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Abstract:

Genome sequencing is rapidly being adopted in reference labs and hospitals for bacterial
outbreak investigation and diagnostics where time is critical. Seven gene multi-locus
sequence typing is a standard tool for broadly classifying samples into sequence types,
allowing, in many cases, to rule a sample in or out of an outbreak, or allowing for general
characteristics about a bacterial strain to be inferred. Long read sequencing technologies,
such as from PacBio or Oxford Nanopore, can produce read data within minutes of an
experiment starting, unlike short read sequencing technologies which require many
hours/days. However, the error rates of raw uncorrected long read data are very high. We
present Krocus which can predict a sequence type directly from uncorrected long reads, and
which was designed to consume read data as it is produced, providing results in minutes. It
is the only tool which can do this from uncorrected long reads. We tested Krocus on over
600 samples sequenced with using long read sequencing technologies from PacBio and
Oxford Nanopore. It provides sequence types on average within 90 seconds, with a
sensitivity of 94% and specificity of 97%, directly from uncorrected raw sequence reads. The
software is written in Python and is available under the open source license GNU GPL
version 3.

Introduction

With rapidly falling costs, long read sequencing technologies, such as from Pacific
Biosciences (PacBio) and Oxford Nanopore Technologies (ONT), are beginning to be used
for outbreak investigations (Faria et al. 2017; Quick et al. 2015) and for rapid clinical
diagnostics (Votintseva et al. 2017). Long read sequencers can produce sequence reads in
a matter of minutes compared to short read sequencing technologies which takes
hours/days. Seven gene multi-locus sequence typing (MLST) is a widely used classification
system for categorising bacteria. It can be used to quickly rule an isolate in or out of an
outbreak and knowing a sequence type (ST) can often allow for general characteristics of a
bacteria to be inferred. By reducing the time from swab to an actionable answer, genomics
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can begin to directly influence clinical decisions, with the potential to make a real positive
impact for patients (Gardy and Loman 2018).

With the increased speed afforded by long read sequencing technologies comes increased
base errors rates. The high error rates inherent in long read sequencing reads require
specialised tools to correct the reads (Koren et al. 2017), however these methods have
substantial computational resource requirements often taking longer to run than the original
time to generate the sequencing data.

A full overview of MLST software for short read sequencing technologies is available in
(Page et al. 2017). Of the software reviewed in (Page et al. 2017) only the methods which
take a de novo assembly as input can be used with long read sequencing technologies,
however de novo assembly has a substantial post processing computational overhead,
which can exceed the time taken to perform the sequencing. StringMLST (Gupta, Jordan,
and Rishishwar 2017), was designed to rapidly predict MLST from raw read sets by
performing a k-mer analysis. MentaLiST (Feijao et al. 2018) takes a similar k-mer analysis
approach and is designed for large typing schemes, such as cgMLST and wgMLST. They
were designed to work only with high base quality short read sequencing data. To our
knowledge no method currently exists for calling MLST from uncorrected long read
sequencing data.

We present Krocus which can rapidly estimate sequence types directly from uncorrected
long reads. Results are presented using the largest public dataset of bacterial long read data
containing nearly 600 samples generated using the PacBio sequencing technology, and for
a small dataset of ONT data. On average it produces sequence correct sequence types in
90 seconds, with a sensitivity of 94% and specificity of 97%. Krocus is the only tool which
can call MLST directly from uncorrected long reads with high accuracy. It is written
completely in Python 3 and is available under the open source licence GNU GPL 3 from
https://github.com/andrewjpage/krocus.

Method

The basic method of Krocus is to take short k-mers and calculate the coverage over the
MLST alleles. As the base errors are mostly uniformly distributed, a well chosen k-mer value
results in short stretches of error free bases. Some k-mers will be erroneously flagged due to
errors however as more reads are added (above 5X), these errors are filtered out as they
have a low occurrence overall.

Krocus takes as input the path to an MLST scheme, a FASTQ file containing uncorrected
long reads and a k-mer size. The MLST alleles are contained in 7 FASTA files, downloaded
from PubMLST (Jolley and Maiden 2010) or taken from the set distributed with the software.
Each sequence in the allele files contains a unique identifier and the combination of these
allele identifiers gives rise to the sequence type (ST), contained within a profile tab delimited
file. An alignment-free k-mer sequence analysis approach is used to determine the
presence and absence of particular alleles, with optimisations for high error rate long read
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sequencing data. For a given k-mer size, the k-mers are extracted from each sequence in
each allele file.

In long read sequencing reads, whilst there are high base error rates, the errors are mostly
uniformly distributed. The ideal k-mer size is the mean number of bases on a read which is
free from errors, for example if the base error rate n is 91% an error occurs on average
every ~11 bases, thus the k-mer size k calculated as k = L100/(100-n)J. A k-mer size
which is too high would invariably always include an erroneous base, reducing the
probability of a match with the allele files. A k-mer size which is too low would reduce the
possible k-mer space and lead to an increase in matches by random chance. Each long read
is inspected and k-mers are generated with a interval of k and a step size of k giving an
average depth of k-mer coverage of 1. If a single k-mer from this set is present in the allele
k-mers, the read is kept for further analysis, if no k-mers are present, the read is discarded
as it is unlikely to contain the MLST genes.

All possible k-mers are generated for the read which passed the initial filtering with a step
size of 1, giving an average depth of k-mer coverage equal to k, with k-mers occuring more
than 5 times excluded from further comparison as they do not impart useful information. For
each allele file, the intersection of the allele k-mers and the read k-mers is taken. The read is
split up into bins of length k, and the intersecting k-mers are assigned to their corresponding
bin in the read to produce an approximate k-mer coverage of the read. A sliding window
(default 4 times k-mer size) is used to span short gaps, which are likely the result of small
errors in the underlying sequencing data. The largest contiguous block of k-mer coverage in
the read is identified, based on the sliding window results, and if it meets the minimum block
size (default 150 bases, derived from 5 of the average length 467 of all sequences in
pubMLST, retrieved 02-02-18), it is said to contain one of the typing alleles. The block is
extended by 100 bases on either side to ensure the full allele is captured. The k-mers
matching this block in the read are extracted and k-mer counts corresponding to the allele
matching k-mers are incremented. The read is reverse complemented and the same search
is undertaken once more.

At defined intervals (default 200 reads) the genes of each allele are analysed to calculate the
number of k-mers covered by the raw read, allowing for the input files to be streamed in
real-time as data is generated. If an allele has a gene with 100% k-mer coverage, it is said to
be present, if it is less than 100%, the allele with the most number of k-mers is identified, but
with a low confidence flag. Where 2 or more alleles of the same gene have 100% coverage,
the sequence with the highest k-mer coverage is used. Novel combinations of alleles and
new, unseen, alleles cannot be reliably detected using this method, and so are excluded
from the analysis.

PacBio samples

The NCTC 3000 project (http://www.sanger.ac.uk/resources/downloads/bacteria/nctc ) aims
to produce 3000 bacteria reference sequences using the PacBio long read sequencing
technology. Each of the reference strains was selected for sequencing to maximise diversity
and to capture historically medically important strains. This is currently the largest public long
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read sequencing project for bacteria and is still on-going with 1048 assemblies publicly
available (accessed 2/1/18). The assemblies were downloaded from the project website and
the sequencing reads directly from the European Nucleotide Archive. The sequencing reads
were all generated on the PacBio RSIl between 2014 and 2017. The assemblies used for
comparison with Krocus were generated using an open source pipeline (
https://github.com/sanger-pathogens/vr-codebase ) which first performed a de novo
assembly using HGAP (SMRT analysis version 2.3.0) (Chin et al. 2013), followed by
circularisation with circlator (version 1.5.3) (Hunt et al. 2015), and finally automated polishing
with the resequencing protocol (SMRT analysis version 2.3.0) from PacBio.

Each assembly (1048) was sequence typed using the TS-mist software
(https://qgithub.com/tseemann/mlst) with ambiguous and untypable samples as identified by
TS-mist excluded (339), as a meaningful comparison cannot be made. The TS-mlst software
was shown in (Page et al. 2017) to never make any false positive ST calls. The dataset was
further filtered to exclude samples where there were less than 10 representatives of a
species (112) as there were not enough samples to draw any statistically significant
conclusions. The remaining 597 samples are detailed in Supplementary Table 1, including
accession numbers, and summarized in Table 1, covering 8 species and 537 STs with
representatives from both gram positive and gram negative. The FASTQ files of the
uncorrected reads were generated from the raw data using the PacBio SMRTIink pipeline
(version 5.0.1.9585), and the time for this conversion is not considered in the results
presented in this paper as it is a standard preprocessing step required for many downstream
analyses. All experiments were performed using the Wellcome Sanger Institute compute
infrastructure running Ubuntu 12.04 LTS, with each host containing 32 cores (AMD Opteron
Processor 6272) and 256GB of RAM. Only a single core was used in each performance
experiment and the mean memory requirement was 0.354GB (std dev 0.16).

Species No. No. of | No. in | Mean wall [ Mean Reads
Samples | unique agreement time (s)
STs

E. coli 226 204 204 102 17524
E. faecalis 11 10 9 42 19900
K. pneumoniae | 113 101 108 62 22297
P. aeruginosa |22 21 18 127 41444
S. aureus 114 92 111 122 16255
S. dysgalactiae | 16 16 16 32 10412
S. enterica 48 46 47 107 16348
S. pyogenes 47 47 47 37 7714
Total 597 537 562 91 17886
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Table 1: NCTC 3000 PacBio sequenced samples with results after analysis with Krocus. An
ST is said to be in agreement if it matches the ST called by TS-mlist from a de novo
assembly.

PacBio control samples

A set of 74 samples representing 48 species were selected as controls from the NCTC 3000
project. Each were sequenced using the PacBio long read sequencing technology as
described previously and are listed in Supplementary Table 2. The controls were selected
from within the same genus as the cases as listed in Table 1, but from different species. The
species classifications came from experimental techniques. The de novo assemblies of each
sample were analysed with the TS-mlst software, and any which resulted in valid sequence
types were removed to reduce the impact of confounders from misclassified isolates.

ONT samples

To analyse the performance of Krocus on ONT data we use a set of 12 K. pneumoniae
samples used previously for performance comparisons in (R. Wick, Judd, and Holt 2018)
and (R. R. Wick et al. 2017). The dataset is available from (R. Wick 2017a) and detailed in
Supplementary Table 3. For comparison the Unicycler assemblies, post Nanopolish, created
using only the long read data (R. Wick 2017b) were used.

Pacbio Results

Each of the assemblies from the NCTC dataset were run through TS-mlst to generate a ST.
Krocus was run for each sample using the uncorrected FASTQ files and default settings and
halted when the ST matched the expected result from TS-mist. This replicates the
anticipated real-time usage of the software, where a researcher would halt the analysis when
a consistent ST result emerges. The time to achieve the correct predicted ST was noted, as
were the number of reads, with a mean of 91 seconds, after processing a mean of 17,886
reads. The number of reads required before Krocus correctly predicts the ST is presented in
Figure 1a. The running time for each species is presented in Figure 2b. The running time of
3 S. aureus samples was elevated due to the need to process a higher than average number
of reads, however within 60 seconds 6 out of 7 alleles had been correctly identified, with the
last allele taking up to a further 11 minutes to identify correctly. In 94% of cases (sensitivity)
the results from Krocus and TS-mist were in agreement, with the calculations listed in
Supplementary Table 4.

In 35 cases (6%) STs did not match the expected ST or were untypable, with 34 of these
calling 6 out of 7 typing genes correctly. In the remaining 1 case 5 out of 7 genes were called
correctly. These failures are due to known systematic errors with long homoployers with the
PacBio sequencing technology (Quail et al. 2012) which cannot be overcome with short
k-mers.

The control samples were analysed in a similar fashion to give a specificity of 97.2% (72 out
of 74). In the two false negative cases, both contained all 7 typing genes, with one
containing 2 copies of gene phoE which Krocus was unable to distinguish, and one
containing a variant in fumC which was not in the typing database.
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Figure 1: a) Number of reads analysed before the Krocus correctly predicted an ST for each
PacBio NCTC species analysed, b) time in seconds before Krocus correctly predicted an ST
for each PacBio NCTC species analysed.

Nanopore results

For all 12 K. pneumoniae samples (100%) of uncorrected ONT reads Krocus provided the
expected sequence type. The mean time to the expected sequence type was 134 seconds
after a mean of 3250 reads. As a comparison, de novo assembled genomes using the ONT
reads alone from (R. R. Wick et al. 2017) did not identify any of the sequence types when
analysed by TS-mist. This was due to the inherent high base error rate which resulted in a
poor quality assembly. Only hybrid assemblies additionally utilising lllumina short read data
could be sequence typed. This gives Krocus an advantage over de novo assembly of ONT
only reads.
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Conclusion

Krocus is the only tool which can call sequence types directly from uncorrected long reads
with high accuracy.The sensitivity of 94% and specificity of 97% achieved by Krocus on a
large, diverse, PacBio dataset is similar to gold standard experimental standard methods
(Liu et al. 2012). By calling sequence types directly from uncorrected long reads, the need
for post processing steps and de novo assembly is eliminated, reducing the turnaround time
for MLST from days to minutes. For a small ONT data, Krocus correctly called the sequence
type in all cases, compared to de novo assemblies of the same data, where no sequence
types could be called.
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