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Abstract 

Transcription factor binding events play important functional roles in gene regulation. It 

is, however, a challenging task to detect weak binding events since the ambiguity in 

differentiation of weak binding signals from background signals. We present a software 

package, ChIP-BIT2, to identify weak binding events using a Bayesian integration 

approach. By integrating signals from sample and input ChIP-seq data, ChIP-BIT2 can 

detect both strong and weak binding events at gene promoter, enhancer or the whole 

genome effectively. The ChIP-BIT2 package has been extensively tested on ChIP-seq 

data, demonstrating its wide applicability in ChIP-seq data analysis. 

 
 

Availability and Implementation 

The ChIP-BIT2 package is available at http://sourceforge.net/projects/chipbitc/. 
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Introduction  

In order to identify transcription factor (TF) binding events or enrichment of histone 

markers (HMs), biologists run a sample ChIP-seq experiment to capture binding signals 

and background signals, and a second input ChIP-seq experiment to capture 

background signals only. The regulation strength of a TF or HM is often cell-type and 

condition specific. In some cases, the strength of a functional binding may be weak with 

a low read count observation. It is a challenging task to identify those weak binding 

events (with relatively low enrichment in the sample experiment but still much higher 

than that of input experiment) since they are more easily to be mixed with background 

signals also measured in the sample experiment. Recent studies have shown that 

functional effects of weak bindings can be very significant on gene transcription (1).  

 A number of ChIP-seq peak detection tools were developed using both sample 

and input ChIP-seq data (2-7). Read count is the most widely used signal format, which 

can be modeled to follow a Poisson distribution in sequencing data analysis (8-10). 

Although mathematically convenient to use read count, it gives rise to the difficulty in 

detecting weak binding events in ChIP-seq data because a ChIP-seq profile includes 

both binding and background signals and the medium or low read counts of weak 

binding events are often close to the level of background signals. Those tools 

developed based on read count are easily to classify weak binding events as 

background signals. Therefore, a Bayesian method, namely ChIP-BIT, has been 

proposed to reliably identify weak binding events at gene promoter regions (7).  

 Application of ChIP-BIT is limited since it can only be used to detect binding 

events of TFs at promoter regions. We present a new software package, ChIP-BIT2, to 
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detect binding events of both strong and week signals from ChIP-seq data. ChIP-BIT2 

expands the capability of ChIP-BIT for detecting binding events of TFs or HMs at any 

regions including gene promoter, enhancer or simply the whole genome. Moreover, 

ChIP-BIT2 is a C/C++ implementation. Compared to the original ChIP-BIT package 

(implemented in MATLAB ), a significant speed improvement (~40%) can be gained for 

a pair of matched sample and input ChIP-seq profiles.  

Description 

The challenge in detecting weak binding events lies in the ambiguity in differentiation of 

the binding signals from background signals. Background signal is not random noise. Its 

amplitude can be as high as a true binding signal. Using read intensity (log transform of 

average read coverage (7)), as illustrated in Fig. 1, ChIP-BIT2 will shrink the ‘distance’ 

between strong and weak binding signals and enlarge the ‘distance’ between weak and 

background signals, making it easier to detect weak bindings. The core functions of the 

algorithm are implemented in C/C++ as depicted in Fig. 2. ChIP-BIT2 can detect binding 

events either proximal to transcription starting sites (TSSs) or located at distal enhancer 

regions. As shown in Fig. 1 and Fig. 2, candidate ChIP-seq signal enriched regions are 

first identified through a data pre-processing step (with a similar strategy in PeakSeq 

(3)). Input background signal is then properly normalized against sample ChIP-seq 

signal. After loading annotated enhancer or promoter regions, ChIP-BIT2 can run in 

either ‘promoter mode’ or ‘enhancer mode’. Each promoter or enhancer region is first 

extended to a user-defined range and then partitioned into 200 bps bins. If no 

annotation region is provided, ChIP-BIT2 will detect all possibly enriched regions and 

partition the into bins as candidate regions. For each bin, sample read intensity, input 
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read intensity and binding location (for promoter only) are calculated for each bin. A 

probability for binding occurrence is estimated using the Expectation-Maximization (EM) 

method. Consecutive bins with probabilities higher than a predefined threshold will be 

merged and finally outputted as enriched peaks. Using bin-based model, there is no 

need to set peak size limit, which makes ChIP-BIT2 flexible to detect narrow or wide 

peaks for TFs or HMs.  

Results 

We have compared ChIP-BIT2 and MACS2 using a breast cancer MCF-7 ChIP-seq 

data set with 39 TFs (as listed in Table 1). BAM files of selected TFs and their matched 

input data are downloaded from the ENCODE website (https://www.encodeproject.org/) 

and GEO database (https://www.ncbi.nlm.nih.gov/geo/). We used ChIP-BIT2 to process 

each TF and its match input data and predicted binding events at enhancer or gene 

promoter regions. Gene promoter regions were extracted from human reference 

genome hg19 as ±10k bps around each TSS. In total, we obtained 25,802 promoter 

regions regardless of potential overlap. Breast cancer MCF7 enhancer like regions were 

downloaded from ENCODE (https://www.encodeproject.org/data/annotations/). In total, 

there are non-overlap 33,957 enhancer regions (referred to hg19). We extended or 

pruned enhancer regions as ±1k bps around the original middle points. Finally, we used 

ChIP-BIT2 to call TFBSs at promoter and enhancer regions, respectively. ChIP-BIT2 

and its previous MATLAB version were tested under CentOS Linux 7.3 on DELL T7600 

workstation with 3.1GHz CPU (32 cores) and 128GB RAM. ChIP-BIT2 only uses one 

CPU core for one TF’s ChIP-seq data processing and requires less than 2GB memory, 

so the running speed should be similar on any desktop or laptop with a similar CPU 
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speed. The running speed of ChIP-BIT2 is summarized in Table. 2. Compared to its 

previous MATLAB version (supporting ‘promoter mode’ only), ChIP-BIT2 has gained a 

speed improvement of ~40%. Its speed in ‘enhancer mode’ is very similar to that in 

‘promoter mode’, mainly determined by the number of reads in sample and input 

experiments.  

 We then compared ChIP-BIT2-detected peaks against those predicted by 

MACS2 (2) at selected promoter or enhancer regions associated with active genes 

(highly expressed) in MCF-7 cells. As shown in Fig. S3, a high proportion (73% for 

promoter or 54% for enhancer) of MACS2-detected binding events were captured by 

ChIP-BIT2. ChIP-BIT2 detected additional weak binding events (probability >0.9) 

together with those strong ones. Weak bindings at enhancer regions may play a more 

important role in gene regulation because an enhancer region is likely to be activated by 

a set of TFs, including both major activators and co-factors; the binding strength of co-

factors may be weak (11). Therefore, ChIP-BIT2, by modeling read intensity instead of 

read count, can better eliminate background signals to effectively reduce false positive 

predictions, achieving an improved accuracy in detecting weak binding events.  

Conclusion  

We have developed a software package, ChIP-BIT2, for detecting binding events of 

both strong and weak signals in promoter regions or enhancer regions. ChIP-BIT2, built 

upon a novel joint probabilistic model and implemented in C/C++, has been applied to a 

large set of ChIP-seq data and demonstrated its broad applicability in ChIP-seq data 

analysis for effective and reliable detection of binding events.  
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Figures  

 
 

Fig. 1. Converting read counts to read intensity for weak binding event detection. 
 
  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 7, 2018. ; https://doi.org/10.1101/260869doi: bioRxiv preprint 

https://doi.org/10.1101/260869
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

Fig. 2. Workflow of ChIP-BIT2: 
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(A) 
 

 
(B) 

 
Fig. 3. Venn diagrams of binding events detected by ChIP-BIT2 (red) and MACS2 (blue
at 489 gene promoter regions (A) and 1050 enhancer regions (B). 
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Tables 

Table S1. 39 TF ChIP-seq profiles of breast cancer MCF-7 cells. 

Data source TF symbols 

ENCODE 
CEBPB, CTCF, E2F1, EGR1, ELF1, EP300, FOSL2, FOXM1, GABPA, 
GATA3, HDAC2, JUND, MAX, MYC, NR2F2, NRSF, PML, POLR2A, 
RAD21, SIN3AK20, SRF, TAF1, TCF7, TCF12, TEAD4, ZNF217 

GSE26831 c-FOS, c-JUN, FOXA1  
GSE41561 CREB1, ER-α, KLF4, RXRA, TLE3 
GSE38901 HSF1 
GSE44737 MBD3 
GSE28008 PBX1 
GSE22612 TDRD3 
In house NOTCH3 
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Table S2. Running speed of ChIP-BIT2 on peak detection for individual TFs 
 

TF symbols ChIP-BIT2 Enhancer  ChIP-BIT2 Promoter ChIP-BIT Promoter 
KLF4 4m54 4m43 10m23 
TCF12 7m43 7m40 12m20 
c-JUN 6m56 7m2 10m4 
c-FOS 6m41 6m38 9m52 
JUND 8m41 8m27 13m54 
RXRA 8m46 8m37 13m10 
E2F1 9m59 9m48 16m53 
FOXA1 9m18 9m4 13m3 
RAD21 10m44 10m35 15m45 
TCF4 10m13 9m30 14m11 
TLE3 13m46 11m59 22m33 
ZNF217 10m36 10m29 15m11 
HSF1 11m17 6m25 14m55 
ELF1 12m37 12m29 17m42 
ER-α 13m41 12m29 20m10 
POL2A 12m29 11m34 16m47 
NOTCH3 14m25 13m38 21m7 
SRF 15m30 13m35 22m50 
TDRD3 25m20 23m21 48m44 
CEBPB 13m50 13m42 21m31 
FOSL2 14m18 13m8 18m50 
GATA3 14m3 14m5 20m56 
GABPA 13m41 13m29 18m18 
NR2F2 15m15 14m31 21m38 
PBX1 17m11 15m21 25m47 
CTCF 14m35 13m59 19m24 
EP300 14m43 14m15 18m38 
FOXM1 15m11 14m25 19m25 
PML 14m34 9m26 19m40 
CREB1 17m19 16m43 24m43 
HDAC2 14m34 15m36 21m34 
TEAD4 14m50 14m11 19m35 
EGR1 16m32 15m44 20m39 
NRSF 17m13 16m27 22m12 
SIN3A 19m29 15m0 27m15 
MYC 31m32 28m7 46m9 
MAX 20m44 19m55 26m35 
TAF1 20m7 19m33 25m50 
MBD3 27m39 26m47 36m6 
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