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Abstract  21 
Freshwater is an essential resource of increasing value, as clean water sources diminish. Microorganisms 22 
in rivers, a major source of renewable freshwater, are significant due to their role in drinking water safety, 23 
signalling environmental contamination1, and driving global nutrient cycles2,3. However, a foundational 24 
understanding of microbial communities in rivers is lacking4, especially temporally and for viruses5–7. No 25 
studies to date have examined the composition of the free-floating river virome over time, and 26 
explanations of the underlying causes of spatial and temporal changes in riverine microbial composition, 27 
especially for viruses, remain unexplored. Here, we report relationships among riverine microbial 28 
communities and their environment across time, space, and superkingdoms (viruses, bacteria, and 29 
microeukaryotes), using metagenomics and marker-based microbiome analysis methods. We found that 30 
many superkingdom pairs were synchronous and had consistent shifts with sudden environmental change. 31 
However, synchrony strength, and relationships with environmental conditions, varied across space and 32 
superkingdoms. Variable relationships were observed with seasonal indicators and chemical conditions 33 
previously found to be predictive of bacterial community composition4,8–10, emphasizing the complexity 34 
of riverine ecosystems and raising questions around the generalisability of single-site and bacteria-only 35 
studies. In this first study of riverine viromes over time, DNA viral communities were stably distinct 36 
between sites, suggesting the similarity in riverine bacteria across significant geographic distances10–12 37 
does not extend to viruses, and synchrony was surprisingly observed between DNA and RNA viromes. 38 
This work provides foundational data for riverine microbial dynamics in the context of environmental and 39 
chemical conditions and illustrates how a bacteria-only or single-site approach would lead to an incorrect 40 
description of microbial dynamics. We show how more holistic microbial community analysis, including 41 
viruses, is necessary to gain a more accurate and deeper understanding of microbial community dynamics. 42 

 43 
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Main  44 
Bacterial diversity and composition in rivers is shaped by water temperature, day length, pH10, 45 
nutrients8,9, water residency time10,13, and storm events (reviewed in 4). Balancing these shaping 46 
forces, dispersal appears to play a large role both within9 and among10–12 rivers, such that 47 
bacterial community similarity does not necessarily decrease with increasing geographic 48 
distance. Less is known about planktonic (free-floating) microeukaryotes in rivers, however, they 49 
appear to vary seasonally with light changes14–16, with some evidence indicating the importance 50 
of algae as an energy source15. 51 

In contrast to this basic characterisation of bacterial and microeukaryote community variability, 52 
little is known about the community dynamics of free-floating viruses (viroplankton) in rivers5–7. 53 
River planktonic viral metagenomes (viromes) have been reported in two studies17,18, however, 54 
these studies had limited sample sizes and did not sample over time. Viral communities in lakes 55 
and oceans are better studied, however, these viromes are likely distinct from those in rivers 56 
given their differing hydrology and bacterial community compositions7,10,19. To date, there have 57 
been no large-scale studies of viroplankton composition in flowing (lotic) freshwater. As such, 58 
little is known about their community composition5–7 and basic questions, such as their 59 
variability throughout a year and the relative importance of dispersal and shaping forces in their 60 
community composition have gone unanswered.  61 

Fundamental knowledge of the spatiotemporal variability of river plankton can support 62 
downstream development of improved water quality indicators. To this end, we profiled viral, 63 
bacterial, and microeukaryotic communities in rivers across differing land uses and 64 
environmental conditions. We sampled microorganisms monthly for one year from six sites in 65 
three watersheds in southwestern British Columbia, Canada (Figure 1a). For each sample, we 66 
performed metagenomic and/or phylogenetic marker gene sequencing (16S, 18S, g23 viral 67 
capsid) for DNA viruses, RNA viruses, bacteria20, and microeukaryotes21. Environmental, 68 
chemical, and biological measures were also collected20,21. Positive and negative controls were 69 
included, and qPCR validation of select microbial groups was performed (data not shown). Due 70 
to the lack of reference genomes available for freshwater viruses and the high complexity of the 71 
communities, we estimated dissimilarity measures among metagenomes using a reference- and 72 
assembly-free k-mer approach (Mash22). To diminish any effects from potential bacterial or 73 
eukaryotic contamination in the viral data, DNA and RNA viromes are represented by two 74 
datasets. The “total” dataset includes all sequence reads. The “conservative” dataset is a subset of 75 
reads selected based on similarity to known viruses (see Methods for details). Spatiotemporal 76 
comparisons were performed within and between “superkingdoms”, including viruses (DNA and 77 
RNA), bacteria, and microeukaryotes, and “environmental conditions”, including catchment area 78 
weather, river water chemical concentrations, and river water physical conditions.  79 
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Figure 1. Temporal variation in viruses, bacteria, and microeukaryotes. a, Study design schematic of sampling 
sites with distances between sites, site orientation, watershed, and catchment land use. Distances are dendritic within 
watersheds and Euclidean between watersheds. Sites are in up- to down-stream order within watersheds.  b, Pairwise 
partial Mantel tests for synchrony between viruses, bacteria and microeukaryotes, controlling for distance between 
sampling sites, N = 51 to 85, q < 0.0004. c, Correlations between microbial communities and environmental 
conditions per sampling site. Results are organised by environmental parameter into subplots where each row is a 
biological group and each column is a sampling site. Colour intensity reflects correlation strength. Filled shapes 
indicate the statistical significance of the correlation with squares as significant (q < 0.1) and circles not statistically 
significant. Size of shape corresponds to the inverse of the statistical significance (q value). Grey square outlines 
indicate a relationship was statistically significant without multiple test correction (p < 0.05). Grey vertical lines 
separate watersheds. d, Network of summarised correlations among microbial communities and with environmental 
conditions, calculated per sampling site. Nodes are environmental conditions (yellow) and microbial communities 
(blue). Conservative viromes were used (see methods). Edges are coloured by the nodes types they connect. Each 
edge represents cumulative relationships within sampling sites, both those that are statistically significant (q < 0.1) 
and that are strong but with lower statistical confidence (R2 > 0.34, p < 0.05). Edge width reflects the sum of the 
strengths (R2) of the represented correlations. Edges are only drawn if at least one statistically significant or two 
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lower-confidence correlations were observed, to reduce artefacts from arbitrary statistical cut-off values. e, Network 
of correlations among environmental conditions, with edges calculated as in (d), with green edges for positive 
correlations and pink for negative. Nodes were arranged manually for legibility. 
 81 

Across superkingdoms, hours of daylight and rainfall intensity were the most commonly 82 
correlated with community composition (Figure 1 c, d). This pattern was particularly strong 83 
where rainfall and hours of daylight were correlated (Figure 1c sites AUP, APL, ADS; Extended 84 
Data Fig. 2 b, c, d), but weak in sites where they were not (Figure 1c sites PUP, UPL, UDS; 85 
Extended Data Fig. 2 a, e, f). This is surprising as rainfall was hypothesized to have a 86 
particularly large and consistent impact on microbial communities since its intensity can affect 87 
microbial transport (both overland and within stream transport). Instead, when not confounded 88 
with overall seasonal changes (hours of daylight), rainfall was rarely significantly correlated with 89 
microbial community composition. Overall, no correlations between environmental conditions 90 
and superkingdoms were seen in all sites (Figure 1c), emphasizing the variability of river 91 
microbial community relationships with their environment.  92 

Environmental conditions that have been reported to drive bacterial community composition 93 
were heterogeneously correlated across sites and did not extend to other superkingdoms. For 94 
example, nitrogen and phosphorous concentrations were most often correlated with RNA viruses 95 
and/or microeukaryotes but not with bacteria, and pH was only correlated with bacterial 96 
composition in two sites, despite a previous single-time-point study finding it to be a major 97 
driver10. Very few correlations were observed with dissolved oxygen concentration, flow 98 
intensity, specific conductivity, or turbidity. The range of correlations with environmental 99 
conditions observed across sites and superkingdoms emphasizes both the complexity and 100 
heterogeneity of riverine microbial ecosystems. 101 

Despite inconsistent relationships with environmental conditions, viral and bacterial community 102 
compositions shifted in similar patterns over time (were “synchronous”), with the strength of 103 
synchrony varying among sampling sites (Figure 2b, Extended Data Fig. 2). Microeukaryotes 104 
had fewer synchronous relationships but were correlated with bacteria and/or DNA viruses in 105 
some sites. The lack of synchrony between microeukaryotes and RNA viruses could reflect 106 
infection patterns. The cases of synchrony likely imply that the community compositions 107 
changed in response to a varying third factor (e.g. through competition) or that dispersal 108 
introduced new organisms that caused community shifts12. In most cases, synchronous pairs were 109 
not significantly associated with a common third measure (Extended Data Fig. 3). The 110 
synchronous relationships most commonly observed here agree with a single-site marine study23; 111 
however, the diversity of sites presented here provide important counter examples to this 112 
emerging trend. 113 
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 114 

Figure 2. Onset of rainfall has consisent and large effect on riverine microplankton. a, NMDS plot of DNA & 
RNA viral communities from an agriculturally affected site (APL). Each point represents a viral community, solid 
lines connect sequential samples and are coloured by sampling date, dashed lines connect viromes extracted from 
the same sample. Points are coloured by the average rainfall over the three days prior to sampling. N= 13. b, Box 
plot of similarity between microbial communities collected in subsequent months, coloured by whether both 
sampling dates had low rainfall (yellow) or whether the earlier date was dry but later date had elevated rainfall 
(blue). N = 6 for bacteria and RNA viruses, N= 5 for DNA viruses.  
 115 

Unexpectedly, DNA and RNA viral community compositions were synchronous in some sites 116 
(metagenomic and phylogenetic marker gene data, Mantel’s r = 0.4 - 0.6, q = 0.02 - 0.001), even 117 
though they were not consistently synchronous with bacteria or microeukaryotes (Extended Data 118 
Fig. 2). Because few, if any, studies have profiled DNA and RNA viral community compositions 119 
concurrently over time, this synchrony has not been previously investigated. While correlational 120 
data cannot prove the drivers of synchrony, environmental data can provide context. 121 
Synchronous DNA and RNA viromes were correlated with daylight hours (Extended Data Fig. 122 
3) and a temporal trend is clear: sequential samples tended to be most alike and shift stepwise 123 
over time (Figure 2a, at one site; for other sites see Extended Data Fig. 4). This suggests that the 124 
DNA and RNA viral synchrony is not artefactual, but due to some temporal relationship, 125 
possibly with a common host group or synchronous groups. 126 

Large shifts in DNA and RNA viromes in agriculturally affected sites were concurrent with the 127 
onset of rainfall after a dry period (Figure 2a, Extended Data Fig. 4). This trend was also 128 
observed in the other sampling sites and in bacterial communities (Figure 2b, microeukaryotic 129 
communities not tested due to insufficient data). These observations demonstrate the first-flush 130 
phenomenon; dry periods permit a buildup of solids, chemicals, metals, and organisms and the 131 
first significant rainfall causes an abrupt shift in the bacterial and viral communities in the 132 
receiving waters24–26.  This shows that while continuous relationships with rainfall were not 133 
universal (Figure 1), response to a rainfall event was more common.  134 

 135 
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Figure 3. Geographic distinctiveness within viral, bacterial, and eukaryotic communities over 1 year of 
monthly samples. Proportion of variability among samples that is explained by sampling site (NPMANOVA R2), 
either across all sites (black square) or pairwise between sites (boxplots). In boxplots, the lower and upper box edges 
correspond to the first and third quartiles, the whiskers extend to the highest and lowest values that are within 1.5 
times the inter-quartile range, and data beyond this limit are plotted as points. 
 137 

While sampling site was a significant source of variation for all microbial groups, DNA viromes 138 
showed stronger geographic-based similarity than bacteria and microeukaryotes (Figure 3, 139 
Extended Data Fig. 1).  This is consistent with the distinctiveness of T4-like bacteriophage seen 140 
in a study of polar lakes27. It is in contrast with the similarity of DNA viruses seen in two 141 
temperate lakes28, however these lakes are connected and have similar surrounding land use. 142 
Analysing bacterial amplicon data at a finer taxonomic resolution (99% identity OTUs) did not 143 
significantly increase its geographic distinctiveness (data not shown). This lower geographic 144 
distinctiveness of bacteria, particularly among sites with similar land use (pairwise 145 
NPMANOVA between the two agriculturally affected sites and between the two urban-affected 146 
sites: R2 <= 0.23, q = 0.0003, Extended Data Fig. 5), is consistent with previously shown low 147 
spatial stratification of bacteria among rivers10–12. In the one case where land use varied within a 148 
watershed (Figure 1a, AUP versus APL & ADS), land use and associated water chemistry 149 
differences appeared to override geographic proximity as a predictor of microbial community 150 
similarity (Extended Data Fig. 5). These findings support a major ecological role of dispersal at 151 
this geographic scale (10 – 130 km) for riverine bacterial and microeukaryotic plankton but 152 
reveals that viruses have a more distinct geographic pattern.  153 

The higher geographic specificity of viruses observed here could reflect higher geographic 154 
specificity of host cells not sampled in this study, such as particle-associated plankton, riverbed 155 
biofilms, plants, humans, or other animals. Alternatively, viruses may be more geographically 156 
distinct because they replicate in the subset of microbial cells in the community that are active 157 
(estimated at 20-50% of bacterial cells29). This subset is more likely to be geographically distinct 158 
due to their increased susceptibility to selective pressures29 and more likely to be represented by 159 
viruses due to the mechanics of the lytic cycle and host-specificity30. Thus, we hypothesise that 160 
viruses may produce a stronger geographic signal than bacteria by amplifying the effect of 161 
species sorting against the background of widely dispersed inactive cells.  162 
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In conclusion, temporal and spatial profiling revealed contrasting patterns among superkingdoms 163 
and environmental conditions in riverine microbial plankton. Some relationships were common, 164 
such as microbial composition with day light hours and rainfall, and expected correlations were 165 
observed, such as between bacterial communities and pH. However, by examining multiple 166 
locations, these relationships were revealed not to be universal, even within similar sampling 167 
sites. This demonstrates the heterogeneity of riverine microbial ecosystems and the need for 168 
multi-site studies in riverine microbial ecology, as a similar study of a single site may have 169 
falsely concluded general trends. By examining multiple superkingdoms, correlations with 170 
nutrient concentrations were identified that would have been missed if only bacteria were 171 
profiled and the strong dispersal observed in bacteria and microeukaryotes was revealed not to 172 
extend to viruses. In summary, this study provides insight into the variability of microbiomes 173 
over superkingdoms, time, and space in an important, yet understudied environment. It reveals 174 
notable differences in community dynamics across microbial groups, and demonstrates the value 175 
of collectively studying microeukaryotes, bacteria and viruses across multiple time points and 176 
locations in microbiome studies. 177 

 178 

Methods 179 

Sampling & sequencing 180 
River water was collected monthly for 12 to 13 consecutive months from six sites in three 181 
watersheds in southwestern British Columbia, Canada. The agricultural watershed had three 182 
sampling sites, one upstream of human activity (AUP), one adjacent to intensive agriculture 183 
(APL), and one further downstream (ADS). The urban watershed had two sampling sites, one 184 
with a catchment mix of forest and residential land use (UPL), and one further downstream with 185 
mostly residential and some park land use (UDS).  The pristine watershed was in a protected 186 
forest area, with no land use (PUP). Sampling sites were not downstream of any lakes or dams. 187 
Water temperatures ranged from 3°C to 25°C. In the agricultural watershed, a distinct rainy 188 
period occurred from November to March, which is typical for the area. The other watersheds 189 
had more variable rainfall throughout the year. Sites from the same watershed were sampled on 190 
the same day. For full sampling and sequencing procedures see 21 and 20; a brief overview 191 
follows. 192 

At each sampling event, 40 L of water was collected and then filtered sequentially to concentrate 193 
particles approximating the sizes of microeukaryotes (105 to 1 µm), bacteria (1 to 0.2 µm), and 194 
viral-sized particles21. Physical and chemical water measurements were also taken20. DNA was 195 
extracted from each size fraction, along with RNA from the viral-sized fraction21.  196 

Amplicons for T4-like bacteriophages were prepared using primers targeting the myovirus g23 197 
gene21,31. Amplicons for bacteria were prepared using primers targeting the V3-V4 regions of 198 
16S rRNA gene32,33. Amplicons for microeukaryotes were prepared using primers targeting the 199 
V1-V3 regions of the 18S rRNA gene34,35. Amplicons were purified with a QIAQuick PCR 200 
Purification Kit (Qiagen Sciences, Maryland, MD) according to the manufacturer’s instructions. 201 
Sequencing libraries were prepared for amplicons using NEXTflex ChIP-Seq Kit (BIOO 202 
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Scientific, Austin, TX), gel size-selected as per manufacturer’s instructions, and sequenced with 203 
250-bp paired-end reads on an Illumina MiSeq platform (Illumina, Inc., San Diego, CA). 204 

Bacterial metagenome libraries were prepared using Nextera XT DNA sample preparation kit 205 
(Illumina, Inc., San Diego, CA) and size selected using high-throughput gel-based Ranger 206 
technology36. Bacterial metagenomes were sequenced over multiple runs with 250 bp paired-end 207 
reads on an Illumina MiSeq, with positive controls (mock communities)20,37 and negative 208 
controls included in each run.  209 

A modified adapter nonamer approach was used to synthesize viral cDNA and increase yields 210 
from the viral fraction21,38. Viral metagenome libraries were prepared from randomly amplified 211 
DNA and cDNA using NEXTflex ChIP-Seq kit (BIOO Scientific, Austin, TX) by following a 212 
gel-free option provided in the manufacturer’s instructions. These libraries were sequenced with 213 
150 bp paired-end reads on an Illumina HiSeq platform (Illumina, Inc., San Diego, CA). 214 

DNA sequence pre-processing and quality control 215 
Low quality bases were trimmed from the 3’ end of reads using a sliding window with a 216 
minimum Phred score of 20 (or 15 for g23) using Trimmomatic39. Adapters were removed using 217 
Cutadapt40 with default parameters. Paired-end reads were merged using PEAR41. 218 
Microeukaryotic 18S amplicon paired-end reads could not be merged, so Operational Taxonomic 219 
Units (OTUs) were generated from reads with the same primer sequence. 220 

T4-like myovirus g23 amplicons reads were translated into amino acid sequences using 221 
Fraggenescan v1.16 with the Illumina 5% error model (Rho, Tang, and Ye 2010). OTUs were 222 
generated using USEARCH42 v7: sequences were dereplicated, clustered at 95% identity, then all 223 
reads were mapped back against cluster representatives to calculate abundances. Sample read 224 
totals were subsampled to 10,000 reads using the vegan package43 in R44 v3.1.2. Random 225 
resampling was performed 10,000 times and the median value of all iterations was chosen. 226 
Bacterial 16S and microeukaryotic 18S OTUs were generated from amplicon reads using the 227 
Mothur45 MiSeq clustering protocol46 and rarefied to 10,000 reads.  228 

Metagenomic reads were trimmed at the 3’ end with a sliding window with a minimum Phred 229 
score of 20 using Trimmomatic39. DNA virome reads shorter than 70 bp were discarded, 230 
resulting in a dataset of 20 Gb in 225 M reads. RNA virome reads shorter than 100 bp were 231 
discarded and ribosomal reads were removed using meta-rRNA47, resulting in a dataset of 17 Gb 232 
across 149 M reads. Bacterial metagenome reads shorter than 100 bp were discarded, resulting in 233 
a dataset of 16 Gbp across 75 M reads.  234 

Generation of high-confidence DNA & RNA virome datasets 235 
Viromes were assembled using CLC and proteins were predicted from contigs using Prodigal in 236 
metagenomic mode with default parameters. Predicted proteins at least 26 amino acids long were 237 
clustered de novo using parallel cd-hit48, with criteria as previously used49: word length of 4 and 238 
60% identity over 80% length of the shorter sequence. Reads were assigned to clusters with a 239 
blastx-style similarity search against cluster representative sequences using DIAMOND50 with 240 
minimum 60% sequence similarity over minimum 26 amino acid alignment length. While 241 
protein cluster analysis is common in large scale marine studies49,51, we did not use this dataset 242 
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for primary analysis as many samples had a small proportion of reads in any protein cluster 243 
(mean 13%, range 8-30% of DNA virus reads and mean 25%, range 8-60% for RNA virus 244 
reads).  245 

Contigs were tested for amino acid sequence similarity to reference sequences in NCBI’s nr 246 
database using RAPSearch and taxonomically classified using MEGAN5. A small proportion of 247 
contigs were assigned as DNA viral (4% of contigs, 0.7% of total reads) and RNA viral (2% of 248 
contigs, 7% of total reads).  249 

In the DNA virome dataset, 42% of contigs were assigned as bacterial, corresponding to 20% of 250 
assembled reads and 7% of total reads. To assess whether these bacterial assignments were due 251 
to miss-assignment of viral sequences (e.g. auxiliary metabolic genes, prophages) or an 252 
indication of bacterial contamination (e.g. from laboratory reagents, free-floating DNA, or host 253 
DNA packaged in viral capsid)52, reads were tested for the presence of bacterial genes unlikely to 254 
occur in viruses. Across 515,000-read subsets of samples, similarity to the 16S rRNA gene was 255 
found in 1 to 156 reads (mean: 30, standard deviation: 25). Though these are small numbers, they 256 
are an indication of the number of bacterial genomes potentially present. This means that the 257 
contigs identified as bacterial in the taxonomic results cannot be ruled out as bacterial 258 
contamination. Further, the contigs that were left unassigned by the taxonomic classification also 259 
cannot be ruled out as bacterial. 260 

To remove potential bacterial contamination from the DNA and RNA viromes, subsets of the 261 
read data were generated that only included sequences from protein clusters with at least one 262 
member that was assigned as coming from DNA or RNA viruses, respectively. This reduced the 263 
number of reads per sample from 515,000 in the “total” dataset to 10,000 in the “conservative” 264 
subset for DNA viromes and from 45,000 to 1,000 for RNA viromes. As this is a fairly small 265 
number of reads, we estimated the stability of distance matrices with low numbers of reads (see 266 
below) and used both total and conservative datasets to test trends. 267 

Sample similarity estimation & spatiotemporal analysis 268 
Pairwise similarity between amplicon samples was performed using vegan43 in R44 to calculate 269 
Bray-Curtis dissimilarity between OTU abundance profiles. Pairwise similarity between 270 
metagenomes was assessed using Mash distances v1.0.222, which compares metagenomes based 271 
on k-mer presence-absence. For display in heatmaps in Extended Data Fig. 1, extreme values of 272 
similarities were collapsed to be represented by one color. Extreme values were defined as those 273 
values more than 2.5 times the median absolute deviation (MAD) away from the median53. 274 
Collapsed values were only used for display and not for any statistical tests.  275 

Due to the small number of reads in the conservative RNA virus dataset, we investigated whether 276 
this depth was enough to obtain a stable representation of the communities. We randomly 277 
selected 1,000 reads ten times per sample from 68 samples which had at least 10,000 reads in the 278 
conservative RNA virus dataset. We ran Mash on these subsamples and calculated the pairwise 279 
Mantel correlations between the resultant dissimilarity matrices. All matrices had correlation 280 
scores of at least R = 0.95 with Pearson’s correlation and R=0.94 with Spearman’s correlation. 281 
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We decided this consistency was sufficiently high to justify confidence in high level patterns 282 
within this data. 283 

All statistical tests were performed in R44 v3. Permutation-based p values were calculated using 284 
9999 permutations. Multiple test correction was performed where appropriate using the 285 
Benjamini-Hochberg procedure and adjusted p values reported as q values. Significance test 286 
values were considered statistically significant if lower than 0.05, except where indicated 287 
otherwise.  288 

The proportion of variability among sample similarities that could be explained by sampling site 289 
was estimated using NPMANOVA as implemented in the adonis function from the vegan R 290 
package43. Gene family variability was based on SEED subsystem classifications20 and 291 
calculated using Bray-Curtis dissimilarities. The NMDS plots in Figure 2 and Extended Data 292 
Fig. 4 were generated using the vegan metaMDS function, with rotation and scaling of 293 
ordinations performed using the procrustes function and tested for significance using the pro.test 294 
function. Samples from April 2013 (105 and 106) were highly dissimilar and removed from 295 
Figure 2a to permit the trend in the other 12 samples to be displayed.  296 

Synchrony was tested using Mantel matrix correlation tests with Spearman correlations, 297 
implemented in the vegan R package43. When testing samples from multiple sites for synchrony, 298 
a partial Mantel test was used to control for geographic distance between sampling sites. 299 
Environmental data were tested for correlations with microbial community similarities using the 300 
envfit function. If applicable, the environmental measures to test were selected based on their 301 
magnitude and variability in the context of water quality guidelines54. Relationships among 302 
environmental measures were assessed using Spearman’s correlation. Correlations within and 303 
among environmental measures and microbial community similarities were displayed in a 304 
network using the visNetwork R package. Correlations that had a q value less than 0.1 were 305 
considered statistically significant. Correlations that had a q value greater than 0.1 but a p value 306 
less than 0.05 were not considered statistically significant but were included in visualisations to 307 
avoid overconfidence in the absence of a relationship, however, they should be interpreted with 308 
caution.  309 

Data Availability 310 
All raw sequences are deposited in the NCBI Sequence Read Archive under BioProject 311 
accession PRJNA287840. 312 
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