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Title: Genome-wide association analyses of risk tolerance and risky behaviors
in over 1 million individuals identify hundreds of loci and shared genetic

influences!
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Abstract:

Humans vary substantially in their willingness to take risks. In a combined sample of over one
million individuals, we conducted genome-wide association studies (GWAS) of general risk
tolerance, adventurousness, and risky behaviors in the driving, drinking, smoking, and sexual
domains. We identified 611 approximately independent genetic loci associated with at least one
of our phenotypes, including 124 with general risk tolerance. We report evidence of substantial
shared genetic influences across general risk tolerance and risky behaviors: 72 of the 124 general
risk tolerance loci contain a lead SNP for at least one of our other GWAS, and general risk
tolerance is moderately to strongly genetically correlated (|fg| ~ 0.25 to 0.50) with a range of
risky behaviors. Bioinformatics analyses imply that genes near general-risk-tolerance-associated
SNPs are highly expressed in brain tissues and point to a role for glutamatergic and GABAergic
neurotransmission. We find no evidence of enrichment for genes previously hypothesized to

relate to risk tolerance.

! Previous title: Genome-wide study identifies 611 loci associated with risk tolerance and risky behaviors.


https://doi.org/10.1101/261081
http://creativecommons.org/licenses/by-nc-nd/4.0/

21

22
23
24
25
26
27
28
29
30

31
32
33
34
35
36
37

38
39
40
41
42

43
44
45
46
47
48
49

50

bioRxiv preprint doi: https://doi.org/10.1101/261081; this version posted January 8, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY-NC-ND 4.0 International license.

Main Text:

Choices in important domains of life, including health, fertility, finance, employment, and social
relationships, rarely have consequences that can be anticipated perfectly. The degree of
variability in possible outcomes is called risk. Risk tolerance—defined as the willingness to take
risks, typically to obtain some reward—yvaries substantially across humans and has been actively
studied in the behavioral and social sciences. An individual’s risk tolerance may vary across
domains, but survey-based measures of general risk tolerance (e.g., “Would you describe
yourself as someone who takes risks?”’) have been found to be good all-around predictors of
risky behaviors such as portfolio allocation, occupational choice, smoking, drinking alcohol, and

starting one’s own business! .

Twin studies have established that various measures of risk tolerance are moderately heritable
(h?2~30%, although estimates in the literature vary>—). Discovery of specific genetic variants
associated with general risk tolerance could advance our understanding of how genetic
influences are amplified and dampened by environmental factors; provide insights into
underlying biological pathways; enable the construction of polygenic scores (indexes of many
genetic variants) that can be used as overall measures of genetic influences on individuals; and

help distinguish genetic variation associated with general versus domain-specific risk tolerance.

Although risk tolerance has been one of the most studied phenotypes in social science genetics,
most claims of positive findings have been based on small-sample candidate gene studies
(Supplementary Table 11.1), whose limitations are now appreciated®. To date, only two loci
associated with risk tolerance have been identified in genome-wide association studies

(GWAS)"*,

Here, we report results from large-scale GWAS of self-reported general risk tolerance (our
primary phenotype) and six supplementary phenotypes: “adventurousness” (defined as the self-
reported tendency to be adventurous vs. cautious); four risky behaviors: “automobile speeding
propensity” (the tendency to drive faster than the speed limit), “drinks per week” (the average
number of alcoholic drinks consumed per week), “ever smoker” (whether one has ever been a
smoker), and “number of sexual partners” (the lifetime number of sexual partners); and the first
principal component (PC) of these four risky behaviors, which we interpret as capturing the

general tendency to take risks across domains. All seven phenotypes are coded such that higher
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phenotype values are associated with higher risk tolerance or risk taking. Table 1 lists, for each

GWAS, the datasets we analyzed and the GWAS sample size.

Association analyses

All seven GWAS were performed in European-ancestry subjects, following procedures described

in a pre-specified analysis plan (https://osf.io/cjx9m/) and in Supplementary Information

section 2.

In the discovery phase of our GWAS of general risk tolerance (n = 939,908), we performed a
sample-size-weighted meta-analysis of results from the UK Biobank (UKB, n = 431,126) and a
sample of research participants from 23andMe (n = 508,782). The UKB measure of general risk
tolerance is based on the question: “Would you describe yourself as someone who takes risks?
Yes / No.” The 23andMe measure is based on a question about overall comfort taking risks, with
five response options ranging from “very comfortable” to “very uncomfortable.” The genetic

correlation’ between the UKB and 23andMe cohorts (7; = 0.77, SE = 0.02) is smaller than one

but high enough to justify our approach of pooling the two cohorts!®.

The Q-Q plot (Extended Data Fig. 3.2a) from the discovery GWAS exhibits substantial
inflation (Acc = 1.41). According to the estimated intercept from a linkage disequilibrium (LD)
Score regression!!, only a small share of this inflation (~5%) in test statistics is due to bias. To
account for this bias, we inflated GWAS standard errors by the square root of the LD Score

regression intercept.

We identified 124 approximately independent SNPs (pairwise ° < 0.1) that attained genome-
wide significance (P < 5x10%). These 124 “lead SNPs” are listed in Supplementary Table 3.1
and shown in Fig. 1a. All have coefficients of determination (R”’s) below 0.02%, and the SNP
with the largest per-allele effect is estimated to increase general risk tolerance by ~0.026

standard deviations in our discovery sample (Extended Data Fig. 3.3).

In the replication phase of our GWAS of general risk tolerance (combined n = 35,445), we meta-
analyzed summary statistics from ten smaller cohorts. Additional details on cohort-level
phenotype measures are provided in Supplementary Table 1.2. The questions differ in terms of

their exact wording and number of response categories, but all questions ask subjects about their
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80  overall or general attitudes toward risk. The genetic correlation’ between the discovery and
81  replication GWAS is 0.83 (SE = 0.13). 123 of the 124 lead SNPs were available or well proxied
82 by an available SNP in the replication GWAS results. Out of the 123 SNPs, 94 have a
83  concordant sign (P = 1.7x107) and 23 are significant at the 5% level in one-tailed 7 tests (P =
84  4.5x10%) (Extended Data Fig. 5.1). This empirical replication record matches theoretical
85  projections that take into account sampling variation and the winner’s curse (Supplementary

86  Information section 5).

87  Our six supplementary GWAS—of adventurousness, four risky behaviors, and their principal
88  component (n = 315,894 to 557,923; Supplementary Tables 1.1-1.2)—were conducted using
89  methods comparable to those in the primary GWAS, but without a replication phase. Extended
90  Data Fig. 3.2 (c to h) shows Q-Q plots and Extended Data Fig. 3.1 (a to f) shows Manhattan
91  plots.

92 Table 1 provides a summary overview of the seven GWAS. We identified a total of 865 lead
93 SNPs across the seven GWAS. The lead SNPs are located in 611 approximately independent
94  loci, where a locus is defined as the set of all SNPs in weak LD (pairwise 7 > 0.1) with a lead
95  SNP. The SNP heritabilities of the seven phenotypes range from ~0.05 (for general risk
96  tolerance) to ~0.16 (for the first PC of the four risky behaviors).

97

98  Genetic overlap

99  There is substantial overlap across the results of our GWAS. For example, 72 of the 124 general-
100 risk-tolerance lead SNPs are in loci that also contain lead SNPs for at least one of the other
101 GWAS, including 45 for adventurousness and 49 for at least one of the four risky behaviors or
102 their first PC. To empirically assess if this overlap could be attributed to chance, we conducted a
103 resampling exercise under the null hypothesis that the lead SNPs of our supplementary GWAS
104  are distributed independently of the 124 general-risk-tolerance lead loci. We strongly rejected
105 this null hypothesis (P < 0.0001; Supplementary Information section 3.3.3).

106  Several regions of the genome stand out for being associated both with general risk tolerance and
107 with all or most of the supplementary phenotypes. We tested whether the signs of the lead SNPs

108 located in these regions tend to be concordant across our primary and supplementary GWAS. We
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109  strongly rejected the null hypothesis of no concordance (P < 3x107°, Supplementary
110  Information section 3.2.3), suggesting that these regions represent shared genetic influences,
111 rather than colocalization of causal SNPs. Fig. 1b and Extended Data Fig. 3.4 show local
112 Manhattan plots for some of these regions. The long-range LD region!? on chromosome 3 (~83.4
113 to 86.9 Mb) contains lead SNPs from all seven GWAS as well as the most significant lead SNP
114 from the general risk tolerance GWAS, 1s993137 (P = 2.14x107%%), which is located in the gene
115 CADM?2. Another long-range LD region, on chromosome 6 (~25.3 to 33.4 Mb), covers the HLA-
116 ~ complex and contains lead SNPs from all GWAS except drinks per week. Three candidate
117  inversions (i.e., genomic regions that are highly prone to inversion polymorphisms;
118  Supplementary Information section 2.9.2) on chromosomes 7 (~124.6 to 132.7 Mb), 8 (~7.89
119  to 11.8 Mb), and 18 (~49.1 to 55.5 Mb) contain lead SNPs from six, five, and all seven of our
120  GWAS, respectively. Finally, four other LD blocks!® that do not overlap known long-range LD
121 or candidate inversion regions each contain lead SNPs from five of our GWAS (including
122 general risk tolerance). The two long-range LD regions and the three candidate inversions have
123 previously been found to be associated with numerous phenotypes, including many cognitive and

124 neuropsychiatric phenotypes'*.

125 To investigate genetic overlap at the genome-wide level, we estimated genetic correlations with
126  self-reported general risk tolerance using bivariate LD Score regression’. (For this and all
127 subsequent analyses involving general risk tolerance, we used the summary statistics from the
128  combined meta-analysis of our discovery and replication GWAS.) The estimated genetic
129 correlations with our six supplementary phenotypes are all positive, larger than ~0.25, and highly
130  significant (P < 2.3x107%; Fig. 2), indicating that SNPs associated with higher general risk
131  tolerance also tend to be associated with riskier behavior. The largest estimated genetic
132 correlations are with adventurousness (7, = 0.83, SE' = 0.01), number of sexual partners (0.52, SE
133 = 0.02), automobile speeding propensity (0.45, SE = 0.02), and the first PC of the four risky
134 behaviors (0.50, SE = 0.02).

135 Our estimates of the genetic correlations between general risk tolerance and the supplementary
136 risky behaviors are substantially higher than the corresponding phenotypic correlations
137 (Supplementary Tables 1.3 and 7.1). Although measurement error partly accounts for the low

138 phenotypic correlations, the genetic correlations remain considerably higher even after
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139 adjustment of the phenotypic correlations for measurement error. The comparatively large
140  genetic correlations support the view that a general factor of risk tolerance partly accounts for

15,16

141 cross-domain variation in risky behavior'>'° and imply that this factor is genetically influenced.

142 The lower phenotypic correlations suggest that environmental factors are more important

143 contributors to domain-specific risky behavior!”-13,

144 To increase the precision of our estimates of the SNPs’ effects on general risk tolerance, we
145 leveraged the high degree of genetic overlap across our phenotypes by conducting Multi-Trait
146 Analysis of GWAS (MTAG)". We used as inputs the summary statistics of our GWAS of
147  general risk tolerance, of our first five supplementary GWAS (i.e., not including the first PC of
148 the four risky behaviors), and of a previously published GWAS on lifetime cannabis use?’
149 (Supplementary Information section 9). MTAG increased the number of general-risk-tolerance

150  lead SNPs from 124 to 312 (Extended Data Fig. 9.1, Supplementary Table 9.1).

151  We also estimated genetic correlations between general risk tolerance and 28 additional
152 phenotypes (Fig. 2 and in Supplementary Table 7.1). These included phenotypes for which we
153 could obtain summary statistics from previous GWAS, as well as five phenotypes for which we
154 conducted new GWAS. The estimated genetic correlations for the personality traits extraversion
155 (fy = 0.51, SE = 0.03), neuroticism (-0.42, SE = 0.04), and openness to experience (0.33, SE =
156 0.03) are substantially larger in magnitude than previously reported phenotypic correlations?!,
157  pointing to substantial shared genetic influences among general risk tolerance and these traits.
158 After Bonferroni correction, we also find significant positive genetic correlations with the
159  neuropsychiatric phenotypes ADHD, bipolar disorder, and schizophrenia. Viewed in light of the
160  genetic correlations we find with risky behaviors classified as externalizing (e.g., substance use,
161  elevated sexual behavior, and fast driving), these results suggest the hypothesis that the overlap

162 with the neuropsychiatric phenotypes is driven by their externalizing component.
163

164  Biological annotation

165 To gain insights into the biological mechanisms through which genetic variation influences
166  general risk tolerance, we conducted a number of analyses. First, we systematically reviewed the
167 literature that aimed to link risk tolerance to biological pathways (Supplementary Information

168  section 11). Our review covered studies based on candidate genes (i.e., specific genetic variants
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169  used as proxies for biological pathways), pharmacological manipulations, biochemical assays,
170  genetic manipulations in rodents, as well as other research designs. Our review identified 132

171 articles that matched our search criteria (Supplementary Table 11.1).

172 Previous work has focused on five main biological pathways: the steroid hormone cortisol, the
173 monoamines dopamine and serotonin, and the steroid sex hormones estrogen and testosterone.
174 Using a MAGMA?2 competitive gene-set analysis, we found no evidence that SNPs within genes
175  associated with these five pathways tend to be more associated with general risk tolerance than
176 ~ SNPs in other genes (Supplementary Table 11.3). Further, none of the other bioinformatics

177  analyses we report below point to these pathways.

178  We also examined the 15 most commonly tested autosomal genes within the dopamine and
179  serotonin pathways, which were the focus of most of the 34 candidate-gene studies identified by
180  our literature review. We verified that the SNPs available in our GWAS results tag most of the
181  genetic variants typically used to test the 15 genes. Across one SNP-based test and two gene-
182 based tests, we found no evidence of non-negligible associations between those genes and
183 general risk tolerance (Fig. 1¢ and Supplementary Table 11.4). (We note, however, that some
184  brain regions identified in analyses we report below are areas where dopamine and serotonin

185  play important roles.)

186 Second, we performed a MAGMA?? gene analysis to test each of ~18,000 protein-coding genes
187  for association with general risk tolerance (Supplementary Information section 12.2). After
188 Bonferroni correction, 285 genes were significant (Extended Data Fig. 12.1 and
189  Supplementary Table 12.3). To gain insight into the functions and expression patterns of these
190 285 genes, we looked up these genes in the Gene Network?® co-expression database. Third, to
191  identify relevant biological pathways and identify tissues in which genes near general-risk-
192 tolerance-associated SNPs are expressed, we applied the software tool DEPICT?* to the SNPs
193 with P values less than 105 in our GWAS of general risk tolerance (Supplementary

194  Information section 12.4).

195 Both the Gene Network and the DEPICT analyses separately point to a role for glutamate and
196  GABA neurotransmitters, which are the main excitatory and inhibitory neurotransmitters in the
197  brain, respectively?® (Fig. 3a and Supplementary Tables 12.4 and 12.8). To our knowledge, no
198 published large-scale GWAS of cognition, personality, or neuropsychiatric phenotypes has
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199  pointed to clear roles both for glutamate and GABA (although glutamatergic neurotransmission
200  has been implicated in recent GWAS of schizophrenia?® and major depression?’). Our results
201  suggest that the balance between excitatory and inhibitory neurotransmission may contribute to

202 variation in general risk tolerance across individuals.

203  The Gene Network and the DEPICT tissue enrichment analyses also both separately point to
204  enrichment of the prefrontal cortex and the basal ganglia (Fig. 3b and Supplementary Tables
205 12.4, 12.6, and 12.7). The cortical and subcortical regions highlighted by DEPICT include some
206  of the major components of the cortical-basal ganglia circuit, which is known as the reward
207  system in human and non-human primates and is critically involved in learning, motivation, and
208  decision-making, notably under risk and uncertainty?®2°, We caution, however, that our results

209  do not point exclusively to the reward system.

210 Lastly, we used stratified LD Score regression® to test for the enrichment of SNPs associated
211 with histone marks in 10 tissue or cell types (Supplementary Information section 12.1).
212 Central nervous system tissues are the most enriched, accounting for 44% (SE = 3%) of the
213 heritability while comprising only 15% of the SNPs (Extended Data Fig. 12.3a and
214  Supplementary Table 12.2). Immune/hematopoietic tissues are also significantly enriched.
215 While a role for the immune system in modulating risk tolerance is plausible given prior

26,27

216  evidence of its involvement in several neuropsychiatric disorders=’, future work is needed to

217  confirm this result and to uncover specific pathways that might be involved.
218

219  Polygenic prediction

220  We constructed polygenic scores of general risk tolerance to gauge their potential usefulness in
221  empirical research (Supplementary Information section 10). We used the Add Health, HRS,
222 NTR, STR, UKB-siblings, and Zurich cohorts as validation cohorts (Supplementary Table 1.1
223 provides an overview of these cohorts; the UKB-siblings cohort comprised individuals with at
224 least one full sibling in the UKB). For each validation cohort, we constructed the score using
225  summary statistics from a meta-analysis of our discovery and replication GWAS that excluded
226  the cohort. Our measure of predictive power is the incremental R’ (or pseudo-R?) from adding
227  the score to a regression of the phenotype on sex, birth year, and the top ten principal

228  components of the genetic relatedness matrix.
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229 Our preferred score was constructed with LDpred?®'. In the UKB-siblings cohort, which is our
230 largest validation cohort (n ~ 35,000), the score’s predictive power is 1.6% for general risk
231 tolerance, 1.0% for the first PC of the four risky behaviors, 0.8% for number of sexual partners,
232 0.6% for automobile speeding propensity, and ~0.15% for drinks per week and ever smoker.
233 Across our validation cohorts, the score is also predictive of several personality phenotypes and a
234 suite of real-world measures of risky behaviors in the health, financial, career, and other domains
235  (Extended Data Figs. 10.1-10.2 and Supplementary Tables 10.1-10.3). The incremental R’ we
236 observe for general risk tolerance is consistent with the theoretical prediction, given the SNP
237 heritability of general risk tolerance (Table 1) and the imperfect genetic correlations across the

238 GWAS and validation cohorts*>3* (Supplementary Information section 10.4).
239
240  Discussion

241 Our results provide insights into biological mechanisms that influence general risk tolerance. Our
242 bioinformatics analyses point to the role of gene expression in brain regions that have been
243 identified by neuroscientific studies on decision-making, notably the prefrontal cortex, basal
244 ganglia, and midbrain, thereby providing convergent evidence with that from neuroscience®®%.
245 Yet our analyses failed to find evidence for the main biological pathways that had been
246  previously hypothesized to influence risk tolerance. Instead, our analyses implicate genes
247  involved in glutamatergic and GABAergic neurotransmission, which were heretofore not

248 generally believed to play a role in risk tolerance.

249 Although our focus has been on the genetics of general risk tolerance and risky behaviors,
250  environmental and demographic factors account for a substantial share of these phenotypes’
251  variation. We observe sizeable effects of sex and age on general risk tolerance in the UKB data
252 (Extended Data Fig. 1.1), and life experiences have been shown to affect both measured risk
253 tolerance and risky behaviors (e.g., refs. 34,35). The data we have generated will allow
254  researchers to construct and use polygenic scores of general risk tolerance to measure how

255 environmental, demographic, and genetic factors interact with one another.

256  For the behavioral sciences, our results bear on the ongoing debate about the extent to which risk
257  tolerance is a “domain-general” as opposed to a “domain-specific” trait. Low phenotypic

258  correlations in risk tolerance across decision-making domains have been interpreted as
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259  supporting the domain-specific view!”!

. Across the risky behaviors we study, we find that the
260  genetic correlations are considerably higher than the phenotypic correlations (even after the latter
261  are corrected for measurement error) and that many lead SNPs are shared across our phenotypes.
262 These observations suggest that the low phenotypic correlations across domains are due to
263 environmental factors that dilute the effects of a genetically-influenced domain-general factor of

264  risk tolerance.

10
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378  Figure 1 | Manhattan plots. In all panels, the x-axis is chromosomal position; the y-axis is the
379  significance on a —logio scale; the horizontal dashed line marks the threshold for genome-wide
380  significance (P = 5x107%); and each approximately independent (pairwise 7 < 0.1) genome-wide
381  significant association (“lead SNP”) is marked by a red . a, Manhattan plots for the discovery
382 GWAS of general risk tolerance. b, Local Manhattan plots of two genomic regions that contain
383  lead SNPs for all seven of our GWAS. The gray background marks the locations of long-range
384 LD or candidate inversion regions. ¢, Local Manhattan plots of the loci around the 15 most
385  commonly tested candidate genes in the prior literature on the genetics of risk tolerance. Each
386 locus comprises all SNPs within 500 kb of the gene’s borders that are in LD (r? > 0.1) with a
387  SNP in the gene. The 15 plots are concatenated and shown together in the panel, divided by the
388  black vertical lines. The 15 genes are not particularly strongly associated with general risk
389  tolerance or the risky behaviors, as can be seen by comparing the results within each row across
390 panels b and ¢ (the three rows correspond to the GWAS of general risk tolerance,
391  adventurousness, and the first PC of the four risky behaviors).
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Figure 2 | Genetic correlations with general risk tolerance. The genetic correlations were
estimated using bivariate LD Score (LDSC) regression’. Error bars show 95% confidence
intervals. For the supplementary phenotypes and the additional risky behaviors, green bars
represent significant estimates with the expected signs, where higher risk tolerance is associated
with riskier behavior. For the other phenotypes, blue bars represent significant estimates. Light
green and light blue bars represent genetic correlations that are statistically significant at the 5%
level, and dark green and dark blue bars represent correlations that are statistically significant
after Bonferroni correction for 34 tests (the total number of phenotypes tested). Grey bars

represent correlations that are not statistically significant at the 5% level.
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404  Figure 3 | Results from selected biological analyses. a, DEPICT gene-set enrichment diagram.
405  We identified 93 reconstituted gene sets that are significantly enriched (FDR < 0.01) for genes
406  overlapping loci associated with general risk tolerance; using the Affinity Propagation method*®,
407  these were grouped into the 13 clusters displayed in the graph. Each cluster was named after the
408  most significant gene set it contained, and each cluster’s color represents the permutation P value
409  of its most significant gene set. The “synapse part” cluster includes the gene set “glutamate
410  receptor activity,” and several members of the “GABAA receptor activation” cluster are defined

411 by gamma-aminobutyric acid signaling. Overlap between the named representatives of two
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412 clusters is represented by an edge. Edge width represents the Pearson correlation p between the
413 two respective vectors of gene membership scores (p < 0.3, no edge; 0.3 < p < 0.5, thin edge; 0.5
414 < p < 0.7, intermediate edge; p > 0.7, thick edge). b, Results of DEPICT tissue enrichment
415  analysis using GTEx data. The panel shows whether the genes overlapping loci associated with
416  general risk tolerance are significantly overexpressed (relative to genes in random sets of loci
417  matched by gene density) in various tissues. Tissues are grouped by organ or tissue type. The
418  orange bars correspond to tissues with significant overexpression (FDR < 0.01). The y-axis is the
419  significance on a —logio scale.
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Table 1 | GWAS results

LD Score # lead

GWAS Cohorts analyzed n Mean y? intercept (SE)  SNPs SNP 4? (SE)
General risk tolerance (disc. GWAS)  UKB; 23andMe 939,908 1.85 1.04 (0.01) 124 0.046 (0.001)
General risk tolerance (rep. GWAS) 10 indep. cohorts 35,445 1.03 1.00 (0.07) 0 --
General risk tolerance (disc. + rep.) UKB; 23andMe; 10 indep. cohorts 975,353 1.87 1.04 (0.01) 132 0.045 (0.001)
Adventurousness 23andMe 557,923 1.98 1.05(0.01) 167 0.098 (0.002)
Automobile speeding propensity UKB 404,291 1.53 1.03 (0.01) 42 0.079 (0.003)
Drinks per week UKB 414,343 1.61 1.03 (0.01) 85 0.085 (0.003)
Ever smoker UKB; TAG Consortium ¥’ 518,633 1.97 1.05 (0.01) 223 0.109 (0.003)
Number of sexual partners UKB 370,711 1.77 1.04 (0.01) 118 0.128 (0.003)
First PC of the four risky behaviors UKB 315,894 1.77 1.05 (0.01) 106 0.156 (0.004)

The table provides an overview of the GWAS of our primary and supplementary phenotypes. “n”: GWAS sample size; “Mean y2”:
mean GWAS chi-squared statistics across HapMap3 SNPs with minor allele frequency (MAF) greater than 0.01; “LD Score
intercept”: estimate of the intercept from a LD Score regression!! using HapMap3 SNPs with MAF greater than 0.01; “# lead SNPs™:
number of lead SNPs, calculated after the associated statistics have been adjusted using the estimated LD score intercept; “SNP A4””:
SNP heritability estimated with the Heritability Estimator from Summary Statistics (HESS) method*® using 1000 Genomes phase 3
SNPs with MAF greater than 0.05; “disc.”: discovery; “rep.”: replication; “indep.”: independent.
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