

ChIP-BIT2: a software tool to detect weak binding events using a Bayesian integration approach

Xi Chen¹, Xu Shi¹, Leena Hilakivi-Clarke², Robert Clarke², Tian-Li Wang³, and Jianhua Xuan¹

¹Bradley Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA 22203, USA;

²Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University, Washington, DC 20057, USA; ³Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;

Contact: xichen86@vt.edu

Abstract

Transcription factor binding events play important functional roles in gene regulation. It is, however, a challenging task to detect weak binding events since the ambiguity in differentiation of weak binding signals from background signals. We present a software package, ChIP-BIT2, to identify weak binding events using a Bayesian integration approach. By integrating signals from sample and input ChIP-seq data, ChIP-BIT2 can detect both strong and weak binding events at gene promoter, enhancer or the whole genome effectively. The ChIP-BIT2 package has been extensively tested on ChIP-seq data, demonstrating its wide applicability in ChIP-seq data analysis.

Availability and Implementation

The ChIP-BIT2 package is available at <http://sourceforge.net/projects/chipbitc/>.

Introduction

In order to identify transcription factor (TF) binding events or enrichment of histone markers (HMs), biologists run a sample ChIP-seq experiment to capture binding signals and background signals, and a second input ChIP-seq experiment to capture background signals only. The regulation strength of a TF or HM is often cell-type and condition specific. In some cases, the strength of a functional binding may be weak with a low read count observation. It is a challenging task to identify those weak binding events (with relatively low enrichment in the sample experiment but still much higher than that of input experiment) since they are more easily to be mixed with background signals also measured in the sample experiment. Recent studies have shown that functional effects of weak bindings can be very significant on gene transcription (1).

A number of ChIP-seq peak detection tools were developed using both sample and input ChIP-seq data (2-7). Read count is the most widely used signal format, which can be modeled to follow a Poisson distribution in sequencing data analysis (8-10). Although mathematically convenient to use read count, it gives rise to the difficulty in detecting weak binding events in ChIP-seq data because a ChIP-seq profile includes both binding and background signals and the medium or low read counts of weak binding events are often close to the level of background signals. Those tools developed based on read count are easily to classify weak binding events as background signals. Therefore, a Bayesian method, namely ChIP-BIT, has been proposed to reliably identify weak binding events at gene promoter regions (7).

Application of ChIP-BIT is limited since it can only be used to detect binding events of TFs at promoter regions. We present a new software package, ChIP-BIT2, to

detect binding events of both strong and weak signals from ChIP-seq data. ChIP-BIT2 expands the capability of ChIP-BIT for detecting binding events of TFs or HMs at any regions including gene promoter, enhancer or simply the whole genome. Moreover, ChIP-BIT2 is a C/C++ implementation. Compared to the original ChIP-BIT package (implemented in MATLAB), a significant speed improvement (~40%) can be gained for a pair of matched sample and input ChIP-seq profiles.

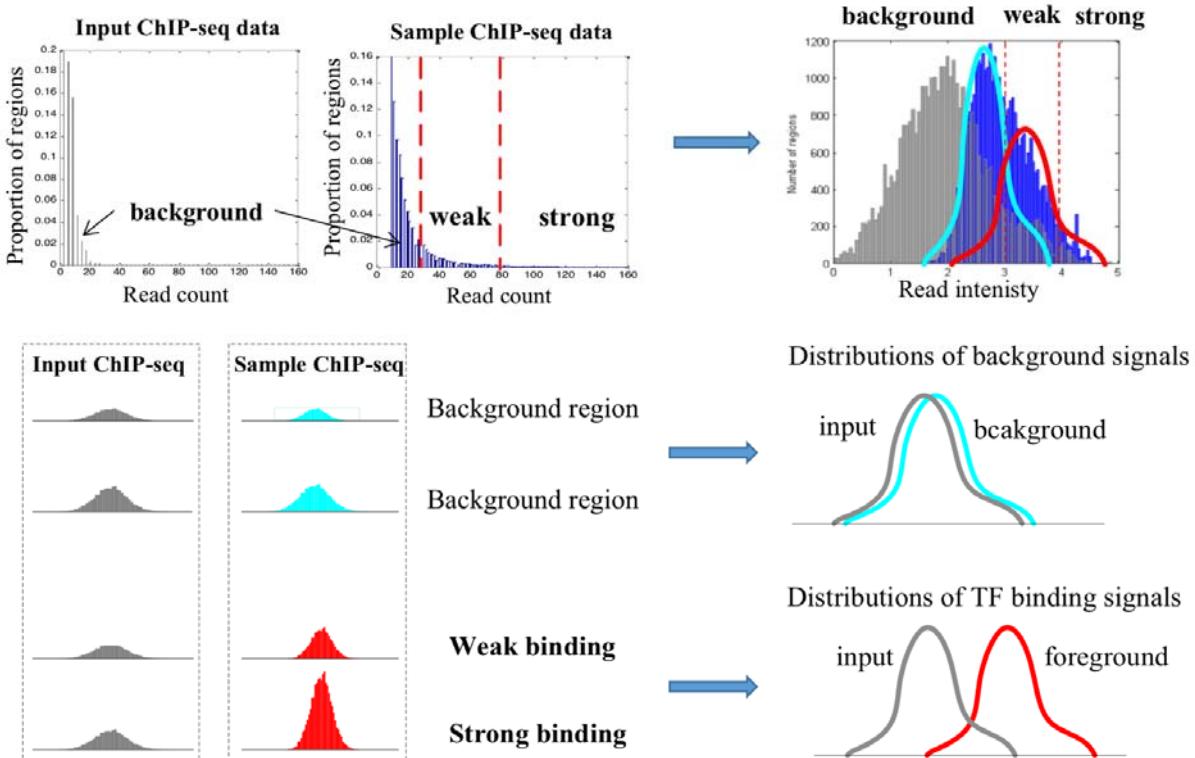
Description

The challenge in detecting weak binding events lies in the ambiguity in differentiation of the binding signals from background signals. Background signal is not random noise. Its amplitude can be as high as a true binding signal. Using read intensity (log transform of average read coverage (7)), as illustrated in Fig. 1, ChIP-BIT2 will shrink the ‘distance’ between strong and weak binding signals and enlarge the ‘distance’ between weak and background signals, making it easier to detect weak bindings. The core functions of the algorithm are implemented in C/C++ as depicted in Fig. 2. ChIP-BIT2 can detect binding events either proximal to transcription starting sites (TSSs) or located at distal enhancer regions. As shown in Fig. 1 and Fig. 2, candidate ChIP-seq signal enriched regions are first identified through a data pre-processing step (with a similar strategy in PeakSeq (3)). Input background signal is then properly normalized against sample ChIP-seq signal. After loading annotated enhancer or promoter regions, ChIP-BIT2 can run in either ‘promoter mode’ or ‘enhancer mode’. Each promoter or enhancer region is first extended to a user-defined range and then partitioned into 200 bps bins. If no annotation region is provided, ChIP-BIT2 will detect all possibly enriched regions and partition the into bins as candidate regions. For each bin, sample read intensity, input

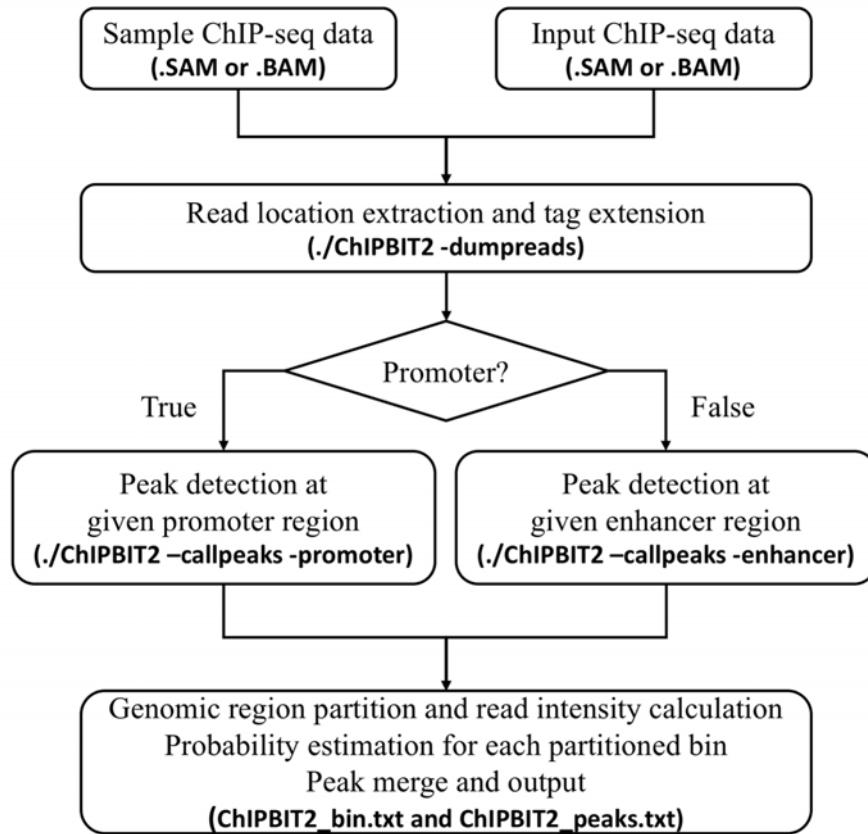
read intensity and binding location (for promoter only) are calculated for each bin. A probability for binding occurrence is estimated using the Expectation-Maximization (EM) method. Consecutive bins with probabilities higher than a predefined threshold will be merged and finally outputted as enriched peaks. Using bin-based model, there is no need to set peak size limit, which makes ChIP-BIT2 flexible to detect narrow or wide peaks for TFs or HMs.

Results

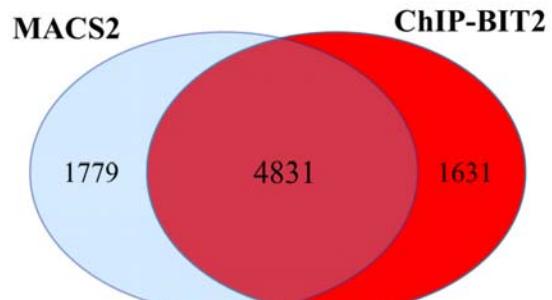
We have compared ChIP-BIT2 and MACS2 using a breast cancer MCF-7 ChIP-seq data set with 39 TFs (as listed in Table 1). BAM files of selected TFs and their matched input data are downloaded from the ENCODE website (<https://www.encodeproject.org/>) and GEO database (<https://www.ncbi.nlm.nih.gov/geo/>). We used ChIP-BIT2 to process each TF and its match input data and predicted binding events at enhancer or gene promoter regions. Gene promoter regions were extracted from human reference genome hg19 as ± 10 k bps around each TSS. In total, we obtained 25,802 promoter regions regardless of potential overlap. Breast cancer MCF7 enhancer like regions were downloaded from ENCODE (<https://www.encodeproject.org/data/annotations/>). In total, there are non-overlap 33,957 enhancer regions (referred to hg19). We extended or pruned enhancer regions as ± 1 k bps around the original middle points. Finally, we used ChIP-BIT2 to call TFBSSs at promoter and enhancer regions, respectively. ChIP-BIT2 and its previous MATLAB version were tested under CentOS Linux 7.3 on DELL T7600 workstation with 3.1GHz CPU (32 cores) and 128GB RAM. ChIP-BIT2 only uses one CPU core for one TF's ChIP-seq data processing and requires less than 2GB memory, so the running speed should be similar on any desktop or laptop with a similar CPU


speed. The running speed of ChIP-BIT2 is summarized in Table. 2. Compared to its previous MATLAB version (supporting ‘promoter mode’ only), ChIP-BIT2 has gained a speed improvement of ~40%. Its speed in ‘enhancer mode’ is very similar to that in ‘promoter mode’, mainly determined by the number of reads in sample and input experiments.

We then compared ChIP-BIT2-detected peaks against those predicted by MACS2 (2) at selected promoter or enhancer regions associated with active genes (highly expressed) in MCF-7 cells. As shown in Fig. S3, a high proportion (73% for promoter or 54% for enhancer) of MACS2-detected binding events were captured by ChIP-BIT2. ChIP-BIT2 detected additional weak binding events (probability >0.9) together with those strong ones. Weak bindings at enhancer regions may play a more important role in gene regulation because an enhancer region is likely to be activated by a set of TFs, including both major activators and co-factors; the binding strength of co-factors may be weak (11). Therefore, ChIP-BIT2, by modeling read intensity instead of read count, can better eliminate background signals to effectively reduce false positive predictions, achieving an improved accuracy in detecting weak binding events.


Conclusion

We have developed a software package, ChIP-BIT2, for detecting binding events of both strong and weak signals in promoter regions or enhancer regions. ChIP-BIT2, built upon a novel joint probabilistic model and implemented in C/C++, has been applied to a large set of ChIP-seq data and demonstrated its broad applicability in ChIP-seq data analysis for effective and reliable detection of binding events.


Figures

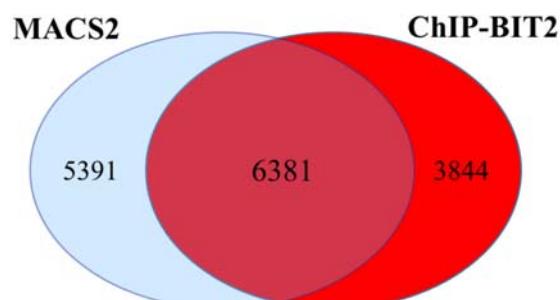

Fig. 1. Converting read counts to read intensity for weak binding event detection.

Fig. 2. Workflow of ChIP-BIT2:

(A)

(B)

Fig. 3. Venn diagrams of binding events detected by ChIP-BIT2 (red) and MACS2 (blue) at 489 gene promoter regions (A) and 1050 enhancer regions (B).

Tables

Table S1. 39 TF ChIP-seq profiles of breast cancer MCF-7 cells.

Data source	TF symbols
ENCODE	CEPB, CTCF, E2F1, EGR1, ELF1, EP300, FOSL2, FOXM1, GABPA, GATA3, HDAC2, JUND, MAX, MYC, NR2F2, NRSF, PML, POLR2A, RAD21, SIN3AK20, SRF, TAF1, TCF7, TCF12, TEAD4, ZNF217
GSE26831	c-FOS, c-JUN, FOXA1
GSE41561	CREB1, ER- α , KLF4, RXRA, TLE3
GSE38901	HSF1
GSE44737	MBD3
GSE28008	PBX1
GSE22612	TDRD3
In house	NOTCH3

Table S2. Running speed of ChIP-BIT2 on peak detection for individual TFs

TF symbols	ChIP-BIT2 Enhancer	ChIP-BIT2 Promoter	ChIP-BIT Promoter
KLF4	4m54	4m43	10m23
TCF12	7m43	7m40	12m20
c-JUN	6m56	7m2	10m4
c-FOS	6m41	6m38	9m52
JUND	8m41	8m27	13m54
RXRA	8m46	8m37	13m10
E2F1	9m59	9m48	16m53
FOXA1	9m18	9m4	13m3
RAD21	10m44	10m35	15m45
TCF4	10m13	9m30	14m11
TLE3	13m46	11m59	22m33
ZNF217	10m36	10m29	15m11
HSF1	11m17	6m25	14m55
ELF1	12m37	12m29	17m42
ER- α	13m41	12m29	20m10
POL2A	12m29	11m34	16m47
NOTCH3	14m25	13m38	21m7
SRF	15m30	13m35	22m50
TDRD3	25m20	23m21	48m44
CEBPB	13m50	13m42	21m31
FOSL2	14m18	13m8	18m50
GATA3	14m3	14m5	20m56
GABPA	13m41	13m29	18m18
NR2F2	15m15	14m31	21m38
PBX1	17m11	15m21	25m47
CTCF	14m35	13m59	19m24
EP300	14m43	14m15	18m38
FOXM1	15m11	14m25	19m25
PML	14m34	9m26	19m40
CREB1	17m19	16m43	24m43
HDAC2	14m34	15m36	21m34
TEAD4	14m50	14m11	19m35
EGR1	16m32	15m44	20m39
NRSF	17m13	16m27	22m12
SIN3A	19m29	15m0	27m15
MYC	31m32	28m7	46m9
MAX	20m44	19m55	26m35
TAF1	20m7	19m33	25m50
MBD3	27m39	26m47	36m6

References

1. Ramos, A.I. and Barolo, S. (2013) Low-affinity transcription factor binding sites shape morphogen responses and enhancer evolution. *Philos Trans R Soc Lond B Biol Sci*, **368**, 20130018.
2. Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B.E., Nusbaum, C., Myers, R.M., Brown, M., Li, W. *et al.* (2008) Model-based analysis of ChIP-Seq (MACS). *Genome biology*, **9**, R137.
3. Rozowsky, J., Euskirchen, G., Auerbach, R.K., Zhang, Z.D., Gibson, T., Bjornson, R., Carrero, N., Snyder, M. and Gerstein, M.B. (2009) PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls. *Nat Biotechnol*, **27**, 66-75.
4. Xing, H., Mo, Y., Liao, W. and Zhang, M.Q. (2012) Genome-wide localization of protein-DNA binding and histone modification by a Bayesian change-point method with ChIP-seq data. *PLoS computational biology*, **8**, e1002613.
5. Kumar, V., Muratani, M., Rayan, N.A., Kraus, P., Lufkin, T., Ng, H.H. and Prabhakar, S. (2013) Uniform, optimal signal processing of mapped deep-sequencing data. *Nature biotechnology*, **31**, 615-622.
6. Kuan, P.F., Chung, D.J., Pan, G.J., Thomson, J.A., Stewart, R. and Keles, S. (2011) A Statistical Framework for the Analysis of ChIP-Seq Data. *J Am Stat Assoc*, **106**, 891-903.
7. Chen, X., Jung, J.G., Shajahan-Haq, A.N., Clarke, R., Shih Ie, M., Wang, Y., Magnani, L., Wang, T.L. and Xuan, J. (2016) ChIP-BIT: Bayesian inference of target genes using a novel joint probabilistic model of ChIP-seq profiles. *Nucleic Acids Res*, **44**, e65.
8. Chen, X., Shi, X., Hilakivi-Clarke, L., Shajahan-Haq, A.N., Clarke, R. and Xuan, J. (2017) PSSV: a novel pattern-based probabilistic approach for somatic structural variation identification. *Bioinformatics*, **33**, 177-183.
9. Chen, X., Shi, X., Shajahan, A.N., Hilakivi-Clarke, L., Clarke, R. and Xuan, J. (2014) BSSV: Bayesian based somatic structural variation identification with whole genome DNA-seq data. *Conf Proc IEEE Eng Med Biol Soc*, **2014**, 3937-3940.
10. Liu, T. (2014) Use model-based Analysis of ChIP-Seq (MACS) to analyze short reads generated by sequencing protein-DNA interactions in embryonic stem cells. *Methods Mol Biol*, **1150**, 81-95.
11. Chen, X., Gu, J., Wang, X., Jung, J.G., Wang, T.L., Hilakivi-Clarke, L., Clarke, R. and Xuan, J. (2017) CRNET: An efficient sampling approach to infer functional regulatory networks by integrating large-scale ChIP-seq and time-course RNA-seq data. *Bioinformatics*.