. Two nodes can be connected by more
than one edge (e.g., a solid link representing drug-drug-interaction and a dashed link
representing drug-structure-similarity). In addition, NeoDTI associates each node with
a feature representation. (c) To extract information from neighborhood, each node adopts a
neighborhood information aggregation operation (see Definition 2 in the main text). Each
colored arrow represents a specific aggregation function with respect to a specific edge type.
Then each node updates its feature representation by integrating its current representation
with the aggregated information (see Definition 3 in the main text). (d) By enforcing the node
features to reconstruct the original individual networks as much as possible (see Definition
4 in the main text), NeoDTI effectively learns the topology-preserving node features that
are useful for drug-target interaction prediction.

unknown DTIs, and thus advance the drug discovery and repositioning
fields.

2 Methods

2.1 Problem formulation

NeoDTI predicts unknown drug-target interactions (DTIs) from a drug
and target related heterogeneous network, in which drugs, targets and
other objects are represented as nodes, and DTIs and other interactions or
associations are represented as edges. We first introduce the definition of
a heterogeneous network.

DEFINITION 1. (Heterogeneous network). A heterogeneous
network (HN) is defined as a directed (or undirected) graphG = (V,E),
in which each node v in the node set V belongs to an object type from
an object type set O, and each edge e in the edge set E ⊂ V × V × R
belongs to a relation type from a relation type set R.

The datasets used in our framework to construct the HN (also see
Section 3.1) include the object type setO = {drug, target, side-effect,
disease}, and the relation type setR = {drug-structure-similarity,
drug-side-effect-association, drug-protein-interaction, drug-
drug-interaction, drug-disease-association, protein-sequence-
similarity, protein-drug-interaction, protein-disease-associa-
tion, protein-protein-interaction, disease-protein-association,
disease-drug-association, side-effect-drug-association}. In our
current framework, each node only belongs to a single object type
although it can be relatively easily extended to a multi-object-type
mapping scenario. In addition, all edges are undirected and non-negatively
weighted. Also, the same two nodes can be linked by more than one edge,
e.g., two drugs can be linked by a drug-drug-interaction edge and a
drug-structure-similarity edge simultaneously.

Given an HN G, NeoDTI aims to automatically learn a network
topology-preserving node-level embedding (i.e., a function that maps
nodes to their corresponding feature representations that preserve the
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original topological characteristics as much as possible) from G that can
be used to greatly facilitate the prediction of drug-target interactions. Most
existing techniques for learning the embeddings of structured data mainly
exploit the rationale that the elements of these structured data can be well
characterized by their contextual information. For example, in natural
language processing, the Word2vec technique (Mikolov et al., 2013)
enforces the embedding of words to preserve the semantic relationships
with their corresponding surrounding words. The graph embedding
techniques, such as Deepwalk (Perozzi et al., 2014) and metapath2vec
(Dong et al., 2017), have extended this embedding strategy to further learn
the latent representations of network data. Recent advance in generalizing
convolutional neural networks (CNNs) to analyze large-scale graph data
(Defferrard et al., 2016; Kipf and Welling, 2016) and the integration of
the information passing and aggregation techniques with different graph
convolution operations into a unified framework (Gilmer et al., 2017;
Hamilton et al., 2017) have brought significant performance improvement
for many network-related prediction tasks, such as predicting the biological
activities of small molecules, graph signal processing and social network
data analysis. Similar to GraphSAGE (Hamilton et al., 2017) and
Message Passing Neural Networks (MPNNs) (Gilmer et al., 2017), our
framework NeoDTI also applies neural networks to integrate neighborhood
information from individual nodes. However, unlike GraphSAGE which
mainly focuses on learning a node-level embedding from a homogeneous
network or MPNNs which aim at learning a graph-level embedding
from heterogeneous graphs for predicting molecular properties, NeoDTI
focuses on learning a node-level embedding from a heterogeneous
network. In addition, to the best of our knowledge, NeoDTI is the first
framework to systematically integrate the neural information passing and
aggregation techniques with the topology-preserving optimization scheme
into an end-to-end learning framework to extract the latent features of drugs
and targets from a heterogeneous network to make DTI prediction.

2.2 The worflow of NeoDTI

NeoDTI consists of the following three main steps: (1) neighborhood
information aggregation; (2) updating the node embedding; (3) topology-
preserving learning of the node embedding. Through Steps (1) and (2),
each node in a given HN generates a new feature representation by
integrating its neighborhood information with its own features. Through
Step (3), we enforce the embedding of nodes to be topology-preserving,
which is useful for extracting the topological features of individual nodes
for accurate DTI prediction. Next, we will introduce the mathematical
formulations of these three steps.

Definition 2 (Neighborhood information aggregation). Given an HN
G, an initial node embedding function f0 : V → Rd that maps each
node v ∈ V to its d-dimensional vector representation f0(v) and an edge
weight mapping function s : E → R that maps each edge e ∈ E to a
non-negative real value s(e), neighborhood information aggregation for
node v is defined as:

av =
∑
r∈R

∑
u∈Nr(v),

e=(u,v,r)∈E

s(e)

Mv,r
σ(Wrf

0(u) + br)

︸ ︷︷ ︸
neighborhood information aggregation with respect to edge type r

, (1)

where Nr(v) = {u, u ∈ V, u 6= v, (u, v, r) ∈ E} denotes the set
of adjacent nodes connected to v ∈ V through edges of type r ∈ R,
σ(·) stands for a nonlinear activation function over a single-layer neural
network parameterized by weights Wr ∈ Rd×d and a bias term br ∈
Rd, andMv,r =

∑
u∈Nr(v), e=(u,v,r) s(e) stands for a normalization

term.
More specifically, for each edge type r, the neighborhood information

aggregation operation for node v with respect to r can be obtained by

first nonlinearly transforming the embedded feature representations of
the corresponding adjacent nodes f0(u), u ∈ Nr(v) through an edge-
type specific single-layer neural network that is parameterized by weights
Wr ∈ Rd×d, a bias term br ∈ Rd and a nonlinear activation function
σ(·), and then averaging by the normalized edge weight, i.e., s(e)

Mv,r
.

Finally, the output of the neighborhood information aggregation operation
av for node v is the summation of neighborhood information aggregation
with respect to every edge type r. Here, the initial node embedding
f0(u),∀u ∈ V is obtained through a random mapping.

Definition 3 (Updating the node embedding). Given the aggregated
neighbor information av’s for all nodes v’s, the process of updating the
node embedding is defined as:

f1(v) =
σ(W 1concat(f0(v), av) + b1)

||σ(W 1concat(f0(v), av) + b1)||2
. (2)

The above equation states that the new embedding of node f1(v) can
be obtained using a single-layer neural network that is parameterized by
weights W 1 ∈ R(2d)×d, a bias term b1 ∈ Rd and a nonlinear activation
function σ(·) to nonlinearly transform the concatenation of the original
embedding f0(v) and the neighborhood aggregation information av , and
then normalized by its l2 norm.

Noted that in principle we could repeat the previous two steps
alternately several times to produce more embeddings of nodes (e.g.,
f2(·), f3(·), ...). In practice, we find that we only need to conduct such
a process once to obtain reasonably good prediction results, according to
our validation tests (as described in Supplementary Materials). In the rest
part of this section, we will mainly use f1(·) to demonstrate our algorithm
for convenience. In addition, we choose to use ReLU(x) = max(0, x)

as the activation function σ(·).
Definition 4 (Topology-preserving learning of the node embedding).

Given the embedding of nodes f1(·), topology-preserving learning of the
node embedding is defined as:

min
{f0(u), W1,

b1, Wr, br,
Gr, Hr, |u∈V, r∈R}

∑
r∈R

∑
u, v∈V,

e=(u,v,r)∈E

[
s(e)−f1(u)>GrH

>
r f

1(v)
]2
,

(3)
where Gr, Hr ∈ Rd×k are edge-type specific projection matrices.

The above equation states that, after edge-specific projections of f1(u)
and f1(v) by Gr and Hr , respectively, the inner product of the two
projected vectors should reconstruct the original edge weight s(e) as
much as possible. Note that a similar reconstruction strategy has also been
used in (Luo et al., 2017; Natarajan and Dhillon, 2014) to solve the link
prediction problems. In addition, if the edge type r is symmetric, i.e.,
r ∈ {drug-structure-similarity, protein-sequence-similarity,
drug-drug-interaction, protein-protein-interaction}, we use the
tie weights (i.e., Gr = Hr) to enforce this symmetric property. Here, the
summation of the squared reconstruction errors is minimized for all edges
with respect to all unknown parameters. Since all mathematical operations
in Equations 1, 2 and 3 are differentiable or subdifferentiable (e.g., for the
ReLU activation function), all parameters can be trained through an end-to-
end manner by performing gradient descent to minimize the final objective
function described in Equation 3.

Finally, after Step (3), the predicted interaction confidence score
between drug node u and protein node v can be obtained by

f1(u)>GrH
>
r f

1(v),

subject to φ(u) = drug,

φ(v) = protein,

r = drug-protein-interaction,

(4)
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where φ(u) and φ(u) stand for the node types of u and v, respectively,
and r represents their edge type.

The above operation is equivalent to reconstructing the drug-protein
edge weight between nodes u and v. By collecting f1(u)’s for all drugs
and f1(v)’s for all targets, we can form a drug feature matrix Fdrug

and a target feature matrix Ftarget. Then, the reconstructed drug-target
interaction matrix can be written as:

WDTI_reconstruct = FdGH
>
r F
>
t . (5)

In this sense, we can consider our DTI prediction task as a matrix
factorization or completion problem. However, unlike the conventional
matrix factorization approaches (Zheng et al., 2013; Natarajan and Dhillon,
2014), NeoDTI incorporates a deeper learning model to construct the
feature matrices Fd and Ft by explicitly defining the construction
processes of Fd and Ft through Steps (1) and (2). In addition, through
these two steps, NeoDTI incorporates the prior knowledge of network
topology into Fd and Ft and specifies the forms of these two matrices to
guide the downstream optimization process. As a result, NeoDTI prevents
the DTI network as well as other networks from being factorized arbitrarily
in Step (3), which can serve as a useful regularizer and thus lead to
performance improvement for DTI prediction (as also demonstrated in
our cross-validation tests; see the Results section).

3 Results

3.1 Datasets

We adopted the datasets that were curated in our previous study (Luo et al.,
2017), which included six individual drug/protein related networks: drug-
protein interaction and drug-drug interaction networks (interactions
were extracted from Drugbank Version 3.0 (Knox et al., 2010)), the
protein-protein interaction network (interactions were extracted from
the HPRD database Release 9 (Keshava Prasad et al., 2008)), drug-disease
association and protein-disease association networks (associations were
extracted from the Comparative Toxicogenomics Database (Davis et al.,
2012)) and the drug-side-effect association network (associations were
extracted from the SIDER database Version 2 (Kuhn et al., 2010)). The
basic statistics of these datasets can be found in Table S1 in Supplementary
Materials. We also incorporated drug chemical structure information as
well as protein sequence information by creating two extra networks: the
drug structure similarity network (i.e., a pair-wise chemical structure
similarity network measured by the dice similarities of the Morgan
fingerprints with radius 2 (Rogers and Hahn, 2010), which were computed
by RDKit (Landrum, 2006)) and the protein sequence similarity network
(which was obtained based on the pair-wise Smith-Waterman scores
(Smith and Waterman, 1981)). All networks had binary edge weights
(one represents a known interaction or association, and zero otherwise)
except the drug structure similarity and the protein sequence similarity
networks, which had non-negative real-valued edge weights. We combined
all these eight networks to construct the heterogeneous network (Figure 1)
for evaluating the prediction performance of NeoDTI.

3.2 NeoDTI yields superior performance in predicting new
drug-target interactions

The DTI prediction can be considered as a binary classification problem,
in which the known interacting drug-target pairs are regarded as positive
examples, while the unknown interacting pairs are treated as negative
examples. Several challenging and realistic scenarios were considered
in our tests to evaluate the prediction performance of NeoDTI. The
hyperparameters of NeoDTI were determined using an independent
validation set (as described in Supplementary Materials). We first ran a ten-
fold cross validation test on all positive pairs and a set of randomly sampled

negative pairs, whose number was ten times as many as that of positive
samples. This scenario basically mimicked the practical situation in which
the drug-target interactions are sparsely labeled. For each fold, a randomly
chosen subset of 90% positive and negative pairs was used as training data
to construct the heterogeneous network and then train the parameters of
NeoDTI (i.e., during the topology-preserving learning process, we only
calculated the reconstruction loss of the DTI network with respect to
training data, while the reconstruction losses of other types of networks
were computed as usual), and the remaining 10% positive and negative
pairs were held out as the test set. We also compared the performance
of NeoDTI with that of five baseline methods, including DTINet (Luo
et al., 2017), HNM (Wang et al., 2014), NetLapRLS (Xia et al., 2010),
DT-Hybrid (Alaimo et al., 2013) and BLMNII (Mei et al., 2012). The
area under precision recall (AUPR) curve and the area under receiver
operating characteristic (AUROC) curve were used to evaluate prediction
performance of all prediction methods. We observed that NeoDTI greatly
outperformed other baseline methods, with significant improvement (6.5%
in terms of AUPR and 2.7% in terms of AUROC) over the second best
method (Figures 2a and S1a).

Next, we further increased the positive-negative ratio by including
all negative examples (i.e., all unknown drug-target interacting pairs)
in the ten-fold cross-validation procedure (the ratio between positive
and negative samples was around 1.8 × 10−3). We observed a larger
AUPR improvement (27.6%) over the second best method (Figure 2b).
Although NeoDTI, DTINet and NetLapRLS achieved comparable results
in terms of AUROC in this scenario (Figure S1b), as also stated in
previous work (Davis and Goadrich, 2006), here, AUPR generally
provides a more informative criterion than AUROC for the highly skewed
datasets. Since drug discovery is generally a needle-in-a-haystack problem,
the substantial improvement in AUPR truely demonstrated the superior
prediction performance of NeoDTI over other methods.

Since the datasets may contain “redundant” DTIs (i.e., a same protein
is connected to more than one similar drugs and vice versa), the prediction
performance can be easily inflated by easy predictions in this case (Luo
et al., 2017). To consider this issue, we followed the same evaluation
strategies as in (Luo et al., 2017) by conducting the following additional
ten-fold cross validation tests: (1) removing DTIs with similar drugs (i.e.,
drug chemical structure similarities> 0.6) or similar proteins (i.e., protein
sequence similarities > 40%); (2) removing DTIs with drugs sharing
similar drug interactions (i.e., Jaccard similarities > 0.6); (3) removing
DTIs with drugs sharing similar side-effects (i.e., Jaccard similarities >
0.6); (4) removing DTIs with drugs or proteins sharing similar diseases
(i.e., Jaccard similarities > 0.6). In all these test scenarios, we kept the
ratios between positive and negative samples to be 1 : 10. As expected, we
observed a drop in prediction performance for all prediction methods after
the removal of redundant DTIs (Figures 2c-e, S1c-g). However, NeoDTI
still consistently outperformed other prediction methods in terms of both
AUPR and AUORC, which also indicated the robustness of NeoDTI after
removing the redundancy in data.

In dyadic prediction, if a dataset contains many drugs or targets with
only one interacting partner, conventional cross-validation may not be a
proper way to evaluate the prediction performance. Here, we call such
drugs, proteins and interactions as “unique”. In such a case, conventional
training methods may lean to exploit the bias towards those unique drugs
and targets to boost the performance (van Laarhoven and Marchiori, 2014).
To investigate this issue, we further evaluated the prediction performance
of NeoDTI by separating unique DTIs from non-unique ones. That is, all
methods were trained on non-unique DTIs and then evaluated on unique
DTIs. Note that in such a case, the negative examples in the test data were
sampled by enforcing the corresponding drugs or targets (or both) to be
unique. This scenario basically mimicked the situation in which the DTIs
of new drugs or targets are predicted without much prior DTI knowledge.
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Fig. 2. Performance evaluation of NeoDTI on several challenging scenarios in terms of the AUPR scores. (a) A ten-fold cross-validation test in which the ratio between positive and negative
samples was set to 1 : 10. (b) A ten-fold cross-validation test in which all unknown drug-target interacting pairs were considered. (c-e) Ten-fold cross-validation with positive : negative
ratios = 1 : 10 on several scenarios of removing redundancy in data: (c) DTIs with similar drugs and proteins were removed; (d) DTIs with drugs sharing similar drug interactions were
removed; (e) DTIs with drugs sharing similar side-effects were removed. (f) NeoDTI was trained on non-unique drug-target interacting pairs and tested on unique drug-target interacting
pairs. More details on the baseline methods can be found in Supplementary Materials. All results were summarized over 10 trials and expressed as mean± standard deviation.

We found that NeoDTI significantly outperformed all the baseline methods
at least by 13.3% in terms of AUPR, which suggested that NeoDTI can have
a much better generalization capacity over other state-of-the-art methods,
when predicting new DTIs for those drugs or targets without much prior
DTI knowledge.

3.3 Robustness of NeoDTI

In this section, we further evaluated the robustness of NeoDTI by varying
different types of data used in the heterogeneous network as well as the
hyperparameters of NeoDTI. All computational experiments in this section
were conducted using a ten-fold cross-validation procedure in which the
ratios of positive versus negative samples were set to 1 : 10.

To examine the effects of incorporating heterogeneous data, we first
evaluated the performance of NeoDTI when being trained using only
the drug-protein interaction network. We observed a substantial drop
of prediction performance (11.1% in terms of AUPR and 9% in terms
of AUROC), compared to that of the original NeoDTI model trained
on all eight networks (Figure 3a). We then investigated the effects
of incorporating individual networks by training NeoDTI again on a
heterogeneous network constructed from each individual network and

the drug-protein interaction network. As expected, we found that adding
individual drug or target related networks can improve the prediction
performance (Figures 3a, S2a-e). These results suggested that diverse
information from multiple data sources can better characterize the latent
properties of drugs and targets, and thus incorporating heterogeneous
information is necessary to improve the accuracy of DTI prediction. In
addition, to examine whether NeoDTI can also be easily extended to
incorporate more drug or target related information beyond the previously
used datasets, we further incorporated compound-protein binding affinity
information into the heterogeneous network. More specifically, we
collected all the binding affinity data between drug-like compounds and
proteins that satisfied Ki ≤ 1.0nm from the ZINC15 database (Sterling
and Irwin, 2015). In total, we extracted 1,696 edges that connected 1, 244

compounds to the proteins used in our previous datasets. We set the
negative logarithm of Ki between a pair of compound and protein as the
weight of their corresponding interaction. We also linked the compounds
and drugs by drug-structure-similarity edges. In addition, if a compound
and a drug were similar (i.e., chemical structure similarities > 0.6) and
connected to the same protein in the test set, we removed this compound-
protein pair from the training set to ease the inflation of prediction
performance that may be resulted from the redundancy in data. We found

Fig. 3. Incorporating more drug or target related information can improve the prediction performance of NeoDTI. (a) Incorporating the drug structure similarity network or protein sequence
similarity network. (b) Incorporating the compound-protein binding affinity data. All results were summarized over 10 trials and expressed as mean± standard deviation.
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Fig. 4. Network visualization of the top 100 novel drug-target interactions predicted by NeoDTI. Blue and orange nodes represent proteins and drugs, respectively. Dashed and solid lines
represent the known and predicted drug-target interactions, respectively.

that NeoDTI trained on this new heterogeneous network further improved
AUPR from 85.3% to 86.2% and AUROC from 94.6% to 95.1% (Figure
3b), which demonstrated the easy extendability of NeoDTI to integrate
more heterogeneous information.

In our topology-preserving learning of the node embedding, we enforce
the feature representations of nodes to reconstruct all types of edges
as much as possible. We further investigated the effect of this edge
reconstruction strategy by conducting an additional test in which we
constrained NeoDTI to only reconstruct the DTI edges. In this test, we
observed a decrease in prediction performance with 5.5% in terms of AUPR
and 2.7% in terms of AUROC (Figure S2f). Thus, reconstructing other
types of network edges is useful for boosting the prediction performance.
Such an operation probably serves as a beneficial regularizer to further
overcome the potential overfitting problem.

In addition, we investigated the robustness of NeoDTI against different
choices of hyperparameters: (1) For the dimension d of the node
embedding, we tested d = 256, 512 and 1024; (2) For the dimension k
of the projection matrices, we tested k = 256, 512 and 1024; (3) For the
repetition time p of neighborhood information aggregation, we examined
p = 0, 1, 2 and 3. We found that NeoDTI can produce relatively stable
results over a wide range of choices for both d and k, although we observed
that increasing the value of d can slightly improve the prediction results
(Figure S3a-b). More importantly, we observed significant performance
improvement when p ≥ 1, demonstrating the necessity of integrating
neighborhood information for the representation learning of node features
(Figure S3c). However, we found that increasing the repetition time of
neighborhood information aggregation from one to three did not improve
the prediction performance (Figure S3c). Thus, in practice, we only need
to run the operation of integrating neighborhood information once.

3.4 NeoDTI reveals novel DTIs with literature supports

We also predicted the novel DTIs by training NeoDTI using the whole
heterogeneous network, including the aforementioned binding affinity
data. We excluded those easy predictions by removing the predicted
DTIs that were similar to the known DTIs (i.e., drug chemical structure
similarities > 0.6 and protein sequence similarities > 40%). We then
analyzed the predicted DTIs whose prediction confidence scores were
significant (three-sigma rule) with respect to the corresponding drugs
and targets. The network visualization of the top 100 novel drug-target
interactions predicted by NeoDTI can be found in Figure 4.

Among the top twenty predicted DTIs ranked according to their
confidence scores, eight DTIs can be supported by previous studies in the
literature (Table S2). For instance, sorafenib, a drug previously approved
for the treatment of advanced renal cell carcinoma, was predicted by
NeoDTI to interact with the colony stimulating factor 1 receptor (CSF1R),
which plays an important role in the development of mammary gland and
mammary gland carcinogenesis (Tamimi et al., 2008). Such a prediction
can be supported by a previous study indicating that sorafenib can block
CSF1R and induce apoptosis in various classical Hodgkin lymphoma cell
lines (Ullrich et al., 2011). In addition, the carbonic anhydrase 6 (CA6), an
enzyme abundantly found in salivary glands, has been previously reported
to be the target of three drugs, including zonisamide, ellagic acid and
mafenide (Knox et al., 2010), was predicted by NeoDTI to also interact
with acetazolamide. This prediction can be supported by the previous
finding on the CA6 inhibitory activity of acetazolamide (Nishimori et al.,
2007). Overall, these novel DTIs predicted by NeoDTI with literature
supports further demonstrated its strong predictive power.

4 Conclusion
In this paper, we develop a new framework, called NeoDTI, to integrate
diverse information from a heterogeneous network to predict new drug-
target interactions. NeoDTI extracts the complex hidden features of
drugs and targets by applying neural networks to integrate neighborhood
information in the input heterogeneous network. By simultaneously
optimizing the feature extraction process and the DTI prediction model
through an end-to-end manner, NeoDTI can achieve superior prediction
performance over other state-of-the-art methods. The effectiveness and
robustness of NeoDTI have been extensively validated on several realistic
prediction scenarios and supported by the finding that many of the
novel predicted DTIs agree well with the previous studies in the
literature. Moreover, NeoDTI can incorporate more drug and target
related information readily (e.g., compound-protein binding affinity data).
Therefore, we believe that NeoDTI can provide a powerful and useful tool
to facilitate the drug discovery and drug repositioning processes. In the
future, we will further extend NeoDTI by integrating more heterogeneous
information and validate some of the prediction results through wet-lab
experiments.
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