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Abstract

Wrist worn raw-data accelerometers are used increasingly in large scale popul ation research.
We examined whether sleep parameters can be estimated from these data in the absence of
sleep diaries. Our heuristic algorithm uses the variance in estimated z-axis angle and makes
basi ¢ assumptions about sleep interruptions. Detected sleep period time window (SPT-
window), was compared against sleep diary in 3752 participants (range=60-82years) and
polysomnography in sleep clinic patients (N=28) and in healthy good sleepers (N=22). The
SPT-window derived from the algorithm was 10.9 and 2.9 minutes longer compared with
sleep diary in men and women, respectively. Mean C-statistic to detect the SPT-window
compared to polysomnography was 0.86 and 0.83 in clinic-based and healthy sleepers,
respectively. We demonstrated the accuracy of our algorithm to detect the SPT-window. The

value of thisagorithm liesin studies such as UK Biobank where a sleep diary was not used.
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Wrist-worn raw-data accel erometers are increasingly used for the assessment of
physical activity in large population studies such as the Whitehall |1 study or mega-cohorts
such as UK Biobank *. The decision to use raw-data accelerometers is motivated by the
improved comparability of output across different sensor brands *°, and better control over all
stepsin data processing®. Accelerometers are commonly worn for 24 hours per day, thus
providing information over the day and night; making them potentially valuable for sleep
research.

A major challenge in accel erometer-based sleep measurement is to derive sleep
parameters without additional information from sleep diaries **’. Standard methods for sleep
detection based on conventional accelerometers (actigraphy) involves asking the participant

to record their timein bed, sleep onset, and waking up time*™

% In a previous paper we
developed a method to detect sleep guided by sleep diary records ™. However, the increasing
use of accelerometry in studies worldwide without sleep diaries necessitates the development
of novel methods to derive indicators of sleep behaviour, in the absence of deep diary
records. A crucial step is the detection of the sleep period time window (SPT-window), which
is the time window starting at sleep onset and ending when waking up after the last sleep
episode of the night. Once the SPT-window can be detected without adiary, our previously
published method can be used to detect sleep episodes within this window .
Polysomnography (PSG) is considered the gold-standard measure of sleep parameters,
making it an ideal methodology to validate sleep detection methods using an accelerometer
algorithm. Additionally, experimentsin daily life can be used to establish concurrent validity
with sleep diary.

We aim to develop and evaluate a heuristic algorithm for the detection of the SPT-
window from raw data accelerometers unaided by a sleep diary and to compare sleep
parameters (waking up, sleep onset time and SPT-window duration) with sleep diary records
assessed in the daily life of alarge cohort of older adults, and with PSG data collected in a
sleep clinic and agroup of healthy good sleepers.
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M ethods

Study population

In order to assess the validity of our algorithm in different settings and against both data from
sleep diary and polysomnography, data are drawn from three different study populations
described below.

The Whitehall |1 cohort study™: full details on data collection were previously described *.
Briefly, accelerometer measurement was added to the study at the 2012/2013 wave of data
collection for participants seen at the central London clinic and for those living in the South-
Eastern regions of England who underwent a clinical evaluation at home 2. Of the 4879
partici pants to whom the accelerometer was proposed in the Whitehall 11 Study, 388 did not
consent and 210 had contraindications (allergies to plastic or metal, travelling abroad the
following week). Of the remaining 4281 participants who wore the accelerometer, 4204
(98.2%) had valid accelerometer data (a readable data file). Among them, sleep diary data
were missing for 80 participants and 29 additional participants did not meet criteria for
accelerometer wear time (at least one night defined as noon-noon with >16h of wear time).
Of the remaining 4095 participants (atotal of 27,966 nights) 342 did not have complete
demographic data (age, BMI and sex). Therefore, the main assessment of discrepancies
between the accelerometer and the sleep diary was undertaken in 3752 participants (76.9% of
those invited) with atotal of 25,645 nights ™. The resulting participants (75.2% men) were on
average 69.1 (standard deviation (SD) = 5.6) years old and had a mean body mass index
(BMI) of 26.4 (SD = 4.2) kg/m*.

Sleep clinic patients: these data come from 28 adult patients who were scheduled for a one-
night polysomnography (PSG) assessment at the Freeman Hospital, Newcastle upon Tyne,
UK, as part of their routine clinical assessment and were subsequently invited to participate
in the study ™. All 28 patients recruited for the polysomnography study (11 female) had
complete accelerometer data for the left wrist and 27 had complete data for the right wrist and
were aged between 21 and 72 years (meantsd: 45+15 years). Diagnosed sleep disorders
included: hypersomnia (N=2), insomnia (N=2), REM behaviour disorder (N=3), sleep apnoea
(N=5), narcolepsy (N=1), sleep apnoea (N=4), parasomnia (N=1), restless leg syndrome
(N=5), and sleep paralysis (N=1), and nocturnia (N=1). Three patients had more than one
sleep disorder.

Healthy good sleepers: these data come from 22 adults who underwent a one-night PSG
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assessment at the University of Pennsylvania Center for Sleep. Twenty-two participants
recruited for the polysomnography study (68% female) had complete accelerometer data for

the non-dominant wrist and were aged between 18 and 35 years (meantsd: 22.8+4.5 years).

Ethics Statement

In al three studies participants were provided with instructions and an information
sheet about the study and were given time to ask questions prior to providing written
informed consent. The studies were approved by the University College London ethics
committee (85/0938) and the NRES Committee North East Sunderland ethics committee
(12/NE/0406), and University of Pennsylvania ethics committee (819591) respectively. All

experiments were performed in accordance with relevant guidelines and regulations.

Data availability
Whitehall 11 data, protocols, and other metadata are available to the scientific community.
Please refer to the Whitehall |1 data sharing policy at https://www.ucl.ac.uk/whitehallll/data-

sharing. Raw data from the polysomnography study has been made open access available in
anonymized format on zenodo.org™. Data from the University of Pennsylvaniaare available
through the National Institute of Mental Health data archive.

| nstrumentation

Participantsin the Whitehall 11 Study were asked to wear atri-axial accelerometer
(GENEACctiv, Activinsights Ltd, Kimbolton, UK) on their non-dominant wrist for nine (24-h)
consecutive days. They were asked to complete a simple sleep diary every morning which
consisted of two questions: ‘what time did you first fall asleep last night? and ‘what time did
you wake up today (eyes open, ready to get up)? The accelerometer was configured to
collect data at 85.70 Hz with a+8g dynamic range. A more compl ete description of the
accelerometer protocol can be found in our earlier publication 2.

In the second and third study, polysomnography (Embletta®, Denver) was performed
using a standard procedure, including video recording, a sleep electroencephal ogram (leads
C4-Al and C3-A2), bilateral eye movements, submental EM G, and bilateral anterior tibialis
EMG to record leg movements during sleep. Respiratory movements were detected with

chest and abdominal bands measuring inductance, airflow was detected with nasal cannulae
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measuring pressure, and oxygen saturation of arterial blood was measured. Airflow limitation
and changes in respiratory movement were used to detect increased upper-airway resistance.
All respiratory events and sleep stages were scored according to standard criteria so that EEG
determined total sleep time could be measured °. Participants in the second study (PSG in
sleep clinic) were asked to wear the same brand of accelerometer as in the first study
(GENEACctiv, Activinsights Ltd, Kimbolton, UK) on both wrists throughout the one-night
polysomnography assessment. Here, the accelerometer was also configured to record at 85.70
Hz. Accelerometer data were collected on both wrist to assess the role of sensor location on
classification performance, unfortunately no information on handedness was recorded.
Participantsin the third study (PSG in healthy good sleepers) were asked to wear an
accelerometer of the brand Axivity (Axivity Ltd, Hoults Yard, UK) on the non-dominant
wrist throughout the one-night polysomnography assessment. Here, the accel erometer was
configured to record at 100 Hz.

Accelerometer data preparation
A previously published method was used to minimize sensor calibration error ** and

to detect and impute accel erometer non-wear periods >*°. Arm angle was estimated as

2 2

follows. angle, = (tan‘1 - ‘:Za ) - 180/m, where a,, a,, and a, are the median values of
X y

the three orthogonally positioned raw acceleration sensors in gravitational (g) units (1g =
1000 mg) derived based on arolling five second time window. Here, the z-axis corresponds
to the axis positioned perpendicular to the skin surface (dorsal-ventral direction when the
wrist isin the anatomical paosition). Next, estimated arm angles were averaged per 5 second
epoch and used as input for our algorithms for detecting sleep period time (SPT-window) and
sleep episodes.

Heuristic algorithmto detect the SPT-window

There are several challenges in the development of an algorithm to detect the SPT-
window: absence of hard data labelsto train a classifier under daily life conditions (not in a
clinic), consideration of daily life behaviour, e.g. how to handle sleep scattered across the full
24-hour day and ensure that the algorithm is not over fitted to a specific population or
accelerometer brand. Thus an algorithm was developed by visually inspecting twenty random

accelerometer multi-day recordings from different studies and accelerometer brands (ten from
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the Whitehall |1 Study as reported in this paper and ten from UK Biobank study *) while
iteratively enhancing the algorithm to best detect the visible data segment of no movement
without using or looking at sleep diary data.

The resulting heuristic agorithm, which we will refer to as Heuristic algorithm
looking at Distribution of Change in Z-Angle (HDCZA), applied per participant isillustrated
in Figure 1 and works as follows. Step 1-2: Calculate the z-angle per 5 seconds. Seps 3-5:
Calculate a 5-minute rolling median of the absolute differences between successive 5 second
averages of the z-angle. These first five steps make the algorithm invariant to the potentially
unstandardized orientation of the accelerometer relative to the wrist and aggregate it asthe
rolling variance over time. Step 6-7: Calculate the 10" percentile from the output of step 5
over an individua day (noon-noon), and multiply by 15. Thisisused as acritical individual
night derived threshold to distinguish periods of time involving many and few posture
changes. Detect the observation blocks for which the output from step 5 was below the
critical threshold, and keep the ones lasting longer than 30 minutes. Step 8: Evaluate the
length of the time gaps between the observation blocks identified by step 7, if the duration is
less than 60 minutes then count these gaps towards the identified blocks. Step 9: The longest
block in the day (noon-noon) will be the main SPT-window, defined as the time elapsed
between sleep onset (start of the block) and waking time (end of the block). These last four

steps reflect assumptions from us as researcher about the nature of sleep.

Figure 1: Steps of the heuristic algorithm HDCZA for SPT-window detection.
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Our motivation for the design of the algorithm is as follows. By visually inspecting
the angle-z values over aday some individuals seemed inactive or slegping throughout the
day with minimal variation in angle, while other individuals had more distinct inactive (night
time) and active (daytime) periods. These differences presumably reflect the degree of
sedentary lifestyle and amount of sleep in aday. Using a percentile as part of the threshold

calculation allows the threshold to account for between-individual differencesin z-angle
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distribution. The factor 15 in step 6 of the algorithm was derived iteratively using visual
inspection of the classification. The 30-minute time period is motivated by the assumption
that people are typically not in bed for less than 30 minutes for their nocturnal timein bed, as
opposed to daytime napping, and the 60-minute time period is motivated by the assumption
that sleep separated by awake periods greater than 60 minutes ought to be treated as two
distinct sleep episodes to avoid adding early evening naps or afternoon naps to the SPT-
window. A sensitivity analysis on HDCZA parameter settings and their influence on

algorithm performance across the datasets can be found in Supplementary material 3.

Second algorithm for reference

When comparing our algorithm to the sleep diary we also considered a second, but
more naive heuristic algorithm, which we will refer to as L5+6. The algorithm is based on the
raw signal metric Euclidian Norm (vector magnitude) Minus One with negative values

rounded to zero (ENMO), which in formula corresponds to

max{(,/acc,? + acc,? + acc,? — 1), 0}, with acc,, accy, and acc, referring to the three
orthogonal acceleration axes pointing in the lateral, distal, and ventral directions, respectively
1> Metric ENMO has previously been demonstrated to be correlated with magnitude of
acceleration as well as human energy expenditure in the present generation of wearable
acceleration sensors™. L5+6 takes the 12 hour window centred around L5 (least active five
hours in the day based on metric ENMO) and then searches within this window for sustained
inactivity periods which were previously described **. In short, sustained inactivity periods
are calculated as the absence of change in arm elevation angle (same angle-z as used above)
larger than 5 degrees for more than 5 minutes **. Next, the SPT-window is defined from the
start of thefirst to the end of the last occurrence of a sustained period of inactivity in the 12-

hour window.

Seep episodes within the SPT-window

Sleep episodes were defined as the sustained periods of inactivity within the SPT-
window, as defined in the previous section **. From this, the number of sleep episodes within
each SPT-window detected (HDCZA, L5+6) was calculated as well as sleep efficiency within
the SPT-window calculated as the percentage of time asleep within the SPT-window .
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Statistical analysis

Comparison with sleep diary

The SPT-window derived from both the HDCZA and L5x6 were compared separately
with sleep diary records with a multi-level regression to account for the variation in
availability of night time data and to include both night and person level predictors. For SPT-
window duration (difference between sleep onset and waking time), sleep onset and waking
time, the difference between diary and accelerometer-based detection was used as the
dependent variable, while population demographics (sex, age, BMI), season (winter or
summer) and weekend versus weekday were used as predictors. Here, we used function Ime
from R package nime. Further, correlation coefficients and mean absolute error (MAE)
between sleep onset, waking time, and SPT-window duration were calculated. Additionally,
the c-statistic, also known as the Area Under the Curve (ROC), was calculated from the
epoch-level binary classifications of SPT-window <1> or not <0> by diary and the HDCZA
and L5%6, first calculated per day and then aggregated as average per participant.
Additionaly, to investigate whether more wakefulness time within the SPT-window
corresponds to a larger HDCZA-sleep diary difference in SPT-window duration we
calculated the amount of wakefulness categorised as [0-1), [1-2), [2-3), [3-4), and at least 4
hours, and compared this with the difference in SPT-window duration between sleep diary
and the HDCZA. The notation [a-b) is used to denote an interval that isinclusive of ‘a’ but

exclusiveof ‘b’.

Evaluation with polysomnography

The recording time of PSG istypically constrained to the time in bed window, which
means that our heuristic algorithm (HDCZA) may not detect sufficient data corresponding to
time out of bed to derive its critical threshold and accurately detect the SPT-window. We
addressed this concern by adding simulated wakefulness data to the beginning and ending of
the accelerometer and PSG recording. The PSG and accelerometer data were expanded with
90 minutes of simulated data at the beginning and ending that would not trigger the SPT-
window detection: simply the class wakefulness for PSG, and a sine wave with amplitude 40
degrees and period 15 minutes complemented with random numbers (mean=0, standard
deviation=10) for accelerometer-based angle-z. Note that the specific shape of the ssmulated
valuesisnot critical as long asit does not trigger the detection of sleep and the 10" percentile
of all the data (step 6 of HDCZA) reflects real and not simulated data. The addition of
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simulated datais needed because the heuristic detection algorithm effectively searches for the
beginning and end of alarge time period without body movement, if the full PSG represents
sleep then the agorithm would not be able to detect such atransition in movement level.
Additionally, the algorithm’s threshold that scales with the variance in the data was
constrained to a range corresponding to the 2.5 and 97.5™ percentile of the distribution of
the threshold value observed in asample of daily life accelerometer recordings, 0.13 and
0.50, respectively. This was done because the in-clinic PSG does not provide a full 24-hour
cycle of body movement to derive this threshold. In the PSG evaluation we did not evaluate
L5+6, because it requires more than 12 hours of (non-simulated) data, which most PSG
recordings do not offer. After sleep classification with HDCZA and before running the
comparison between HDCZA and PSG, 60 minutes of simulated data were removed at the
beginning and end.

The following performance metrics for SPT-window detection were used: difference
in onset, waking time, and duration, accuracy, c-statistic, t-test, and mean absolute error
(MAE). Performance estimates accuracy and c-statistic were derived from both the data, as
well as from the data expanded with wakefulness time to simulate performance estimatesin a
24 hour recording. Sleep classification within the SPT-window was evaluated as differencein
duration (t-test) and as the percentage of time spent in sleep stages REM, and non-REM
stages 1, 2, and 3 (N1, N2, and N3) correctly classified by the algorithm as part of SPT-
window. Sleep efficiency within the SPT-window by PSG and agorithm was compared viat-
test and MAE. A P-value of < .005 was considered significant™®. Further, method agreement
was evaluated with modified Bland-Altman plots'’ with PSG criterion values on the

horizontal axis.

Code availability
Both SPT-window detection algorithms are implemented and available in open source
R package GGIR version 1.5-21 (https://cran.r-project.org/web/packages/ GGIR/)*®, see the

software’ s documentation on input arguments ‘loglocation’ and ‘def.noc.sleep’ for further

details on the use of L5+6 and HDCZA. The R code used for our comparisons with sleep
diary can be found at: https.//github.com/wadpac/whitehall-acc-spt-detection-eval. The R

code used for our comparisons with polysomnography can be found at:
https.//qithub.com/wadpac/psg-ncl-acc-spt-detection-eval, with the code used for the
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Newcastle datain the master branch of the repository and its adaptation for the differently

formatted Pennsylvanian data in the psg-penn branch.

Results

Comparison between accelerometer results and that from sSleep diary

Demographic characteristics of the three study cohorts are described in Table 1. The
probability density distribution for the difference between sleep parameter estimates from
algorithm and sleep diary is more symmetrical around zero compared with the L5+6
approach, see Figure 2. The heuristic algorithm HDCZA estimates sleep onset on average
12.5 and 7.5 minutes earlier than that reported in the sleep diaries by men and women,
respectively, 3.9 minutes per ten years of age relative to mean age, and 3.0 minutes for a
weekend day, see Table 2. Difference between sleep diary estimates and HDCZA estimates
in waking time and SPT window duration were associated with sex, age, and BMI, see Table
2. The L5x6 method estimates sleep onset on average 86.4 and 78.5 minutes earlier than that
reported in the sleep diary for men and women, respectively. Difference between sleep diary
and L5+6 estimates of SPT-window, sleep onset, and waking time were associated with sex
and BMI, but inconsistently with weekday, see Table 2. The Pearson’s correlation
coefficients and c-statistics between accelerometer derived sleep parameters, and sleep diary,
are higher for HDCZA compared with L5+6, see Table 3. The combined MAE from onset
and waking time was 34.8 and 75.6 minutes for HDCZA and L5+6, respectively.

For nights with [0-1), [1-2), [2-3), [3-4), and at least 4 hours of accumulated
wakefulness an average difference in SPT-window duration between sleep diary records and
our heuristic algorithm (HDCZA) was observed as 27, 3, -58, -154, and -236 minutes
corresponding to 57.9, 32.1, 7.5, 1.6, and 0.7% of 25,645 recorded nights, respectively. Here,
the last two categories, corresponding to at least 3 hours of accumulated wakefulness, reflect
8.5% of the participants.

11
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Table 1: Participant characteristics used for the analyses

Study Daily life (diary) PSG dleep clinic PSG healthy good
deepers

N 3752 28 22

Age (mean + standard deviation inyears) | 69.1+5.6 449+ 149 228+ 45

Sex

2822 males, 930 females

17 malesand 11 females

7 males and 15 females

SPT-window duration (mean + standard 7.7+ 1.2 hours 8.4 + 1.6 hours 6.7 £ 0.9 hours
deviation)

Sleep onset time (mean in hh:mm + 23:48 + 71 minutes 22:32 + 69 minutes 23:24 + 54 minutes
standard deviation)

Waking time (mean in hh:mm £ standard | 7:28 + 72 minutes 06:58 + 76 minutes 06:09 + 32 minutes

deviation)
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Table 2: Sleep parameter differences (minutes) between estimates from slegp diary and two acceler ometer-based methods (N=25,645 nights, N=3752

individuals)
Sleep parameters HDCZA L5+6
Method SPT-window
Sleep onset time | Waking time SPT-window duration Sleep onset time Waking time duration
Y-intercept (SE) | -12.5(0.9) ** | -1.6 (0.8) P=0.04 10.9 (1.1) ** -86.5 (1.0) ** 45.9 (0.9) ** 131.7 (1.2) **
Betas (SE)
Women | 5.0(1.1) ** -3.0(0.9) * -8.0 (1.3) ** 8.0 (1.4) ** -8.6 (1.1) ** -16.2 (1.6) **
Tenyearsof aget |  3.9(0.8) ** -2.9(0.7) ** -6.8(1.0) ** 0.3(1.0)P=0.78 | 0.2(0.8) P=0.83 | -0.2 (1.2) P=0.89
Five BMI index points$ | 1.0 (0.5) P=0.06 -1.5(0.5) * -2.5(0.7) ** -3.2(0.7) ** 1.8(0.6) * 4.8 (0.8) **
Weekend 3.0(1.0)* 2.0(0.9) P=0.02 -1.0(1.2) P=0.41 6.4 (1.3) ** -0.3(1.0) P=0.77 -6.3 (1.4) **
Winter | 1.0 (0.9) P=0.27 | -1.2(0.8) P=0.12 -2.2(1.1) P=0.05 -1.0(1.2) P=0.39 | 0.6(1.0)P=051 | 1.7 (1.3)P=0.2
Within individual residual SD 24.7 21.3 30.9 18 13 20.6
Between individual residual SD 66.1 56.9 82.3 88.9 749 101.8
AlC 81175 73538 92433 94053 84956 100978

[Degrees of freedom=25,645; 1 relative to mean age of 69.1 years; 1 relative to mean BMI of 26.4 kg / m?; SE: Standard Error; SD: Standard Deviation; AIC
= Akaike information coefficient, * P <.005, ** P <.0005]
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Table 3: Correlation, mean absolute error, and concordance between seep diary and accelerometer estimates (N=3,752)

Parameter Metric HDCZA L5+6
Value t; DF P | Value t; DF P
sleep onset time Correlation intiming 0.78 (95% CI: 0.77-0.79) | 76; 3750 | ** 0.66 (95% ClI: 0.64 - 0.68) 54; 3750 | **
MAE (min) 39.9 93.3
waking time Correlation intiming 0.81(95%Cl: 0.8-0.82) | 84; 3750 | ** 0.68 (95% CI: 0.66 - 0.7) 57,3750 | **
MAE (min) 29.9 58.4
SPT-window Correlation in duration 0.52(95% Cl: 0.5-0.55) | 38;3750 | ** | 0.26 (95% Cl: 0.23-0.29) 16; 3750 | **
MAE (min) 40 128.4
c-datistic 0.95 (IQR:0.94 - 0.98) - - | 0.92(IQR:0.90-0.94) - -

[DF: Degrees of freedom; MAE: mean absolute error; min: minutes; * P < 0.005; ** P < 0.0005; t -0.03 difference (95% ClI for difference: -0.031; -0.029),

t=-44, DF=3751, P < .0005]
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Figure 2: Probability density distributionsfor acceler ometer-based estimates of sleep
duration, sleep onset, and waking up time using dots to indicate the 5", 25", 75" and
95" percentile.
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Comparison between accelerometer results and that from polysomnography

In the PSG study in sleep clinic patients, on average 9.4 (standard deviation 1.6) hours
of matching data from PSG and accelerometer were retrieved per participant, with no
difference in recording duration between left and right wrist (P = 0.75). Sleep onset time,
waking time, SPT-window duration, and sleep duration within the SPT-window derived from
the HDCZA algorithm differed all non-significantly from polysomnography and MAE ranged
from 31 minutes for sleep onset to 71 minutes for SPT-window duration, see Table 4. The
combined MAE from onset and waking time was 38.9 and 36.7 minutes for the left and right
wrist, respectively. SPT-window duration was estimated for the left wrist within 2 hours for
the mgjority of individuals (75 %) but deviated by more than 2 hours in seven individuals, six
of which had a sleep disorder, as shown in Figure 3 (right wrist: 81%, five, and four,
respectively). On average, the accuracy and C-statistic for SPT-window classification were
87% and 0.86 in the PSG recording window, and 94% and 0.94 when expanded with
simulated wakefulness as an estimate of 24 hour performance, see Table 4. Further, the
average sensitivity to detect sleep as part of the SPT-window was above 91% in both wrists,
see Table 4. Results for the PSG study carried out in healthy good sleepers indicated better
overall performance as shown in Table 5 and Figure 4. The classifications of the HDCZA
algorithm in comparison with the PSG sleep stage classification for all participants are
provided in the Supplementary material 1 and 2 to this manuscript.
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Figure 3: M odified Bland-Altman plots with 95% limits of agreement (LoA) for SPT-
window duration and sleep duration reative to polysomnography (PSG) in sleep clinic
patients, with dashed linesindicating L oA and straight line indicating the mean. Open
bulletsreflect individuals with a sleep disorder, while closed bullets reflect normal

deepers.
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Figure 4: M odified Bland-Altman plots with 95% limits of agreement (LoA) for SPT-
window duration and sleep duration relative to polysomnography (PSG) in healthy
good sleepers, with dashed linesindicating L oA and straight line indicating the mean.
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Table4: Comparison algorithm with polysomnography in deep clinic patients (Newcastle study)

Parameters Metric Left wrist (N=28) Right wrist (N=27)
Value t; DF P Value t; DF P
Sleep onset Difference (min) -10 (95% ClI: -30; -9) -1.08; 27 | 0.29 0 (95% Cl: -27; 27) 0.02; 26 | 0.98
MAE (min) 30.8 - - 40.2
Sleep wake Difference (min) -37 (95% ClI: -75; 1) -2.00; 27 | 0.06 -31 (95% ClI: -57; -6) -2.54; 26 | 0.02
MAE (min) 47.1 - - 33.2
SPT-window Difference in duration (min) -27 (95% ClI: -73; 19) -1.21; 27 | 0.23 -32 (95% Cl: -71; 6) -1.72; 26 | 0.10
MAE (min) 70.9 - - 63.5 - -
c-statistic 0.86 (IQR: 0.81-0.98) - - 0.87 (IQR: 0. 81-0.95) - -
c-statistic 24 hourt 0.93 (IQR: 0.94-0.99) - - 0.94 (IQR: 0.94-0.99) - -
Accuracy (%) 87 (IQR: 81-98) - - 88 (IQR: 84-97) - -
Accuracy 24 hourt (%) 94 (IQR: 92-99) - - 94 (IQR: 93-99) - -
Sleep within SPT Difference in duration (min) 30 (95% ClI: 1; 58) 211;27 | 0.04 18 (95% Cl: -12; 48) 1.24;26 | 0.23
Sensitivity (%) 92 (IQR: 97-100) - - 91 (IQR: 98-100) - -
Sleep efficiency Difference (percent point) 8.7 (95% Cl: 3.63 - 13.82) 3.51; 27 * 9.4 (95% CI: 3.76 — 15.06) 3.42; 26 *
within SPT
MAE (percent point) 10.1 - - 10.6 - -
[* P <.005; MAE: mean absolute error; min: minutes, SPT-window: Sleep period time window; Cl: Confidence Interval; DF: degrees of freedom; t: t-
statistic; IQR: Inter quartile range; T recording expanded with simulated data of wakefulnessto resemble 24 hours)
18
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Table5: Comparison algorithm with polysomnography in healthy good deepers (N=22,

Pennsylvania)

Parameters Metric Value t; DF P
Sleep onset Difference (min) -20 (95% ClI: -39; -2) -2.30; 21 | 0.03
MAE (min) 329 - -
Sleep wake Difference (min) -17 (95% ClI: -39; 4) -1.67;21 | 0.11
MAE (min) 21.0 - -
SPT-window Difference in duration (min) 2 (95% Cl: -24; 27) 0.14;21 | 0.89
MAE in duration (min) 37.7 - -
c-statigtic 0.83 (IQR: 0.80-0.90) - -
c-statistic 24 hourt 0.95 (1QR: 0.95-0.99) - -
Accuracy (%) 89 (IQR: 86-97) - -
Accuracy 24 hourt (%) 96 (IQR: 95-99) - -
Sleep within SPT Difference in duration (min) -6 (95% ClI: -27; 15) -0.59; 21 | 0.56
Sensitivity (%) 93 (IQR: 94-100) - -
Sleep efficiency Difference (percent point) -1.74 (95% Cl: -4.46; 098) | -1.33;21 | 0.20
within SPT
MAE (min) 4.8 - -

[* P <.005; MAE: mean absolute error; min: minutes, SPT-window: Sleep period time window; Cl:

Confidence Interval; DF: degrees of freedom; t: t-statistic; |QR: Inter quartile range; T recording
expanded with simulated data of wakefulness to resemble 24 hours]
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Discussion

In this paper we present a heuristic algorithm, referred to as HDCZA, for detecting
Sleep Period Time-window (SPT-window) from accelerometer datain the absence of a sleep
diary. Raw data accelerometers are increasingly used in population research, and the value of
this algorithm lies in studies such as the UK Biobank where a sleep diary was not used *.
Although the focus of our analysisis sleep, the present findings are equally valuable for
physical activity research asit will help to split the observation period between night sleep
and daytime inactivity.

In our comparison with sleep diary records in alarge cohort of older adults (60-82
years) asmall systematic difference was found in sleep duration and sleep onset time,
difference that varies slightly as afunction of sex, age, and BMI. Here, the average difference
and the Akaike Information Coefficients indicated that the algorithm is better than our naive
reference method L5x6. Furthermore, the C-statistic was on average 95% for HDCZA. We
acknowledge that the sleep diary cannot be considered a gold standard criterion method, but
it is reassuring to see that differences between algorithm and sleep diary in alarge cohort of
elderly individuals are on average within a quarter of an hour.

An important limitation of the sleep diary study datais that no information is
available on daytime sleep or daytime inactivity behaviour to help better understand the
misclassifications in SPT-window by our algorithm. To facilitate such research future
methodological studies are warranted to consider implementing daytime sleep diaries, and
possibly additional sensor technologies such as wearable cameras™, RFID proximity
sensors? or additional wearable movement sensors to better capture alying posture>. In
addition, impact of handedness on the estimates could not be assessed.

When compared against polysomnography in 28 sleep clinic patients, accuracy and C-
statistic values indicate good agreement on an epoch by epoch level. Estimated SPT-window
duration by HDCZA deviated by more than 2 hours from PSG in seven individuals (six of
which has a sleep disorder) as shown in figure 3. Inspection of the PSG results indicated that
poor classification typically occursin patients with absence of deep sleep or who have long
periods of wakefulness (> 1 hour) in the middle of the night, e.g. pages 10 and 26 in the
Supplementary material, respectively (see Supplement 1). However, the interpretation of the
results was complicated in case of SPT-window split into several periods separated by long
waking periods. For example, one particular individual had a short sleep episode at the
beginning of the PSG recording followed by several hours of wakefulness, see page 9 of the
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Supplementary material (Supplement 1), indicating a possible ambiguity in the correct
definition of the SPT-window by both PSG and HDCZA.

To investigate the extent to which the larger differences in individuals with long
periods of wakefulness observed in the PSG study occur in the general population we went
back to the free-living data from the first study. In the free-living data, more wakefulness
during the night corresponded to larger differences between sleep diary and algorithm derived
SPT-window duration, indicating that more wakefulness timeis indeed achallenge in adaily
life recording setting. However, it was reassuring to see that only asmall fraction (2.4%) of
all the nights scattered across 8.5% of the participants were affected by one hour or more. In
line with this observation the tails in the distribution of differences with sleep diary (Figure 2)
may be explained by wakefulness during the night or sleep episodes being scattered over the
day. The problem then is that the SPT- window lacks a clear construct definition. Another
possible explanation for the tails in the distribution includes the subjective nature of sleep
diary aswell.

Differences and mean absolute error were better in the evaluation with healthy good
sleepers (Pennsylvania), indicating that SPT-window detection is a challenge in those with
sleep disorders. The expansion of PSG data with daytime wakefulness to simulate algorithm
performancein afull day hasto our knowledge not been done before. We think this can help
the comparison and interpretation of the c-statistic between the night time only PSG and full
day sleep diary studies. A downside of this approach isthat it comes with the assumption that
daytime is always correctly classified. Therefore, we presented both performance estimates
with and without the additional simulated data.

In the absence of a gold standard criterion method that can be applied in a
representative part of the population under daily life conditions to train and test a classifier,
we consider the heuristic approach the most promising for detecting the SPT-window. The
heuristic approach comes with the following advantages: (i) It is not optimized with
subjective and therefore potential erroneous sleep diary records, (ii) It avoids potentially
overfitting towards a small patient population in a PSG study unrepresentative for the general
population, (iii) It does not make assumptions about the timing or duration of the SPT-
window, and (iv) It is computationally simple which will facilitate easy replication. The
sengitivity analysis on parameter configuration as reported in supplementary material 3
demonstrates that the current configuration provides arelatively good average performance
across aternative configurations that is relatively robust against changing study conditions.

Improvement in algorithm performance in a specific dataset via optimization of parameter
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configuration can lead to overfitting, which comes with poor performance in other datasets or
asubset of the data.

We found one other study that compared SPT-window extracted from accelerometry
(or actigraphy) unaided by sleep diary to facilitate further interpretation of our current
findings. Recently, O’ Donnell and colleagues also investigated possible approaches to SPT-
window detection, currently available as a non-peer reviewed preprint on bioRxiv %. To
compare algorithm performance, we replicated their main performance metric: the mean
absolute error (MAE) in sleep onset and waking time. Our HDCZA algorithm has aMAE of
34.8 minutes when compared against sleep diary (N=3751), which is comparable with the
33.3, 34.4, and 35.9 minutes reported for the three algorithms investigated by O’ Donnell
(N=14)%. Although the age rangeis similar between the studies, a substantial differencein
sample size and unknown differencesin the prevalence of disturbed sleep
warrants future standardized comparison between the algorithms. Further, the MAE estimates
in our PSG studies are 38.9, 36.7, and 26.9 minutes in the | eft- and right wrist sleep clinic
patient data, and healthy good sleepers, respectively. When we consider the design of our and
their approach, we observe a couple of differences: their change-point and random forest
approaches were optimized on atrained data set with sleep diary data as criterion, which our
approach avoids following aforementioned point (i). Further, O’ Donnell’ s thresholding
approach relies on the assumption that the average SPT-window duration is 8 hours, which
our approach aso avoids following aforementioned point (iii). Other strengths of our
approach are the evaluation with sleep diary in much larger cohort than theirs and we
evaluated our approach against PSG in sleep clinic patients arguably a challenging
subpopulation to classify sleep in. Neither our nor their approach currently uses the available
temperature or light sensor information, in our case because of concerns about measurement
bias from environmental conditions. Therefore, future research is needed to explore the
potential of temperature and light information to enhance the SPT-window classification.

It should be noted that the historical studies like the one by Cole-Kripke® and |ater
studies %> focussed on automatic distinction of sleep and wakefulness aided by the
boundaries of timein bed, lights off, or diary records of the SPT-window. These studies then
focussed on correct classification of Wake After Sleep Onset (WA SO), Total Sleep Time
(TST), and Sleep Efficiency. Overall these sleegp estimates based on algorithms aided by
sleep diary show better agreement with PSG estimates than algorithms not aided by a sleep
diary. However, these studies represent a different measurement construct and

methodological challenge than discussed in the present work and can therefore not be used as
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areference point. To give the reader an idea of how much better the MAE is when asleep

diary isavailable to aid the detection of the SPT window, we have calculated this from the
analysisin our previous publication™’; the MAE was on average 12 minutes (inter quartile

range: 7-15) using the same sleep diary as reference point.

Our algorithm does not facilitate the detection of sleep latency. To derive sleep
latency, one would need diary records of time in bed or the lights out period. Future research
is warranted to investigate how sleep latency, timein bed, and the lights out period may
reliably be detected from wearable accelerometer data without asking the participant to
record their sleep behaviour using adiary or marker button.

The analysis presented in this paper will facilitate feasible large-scale population
research on sleep and physical activity. In addition to the proof of validity as provided in this
paper additional support for the credibility of the algorithm was found in our separate study
(non-peer reviewed preprint on bioRxiv) identifying genome wide associations with sleep
parameters derived from our algorithm in UK Biobank, replicating signals previously
associated with self-reported sleep duration and chronotype #~3*. Our algorithm can be
applied to data from the three most widely used accelerometer brands: Actigraph, Axivity,
and GENEACctiv, and is available as part of open source R package GGIR (https.//cran.r-
project.org/web/packages GGIRY).
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