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Abstract

Motivation: Gene Set Enrichment Analysis (GSEA) is routinely used to analyze and interpret coordinate changes
in transcriptomics experiments. For an experiment where less than seven samples per condition are compared,
GSEA employs a competitive null hypothesis to test significance. A gene set enrichment score is tested against
a null distribution of enrichment scores generated from permuted gene sets, where genes are randomly selected
from the input experiment. Looking across a variety of biological conditions, however, genes are not randomly
distributed with many showing consistent patterns of up- or down-regulation. As a result, common patterns of
positively and negatively enriched gene sets are observed across experiments. Placing a single experiment into the
context of a relevant set of background experiments allows us to identify both the common and experiment-specific
patterns of gene set enrichment.

Results: We compiled a compendium of 442 small molecule transcriptomic experiments and used GSEA to
characterize common patterns of positively and negatively enriched gene sets. To identify experiment-specific gene
set enrichment, we developed the GSEA-InContext method that accounts for gene expression patterns within a
user-defined background set of experiments to identify statistically significantly enriched gene sets. We evaluated
GSEA-InContext on experiments using small molecules with known targets and show that it successfully prioritizes
gene sets that are specific to each experiment, thus providing valuable insights that complement standard GSEA

analysis.
Availability and Implementation:

GSEA-InContext is implemented in Python.

Code, the background

expression compendium, and results are available at: https://github.com/CostelloLab/GSEA-InContext

1 Introduction

Gene Set Enrichment Analysis (GSEA) [42] [37] was de-
veloped to help with the analysis and interpretation of the
long lists of genes produced from high-throughput tran-
scriptomic experiments. By summarizing genome-wide
gene expression changes into gene sets - sets of function-
ally related genes - a user can gain insight into how bi-
ological pathways and processes are affected under the
tested experimental conditions. Since its initial applica-
tion to microarray experiments, GSEA has demonstrated
utility across many applications including RNA-seq gene
expression experiments, genome-wide associations studies
[53, [13], proteomics [32], and metabolomics studies [50].

The power of GSEA lies in its use of gene sets, which
provide a more stable and interpretable measure of biolog-
ical functions compared to individual genes that can show

greater experimental and technical variation [I6] [49]. A
user can define custom gene sets, but more commonly,
researchers rely on pre-compiled gene sets, such as the
widely-used Molecular Signatures Database (MSigDB)
[42). Additional online resources have become available to
provide pre-compiled gene sets specific to drug response
[52], human disease and pharmacology [I], molecular phe-
notypes [26], and patient prognosis [I1], to name a few.

Similar to other Functional Class Scoring (FCS) meth-
ods [29], the underlying hypothesis of GSEA is that
genes involved in a similar biological process or path-
way (grouped into gene sets) are coordinately regulated.
Thus, if an experimental perturbation activates a path-
way, the genes in this gene set will be coordinately up-
regulated and this pattern can be identified using statisti-
cal tests. The enrichment score, which reflects the degree
to which genes in a gene set are over-represented at ei-
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ther end of a ranked gene list, is a fundamental aspect
of FCS methods. Accordingly, a great deal of effort has
been devoted to the development and evaluation of statis-
tical models, from simple mean/median gene level statis-
tics [27] or maxmean statistics [I5] to the Kolmogorov-
Smirnov [42], [37] and Wilcoxon rank sum tests [5]. GSEA
uses a modified version of the Kolmogorov-Smirnov statis-
tic to compute the gene set enrichment score [42] [37]. Fi-
nally, the significance of the enrichment score is estimated
against the null hypothesis. Two categories of null hy-
potheses are used across FCS methods: %) self-contained
or i) competitive null hypothesis. When running GSEA
[42] 137], these options can be found under the “Permuta-
tion type” field with options, phenotype (self-contained)
or gene_set (competitive).

The self-contained null hypothesis states that no genes
in a given gene set are differentially expressed. To test
this hypothesis for any given gene set, the phenotype
labels defining the experimental condition of individual
samples are permuted. This approach focuses on the
genes in a given gene set and ignores genes outside the set,
providing strong statistical power and rejecting more null
hypotheses [29] [19, [44]. However, this approach has sev-
eral drawbacks. For experiments with a high number of
differentially expressed genes, this approach will produce
many significantly enriched gene sets. Conversely, if few
genes are differentially expressed, correspondingly few to
no gene sets will be significantly enriched. Additionally,
because phenotype labels are permuted under this null
hypothesis, the statistical power of the test is determined
by the number of samples in the experiment. As a result,
the GSEA documentation recommends providing at least
seven samples per phenotype label when running GSEA
with the phenotype option selected in the “Permutation
type” field [21]. Experiments with fewer than three sam-
ples per phenotype cannot be run, and tens to hundreds of
samples per experimental condition are needed to achieve
robust statistics.

For the large number of experiments generating less
than seven samples per condition, the alternative to the
self-contained null hypothesis is the competitive null hy-
pothesis. The null hypothesis for this approach states
that genes in a given gene set are at most as often differ-
entially expressed as the genes not in the set. To test this,
random sets of genes of equal size to a given gene set are
scored. Thus, this approach compares genes within a set
to genes outside the set. When sample sizes are numer-
ous and the data follow the assumptions of the underlying
statistical models, then the self-contained null hypothe-
sis is preferred as it offers greater statistical power than
the competitive null hypothesis to reject the null hypoth-
esis [29) 19| [44]. However, when these assumptions are
not met or the focus of an analysis is on an individual
sample, the competitive hypothesis is needed. When run-

ning GSEA [42, [37], the competitive hypothesis can be se-
lected using the gene_set option under the “Permutation
type” field [21]. It is also the only option when running
the “GSEAPreranked” mode, where the user supplies a
pre-ranked list of genes based on whatever method they
choose, most often this is a list of differentially expressed
genes.

There are many experiments that require the use of
the competitive null hypothesis for proper comparison.
Accordingly, this requirement motivated a series of meth-
ods to address the statistical challenges in single-sample
analysis of ranked gene lists [24] [33] Bl 45]. By select-
ing random sets of genes outside the set being tested, the
competitive null hypothesis approach breaks the inherent
correlation structure of genes in the tested set. Methods
like GSVA [24] nicely address this challenge by incorpo-
rating gene-specific variation directly in the calculation
of a sample-wise gene set enrichment score within a given
input data set.

Here we take a different approach to analyze and ad-
just for patterns in differentially enriched gene sets pro-
duced using GSEA with the competitive null hypothesis.
Specifically, we account for gene-specific variation esti-
mated from an experimental background. Our approach
is motivated by the fact that there are no methods avail-
able for a user to easily compare their GSEA results to
GSEA results obtained in other experiments to discern
similar and/or distinct patterns affected across experi-
ments. Overall, the goal of this research is to address
two questions: 1) which gene sets are commonly enriched
across a compendium of experiments, and 2) which gene
sets are uniquely enriched in a single experiment com-
pared to many other, independent experiments?

To accomplish these goals, we first curated a com-
pendium of gene expression experiments encompassing a
variety of experimental conditions and identified patterns
of positive and negative enrichment by applying GSEA.
We then leverage these patterns to help contextual sin-
gle experiments. Accordingly, we developed an extension
for GSEA that uses these context-specific patterns to in-
form the statistical testing procedure. Specifically, while
GSEA tests for the significance of an enrichment score
against a null distribution of enrichment scores calculated
for random permuted gene sets, our algorithm generates
permuted gene lists based on a set of user-defined back-
ground experiments. Because we allow the user to de-
fine the context of the background set of experiments, we
have termed our method, GSEA-InContext, which stands
for GSEA - Identifying novel and Common patterns in
expression experiments.

We applied GSEA-InContext to a compendium of gene
expression experiments testing small molecule treatments
in human cell lines. Small molecules remain the gold stan-
dard of treatment for numerous diseases, and in the con-
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Figure 1: Overview of the statistical test for GSEAPreranked and GSEA-InContext. (A) A typical
workflow for using GSEA to identify significantly enriched gene sets in a vehicle control vs drug-treated experiment.
Calculating the expression fold change between the two conditions produces a ranked gene list L. This list is input
into GSEA along with a collection of gene sets C. (B) To test whether a gene set S; is significantly enriched in L,
the enrichment score, ES(S1), is tested against a null distribution ESy,,;;- GSEAPreranked creates ESSJﬁm”k"‘d by
calculating the ES for m gene sets the same size as S, which are created by randomly selecting from teh full range
of L. (C) The GSEA-InContext approach takes as input L, C, and a user-defined set of background experiments.
Instead of randomly generating gene sets, ESflﬁﬁO”t”t is created by selecting genes based on how they are distributed
in the background set of experiments. The ES for each of m informed gene sets is calculated and used to evaluate
the significance of ES(S7).

text of cancer, human cell lines have been widely used 2 Materials and Methods

to study mechanisms of drug action and present a ro-

bust pharmacogenomic platform [20, 17, 41, 4]. Gene 2.1 Data collection and normalization
expression experiments are regularly performed to study
the direct effect of a small molecule, but expression pro-
files will capture both on- and off-target effects of the
small molecule and disentangling these effects remains a
challenge. At the same time, patterns of positive or neg-
ative enrichment can provide insights into common (i.e.
not tissue- or drug-related) responses to small molecule
treatment. In this article, we demonstrate how GSEA-
InContext can be used to gain insights into both aspects
of small molecule treatment. We proceed by first de-
scribing our curated background compendium of small
molecule gene expression experiments. We present an
analysis of this compendium and identify commonalities
in differentially expressed genes and significantly enriched
gene sets, motivating the development of the GSEA-
InContext method. Finally, we demonstrate GSEA-
InContext on two example applications: Notch inhibition
in T-cell acute lymphoblastic leukemia and investigating
gene expression changes in response to dexamethasone
and estradiol treatment in breast cancer cell lines.

We queried the Gene Expression Omnibus (GEO)
database [I4] for human gene expression studies per-
formed on the Affymetrix Human Genome U133 Plus 2.0
Array that tested small molecules. We excluded studies
that had fewer than 2 replicates per condition, or that did
not have an appropriate vehicle control condition, which
was needed to calculate consistently controlled differen-
tially expressed gene lists across all experiments. We pro-
ceeded with a total of 128 studies comprised of 2,812 in-
dividual microarrays that met the search criteria. Meta-
data for each study was parsed from GEO in order to
annotate tissue type, cell line, and small molecule. The
CEL files for each study were downloaded with the GEO-
Query R package [12]. Within each study, the expression
data was background corrected, quantile normalized, and
probe sets were summarized using RMA [6] with the affy
R package [I8]. For each study, control and treatment
conditions were identified and differential expression be-
tween all control/treatment pairs was calculated with the
limma package [39]. Probe sets were annotated to genes
using the hgul33plus2.db R package [7], keeping the one
probe set per gene with the highest average expression
across all samples. For each experimental comparison,
genes were ranked according to their logs fold change
and saved as a ranked list L (Figure [[]A) for input into
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GSEAPreranked and GSEA-InContext. In total, we gen-
erated a compendium of 442 ranked lists.

All gene set collections used were downloaded from
MSigDB, v6.1 [42], [37, [34]. The Hallmarks collection [34]
was selected to be used for all analyses because it is com-
prised of 50 gene sets, thus full results can be reported and
displayed through this manuscript. Analyses performed
with additional gene sets are supplied as described in Sec-
tion 2.4

To annotate mechanisms of action for the small
molecules, we grouped them based on their targets us-
ing the Drug Repurposing Hub [10] and DSigDB [52].

2.2 Application of GSEAPreranked

To ensure consistency between implementations of GSEA,
we ran each of the 442 ranked lists through the GSEAPre-
ranked algorithm using both the javaGSEA Desktop
program [42] [37] and the GSEApy Python package
(https://github.com/BioNinja/gseapy); both imple-
mentations produced equivalent results. For all analyses
shown here, we applied GSEApy (pypi package version
0.9.3, Python3.6) using a weighted enrichment scoring
statistic and 100 permutations. GSEAPreranked requires
the use of the competitive null hypothesis, the gene_set
permutation type. Default settings were used for all other
parameters.

2.3 Implementation of GSEA-InContext

According to the GSEA documentation [21I], the
GSEAPreranked algorithm takes as input a user-supplied
ranked gene list L and a collection of gene sets C' =
{S51...8;}, where Sy, is an a priori defined gene set (Fig-
ure[JA). An enrichment score (ES) is calculated for each
gene set F.S(Sk) using a weighted Kolmogorov-Smirnov-
like statistic [42] B7]. The ES reflects the degree to which
genes in Sy, are positively or negatively enriched at either
end of the ranked gene list L.

To estimate the significance level of ES(Sy), GSEAPre-
ranked tests F.S(S)) against an empirically defined null
distribution, ESfJflm"ked. To illustrate how this distri-
bution is created, we use the example of S; in Figure
[[l GSEAPreranked generates m permuted gene sets of
the same length as S; by randomly selecting genes from
L (Figure ) We use the notation 57 ; to represent the
4 permutation of the randomized gene set S]. The nom-
inal p-value for S; is calculated by comparing ES(S7)
to the ESEreranked digstribution. Note that the modified
Kolmogorov-Smirnov test applied by GSEA creates a bi-
modal ESf;:ﬁm”ked.

Our method applies the same approach as GSEA to
calculate the nominal p-value [42 37, 2I]. In contrast

to GSEAPreranked, GSEA-InContext employs an al-
ternative significance testing procedure to generate the
null distribution, in which the m permuted gene sets are
generated using the density of gene ranks estimated from
a set of user-defined background experiments (Figure
). For a gene present in gene list L, let random variable
X = {xy...x,,} represent the set of gene ranks across all
background experiments where z; is the gene’s rank in
the i background experiment. We estimate a gene’s
probability density G'(X ) using a Gaussian kernel over
the n experiments in the background set as follows:

A n Ll 2=%iy2
G(x):%Zizl h\}§62( )

where h is the kernel bandwidth parameter. To enable
the resolution of the kernel to scale with the size of the
background set, we set the default for h to be the median
distance between ranks across all observed ranks x...z,
for a gene. We also allow h to be set by the user. As shown
in Figure , G (X) is applied independently for all genes
in a given gene set, such as S7, whose underlying density
is to be estimated from the background experiments.

To create the permuted gene set 7 ;, GSEA-InContext

draws indices from G(X ) for each gene in Sy, then se-
lects the gene at that index in L. This procedure is re-
peated to create m permutations of S; to generate the
informed ESInGontert  Ag in GSEAPreranked, the nom-
inal p-value for S; is calculated by comparing ES(S7) to
the ESIngontest distribution (Figure[1C).

Outside of the changes to the way GSEA-InContext
generates the null distribution of enrichment scores, all
other components of GSEA are the same for GSEAPre-

ranked and GSEA-InContext.

2.4 Code availability

To leverage the multi-threading capabilities of GSEApy,
we implemented our method as a new class within the ex-
isting Python package. The background gene expression
compendium of 442 ranked lists, the code to run GSEA-
InContext, documentation, and supplemental results for
all gene set collections are supplied at:
https://github.com/CostelloLab/GSEA-InContext

3 Results

3.1 Overview of gene expression data sets

We curated a gene expression compendium of 442 gene
lists ranked by log2 fold change between treatment versus
control conditions. We required that all comparisons have
at least 3 replicates per condition, where the conditions
were either small molecule treatments or the appropriate
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Figure 2: Overview of gene expression data sets
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by tissues and small molecules. Heatmap shows the

fraction of small molecules used across 442 experiments (treatment vs. control comparisons). All experiments were

performed in human immortalized or primary cell lines.

vehicle control treatment. Raw data were processed ac-
cording to the procedures outlined in Section [2.1] The
tissues and small molecules included in the compendium
are summarized in Figure 2] A total of 21 tissues are
represented in the data set (202 unique immortalized or
primary cell lines), with the most common tissue type be-
ing breast. We captured a range of 129 small molecules
that we grouped into 69 drug classes based on mechanism
of action. The most commonly used small molecules were
eribulin and paclitaxel, which inhibit microtubule dynam-
ics.

3.2 Common patterns of genes and path-
ways across small molecule treat-
ments

To evaluate general gene- and pathway-level patterns, we
first created a distribution of the mean rank for each
gene across the 442 experiments. We compared these

results to a null distribution generated by randomizing
the genes in each of the 442 experiments. We found that
roughly 25% of genes fell at least 3 standard deviations
away from the mean rank of the null distribution, com-
pared to the expected frequency of 0.3% (Figure ) Of
the 25%, 12.6% of genes ranked higher and 13.9% ranked
lower than the mean rank. These results demonstrate
that roughly a quarter of the genes being studied across
442 experiments are more consistently differentially reg-
ulated than expected at random.

To illustrate this effect on a per gene basis, Figure
BB displays the genes with the highest and lowest mean
rank across all 442 experiments. The gene with the
highest mean rank was MAF bZIP transcription factor
F (MAFF), which encodes a transcription factor of the
MAF family and has been shown to be essential for acti-
vation of genes involved in detoxification and the response
to oxidative stress [28]. This gene is also up-regulated in
response to hypoxia [9]. The most lowly ranked gene was
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cyclin E2 (CCNE2), an activating regulatory subunit of
CDK2, most highly expressed during the G1/S cell cycle
transition [22]. Intuitively, the rankings of these genes
are consistent with small molecule treatment, given that
CCNE2 is frequently down-regulated in response to drugs
that arrest cell growth, and MAFF is up-regulated in re-
sponse to cellular stress. However, the non-random rank-
ing of genes does suggest there would be commonalities
across enriched gene sets identified by GSEA. To inves-
tigate this, we ran GSEAPreranked on each of the 442
experiments and evaluated global gene set patterns using
the Hallmarks collection [34]. We performed all analyses
using all gene sets available in MSigDB [42] [37] and found
similar patterns as those reported for the Hallmarks col-
lection; these results are available as described in Section

24

In Figure [A, we report the fraction of experiments
that showed an FDR < 0.05 for each of the gene sets in
the Hallmarks collection, where we found clear patterns
of positive and negative enrichment. For example, prolif-
eration and cell cycle related processes were consistently
down-regulated, including E2_TARGETS, which was signif-
icantly down-regulated in over 45% of the experiments.
Other gene sets were consistently up-regulated, such as
TNFA_SIGNALING_VIA_NFKB, which was signficantly posi-
tively enriched in approximately 53% of the experiments.
These results are consistent with the trends we identified
for CCNE2 and MAFF (Figure[3B). CCNE2 is a member
of many of the down-regulated cell cycle-related gene sets
and MAFF is a member of the most up-regulated gene
set, TNFA_SIGNALING_VIA_NFKB. In comparison, analyzing
442 randomly permuted gene lists with GSEAPreranked
produced significant results in few experiments, less than
3% for any gene set in the Hallmarks collection.

To investigate the potential effects of the large number
of experiments in our data set using breast cells or treat-
ing with tubulin polymerization inhibitors, we repeated
our GSEAPreranked analysis including and excluding
these experiments (Figure [dB). Comparing the GSEA re-
sults for 126 experiments using tubulin polymerization
inhibitors to the remaining 317 experiments, we observed
instances where certain gene sets increased in frequency
of significance in experiments with the inhibitors and
other gene sets increased under all other drugs. How-
ever, many of the general patterns shown in Figure A
remain, demonstrating that the over-representation of
tubulin polymerization inhibitors is not soley responsi-
ble for the results in Figure [A. Similarly, we compared
107 experiments using breast cell lines to 336 experiments
using cells from other tissues and, again, found gene sets
such as TNFA_SIGNALING_VIA NFKB were commonly sig-
nificantly enriched regardless of experimental tissue type

(Figure [IC).
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Figure 3: Ranking of genes across 442 small

molecule gene expression profiles. (A) Distribution
of the mean rank for all genes measured across 442 small
molecule experiments (blue) compared to the mean rank
of genes from 442 randomized gene lists (pink). Roughly
25% of genes in the experiments fall outside 3 standard
deviations from the randomly ranked genes. (B) The
ranks of MAFF and CCNE2 across all 442 experiments.
These two genes are the highest and lowest ranked genes
in (A) by mean rank across all 442 experiments.

3.3 Global adjustment of common pat-
terns of gene set enrichment

Our meta-analysis of GSEA results across a compendium
of 442 small molecule gene expression experiments high-
lighted common patterns of gene set enrichment. To com-
plement this analysis, we next asked, which gene sets are
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Figure 4: Commonly enriched gene sets across 442 small molecule gene expression experiments. (A) The
gene sets in the Hallmarks collection [34] were tested against all 442 experiments using GSEAPreranked (competitive
null hypothesis). Significant gene sets are defined as an FDR < 0.05. Gene sets are ranked by the difference in
the fraction of experiments with significant positive and negative enrichment. The most frequently down-regulated
pathway is E2F_TARGETS (blue text) and most commonly up-regulated pathway is TNFA_SIGNALING_VIA_NFKB
(red text). (B) The fraction of positively and negatively enriched gene sets are shown for 126 experiments that tested
response to eribulin or paclitaxel (dark bars), compared to 317 experiments that tested another compound (light
bars). (C) The fraction of positively and negatively enriched gene sets within 107 experiments using breast cancer
cell lines (dark bars), compared to 336 experiments that used non-breast cells (light bars).

uniquely enriched in a given experiment? We addressed
this question by assuming the competitive null hypothe-
sis as in GSEAPreranked, but adjusting the empirical null
distribution used in the statistical test (Figure [1)). The
method we propose leverages a background set of experi-
ments to define an informed null distribution, rather than
creating one with completely random permutations. As
the goal of this approach is to place a single experiment
in the context of a background set of user-defined experi-
ments, we call the method GSEA-InContext. Full details
of the method are described in Section 2.3

First, we compared the results produced by GSEAPre-
ranked on the 442 experiments to the corresponding re-
sults produced by GSEA-InContext. We ran GSEA-
InContext on each individual experiment using the back-
ground set of the 441 other experiments and the Hall-
marks collection [34] (Figure . As expected, GSEA-
InContext generally reduced the number of significantly
reported gene sets per experiment. More specifically, the
commonly enriched pathway TNFA_SIGNALING_VIA NFKB
was reduced from 53% up-regulated in GSEAPreranked
to to 14% in GSEA-InContext. Similarly, the most
down-regulated gene set E2F_TARGETS (42% enriched with

GSEAPreranked) was enriched in only 19% of experi-
ments using GSEA-InContext. Two Hallmark gene sets,
OXIDATIVE_PHOSPHORYLATION and PEROXISOME, that are
uncommon in the 442 experiments become enriched at a
slightly higher frequency in GSEA-InContext compared
to GSEAPreranked.

To confirm that the GSEA-InContext method did not
introduce any systematic biases, we ran GSEA-InContext
on randomized rank lists for all of the 442 experiments.
Similar to the findings using GSEAPreranked, we found
that gene sets were significantly enriched in a small frac-
tion of the random experiments, reaching a maximum of
3% of experiments significantly positively or negatively
enriched.

3.4 Applications of GSEA-InContext

We demonstrate the application of GSEA-InContext us-
ing two biologically relevant examples. The first exam-
ple illustrates that GSEA-InContext successfully removed
non-specific gene set enrichment patterns in order to iden-
tify the on-target effects of a small molecule compound.
The second example demonstrates how GSEA-InContext
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Figure 5: Adjusting for positively and negatively
enriched pathways. The points represent the fraction
of gene sets that are significantly up- or down-regulated
(FDR < 0.05) across all 442 experiments in GSEAPre-
ranked (dark red, dark blue) or GSEA-InContext (light
red, light blue). The bars show the difference between
the fraction of significantly enriched gene sets between
the analyses.

can be used to disentangle the effects of a single drug in
cells treated with a drug combination.

3.4.1 Re-scoring Notch pathway inhibition in
a T-ALL cell line to down-weight non-
specific gene sets.

Any small molecule drug will have direct (e.g., signal-
ing) and indirect (e.g., stress) effects, whether it is due
to drug promiscuity or the inherent interconnectedness
of biological systems [25]. Thus, a perennial challenge
in pharmacology is to functionally characterize the on-
and off-target effects of a drug treatment. Accordingly,
we demonstrate how GSEA-InContext can be used to
identify gene sets that are specific to a small molecule
treatment by selecting an appropriate background set of
experiments. One well-represented tissue type in our
compendium of 442 experiments is blood, in particu-
lar leukemia cell lines, which we stratified into the lym-
phoblastoid (n=44) and myeloid (n=48) lineages for this
analysis. We selected a single experiment in which HBP-

ALL cells treated with SAHM1, a Notch signaling in-
hibitor, were compared to cells treated with a vehicle
control (GSE18198; [36]). Activation of Notch signal-
ing has been associated with the development of T-cell
acute lymphoblastic leukemia (T-ALL), and it has been
shown that direct inhibition of Notch pathway members
in tissue culture and mouse models decreases prolifera-
tion of T-ALL cells. Applying GSEAPreranked with the
Hallmarks collection [34] to this experiment, we found 17
gene sets significantly enriched at an FDR < 0.05 (Fig-
ure[6]A). Interestingly, while NOTCH_SIGNALING was down-
regulated, it remained above the significance threshold
(FDR = 0.097).

We next ran the same experiment through GSEA-
InContext, using a set of 44 lymphoblastoid experiments
as the background set. Using the same Hallmarks col-
lection, GSEA-InContext identified a total of 10 signifi-
cantly enriched gene sets (FDR < 0.05). Notably, GSEA-
InContext reported NOTCH_SIGNALING to be significantly
down-regulated (FDR = 0.037) (Figure @A), supporting
the direct inhibition of the Notch signaling pathway by
SAHMI treatment. We confirmed that the direction of
enrichment (positive/negative) for all gene sets was the
same in both analyses.

We compared the results of GSEAPreranked to GSEA-
InContext and used these patterns to help interpret the
results. A gene set that was significant in GSEAPre-
ranked but was raised above an FDR of 0.05 in GSEA-
InContext was likely commonly enriched across the back-
ground experiments. Conversely, a gene set being signifi-
cant in both GSEAPreranked and GSEA-InContext sug-
gests that the set is uniquely enriched in the experiment
being tested compared to the background experiments.
We found gene sets that meet both criteria. Cell cy-
cle related gene sets (G2M_CHECKPOINT and E2F_TARGETS)
were significant in GSEAPreranked, but not in GSEA-
InContext (Figure @A), supporting the finding of Moeller-
ing, et al. that the SAHM1 inhibits cell proliferation [36].
Although down-regulation of cell cycle processes is a bio-
logically relevant result that supports the authors exper-
imental results, GSEA-InContext indicates that negative
enrichment of cell cycle gene sets is a common response
in lymphoblastoid cells treated with an array of drugs.
This is supported by the fact that approximately 70% of
the 44 background experiments showed enrichment of cell
cycle related processes.

The most significantly down-regulated genes sets
in GSEA-InContext are HYPOXIA, GLYCOLYSIS,
REACTIVE_OXYGEN_SPECIES PATHWAY. All three gene
sets are also highly significant in GSEAPreranked,
suggesting that these processes are uniquely significant
when HBP-ALL cells are treated with SAHM1. The link
between hypoxia and Notch signaling has been shown to
play key roles in cell differentiation [23] and key cancer
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Figure 6: Two illustrative examples using GSEA-
InContext. (A) GSEAPreranked was run on a ranked
list of differentially expressed genes from T-cell acute
lymphoblastic leukaemia cells (HBP-ALL) treated with
SAHM1, a Notch pathway inhibitor. GSEA-InContext
was run on the same experiment using a background set of
44 lymphoblastoid cell line experiments. The plot shows
the -log1g FDR of each analysis, with the grey lines signi-
fying FDR < 0.05. Yellow points represent gene sets sig-
nificant only in GSEAPreranked; green points were signif-
icant in both analyses; the red point (NOTCH_SIGNALING)
is only significant in GSEA-InContext; grey points fell
below significance in both analyses. Gene set names are
listed to the right of the plot. (B) GSEAPreranked sig-
nificant results (purple) on an MCF7 breast cancer cell
line treated with a combination of dexamethasone and
estradiol. GSEA-InContext results (orange) on the same
experiment as in (A) using a background set of 22 experi-
ments in which MCF7 breast cancer cell lines were treated
with estradiol only. The intersection and set differences
between the two analyses are shown. All analyses used
the genes sets in the Hallmarks collection [34].

related processes of migration and invasion [40]. Hypoxia
has long been know to play a key role in controlling
glycolytic metabolism, particularly in cancer cells [35],
and hypoxic conditions stimulate the production of
reactive oxygen species [8]. The tight link between these
process and their regulatory link with Notch suggests
that Notch inhibition could be directly down-regulating
key cancer progression processes, another potential
positive effect of SAHM1 treatment.

Taken together, the GSEAPreranked and GSEA-
InContext results provide a more complete picture of
the pathways and processes that are differentially reg-
ulated in HBP-ALL cell treated with SAHM1. By plac-
ing enriched gene sets in context of a lymphoblastoid ex-
perimental background, we could identify both common
and experiment-specific gene sets. In particular, GSEA-
InContext identified NOTCH_SIGNALING as being signifi-
cantly down-regulated, whereas GSEAPreranked did not

(Figure[6A).

3.4.2 Disentangling the effects of dexamethasone
from estradiol response in breast cancer
cell lines

For a second example, we sought to demonstrate how
GSEA-InContext can be used to prioritize gene sets that
are specific to a small molecule treatment by down-
weighting gene sets that are enriched in the background
set of experiments. In this case, we performed GSEAPre-
ranked on an experiment in which MCF7 breast cancer
cells were treated with estradiol, an estrogen receptor ag-
onist, and dexamethasone, a corticosteroid (GSE79761)
[48]. We then applied GSEA-InContext to this same ex-
periment using a background set of 22 experiments in
which MCF7 cells were treated with estradiol alone. By
defining the background this way, we aimed to down-
weight gene sets related to breast cancer cells or estra-
diol treatment while identifying gene sets that are more
specifically related to dexamethasone treatment.

We compared the results for the Hallmarks col-
lection [34] between each enrichment method (Figure
). Gene sets shown in the purple box in Figure
were significantly enriched using GSEAPreranked,
but were not significantly enriched in GSEA-InContext.
These gene sets represent pathways and processes that
were commonly altered across the background exper-
iments. In this group, we found gene sets that
were expected to be enriched in MCFT7 cells treated
with estradiol, such as ESTROGEN_RESPONSE_EARLY and
ESTROGEN_RESPONSE_LATE. Several gene sets that we pre-
viously identified as being significantly enriched across
a wide variety of cell lines and drug treatments in
our compendium (Figure , such as E2F_TARGETS and
TNFA_SIGNALING_VIA_NFKB, were also identified as sig-
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nificant by GSEAPreranked. In contrast, these gene
sets were not significantly enriched in GSEA-InContext,
demonstrating that these sets were successfully down-
weighted to prioritize gene sets related to dexamethasone
treatment while adjusting for the effects of estradiol.

The gene sets in the overlapping section between
the purple and orange boxes were identified as signif-
icantly enriched in both GSEAPreranked and GSEA-
InContext. We confirmed that the direction of enrich-
ment (positive/negative) for these gene sets was the same
in both methods. The four gene sets identified in both
analyses were ANGIOGENESIS, IL2_STAT5_SIGNALING,
ANDROGEN_RESPONSE, and PANCREAS
_BETA_CELLS. Because these gene sets are also significant
in the GSEA-InContext analysis, we expect the enrich-
ment of these gene sets to be the result of the added
dexamethasone treatment in these cells.

The link between dexamethasone and the androgen sig-
naling pathway has been investigated in several studies.
Dexamethasone is a glucocorticoid receptor (GR) agonist
and GR shares several transcriptional targets with the
androgen receptor (AR), including SGK1, MKPI1, and
DUSP1 [46]. Indeed, SGK1 is in the ANDROGEN_RESPONSE
gene set. Dexamethasone has also been linked to IL2 sig-
naling, which we see in the IL2_STAT5_SIGNALING gene
set. The ANGIOGENESIS gene set is also negatively en-
riched in this experiment, supporting previous results
showing that dexamethasone inhibits angiogenesis [51].
Finally, we note that COMPLEMENT is uniquely enriched in
GSEA-InContext. Interestingly, dexamethosone has been
shown to be a transcriptional regulator of components in
the complement pathway [31]. While those results are in
immune cells, this presents the potential research topic of
dexamethosone regulation of complement in breast cells
stimulated by estradiol.

Once again, we demonstrated that the GSEAPreranked
and GSEA-InContext results taken together provide com-
plementary perspectives into altered pathways and pro-
cesses in this experiment. GSEAPreranked describes sig-
nificant gene sets in our experiment compared to what
would be expected at random, and by using GSEA-
InContext to compare these enriched gene sets in the con-
text of other MCF7 experiments treating with estradiol,
we identified both common and experiment-specific gene
sets.

4 Discussion

Extracting biological insights from the long lists of genes
produced by differential expression experiments still re-
mains a challenge. FCS methods, such as GSEA, are de-
signed to aide in the interpretation of gene lists by identi-
fying differentially up- and down-regulated pathways and
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processes. Although GSEA succeeds at summarizing the
original list of genes into gene sets and identifying en-
richment, the results are provided only in the context of
the tested experiment. This is by design, but placing
a single experiment in the context of a biologically rel-
evant background can provide insight into the common
and experiment-specific gene set patterns. In fact, com-
mon patterns of positively and negatively enriched gene
sets can be observed across a variety of experimental con-
ditions. We applied GSEAPreranked to 442 different ex-
periments in which human cells were treated with small
molecules and we identified gene sets that were commonly
up- and down-regulated across a number of contexts (e.g.
drugs and tissues).

The majority of drugs that we evaluated were inhibitors
(most being cancer drugs). These small molecules
are designed to inhibit the growth of cells. Consis-
tent with what we expected, the gene sets representing
cell cycle processes were the most down-regulated path-
ways, while gene sets associated with cellular damage
and stress were commonly up-regulated. Interestingly,
TNFA_SIGNALING_VIA_NFKB was significantly up-regulated
in over 50% of the 442 experiments and NF-xB signaling
downstream of TNFa has been shown to be pro-survival
[38]. This suggests that inhibiting NF-xB signaling with
the other small molecule could potentially be an effec-
tive drug combination treatment representing a common
mechanism of drug synergy. This is one example of a
testable hypothesis that can be generated from exploring
commonly enriched gene sets.

Conversely, these common patterns motivate a new
type of analysis: specifically, that researchers can place
their own experimental results into a relevant context in
order to identify uniquely enriched gene sets for their
experiment compared to others. Accordingly, we in-
troduced GSEA-InContext to perform such an analy-
sis. By running GSEA-InContext on our compiled set
of 442 expression experiments, we showed that the algo-
rithm successfully down-weighted the gene sets such as
TNFA_SIGNALING_VIA NFKB that are commonly enriched
in many experiments. Additionally, we applied GSEA-
InContext to two example experiments, showing that in
each case our method highlighted biological pathways rel-
evant to the small molecule compound in each experi-
ment.

The findings we present and the implementation of
GSEA-InContext uses the competitive null hypothesis for
statistically evaluating gene set enrichment. While the
self-contained null hypothesis is preferred because it of-
fers greater statistical power than the competitive null
hypothesis [29, [19, [44], there are many instances when
the self-contained null hypothesis cannot be used, partic-
ularly when the number of samples per condition are low.
The majority of experiments that aim to test two condi-
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tions generate far less than seven samples per condition,
which requires the competitive null hypothesis to be used
for these experiments. Thus, while GSEA-InContext is
not applicable using the self-contained hypothesis, it is
is readily usable for the majority of gene expression ex-
periments that require the use of the competitive null
hypothesis.

For the purposes of this analysis, we focused our efforts
on small molecule treatments of human cell lines. With
over a million expression data sets currently in the GEO
database [2], compiling a properly defined background set
can be a daunting task, as each data set requires man-
ual curation of the control and treatment groups. How-
ever, the 442 treatment-control comparisons that we com-
piled present a robust set of data to begin exploring com-
mon and experiment-specific gene set patterns. The re-
sults from GSEA-InContext will only become more robust
as this background compendium is expanded to include
other drugs and cell line experiments [30, 43]. Future
work will also include compiling background sets to study
other biological contexts and other organisms. Leverag-
ing efforts such as CREEDS (CRowd Extracted Expres-
sion of Differential Signatures) will also rapidly expand
the potential user-defined background sets [47]. Addi-
tionally, an area of future research will include studying
platform-specific patterns to address any systematic bi-
ases that are introduced using hybridization technologies,
such as GC content [49], and other technologies such as
RNA-seq. Comparing results across platforms will help
identify which commonly enriched gene sets can be at-
tributed to technical differences between platforms and
which patterns are robust across platforms and thus a
true biological result.

We would like to close by stating that the goal of
GSEA-InContext is not to replace the results of GSEA,
but to complement the original implementation of GSEA
[42] [37). Comparing the results obtained from GSEA
and the contextualized results from GSEA-InContext, we
were able to gain insights into not only the pathway-
level changes in an experiment, but also the common and
experiment-specific patterns.
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