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Abstract 

Wrist worn raw-data accelerometers are used increasingly in large scale population research. 

We examined whether sleep parameters can be estimated from these data in the absence of 

sleep diaries. Our heuristic algorithm uses the variance in estimated z-axis angle and makes 

basic assumptions about sleep interruptions. Detected sleep period time window (SPT-

window), was compared against sleep diary in 3752 participants (range=60-82years) and 

polysomnography in sleep clinic patients (N=28) and in healthy good sleepers (N=22). The 

SPT-window derived from the algorithm was 10.9 and 2.9 minutes longer compared with 

sleep diary in men and women, respectively. Mean C-statistic to detect the SPT-window 

compared to polysomnography was 0.86 and 0.83 in clinic-based and healthy sleepers, 

respectively. We demonstrated the accuracy of our algorithm to detect the SPT-window. The 

value of this algorithm lies in studies such as UK Biobank where a sleep diary was not used. 
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Wrist-worn raw-data accelerometers are increasingly used for the assessment of 

physical activity in large population studies such as the Whitehall II study or mega-cohorts 

such as UK Biobank 1–3. The decision to use raw-data accelerometers is motivated by the 

improved comparability of output across different sensor brands 4,5, and better control over all 

steps in data processing6. Accelerometers are commonly worn for 24 hours per day, thus 

providing information over the day and night; making them potentially valuable for sleep 

research. 

A major challenge in accelerometer-based sleep measurement is to derive sleep 

parameters without additional information from sleep diaries 1,3,7. Standard methods for sleep 

detection based on conventional accelerometers (actigraphy) involves asking the participant 

to record their time in bed, sleep onset, and waking up time8–10. In a previous paper we 

developed a method to detect sleep guided by sleep diary records 11. However, the increasing 

use of accelerometry in studies worldwide without sleep diaries necessitates the development 

of novel methods to derive indicators of sleep behaviour, in the absence of sleep diary 

records. A crucial step is the detection of the sleep period time window (SPT-window), which 

is the time window starting at sleep onset and ending when waking up after the last sleep 

episode of the night. Once the SPT-window can be detected without a diary, our previously 

published method can be used to detect sleep episodes within this window 11. 

Polysomnography (PSG) is considered the gold-standard measure of sleep parameters, 

making it an ideal methodology to validate sleep detection methods using an accelerometer 

algorithm. Additionally, experiments in daily life can be used to establish concurrent validity 

with sleep diary. 

We aim to develop and evaluate a heuristic algorithm for the detection of the SPT-

window from raw data accelerometers unaided by a sleep diary and to compare sleep 

parameters (waking up, sleep onset time and SPT-window duration) with sleep diary records 

assessed in the daily life of a large cohort of older adults, and with PSG data collected in a 

sleep clinic and a group of healthy good sleepers.  
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Methods 

 

Study population 

In order to assess the validity of our algorithm in different settings and against both data from 

sleep diary and polysomnography, data are drawn from three different study populations 

described below.  

The Whitehall II cohort study12: full details on data collection were previously described 11. 

Briefly, accelerometer measurement was added to the study at the 2012/2013 wave of data 

collection for participants seen at the central London clinic and for those living in the South-

Eastern regions of England who underwent a clinical evaluation at home 2. Of the 4879 

participants to whom the accelerometer was proposed in the Whitehall II Study, 388 did not 

consent and 210 had contraindications (allergies to plastic or metal, travelling abroad the 

following week). Of the remaining 4281 participants who wore the accelerometer, 4204 

(98.2%) had valid accelerometer data (a readable data file). Among them, sleep diary data 

were missing for 80 participants and 29 additional participants did not meet criteria for 

accelerometer wear time (at least one night defined as noon-noon with >16h of wear time). 

Of the remaining 4095 participants (a total of 27,966 nights) 342 did not have complete 

demographic data (age, BMI and sex). Therefore, the main assessment of discrepancies 

between the accelerometer and the sleep diary was undertaken in 3752 participants (76.9% of 

those invited) with a total of 25,645 nights 11. The resulting participants (75.2% men) were on 

average 69.1 (standard deviation (SD) = 5.6) years old and had a mean body mass index 

(BMI) of 26.4 (SD = 4.2) kg/m2. 

Sleep clinic patients: these data come from 28 adult patients who were scheduled for a one-

night polysomnography (PSG) assessment at the Freeman Hospital, Newcastle upon Tyne, 

UK, as part of their routine clinical assessment and were subsequently invited to participate 

in the study 11. All 28 patients recruited for the polysomnography study (11 female) had 

complete accelerometer data for the left wrist and 27 had complete data for the right wrist and 

were aged between 21 and 72 years (mean±sd: 45±15 years). Diagnosed sleep disorders 

included: hypersomnia (N=2), insomnia (N=2), REM behaviour disorder (N=3), sleep apnoea 

(N=5), narcolepsy (N=1), sleep apnoea (N=4), parasomnia (N=1), restless leg syndrome 

(N=5), and sleep paralysis (N=1), and nocturnia (N=1). Three patients had more than one 

sleep disorder. 

Healthy good sleepers: these data come from 22 adults who underwent a one-night PSG 
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assessment at the University of Pennsylvania Center for Sleep. Twenty-two participants 

recruited for the polysomnography study (68% female) had complete accelerometer data for 

the non-dominant wrist and were aged between 18 and 35 years (mean±sd: 22.8±4.5 years). 

 

 

Ethics Statement 

In all three studies participants were provided with instructions and an information 

sheet about the study and were given time to ask questions prior to providing written 

informed consent. The studies were approved by the University College London ethics 

committee (85/0938) and the NRES Committee North East Sunderland ethics committee 

(12/NE/0406), and University of Pennsylvania ethics committee (819591) respectively. All 

experiments were performed in accordance with relevant guidelines and regulations. 

 

Data availability 

Whitehall II data, protocols, and other metadata are available to the scientific community. 

Please refer to the Whitehall II data sharing policy at https://www.ucl.ac.uk/whitehallII/data-

sharing. Raw data from the polysomnography study has been made open access available in 

anonymized format on zenodo.org13. Data from the University of Pennsylvania are available 

through the National Institute of Mental Health data archive. 

 

Instrumentation 

Participants in the Whitehall II Study were asked to wear a tri-axial accelerometer 

(GENEActiv, Activinsights Ltd, Kimbolton, UK) on their non-dominant wrist for nine (24-h) 

consecutive days. They were asked to complete a simple sleep diary every morning which 

consisted of two questions: ‘what time did you first fall asleep last night?’ and ‘what time did 

you wake up today (eyes open, ready to get up)?’ The accelerometer was configured to 

collect data at 85.70 Hz with a ±8g dynamic range. A more complete description of the 

accelerometer protocol can be found in our earlier publication 2. 

In the second and third study, polysomnography (Embletta®, Denver) was performed 

using a standard procedure, including video recording, a sleep electroencephalogram (leads 

C4-A1 and C3-A2), bilateral eye movements, submental EMG, and bilateral anterior tibialis 

EMG to record leg movements during sleep. Respiratory movements were detected with 

chest and abdominal bands measuring inductance, airflow was detected with nasal cannulae 
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measuring pressure, and oxygen saturation of arterial blood was measured. Airflow limitation 

and changes in respiratory movement were used to detect increased upper-airway resistance. 

All respiratory events and sleep stages were scored according to standard criteria so that EEG 

determined total sleep time could be measured 9. Participants in the second study (PSG in 

sleep clinic) were asked to wear the same brand of accelerometer as in the first study 

(GENEActiv, Activinsights Ltd, Kimbolton, UK) on both wrists throughout the one-night 

polysomnography assessment. Here, the accelerometer was also configured to record at 85.70 

Hz. Accelerometer data were collected on both wrist to assess the role of sensor location on 

classification performance, unfortunately no information on handedness was recorded. 

Participants in the third study (PSG in healthy good sleepers) were asked to wear an 

accelerometer of the brand Axivity (Axivity Ltd, Hoults Yard, UK) on the non-dominant 

wrist throughout the one-night polysomnography assessment. Here, the accelerometer was 

configured to record at 100 Hz. 

 

 

Accelerometer data preparation 

A previously published method was used to minimize sensor calibration error 14 and 

to detect and impute accelerometer non-wear periods 2,15. Arm angle was estimated as 

follows: ������ � �tan�� ��

��
����

�
� · 180/�, where ��, ��, and �� are the median values of 

the three orthogonally positioned raw acceleration sensors in gravitational (g) units (1g = 

1000 mg) derived based on a rolling five second time window. Here, the z-axis corresponds 

to the axis positioned perpendicular to the skin surface (dorsal-ventral direction when the 

wrist is in the anatomical position). Next, estimated arm angles were averaged per 5 second 

epoch and used as input for our algorithms for detecting sleep period time (SPT-window) and 

sleep episodes. 

 

Heuristic algorithm to detect the SPT-window  

There are several challenges in the development of an algorithm to detect the SPT-

window: absence of hard data labels to train a classifier under daily life conditions (not in a 

clinic), consideration of daily life behaviour, e.g. how to handle sleep scattered across the full 

24-hour day and ensure that the algorithm is not over fitted to a specific population or 

accelerometer brand. Thus an algorithm was developed by visually inspecting twenty random 

accelerometer multi-day recordings from different studies and accelerometer brands (ten from 
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the Whitehall II Study as reported in this paper and ten from UK Biobank study 1) while 

iteratively enhancing the algorithm to best detect the visible data segment of no movement 

without using or looking at sleep diary data. 

The resulting heuristic algorithm, which we will refer to as Heuristic algorithm 

looking at Distribution of Change in Z-Angle (HDCZA), applied per participant is illustrated 

in Figure 1 and works as follows. Step 1-2: Calculate the z-angle per 5 seconds. Steps 3-5: 

Calculate a 5-minute rolling median of the absolute differences between successive 5 second 

averages of the z-angle. These first five steps make the algorithm invariant to the potentially 

unstandardized orientation of the accelerometer relative to the wrist and aggregate it as the 

rolling variance over time. Step 6-7: Calculate the 10th percentile from the output of step 5 

over an individual day (noon-noon), and multiply by 15. This is used as a critical individual 

night derived threshold to distinguish periods of time involving many and few posture 

changes. Detect the observation blocks for which the output from step 5 was below the 

critical threshold, and keep the ones lasting longer than 30 minutes. Step 8: Evaluate the 

length of the time gaps between the observation blocks identified by step 7, if the duration is 

less than 60 minutes then count these gaps towards the identified blocks. Step 9: The longest 

block in the day (noon-noon) will be the main SPT-window, defined as the time elapsed 

between sleep onset (start of the block) and waking time (end of the block). These last four 

steps reflect assumptions from us as researcher about the nature of sleep. 

 

Figure 1: Steps of the heuristic algorithm HDCZA for SPT-window detection. 

 
 

Our motivation for the design of the algorithm is as follows. By visually inspecting 

the angle-z values over a day some individuals seemed inactive or sleeping throughout the 

day with minimal variation in angle, while other individuals had more distinct inactive (night 

time) and active (daytime) periods. These differences presumably reflect the degree of 

sedentary lifestyle and amount of sleep in a day. Using a percentile as part of the threshold 

calculation allows the threshold to account for between-individual differences in z-angle 
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distribution. The factor 15 in step 6 of the algorithm was derived iteratively using visual 

inspection of the classification. The 30-minute time period is motivated by the assumption 

that people are typically not in bed for less than 30 minutes for their nocturnal time in bed, as 

opposed to daytime napping, and the 60-minute time period is motivated by the assumption 

that sleep separated by awake periods greater than 60 minutes ought to be treated as two 

distinct sleep episodes to avoid adding early evening naps or afternoon naps to the SPT-

window. A sensitivity analysis on HDCZA parameter settings and their influence on 

algorithm performance across the datasets can be found in Supplementary material 3. 

 

Second algorithm for reference 

When comparing our algorithm to the sleep diary we also considered a second, but 

more naïve heuristic algorithm, which we will refer to as L5±6. The algorithm is based on the 

raw signal metric Euclidian Norm (vector magnitude) Minus One with negative values 

rounded to zero (ENMO), which in formula corresponds to 

����������� � ����� � ����� � 1�, 0�, with accx, accy, and accz referring to the three 

orthogonal acceleration axes pointing in the lateral, distal, and ventral directions, respectively 
15. Metric ENMO has previously been demonstrated to be correlated with magnitude of 

acceleration as well as human energy expenditure in the present generation of wearable 

acceleration sensors15. L5±6 takes the 12 hour window centred around L5 (least active five 

hours in the day based on metric ENMO) and then searches within this window for sustained 

inactivity periods which were previously described 11. In short, sustained inactivity periods 

are calculated as the absence of change in arm elevation angle (same angle-z as used above) 

larger than 5 degrees for more than 5 minutes 11. Next, the SPT-window is defined from the 

start of the first to the end of the last occurrence of a sustained period of inactivity in the 12-

hour window.  

 

Sleep episodes within the SPT-window  

Sleep episodes were defined as the sustained periods of inactivity within the SPT-

window, as defined in the previous section 11. From this, the number of sleep episodes within 

each SPT-window detected (HDCZA, L5±6) was calculated as well as sleep efficiency within 

the SPT-window calculated as the percentage of time asleep within the SPT-window 11.  
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Statistical analysis 

 

Comparison with sleep diary 

The SPT-window derived from both the HDCZA and L5±6 were compared separately 

with sleep diary records with a multi-level regression to account for the variation in 

availability of night time data and to include both night and person level predictors. For SPT-

window duration (difference between sleep onset and waking time), sleep onset and waking 

time, the difference between diary and accelerometer-based detection was used as the 

dependent variable, while population demographics (sex, age, BMI), season (winter or 

summer) and weekend versus weekday were used as predictors. Here, we used function lme 

from R package nlme. Further, correlation coefficients and mean absolute error (MAE) 

between sleep onset, waking time, and SPT-window duration were calculated. Additionally, 

the c-statistic, also known as the Area Under the Curve (ROC), was calculated from the 

epoch-level binary classifications of SPT-window <1> or not <0> by diary and the HDCZA 

and L5±6, first calculated per day and then aggregated as average per participant. 

Additionally, to investigate whether more wakefulness time within the SPT-window 

corresponds to a larger HDCZA-sleep diary difference in SPT-window duration we 

calculated the amount of wakefulness categorised as [0-1), [1-2), [2-3), [3-4), and at least 4 

hours, and compared this with the difference in SPT-window duration between sleep diary 

and the HDCZA. The notation [a-b) is used to denote an interval that is inclusive of ‘a’ but 

exclusive of ‘b’. 

 

Evaluation with polysomnography 

The recording time of PSG is typically constrained to the time in bed window, which 

means that our heuristic algorithm (HDCZA) may not detect sufficient data corresponding to 

time out of bed to derive its critical threshold and accurately detect the SPT-window. We 

addressed this concern by adding simulated wakefulness data to the beginning and ending of 

the accelerometer and PSG recording. The PSG and accelerometer data were expanded with 

90 minutes of simulated data at the beginning and ending that would not trigger the SPT-

window detection: simply the class wakefulness for PSG, and a sine wave with amplitude 40 

degrees and period 15 minutes complemented with random numbers (mean=0, standard 

deviation=10) for accelerometer-based angle-z. Note that the specific shape of the simulated 

values is not critical as long as it does not trigger the detection of sleep and the 10th percentile 

of all the data (step 6 of HDCZA) reflects real and not simulated data. The addition of 
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simulated data is needed because the heuristic detection algorithm effectively searches for the 

beginning and end of a large time period without body movement, if the full PSG represents 

sleep then the algorithm would not be able to detect such a transition in movement level. 

Additionally, the algorithm’s threshold that scales with the variance in the data was 

constrained to a range corresponding to the 2.5th and 97.5th percentile of the distribution of 

the threshold value observed in a sample of daily life accelerometer recordings, 0.13 and 

0.50, respectively. This was done because the in-clinic PSG does not provide a full 24-hour 

cycle of body movement to derive this threshold. In the PSG evaluation we did not evaluate 

L5±6, because it requires more than 12 hours of (non-simulated) data, which most PSG 

recordings do not offer.  After sleep classification with HDCZA and before running the 

comparison between HDCZA and PSG, 60 minutes of simulated data were removed at the 

beginning and end. 

The following performance metrics for SPT-window detection were used: difference 

in onset, waking time, and duration, accuracy, c-statistic, t-test, and mean absolute error 

(MAE). Performance estimates accuracy and c-statistic were derived from both the data, as 

well as from the data expanded with wakefulness time to simulate performance estimates in a 

24 hour recording. Sleep classification within the SPT-window was evaluated as difference in 

duration (t-test) and as the percentage of time spent in sleep stages REM, and non-REM 

stages 1, 2, and 3 (N1, N2, and N3) correctly classified by the algorithm as part of SPT-

window. Sleep efficiency within the SPT-window by PSG and algorithm was compared via t-

test and MAE. A P-value of < .005 was considered significant16. Further, method agreement 

was evaluated with modified Bland-Altman plots17 with PSG criterion values on the 

horizontal axis.  

 

Code availability 

Both SPT-window detection algorithms are implemented and available in open source 

R package GGIR version 1.5-21 (https://cran.r-project.org/web/packages/GGIR/)18, see the 

software’s documentation on input arguments ‘loglocation’ and ‘def.noc.sleep’ for further 

details on the use of L5±6 and HDCZA. The R code used for our comparisons with sleep 

diary can be found at: https://github.com/wadpac/whitehall-acc-spt-detection-eval. The R 

code used for our comparisons with polysomnography can be found at: 

https://github.com/wadpac/psg-ncl-acc-spt-detection-eval, with the code used for the 
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Newcastle data in the master branch of the repository and its adaptation for the differently 

formatted Pennsylvanian data in the psg-penn branch. 

 

 

Results 

 

Comparison between accelerometer results and that from sleep diary 

Demographic characteristics of the three study cohorts are described in Table 1. The 

probability density distribution for the difference between sleep parameter estimates from 

algorithm and sleep diary is more symmetrical around zero compared with the L5±6 

approach, see Figure 2. The heuristic algorithm HDCZA estimates sleep onset on average 

12.5 and 7.5 minutes earlier than that reported in the sleep diaries by men and women, 

respectively, 3.9 minutes per ten years of age relative to mean age, and 3.0 minutes for a 

weekend day, see Table 2. Difference between sleep diary estimates and HDCZA estimates 

in waking time and SPT window duration were associated with sex, age, and BMI, see Table 

2. The L5±6 method estimates sleep onset on average 86.4 and 78.5 minutes earlier than that 

reported in the sleep diary for men and women, respectively. Difference between sleep diary 

and L5±6 estimates of SPT-window, sleep onset, and waking time were associated with sex 

and BMI, but inconsistently with weekday, see Table 2. The Pearson’s correlation 

coefficients and c-statistics between accelerometer derived sleep parameters, and sleep diary, 

are higher for HDCZA compared with L5±6, see Table 3. The combined MAE from onset 

and waking time was 34.8 and 75.6 minutes for HDCZA and L5±6, respectively. 

For nights with [0-1), [1-2), [2-3), [3-4), and at least 4 hours of accumulated 

wakefulness an average difference in SPT-window duration between sleep diary records and 

our heuristic algorithm (HDCZA) was observed as 27, 3, -58, -154, and -236 minutes 

corresponding to 57.9, 32.1, 7.5, 1.6, and 0.7% of 25,645 recorded nights, respectively. Here, 

the last two categories, corresponding to at least 3 hours of accumulated wakefulness, reflect 

8.5% of the participants. 
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Table 1: Participant characteristics used for the analyses 
Study Daily life (diary) PSG sleep clinic PSG healthy good 

sleepers 

N 3752 28 22 

Age (mean ± standard deviation in years) 69.1 ± 5.6 44.9 ± 14.9 22.8 ± 4.5 

Sex 2822 males, 930 females 17 males and 11 females 7 males and 15 females 

SPT-window duration (mean ± standard 

deviation) 

7.7 ± 1.2 hours 8.4 ± 1.6 hours 6.7 ± 0.9 hours 

Sleep onset time (mean in hh:mm ± 

standard deviation) 

23:48 ± 71 minutes 22:32 ± 69 minutes 23:24 ± 54 minutes 

Waking time (mean in hh:mm ± standard 

deviation) 

7:28 ± 72 minutes 06:58 ± 76 minutes 06:09 ± 32 minutes 
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Table 2: Sleep parameter differences (minutes) between estimates from sleep diary and two accelerometer-based methods (N=25,645 nights, N=3752 
individuals) 

Sleep parameters HDCZA L5±6 

Method 
Sleep onset time Waking time SPT-window duration Sleep onset time Waking time 

SPT-window 

duration 

Y-intercept (SE) -12.5 (0.9) ** -1.6 (0.8) P=0.04 10.9 (1.1) ** -86.5 (1.0) ** 45.9 (0.9) ** 131.7 (1.2) ** 

Betas (SE)       

Women  5.0 (1.1) ** -3.0 (0.9) * -8.0 (1.3) ** 8.0 (1.4) ** -8.6 (1.1) ** -16.2 (1.6) ** 

Ten years of age † 3.9 (0.8) ** -2.9 (0.7) ** -6.8 (1.0) ** 0.3 (1.0) P=0.78 0.2 (0.8) P=0.83 -0.2 (1.2) P=0.89 

Five BMI index points ‡ 1.0 (0.5) P=0.06 -1.5 (0.5) * -2.5 (0.7) ** -3.2 (0.7) ** 1.8 (0.6) * 4.8 (0.8) ** 

Weekend 3.0 (1.0) * 2.0 (0.9) P=0.02 -1.0 (1.2) P=0.41 6.4 (1.3) ** -0.3 (1.0) P=0.77 -6.3 (1.4) ** 

Winter 1.0 (0.9) P=0.27 -1.2 (0.8) P=0.12 -2.2 (1.1) P=0.05 -1.0 (1.2) P=0.39 0.6 (1.0) P=0.51 1.7 (1.3) P=0.2 

Within individual residual SD 24.7 21.3 30.9 18 13 20.6 

Between individual residual SD 66.1 56.9 82.3 88.9 74.9 101.8 

AIC 81175 73538 92433 94053 84956 100978 

[Degrees of freedom=25,645; † relative to mean age of 69.1 years; ‡ relative to mean BMI of 26.4 kg / m2; SE: Standard Error; SD: Standard Deviation; AIC 

= Akaike information coefficient, * P < .005, ** P < .0005] 
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Table 3: Correlation, mean absolute error, and concordance between sleep diary and accelerometer estimates (N=3,752) 

Parameter Metric HDCZA L5±6 

  Value t; DF P Value t; DF P 

sleep onset time Correlation in timing 0.78 (95% CI: 0.77 - 0.79) 76; 3750 ** 0.66 (95% CI: 0.64 - 0.68) 54; 3750 ** 

 MAE (min) 39.9   93.3   

waking time Correlation in timing 0.81 (95% CI: 0.8 - 0.82) 84; 3750 ** 0.68 (95% CI: 0.66 - 0.7) 57; 3750 ** 

 MAE (min) 29.9   58.4   

SPT-window Correlation in duration 0.52 (95% CI: 0.5 - 0.55) 38; 3750 ** 0.26 (95% CI: 0.23 - 0.29) 16; 3750 ** 

 MAE (min) 40   128.4   

 c-statistic 0.95 (IQR: 0.94 - 0.98) 
 

- - 0.92 (IQR: 0.90 - 0.94) † - - 

[DF: Degrees of freedom; MAE: mean absolute error; min: minutes; * P < 0.005; ** P < 0.0005; † -0.03 difference (95% CI for difference: -0.031; -0.029), 
t=-44, DF=3751, P < .0005]  
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Figure 2: Probability density distributions for accelerometer-based estimates of sleep 
duration, sleep onset, and waking up time using dots to indicate the 5th, 25th, 75th and 
95th percentile. 

 

 

Comparison between accelerometer results and that from polysomnography 

In the PSG study in sleep clinic patients, on average 9.4 (standard deviation 1.6) hours 

of matching data from PSG and accelerometer were retrieved per participant, with no 

difference in recording duration between left and right wrist (P = 0.75). Sleep onset time, 

waking time, SPT-window duration, and sleep duration within the SPT-window derived from 

the HDCZA algorithm differed all non-significantly from polysomnography and MAE ranged 

from 31 minutes for sleep onset to 71 minutes for SPT-window duration, see Table 4. The 

combined MAE from onset and waking time was 38.9 and 36.7 minutes for the left and right 

wrist, respectively. SPT-window duration was estimated for the left wrist within 2 hours for 

the majority of individuals (75 %) but deviated by more than 2 hours in seven individuals, six 

of which had a sleep disorder, as shown in Figure 3 (right wrist: 81%, five, and four, 

respectively). On average, the accuracy and C-statistic for SPT-window classification were 

87% and 0.86 in the PSG recording window, and 94% and 0.94 when expanded with 

simulated wakefulness as an estimate of 24 hour performance, see Table 4. Further, the 

average sensitivity to detect sleep as part of the SPT-window was above 91% in both wrists, 

see Table 4. Results for the PSG study carried out in healthy good sleepers indicated better 

overall performance as shown in Table 5 and Figure 4. The classifications of the HDCZA 

algorithm in comparison with the PSG sleep stage classification for all participants are 

provided in the Supplementary material 1 and 2 to this manuscript.  
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Figure 3: Modified Bland-Altman plots with 95% limits of agreement (LoA) for SPT-
window duration and sleep duration relative to polysomnography (PSG) in sleep clinic 
patients, with dashed lines indicating LoA and straight line indicating the mean. Open 
bullets reflect individuals with a sleep disorder, while closed bullets reflect normal 
sleepers. 
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Figure 4: Modified Bland-Altman plots with 95% limits of agreement (LoA) for SPT-
window duration and sleep duration relative to polysomnography (PSG) in healthy 
good sleepers, with dashed lines indicating LoA and straight line indicating the mean. 
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Table 4: Comparison algorithm with polysomnography in sleep clinic patients (Newcastle study) 
Parameters Metric Left wrist (N=28) Right wrist (N=27) 

  Value t; DF P Value t; DF P 

Sleep onset Difference (min) -10 (95% CI: -30; -9) -1.08; 27 0.29 0 (95% CI: -27; 27) 0.02; 26 0.98 

 MAE (min) 30.8 - - 40.2   

Sleep wake Difference (min) -37 (95% CI: -75; 1) -2.00; 27 0.06 -31 (95% CI: -57; -6) -2.54; 26 0.02 

 MAE (min) 47.1 - - 33.2   

SPT-window Difference in duration (min) -27 (95% CI: -73; 19) -1.21; 27 0.23 -32 (95% CI: -71; 6) -1.72; 26 0.10 

 MAE (min) 70.9 - - 63.5 - - 

 c-statistic 0.86 (IQR: 0.81-0.98) - - 0.87 (IQR: 0. 81-0.95) - - 

 c-statistic 24 hour† 0.93 (IQR: 0.94-0.99) - - 0.94 (IQR: 0.94-0.99) - - 

 Accuracy (%) 87 (IQR: 81-98) - - 88 (IQR: 84-97) - - 

 Accuracy 24 hour† (%) 94 (IQR: 92-99) - - 94 (IQR: 93-99) - - 

Sleep within SPT Difference in duration (min) 30 (95% CI: 1; 58) 2.11; 27 0.04 18 (95% CI: -12; 48) 1.24; 26 0.23 

 Sensitivity (%) 92 (IQR: 97-100) - - 91 (IQR: 98-100) - - 

Sleep efficiency 

within SPT 

Difference (percent point) 8.7 (95% CI: 3.63 – 13.82) 3.51; 27 * 9.4 (95% CI: 3.76 – 15.06) 3.42; 26 * 

 MAE (percent point) 10.1 - - 10.6 - - 

[* P < .005; MAE: mean absolute error; min: minutes; SPT-window: Sleep period time window; CI: Confidence Interval; DF: degrees of freedom; t: t-
statistic; IQR: Inter quartile range; † recording expanded with simulated data of wakefulness to resemble 24 hours] 
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Table 5: Comparison algorithm with polysomnography in healthy good sleepers (N=22, 
Pennsylvania) 

Parameters Metric Value t; DF P 

Sleep onset Difference (min) -20 (95% CI: -39; -2) -2.30; 21 0.03 

 MAE (min) 32.9 - - 

Sleep wake Difference (min) -17 (95% CI: -39; 4) -1.67; 21 0.11 

 MAE (min) 21.0 - - 

SPT-window Difference in duration (min) 2 (95% CI: -24; 27) 0.14; 21 0.89 

 MAE in duration (min) 37.7 - - 

 c-statistic 0.83 (IQR: 0.80-0.90) - - 

 c-statistic 24 hour† 0.95 (IQR: 0.95-0.99) - - 

 Accuracy (%) 89 (IQR: 86-97) - - 

 Accuracy 24 hour† (%) 96 (IQR: 95-99) - - 

Sleep within SPT Difference in duration (min) -6 (95% CI: -27; 15) -0.59; 21 0.56 

 Sensitivity (%) 93 (IQR: 94-100) - - 

Sleep efficiency 
within SPT 

Difference (percent point) -1.74 (95% CI: -4.46; 0.98) -1.33; 21 0.20 

 MAE (min) 4.8 - - 

[* P < .005; MAE: mean absolute error; min: minutes; SPT-window: Sleep period time window; CI: 
Confidence Interval; DF: degrees of freedom; t: t-statistic; IQR: Inter quartile range; † recording 
expanded with simulated data of wakefulness to resemble 24 hours] 
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Discussion 

In this paper we present a heuristic algorithm, referred to as HDCZA, for detecting 

Sleep Period Time-window (SPT-window) from accelerometer data in the absence of a sleep 

diary. Raw data accelerometers are increasingly used in population research, and the value of 

this algorithm lies in studies such as the UK Biobank where a sleep diary was not used 1.  

Although the focus of our analysis is sleep, the present findings are equally valuable for 

physical activity research as it will help to split the observation period between night sleep 

and daytime inactivity. 

In our comparison with sleep diary records in a large cohort of older adults (60-82 

years) a small systematic difference was found in sleep duration and sleep onset time, 

difference that varies slightly as a function of sex, age, and BMI. Here, the average difference 

and the Akaike Information Coefficients indicated that the algorithm is better than our naïve 

reference method L5±6. Furthermore, the C-statistic was on average 95% for HDCZA. We 

acknowledge that the sleep diary cannot be considered a gold standard criterion method, but 

it is reassuring to see that differences between algorithm and sleep diary in a large cohort of 

elderly individuals are on average within a quarter of an hour.  

An important limitation of the sleep diary study data is that no information is 

available on daytime sleep or daytime inactivity behaviour to help better understand the 

misclassifications in SPT-window by our algorithm. To facilitate such research future 

methodological studies are warranted to consider implementing daytime sleep diaries, and 

possibly additional sensor technologies such as wearable cameras19, RFID proximity 

sensors20 or additional wearable movement sensors to better capture a lying posture21,22. In 

addition, impact of handedness on the estimates could not be assessed.  

When compared against polysomnography in 28 sleep clinic patients, accuracy and C-

statistic values indicate good agreement on an epoch by epoch level. Estimated SPT-window 

duration by HDCZA deviated by more than 2 hours from PSG in seven individuals (six of 

which has a sleep disorder) as shown in figure 3. Inspection of the PSG results indicated that 

poor classification typically occurs in patients with absence of deep sleep or who have long 

periods of wakefulness (> 1 hour) in the middle of the night, e.g. pages 10 and 26 in the 

Supplementary material, respectively (see Supplement 1). However, the interpretation of the 

results was complicated in case of SPT-window split into several periods separated by long 

waking periods. For example, one particular individual had a short sleep episode at the 

beginning of the PSG recording followed by several hours of wakefulness, see page 9 of the 
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Supplementary material (Supplement 1), indicating a possible ambiguity in the correct 

definition of the SPT-window by both PSG and HDCZA. 

To investigate the extent to which the larger differences in individuals with long 

periods of wakefulness observed in the PSG study occur in the general population we went 

back to the free-living data from the first study. In the free-living data, more wakefulness 

during the night corresponded to larger differences between sleep diary and algorithm derived 

SPT-window duration, indicating that more wakefulness time is indeed a challenge in a daily 

life recording setting. However, it was reassuring to see that only a small fraction (2.4%) of 

all the nights scattered across 8.5% of the participants were affected by one hour or more. In 

line with this observation the tails in the distribution of differences with sleep diary (Figure 2) 

may be explained by wakefulness during the night or sleep episodes being scattered over the 

day. The problem then is that the SPT- window lacks a clear construct definition. Another 

possible explanation for the tails in the distribution includes the subjective nature of sleep 

diary as well. 

Differences and mean absolute error were better in the evaluation with healthy good 

sleepers (Pennsylvania), indicating that SPT-window detection is a challenge in those with 

sleep disorders. The expansion of PSG data with daytime wakefulness to simulate algorithm 

performance in a full day has to our knowledge not been done before. We think this can help 

the comparison and interpretation of the c-statistic between the night time only PSG and full 

day sleep diary studies. A downside of this approach is that it comes with the assumption that 

daytime is always correctly classified. Therefore, we presented both performance estimates 

with and without the additional simulated data. 

In the absence of a gold standard criterion method that can be applied in a 

representative part of the population under daily life conditions to train and test a classifier, 

we consider the heuristic approach the most promising for detecting the SPT-window. The 

heuristic approach comes with the following advantages: (i) It is not optimized with 

subjective and therefore potential erroneous sleep diary records, (ii) It avoids potentially 

overfitting towards a small patient population in a PSG study unrepresentative for the general 

population, (iii) It does not make assumptions about the timing or duration of the SPT-

window, and (iv) It is computationally simple which will facilitate easy replication. The 

sensitivity analysis on parameter configuration as reported in supplementary material 3 

demonstrates that the current configuration provides a relatively good average performance 

across alternative configurations that is relatively robust against changing study conditions. 

Improvement in algorithm performance in a specific dataset via optimization of parameter 
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configuration can lead to overfitting, which comes with poor performance in other datasets or 

a subset of the data. 

We found one other study that compared SPT-window extracted from accelerometry 

(or actigraphy) unaided by sleep diary to facilitate further interpretation of our current 

findings. Recently, O’Donnell and colleagues also investigated possible approaches to SPT-

window detection, currently available as a non-peer reviewed preprint on bioRxiv 23. To 

compare algorithm performance, we replicated their main performance metric: the mean 

absolute error (MAE) in sleep onset and waking time. Our HDCZA algorithm has a MAE of 

34.8 minutes when compared against sleep diary (N=3751), which is comparable with the 

33.3, 34.4, and 35.9 minutes reported for the three algorithms investigated by O’Donnell 

(N=14)22. Although the age range is similar between the studies, a substantial difference in 

sample size and unknown differences in the prevalence of disturbed sleep 

warrants future standardized comparison between the algorithms. Further, the MAE estimates 

in our PSG studies are 38.9, 36.7, and 26.9 minutes in the left- and right wrist sleep clinic 

patient data, and healthy good sleepers, respectively. When we consider the design of our and 

their approach, we observe a couple of differences: their change-point and random forest 

approaches were optimized on a trained data set with sleep diary data as criterion, which our 

approach avoids following aforementioned point (i). Further, O’Donnell’s thresholding 

approach relies on the assumption that the average SPT-window duration is 8 hours, which 

our approach also avoids following aforementioned point (iii). Other strengths of our 

approach are the evaluation with sleep diary in much larger cohort than theirs and we 

evaluated our approach against PSG in sleep clinic patients arguably a challenging 

subpopulation to classify sleep in. Neither our nor their approach currently uses the available 

temperature or light sensor information, in our case because of concerns about measurement 

bias from environmental conditions. Therefore, future research is needed to explore the 

potential of temperature and light information to enhance the SPT-window classification.  

It should be noted that the historical studies like the one by Cole-Kripke24 and later 

studies 25,26 focussed on automatic distinction of sleep and wakefulness aided by the 

boundaries of time in bed, lights off, or diary records of the SPT-window. These studies then 

focussed on correct classification of Wake After Sleep Onset (WASO), Total Sleep Time 

(TST), and Sleep Efficiency. Overall these sleep estimates based on algorithms aided by 

sleep diary show better agreement with PSG estimates than algorithms not aided by a sleep 

diary. However, these studies represent a different measurement construct and 

methodological challenge than discussed in the present work and can therefore not be used as 
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a reference point. To give the reader an idea of how much better the MAE is when a sleep 

diary is available to aid the detection of the SPT window, we have calculated this from the 

analysis in our previous publication11: the MAE was on average 12 minutes (inter quartile 

range: 7-15) using the same sleep diary as reference point. 

Our algorithm does not facilitate the detection of sleep latency. To derive sleep 

latency, one would need diary records of time in bed or the lights out period. Future research 

is warranted to investigate how sleep latency, time in bed, and the lights out period may 

reliably be detected from wearable accelerometer data without asking the participant to 

record their sleep behaviour using a diary or marker button. 

The analysis presented in this paper will facilitate feasible large-scale population 

research on sleep and physical activity. In addition to the proof of validity as provided in this 

paper additional support for the credibility of the algorithm was found in our separate study 

(non-peer reviewed preprint on bioRxiv) identifying genome wide associations with sleep 

parameters derived from our algorithm in UK Biobank, replicating signals previously 

associated with self-reported sleep duration and chronotype 27–34. Our algorithm can be 

applied to data from the three most widely used accelerometer brands: Actigraph, Axivity, 

and GENEActiv, and is available as part of open source R package GGIR (https://cran.r-

project.org/web/packages/GGIR/). 
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