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Abstract: 
Genome sequencing is rapidly being adopted in reference labs and hospitals for bacterial             
outbreak investigation and diagnostics where time is critical. Seven gene multi-locus           
sequence typing is a standard tool for broadly classifying samples into sequence types,             
allowing, in many cases, to rule a sample in or out of an outbreak, or allowing for general                  
characteristics about a bacterial strain to be inferred. Long read sequencing technologies,            
such as from PacBio or Oxford Nanopore, can produce read data within minutes of an               
experiment starting, unlike short read sequencing technologies which require many          
hours/days. However, the error rates of raw uncorrected long read data are very high. We               
present ​Krocus which can predict a sequence type directly from uncorrected long reads, and              
which was designed to consume read data as it is produced, providing results in minutes. It                
is the only tool which can do this from uncorrected long reads. We tested ​Krocus on over                 
600 samples sequenced with using long read sequencing technologies from PacBio and            
Oxford Nanopore. It provides sequence types on average within 90 seconds, with a             
sensitivity of 94% and specificity of 97%, directly from uncorrected raw sequence reads. The              
software is written in Python and is available under the open source license GNU GPL               
version 3. 

Introduction 
With rapidly falling costs, long read sequencing technologies, such as from Pacific            
Biosciences (PacBio) and Oxford Nanopore Technologies (ONT), are beginning to be used            
for outbreak investigations ​(Faria et al. 2017; Quick et al. 2015) and for rapid clinical               
diagnostics ​(Votintseva et al. 2017)​. Long read sequencers can produce sequence reads in             
a matter of minutes compared to short read sequencing technologies which takes            
hours/days. Seven gene multi-locus sequence typing (MLST) is a widely used classification            
system for categorising bacteria. It can be used to quickly rule an isolate in or out of an                  
outbreak and knowing a sequence type (ST) can often allow for general characteristics of a               
bacteria to be inferred. By reducing the time from swab to an actionable answer, genomics               
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can begin to directly influence clinical decisions, with the potential to make a real positive               
impact for patients ​(Gardy and Loman 2018)​.  
 
With the increased speed afforded by long read sequencing technologies comes increased            
base errors rates. The high error rates inherent in long read sequencing reads require              
specialised tools to correct the reads ​(Koren et al. 2017)​, however these methods have              
substantial computational resource requirements often taking longer to run than the original            
time to generate the sequencing data. 
 
A full overview of MLST software for short read sequencing technologies is available in              
(Page et al. 2017)​. Of the software reviewed in ​(Page et al. 2017) only the methods which                 
take a ​de novo assembly as input can be used with long read sequencing technologies,               
however ​de novo assembly has a substantial post processing computational overhead,           
which can exceed the time taken to perform the sequencing. StringMLST ​(Gupta, Jordan,             
and Rishishwar 2017)​, was designed to rapidly predict MLST from raw read sets by              
performing a ​k​-mer analysis. MentaLiST ​(Feijao et al. 2018) takes a similar ​k​-mer analysis              
approach and is designed for large typing schemes, such as cgMLST and wgMLST. They              
were designed to work only with high base quality short read sequencing data. To our               
knowledge no method currently exists for calling MLST from uncorrected long read            
sequencing data. 
 
We present ​Krocus which can rapidly estimate sequence types directly from uncorrected            
long reads. Results are presented using the largest public dataset of bacterial long read data               
containing nearly 600 samples generated using the PacBio sequencing technology, and for            
a small dataset of ONT data. On average it produces sequence correct sequence types in               
90 seconds, with a sensitivity of 94% and specificity of 97%. ​Krocus is the only tool which                 
can call MLST directly from uncorrected long reads with high accuracy. It is written              
completely in Python 3 and is available under the open source licence GNU GPL 3 from                
https://github.com/andrewjpage/krocus.  

Method 
The basic method of ​Krocus​ is to take short ​k ​-mers and calculate the coverage over the 
MLST alleles. As the base errors are mostly uniformly distributed, a well chosen ​k​-mer value 
results in short stretches of error free bases. Some ​k​-mers will be erroneously flagged due to 
errors however as more reads are added (above 5X), these errors are filtered out as they 
have a low occurrence overall.  
 
Krocus takes as input the path to an MLST scheme, a FASTQ file containing uncorrected               
long reads and a ​k​-mer size. The MLST alleles are contained in 7 FASTA files, downloaded                
from PubMLST ​(Jolley and Maiden 2010) or taken from the set distributed with the software.               
Each sequence in the allele files contains a unique identifier and the combination of these               
allele identifiers gives rise to the sequence type (ST), contained within a profile tab delimited               
file. An alignment-free ​k​-mer sequence analysis approach is used to determine the            
presence and absence of particular alleles, with optimisations for high error rate long read              
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sequencing data. For a given ​k​-mer size, the ​k​-mers are extracted from each sequence in               
each allele file. 
 
In long read sequencing reads, whilst there are high base error rates, the errors are mostly                
uniformly distributed. The ideal ​k​-mer size is the mean number of bases on a read which is                 
free from errors, for example if the base error rate ​n ​is 91% an error occurs on average                  
every ~11 bases, thus the ​k​-mer size ​k calculated as ​k = ⌊​100/(100-n)​⌋​. A ​k​-mer size                
which is too high would invariably always include an erroneous base, reducing the             
probability of a match with the allele files. A ​k​-mer size which is too low would reduce the                  
possible ​k​-mer space and lead to an increase in matches by random chance. Each long read                
is inspected and ​k​-mers are generated with a interval of ​k and a step size of ​k giving an                   
average depth of ​k​-mer coverage of 1. If a single ​k​-mer from this set is present in the allele                   
k​-mers, the read is kept for further analysis, if no ​k​-mers are present, the read is discarded                 
as it is unlikely to contain the MLST genes.  
 
All possible ​k​-mers are generated for the read which passed the initial filtering with a step                
size of 1, giving an average depth of ​k​-mer coverage equal to ​k, with ​k​-mers occuring more                 
than 5 times excluded from further comparison as they do not impart useful information. For               
each allele file, the intersection of the allele ​k​-mers and the read ​k​-mers is taken. The read is                  
split up into bins of length k, and the intersecting ​k​-mers are assigned to their corresponding                
bin in the read to produce an approximate ​k​-mer coverage of the read. A sliding window                
(default 4 times ​k​-mer size) is used to span short gaps, which are likely the result of small                  
errors in the underlying sequencing data. The largest contiguous block of ​k​-mer coverage in              
the read is identified, based on the sliding window results, and if it meets the minimum block                 
size (default 150 bases, derived from ⅓ of the average length 467 of all sequences in                
pubMLST, retrieved 02-02-18), it is said to contain one of the typing alleles. The block is                
extended by 100 bases on either side to ensure the full allele is captured. The ​k​-mers                
matching this block in the read are extracted and ​k​-mer counts corresponding to the allele               
matching ​k​-mers are incremented. The read is reverse complemented and the same search             
is undertaken once more. 
 
At defined intervals (default 200 reads) the genes of each allele are analysed to calculate the                
number of ​k​-mers covered by the raw read, allowing for the input files to be streamed in                 
real-time as data is generated. If an allele has a gene with 100% ​k​-mer coverage, it is said to                   
be present, if it is less than 100%, the allele with the most number of ​k​-mers is identified, but                   
with a low confidence flag. Where 2 or more alleles of the same gene have 100% coverage,                 
the sequence with the highest ​k​-mer coverage is used. Novel combinations of alleles and              
new, unseen, alleles cannot be reliably detected using this method, and so are excluded              
from the analysis. 

PacBio samples 
The NCTC 3000 project (​http://www.sanger.ac.uk/resources/downloads/bacteria/nctc ) aims       
to produce 3000 bacteria reference sequences using the PacBio long read sequencing            
technology. Each of the reference strains was selected for sequencing to maximise diversity             
and to capture historically medically important strains. This is currently the largest public long              
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read sequencing project for bacteria and is still on-going with 1048 assemblies publicly             
available (accessed 2/1/18). The assemblies were downloaded from the project website and            
the sequencing reads directly from the European Nucleotide Archive. The sequencing reads            
were all generated on the PacBio RSII between 2014 and 2017. The assemblies used for               
comparison with ​Krocus were generated using an open source pipeline (           
https://github.com/sanger-pathogens/vr-codebase ) which first performed a ​de novo        
assembly using HGAP (SMRT analysis version 2.3.0) ​(Chin et al. 2013)​, followed by             
circularisation with circlator (version 1.5.3) ​(Hunt et al. 2015)​, and finally automated polishing             
with the resequencing protocol (SMRT analysis version 2.3.0) from PacBio. 

Each assembly (1048) was sequence typed using the ​TS-mlst ​software           
(​https://github.com/tseemann/mlst​) with ambiguous and untypable samples as identified by         
TS-mlst ​excluded (339), as a meaningful comparison cannot be made. The ​TS-mlst software             
was shown in ​(Page et al. 2017) to never make any false positive ST calls. The dataset was                  
further filtered to exclude samples where there were less than 10 representatives of a              
species (112) as there were not enough samples to draw any statistically significant             
conclusions. The remaining 597 samples are detailed in Supplementary Table 1, including            
accession numbers, and summarized in Table 1, covering 8 species and 537 STs with              
representatives from both gram positive and gram negative. The FASTQ files of the             
uncorrected reads were generated from the raw data using the PacBio SMRTlink pipeline             
(version 5.0.1.9585), and the time for this conversion is not considered in the results              
presented in this paper as it is a standard preprocessing step required for many downstream               
analyses. All experiments were performed using the Wellcome Sanger Institute compute           
infrastructure running Ubuntu 12.04 LTS, with each host containing 32 cores (AMD Opteron             
Processor 6272) and 256GB of RAM. Only a single core was used in each performance               
experiment and the mean memory requirement was 0.354GB (std dev 0.16). 
 

Species No. 
Samples 

No. of  
unique 
STs 

No. in  
agreement 

Mean wall  
time (s) 

Mean Reads 

E. coli 226 204 204 102 17524 

E. faecalis 11 10 9 42 19900 

K. pneumoniae 113 101 108 62 22297 

P. aeruginosa 22 21 18 127 41444 

S. aureus 114 92 111 122 16255 

S. dysgalactiae 16 16 16 32 10412 

S. enterica 48 46 47 107 16348 

S. pyogenes 47 47 47 37 7714 

Total 597 537 562 91 17886 
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Table 1: NCTC 3000 PacBio sequenced samples with results after analysis with ​Krocus​. An              
ST is said to be in agreement if it matches the ST called by ​TS-mlst from a ​de novo                   
assembly. 

PacBio control samples 
A set of 74 samples representing 48 species were selected as controls from the NCTC 3000                
project. Each were sequenced using the PacBio long read sequencing technology as            
described previously and are listed in Supplementary Table 2. The controls were selected             
from within the same genus as the cases as listed in Table 1, but from different species. The                  
species classifications came from experimental techniques. The ​de novo assemblies of each            
sample were analysed with the ​TS-mlst ​software, and any which resulted in valid sequence              
types were removed to reduce the impact of confounders from misclassified isolates. 

ONT samples 
To analyse the performance of Krocus on ONT data we use a set of 12 ​K. ​pneumoniae                 
samples used previously for performance comparisons in ​(R. Wick, Judd, and Holt 2018)             
and ​(R. R. Wick et al. 2017)​. The dataset is available from ​(R. Wick 2017a) and detailed in                  
Supplementary Table 3. For comparison the Unicycler assemblies, post Nanopolish, created           
using only the long read data ​(R. Wick 2017b)​ were used.  

Pacbio Results 
Each of the assemblies from the NCTC dataset were run through ​TS-mlst to generate a ST.                
Krocus was run for each sample using the uncorrected FASTQ files and default settings and               
halted when the ST matched the expected result from ​TS-mlst. ​This replicates the             
anticipated real-time usage of the software, where a researcher would halt the analysis when              
a consistent ST result emerges. The time to achieve the correct predicted ST was noted, as                
were the number of reads, with a mean of 91 seconds, after processing a mean of 17,886                 
reads. The number of reads required before Krocus correctly predicts the ST is presented in               
Figure 1a. The running time for each species is presented in Figure 2b. The running time of                 
3 ​S. aureus samples was elevated due to the need to process a higher than average number                 
of reads, however within 60 seconds 6 out of 7 alleles had been correctly identified, with the                 
last allele taking up to a further 11 minutes to identify correctly. In 94% of cases (sensitivity)                 
the results from ​Krocus and ​TS-mlst were in agreement, with the calculations listed in              
Supplementary Table 4. 
In 35 cases (6%) STs did not match the expected ST or were untypable, with 34 of these                  
calling 6 out of 7 typing genes correctly. In the remaining 1 case 5 out of 7 genes were called                    
correctly. These failures are due to known systematic errors with long homoployers with the              
PacBio sequencing technology ​(Quail et al. 2012) which cannot be overcome with short             
k​-mers. 
The control samples were analysed in a similar fashion to give a specificity of 97.2% (72 out                 
of 74). In the two false negative cases, both contained all 7 typing genes, with one                
containing 2 copies of gene ​phoE which ​Krocus was unable to distinguish, and one              
containing a variant in ​fumC​ which was not in the typing database. 
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Figure 1: a) Number of reads analysed before the ​Krocus correctly predicted an ST for each                
PacBio NCTC species analysed, b) time in seconds before ​Krocus correctly predicted an ST              
for each PacBio NCTC species analysed.  

Nanopore results 
For all 12 ​K. pneumoniae ​samples (100%) of uncorrected ONT reads ​Krocus provided the              
expected sequence type. The mean time to the expected sequence type was 134 seconds              
after a mean of 3250 reads. As a comparison, de novo assembled genomes using the ONT                
reads alone from ​(R. R. Wick et al. 2017) did not identify any of the sequence types when                  
analysed by ​TS-mlst. This was due to the inherent high base error rate which resulted in a                 
poor quality assembly. Only hybrid assemblies additionally utilising Illumina short read data            
could be sequence typed. This gives ​Krocus an advantage over ​de novo assembly of ONT               
only reads. 
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Conclusion 
Krocus is the only tool which can call sequence types directly from uncorrected long reads               
with high accuracy.The sensitivity of 94% and specificity of 97% achieved by ​Krocus on a               
large, diverse, PacBio dataset is similar to gold standard experimental standard methods            
(Liu et al. 2012)​. By calling sequence types directly from uncorrected long reads, the need               
for post processing steps and ​de novo assembly is eliminated, reducing the turnaround time              
for MLST from days to minutes. For a small ONT data, ​Krocus correctly called the sequence                
type in all cases, compared to ​de novo assemblies of the same data, where no sequence                
types could be called. 
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