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Abstract

Motivation: Accurate prediction of the host phenotype from a metgenomic sample and identification
of the associated bacterial markers are important in metagenomic studies. We introduce PopPhy-CNN,
a novel convolutional neural networks (CNN) learning architecture that effectively exploits phylogentic
structure in microbial taxa. PopPhy-CNN provides an input format of 2D matrix created by embedding the
phylogenetic tree that is populated with the relative abundance of microbial taxa in a metagenomic sample.
This conversion empowers CNNs to explore the spatial relationship of the taxonomic annotations on the
tree and their quantitative characteristics in metagenomic data.
Results: PopPhy-CNN is evaluated using three metagenomic datasets of moderate size. We show the
superior performance of PopPhy-CNN compared to random forest, support vector machines, LASSO and
a baseline 1D-CNN model constructed with relative abundance microbial feature vectors. In addition, we
design a novel scheme of feature extraction from the learned CNN models and demonstrate the improved
performance when the extracted features are used to train support vector machines.
Conclusion: PopPhy-CNN is a novel deep learning framework for the prediction of host phenotype from
metagenomic samples. PopPhy-CNN can efficiently train models and does not require excessive amount
of data. PopPhy-CNN facilities not only retrieval of informative microbial taxa from the trained CNN models
but also visualization of the taxa on the phynogenetic tree.
Contact: yagndai@uic.edu
Availability: Source code is publicly available at https://github.com/derekreiman/PopPhy-CNN
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Numerous metagenomic studies of the gut microbiome have linked
dysbiosis to many host diseases, e.g., inflammatory bowel disease,
diabetes, obesity, cancer, autoimmune diseases, and metabolic disorders
[1, 2]. A metagenomic sample is usually described by its microbial
taxanomic composition, i.e., the relative abundance of microbial taxa
at one of the taxonomic levels (Super-kingdom, Phylum, Class, Order,
Family, Genus, and Species), represented as nodes on a phylogenetic
tree. The identification of microbial taxa that are associated with the
host disease can benefit the early diagnosis, the development of microbial
reconstitution (e.g., Probiotic) therapies [3], and the understanding of the
disease mechanism [4].

One primary effort on the analysis of the microbiome has been the
disease association study and the identification of microbial biomarker
signatures for disease prediction. The detection of the associations
relies on statistical analyses (parametric or non-parametric) to identify

differentially abundant taxa between disease and control groups [5, 6, 7,
8]. However, the association of the individual microbes to a particular
type of disease has shown contradictory results [9, 10]. This can be due to
various reasons such as the small sample size and the complexity of the
diseases.

Alternative approaches using machine learning models, e.g., Random
Forest (RF), LASSO and Support Vector Machines (SVMs), and recently,
deep neural networks (DNN), demonstrated the potential of developing
microbial biomarker signature for the prediction of disease or phenotype
of the host [11, 12, 13, 14]. This type of approaches is motivated
by the findings that a microbial signature for the host phenotype may
be complex, involving simultaneous over- and under-representations
of multiple microbial taxa at distinct taxonomic levels and potentially
interacting with each other [9, 15]. Varying levels of predictive accuracy
have been reported. The performance of the deep learning models
is encouraging, owing the ability of deep architectures in identifying
potential interactions of microbial taxa for disease prediction [11].
However, the results also raise the skepticism that DNNs may not be
suitable learning models due to their requirement of excessive amount
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of training data, which are impractical in the present metagenomic study.
Furthermore, DNNs are often used as black-boxes, making it difficult to
extract informative features from the learned models. Therefore, despite
the success of DNNs in other biomedical applications [16], it is unclear
whether they can outperform the existing models, such as RF, LASSO
and SVMs, and whether they can learn a set of informative microbial taxa
from metagenomics data.

We have proposed a prototype of a novel architecture for convolution
neural networks (CNNs) for the prediction of host phenotype from the
microbial taxonomic abundance profiles [17]. CNNs were originally
developed based on the visual cortex in images and have been successful
in image processing and speech recognition [18]. The major characteristic
of a CNN is its ability of generating convolution layers with multiple
feature maps that capture the spatial information in training data.
However, metagenomic data are represented by relative microbial
taxonomic abundance profiles, where taxas can be placed in arbitrary
orders. To empower CNNs in metagenomic phenotype prediction, it
is important to provide structural input with certain distance metric
among the microbial taxas. In our preliminary work, we constructed a
phylogenetic tree, a natural structure representing the relationship among
the microbial taxa in the profiles [17]. The tree is embedded in a 2D matrix
after populating with the observed relative abundance of microbial taxa
in each individual profile. In this way, the constructed matrices provide
a better spatial and quantitative information in the metagenomic data to
CNNs, compared to the vectors of relative microbial taxa abundances in
an arbitrary order. Our preliminary analysis has revealed encouraging
predictive ability of CNNs based on metagenomic data taken from
different parts of body [11, 17].

In the present work, we introduce PopPhy-CNN by extending our
prototype CNN learning framework to establish reliable host phenotype
prediction models for more complex gut metagenomic data from disease
individuals. More specifically, our contribution is summarized as
follows.

• We investigated the effect of up-sampling in addressing the issue
of the moderate datasize in the current metagenomic study. Our
experimental results indicates that learning from the original data is
sufficient to achieve the maximum performance.

• We conducted a comprehensive evaluate of the performance of our
CNN model in comparison with other models (RF, LASSO, SVMs)
and a baseline 1D CNN using the vector form of relative abundance
profiles. We demonstrate the superior performance of our CNN
models using three datasets with moderate size: (1) cirrhosis (114
cases vs. 118 controls) [19]; (2) type 2 diabetes (223 cases vs. 217
controls) [20, 21], and (3) obesity (164 cases vs. 89 controls) [22].

• We developed a novel procedure to retrieve microbial taxa from the
trained CNN models and demonstrated the usefulness of the extracted
features for prediction. In addition, we demonstrated a visualization
using Cytoscape to facilitate the examination and interpretation of the
retrieved taxa on the phylogenetic tree.

2 Methods
In this section, we describe the major components of PopPhy-CNN as
shown in Fig. 1. First, we show how a microbial taxonomic abundance
profile obtained from a sample can be embeded into a matrix format
based on the use of a populated phylogenetic tree. Then, we describe
our CNN training procedure. Last, the scheme of feature extraction will
be presented.

Fig. 1. Flowchart of PopPhy-CNN. The taxa annotations and count table are used to
create and populate a phylogenetic tree, which is embedded into a matrix format and
used to train a CNN model. Features are extracted from the trained model.

2.1 Embedding the Phylogenetic Tree

In this section we describe how to transform the microbial taxonomic
abundance profiles into a structured data by using a phylogenetic tree. Our
method is demonstrated using profile data represented by the Operational
Taxonomic Units (OTUs). However, the procedure is applicable to
profiles of any level of taxonomic annotation obtained from metagenomic
study. Fig. 2 shows an example of converting an OTU vector into an input
matrix for CNNs.

Fig. 2. Example of populating and embedding phylogenetic tree. The OTU labels
in the vector of an abundance profile are used to construct a phylogenetic tree.The
abundance data are used to populate the tree, which is then embedded into a matrix
to be used as an input for the CNN.

A phylogenetic tree captures similarity information among OTUs.
It can be constructed by comparing the microbial genomes based on
multiple sequence alignment and organizing similar taxa into clades.
The similarity between taxa is represented by their closeness in the
tree. In our work PhyloT [24] and iTol [25] were used to create and
visualize the phylogenetic tree. The phylogenetic tree is structured using
ancestral nodes from both taxonomic groups and subgroups with no
defined distances between nodes. This leads to a tree with more than just
seven layers and with branches of variable length. In our work, a constant
distance of one between nodes is assumed. This allows for the distance
between any two nodes to be determined by the number of nodes between
them.
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Since CNNs are very successful in image processing where inputs
are a multi-dimensional matrix, we need to embed the tree into a matrix
format that contains meaningful similarity information both vertically
through the rows and horizontally through the columns. We began by
combining the OTU abundances and phylogenetic tree by assigning the
nodes corresponding to our OTUs their respective abundance value. This
is followed by populating the rest of the tree where a parent node’s
abundance is the sum of its children’s abundances. This is preformed
from the bottom upwards to the root node, which is populated with the
sum of the abundance from all organisms found in the community. This
procedure is described in Algorithm 1.

Data: A phylogenetic tree G = {V ,E} and taxa abundance vector x
Result: A populated phylogenetic tree G = {V ,E}
for l from the maximum tree depth to 0 do

for each node v in layer l do
if the label of v is an OTU in vector x then

assign node v the abundance of the OTU from vector x
end
if v has any children then

add its children’s abundances to the abundance of v
end

end
end

Algorithm 1: Tree Population

After being populated with abundance data, the tree now contains data
representing both abundance as well as phylogenetic similarity. The next
step is converting the tree into a matrix format in such a way as to preserve
both aspects. To do this, we start by placing the root in the top left corner
of the matrix. Then moving down the tree layer by layer, the matrix was
filled by taking the set of the child nodes in the order that they appear
in the tree from left to right and padding with zeroes to create a two-
dimensional matrix. The embedding creates a dense section of data that
captures both the hierarchy of the tree in its rows as well as similarity
between tree branches within its columns. The matrix is then used as the
input for the CNN. The algorithm for matrix embedding is described in
Algorithm 2.

Data: A populated phylogenetic tree G = {V ,E}
Result: A matrix M
Construct a zero matrix M with the number of rows equal to the
layers of the tree and the number of columns equal to the number
of the OTUs in the tree;

C ← Root Node of G;
for j from 0 to the number of layers of G do

i← 0;
Next Nodes← {};
for each node v in C do

M(i, j)← abundance of node v;
Push children of node v into queue Q;
i← i + 1;

end
C ← Q;

end
Return M

Algorithm 2: Tree Embedding

2.2 Architecture of Convolution Neural Network

Standard CNNs are composed of multiple convolutional layers, which are
usually followed by at least one fully connected layer. Each convolutional
layer is composed of multiple kernels, each of which transforms the input
of that layer into a feature map of velocities through a convolutional
operation. For a given kernel k with weights W(k) of size m x n and input
X, the velocity of point (i, j) is calculated as:

vel (k)(i, j) =

m∑
r=0

n∑
s=0

M(i + r, j + s) ∗W(k)(m − r, n − s) (1)

The feature maps composed of these velocities are then passed through
a non-linear activation function and subsampled through max or mean
pooling to give a matrix of activations.

The CNN architecture used in this study consists of three
convolutional layers, two fully connected layers, and a single output layer.
Each convolutional layer contained 64 filters and used the rectified linear
unit (ReLU) activation function, which sets all negative values to zero
while not changing the positive values. Max-pooling was then used for
subsampling. The fully connected layers each contained 1,024 neurons
and also used the ReLU activation function. The ReLU activation function
was chosen since it has been shown to speed up the training time while
still maintaining the non-linearity provided by other activation functions
[26].

There is a single output neuron for each class in the dataset. Since our
datasets all had binary response variables, the output layer contained two
neurons. We applied the softmax activation function to the output layer.
The softmax activation is a convex function that creates a probability
distribution over the number of possible outputs. Given a set of values,
{y1, y2,...,yJ}, the softmax of any value yi from the set is calculated as:
Softmax(yi) = eyi∑

j ey j . When considering our outputs in the network, the

output node with the highest softmax value is selected as the winner and
is returned as the predicted output for the given input.

We chose to use the log-likelihood cost function for our model. In
order to prevent any bias from class imbalance, we applied a penalty
weight that is determined by the total number of samples divided by the
number of samples in a given class. This would scale the cost in a way
such that samples of less frequent classes were scaled higher, balancing
out any bias from the more frequent classes. We then regularized our
model by adding an l2 penalization to the weights in order to prevent
large weight values. Therefore, our final model was trained using the cost
function:

C = −(
ntotal

nc
) ln(ac) + λ||w||2 (2)

Where given an input whose true label is c, ac is the output activation for
class c, ntotal is the total number of samples, nc is the number of samples
for class c, and λ is the regularization parameter to penalize the weights.

To help prevent overfitting, we further applied dropout to the fully
connected layers [27]. The dropout method works by randomly selecting
nodes within the hidden layers and temporarily removing them from the
training, preventing both feed-forward information from that node as well
as feedback information from back-propagation. This allows the network
to train subnetworks to reach the desired output, creating multiple paths
to predict the correct output. An overview of the CNN architecture used
can be seen in Fig. 3.

2.3 Extraction of the informative features from learned
CNN models

One of the biggest criticisms of deep learning models is the lack of
interpretability. In our work, we attempt to push past the black-box of
the CNN model and try to extract which features the model found to
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Fig. 3. Architecture of PopPhy-CNN. The convolutional neural network is composed of three convolutional layers. Each layer contains 64 kernels and uses max-pooling and ReLU
as the activation function. The output from the last convolutional layer is passed to two fully connected layers of 1024 neurons and then finally to a softmax output layer with 2
neurons.

be important for the prediction. A previous study has shown that using
feature maps captured by CNN models as features for other machine
learning models (i.e., RF and SVMs) yielded better results than using
the raw features [28]. This led us to believe that the activations found
within the feature maps could be used to evaluate the raw features. Even
though deeper layers yielded better features in the previous study, the
loss of resolution through subsampling and extra layers of nonlinear
transformations could impact the interpretability of the activations.
Therefore, we focused on the post analysis of the feature map activations
in the first convolutional layer prior to subsampling and the application of
the ReLU activation function in order to evaluate which positions in the
input contribute most to the highest activations in the learned CNNs.

To do this, we first calculated all of the feature maps for each sample
in the training set using the weights from the first convolutional layer.
Next we looked at the feature maps generated by a single kernel, k, across
all the samples for a specific class, c. For each of these feature maps, we
took note of the positions for a number of maximum values specified by
a given hyper-parameter, θ1, and kept track of the frequency that each
position was found in the top portion of velocities. We then selected the
top θ2 most frequent positions that were found in the maximum velocities.
For each velocity selected, we traced its location in the feature map (u, v)
back to the submatrix of the input M from which it was calculated. We
call this matrix R our reference window. More specifically, given a kernel
k with weights W(k) with dimensions r x s,

R = M(u : u + r − 1, v : v + s − 1) (3)

Within the reference window, every position (i, j) is equivalent to some
node v from the phylogenetic tree with an OTU label, f . We calculate the
importance of each feature f given the reference window R for sample S
as its proportion of the velocity.

I(k)
s ( f | R) =

W(k)(i, j) ∗ RS (i, j)∑
( |W(k) | � RS )

s.t. R(i, j) ↔ f (4)

Here k is our current kernel with weights W(k) which have been flipped to
account for the convolution function; the summation is over all positions
in RS . The absolute value of the weights in the denominator was used
in order to handle any case where the contribution of one large positive
component and one large negative component can give rise to an velocity
that is much smaller than its components. This could lead to sporadic
scaling of importance values which would be hard to interpret. By using
the absolute value of the weights, we created an upper boundary of 1 and
a lower boundary of -1, and the sum the absolute value of all importance
values within a given reference window will sum to 1.

Within a single reference window, some taxa may have be found
important in a small subset of the samples but may not be important
considering all of the samples. In order to capture only the taxa which
were consistently found important, we calculated the mean importance

value of a feature f across all samples in class c given a single reference
window R and kernel k.

I(k)
c ( f | R) =

∑
s∈c I(k)

s ( f | R)
nc

(5)

Since the reference windows of different velocities may overlap, it is
possible for a single feature to have multiple importance values using the
same kernel. A feature may also be found to be important by multiple
kernels. This can lead to multiple importance values for a single feature.
In order to handle this problem, we selected the importance of f to be the
maximum over all reference windows containing f and over all kernels,
k.

Ic( f ) = max
R,k
{ I(k)

c ( f | R) } (6)

Lastly, we assigned a score for a feature from the perspective of class c
as the difference of the feature importance using all the samples within
the class and the feature importance using all the samples not in the class.
Given only two classes, the scores will be the same values with opposite
sign. Despite that, we designed our method to be able to handle scenarios
where there are more than two classes.

S c( f ) = Ic( f ) − Ic̄( f ) (7)

From these scores we created a list of feature scores for each class,
allowing the analysis of feature importance from the perspective of
different classes that can then be ranked. If an OTU was not found in any
of the kernels, it is ranked at the bottom the feature list. The pseudo-code
for feature extraction is described in Algorithm 3.

3 Results

3.1 Datasets

In our experiment, we used three publicly available datasets contained
within the MetAML package [14]: cirrhosis, type 2 diabetes (T2D), and
obesity. They were selected due to the varying difficulty among them. The
cirrhosis dataset was taken from a study of 114 subjects with cirrhosis and
118 healthy patients [19]. The type 2 diabetes dataset was a combination
of two studies [20, 21] yielding a total of 223 patients with type 2 diabetes
and 223 healthy patients. The obesity dataset comes from a study of 292
individuals of which 89 individuals with a BMI lower than 25 kg/m2

were studied against 164 individuals with a BMI greater than 30 kg/m2

[22]. Each of these datasets was generated using whole metagenome
shotgun (WMS) sequencing. In the MetAML study [14], the OTUs for
each dataset were assigned by MetaPhlAn2, which selects OTUs based
on the read coverage of clade-specific markers and then estimates their
relative abundance [23].

The OTUs in each dataset were aggregated at the genus level using
MetAML’s built-in filter method. The genus level was chosen since
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Data: A set of inputs where each input M is an embedded tree G =

{V ,E} with class c, a trained CNN model with kernels k of
weights W(k), and two parameters θ1, θ2

Result: A list of taxa scores S c( f ) fore each class
Z← zero matrix with dimensions |c| x |k| x |V |;
for each sample s with class c and each kernel k do

Generate and vectorize the feature map;
for each index `1 of the top θ1 values in the feature map do

Increment Z(c, k, `1) by 1;
end

end
for each class c, kenrnel k, and sample s ∈ c with input M do

for each index `2 in the top θ2 values of Z(c, k,:) do
Find the submatrix R ∈ Ms used to calculate `;
for each position (i, j) in R where R(i, j) ≡ node v ∈ V do

f ← the taxa label of v;

I(k)
s ( f | R)← W(i, j)∗R(i, j)∑

|W |� R ;

end
I(k)
c ( f | R)← mean of I(k)

s ( f | R) for s ∈ c ;
end

end
S c( f )← maxR,k I(k)

c ( f | R) −maxR,k I(k)
c̄ ( f | R);

Return the set of scores S c( f ) for each class c ;
Algorithm 3: CNN Feature Extraction

PhyloT was not able recognize many OTUs at the species level. For any
OTU which was specified as "unclassified" at the genus level, we instead
created a feature containing the label for the family level name of that
OTU. To handle this OTU when populating the tree, we added this feature
to the sum of its children. A summary of the three datasets used in our
evaluation is shown in Table 1.

Table 1. Summary of datasets

# of Case # of Control # of Features
cirrhosis 114 118 184

T2D 223 227 214
obesity 164 89 181

3.2 Model Evaluation

Since CNNs are often believed to require very large training sets for
training, and the three datasets described above are relatively small,
we first tried to increase our sample size by re-sampling and adding
noise to each new sample. However, we noticed a slight decrease in
prediction performance when comparing models trained on the original
dataset versus models trained using up-sampling. Therefore, we evaluated
PopPhy-CNN without re-sampling.

PopPhy-CNN was benchmarked against RF, SVM, LASSO methods,
and a 1D-CNN model taking the abundance vectors as inputs. The
1D-CNN model serves as the baseline to evaluate if the addition of
phylogenetic information improves the prediction in CNN. Each model
underwent 10 times 10-fold cross validation, using the same partitions
across all methods, with an exception for SVM where the data were min-
max normalized before training and testing. We found that without this
normalization, the SVM models would not converge.

RF, SVM, and LASSO were trained using Python’s scikit package.
In RF training a maximum of 500 trees was set and all other parameters
were left as the default. The SVMs were trained using a grid search 5-fold

cross validation over the linear and Gaussian kernels with an exhaustive
search using the set 1, 10, 100, 1000 for error terms and the set 0.001,
0.0001 for γ values in Gaussian kernels. The LASSO model was trained
using iterative fitting of the error term α using the set of 50 numbers from
10−4 to 10−0.5 that were spaced evenly on a log-scale. The best model
parameters were again evaluated using 5-fold cross validation.

In order to train the CNN models under cross validation, the network
was trained for a number of epochs until the network was deemed to
be overfitting the training data. We observed that for each dataset, this
usually occurred between 300 and 400 epochs and was determined when
the training accuracy was greater than 0.98. However, in order to capture
the best model during the training process we calculated AUC, the area
under the receiver operating characteristic curve (ROC) after each epoch.
If the new AUC value was greater than the previous best, the maximum
was updated and the network was saved. This allowed us to retain the best
model during training before the model began to overfit the data. Each
network was trained using stochastic gradient descent with a dropout rate
of 0.5, λ of 0.1, and a learning rate of 0.001.

Our evaluation is summarized in Fig. 4. In all three datasets, the
2D-CNN, i.e., PopPhy-CNN models outperform the other methods. The
1D-CNN model is as competitive as RF, which performs better than SVM
and LASSO. Our results shows that not only is the PopPhy-CNN able to
outperform the other state-of-the-art methods, despite having a relatively
small datasets, but also that the embedding into a matrix to spatially
capture the phylogenetic information also improved the performance.
PopPhy-CNN achieves a mean AUC value of 0.940 in the cirrhosis
dataset, 0.753 in the T2D dataset, and 0.676 in the obesity dataset.

When comparing the 2D-CNN and the 1D-CNN, we observed that
there was more improvement in the more difficult datasets. The lowest
improvement of 0.009 in AUC values was observed in the cirrhosis
dataset, while a larger improvement of 0.017 in the more challenging T2D
dataset. In the most difficult dataset, obesity, we saw an improvement of
0.028. Furthermore, we observe the CNN models appear to be more stable
than the previous state-of-the-art methods, having a smaller standard
deviation of AUC values as well as fewer outliers. In summary, PopPhy-
CNN outperforms the other machine models without requiring a large
amount of training data.

3.3 Extracted Features

Feature rankings for each dataset were generated following the procedure
outlined in the Methods section. In the results shown, we did not filter
only the top activations, but rather we used all of the activations in
the feature maps. We did this because we believe that θ1 and θ2 are
exploratory hyper-parameters and need to be tuned for each dataset. In
order to evaluate the feature extraction fairly, we felt it was best to forgo
this hyper-parameter in our comparisons. Since the CNN was trained
using 10 times 10-fold cross validation, each feature had 100 sets of
rankings. To evaluate the features, we ordered them by the median rank
across the 100 models where a lower value represents a higher rank. The
top ten ranked features from the cirrhosis dataset without filtering can be
found in Fig. 5. Fig. S1 shows the same results after filtering the top 10%
of maximum activations and frequencies.

The rankings of the features in the diseased class separated more
cleanly then the rankings of the healthy features (Fig. 5 (A)). We found
that Veillonella, Streptococcus, Haemophilus, and Lactobacillus were
found important in the cirrhosis subjects. In healthy individuals, Alistipes,
Rumminococcus, Roseburia, and Eubacterium were found to be the most
important feature, although the score was not as significant as the those
found in the Cirrhosis subjects.

We compared the features found based on our procedure to those
reported in the original study [19] and observed that PopPhy-CNN found
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Fig. 4. Boxplots comparing SVM, RF, LASSO, 1D-CNN, and PopPhy-CNN across the three datasets: cirrhosis, type 2 diabetes, and obesity. The boxplots were generated using
the 100 AUC values for each method after training 10 times 10-fold cross validation. The numbers below each boxplot are the mean cross validated AUC values.

all significant OTUs found in the cirrhosis patients as well as additional
ones that have not been reported. The model also captured most of the
features found in the healthy patients. The original study showed that
the difference in the OTUs found in the diseased patients were more
significant, which supports our finding that the features identified in the

Fig. 5. Feature rankings for cirrhosis dataset without filtering for (A) the top ten features
found in cirrhosis patients and (B) the top ten features found in healthy patients. Green
points represent the rank in the healthy patients and red points represent the ranks in
the patients with cirrhosis. Each point represents that feature’s rank based on Ic( f ) in
a given cross-validated model. Features are ranked along the x-axis by the median of
their importance across the 100 trained models.

disease patients in our study are more discriminatory than the features
found in the healthy patients.

The features for the T2D dataset can be found in Fig. S3. We analyzed
the features both by filtering the top 10% activations and locations as
well as using all the features. Despite the difference in filtering, the
top features between the two analyses were similar. The PopPhy-CNN
model identified Lactobacillus, Coprobacillus, and Megasphaera as the
strongest discriminitive features found in patients with type 2 diabetes.
It also identified Haemophilus, Streptococcus, Faecalibacterium, and
Roseburia as predictive of the healthy patients in this dataset. The
rankings of the extracted features in the Obesity dataset (Fig. S4) have
much larger differences between when the maximums were filtered and
when all velocities of the feature map were used. We did notice that
both analyses found Ruminococcus, Prevotella, and Escherichia in the
healthy patients and only Verrucomicrobia was common between the two
analyses when looking at the features in the lean patients.

3.4 Visualization of Extracted Features

We used Cytoscape to visualize the phylogenetic tree and annotate the
nodes and edges based on the calculated importance scores, S c( f ). For
this, for each feature we subtracted the score from the healthy samples
from the score from the diseased samples, creating a scale in which
positive scores constitute important features found in diseased patients,
negative scores constitute important features found in healthy patients,
with zero representing unimportant features. The feature extraction not
only capture features at the OTU level, but the ancestral nodes as well,
which can be observed from the visualized the phylogenetic tree. The
phylogenetic tree created from the cirrhosis dataset can be seen in Fig. 6.
A color gradient was applied to the nodes and edges. For nodes in the
tree, healthy features are colored green and disease features are colored
red, with yellow constituting unimportant features. The edges are colored
in a similar gradient based on the average score of the connected nodes.

We then used Cytoscape to visualize the phylogenetic tree and
annotate the nodes and edges based on the calculated importance scores.
For this, for each feature we subtracted the score from the healthy samples
from the score from the diseased samples, creating a scale in which
positive scores constitute important features found in diseased patients,
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Disease Healthy

Node OTU Score Node OTU Score

1 Fusobacterium 0.158 1 Escherichia -0.156
2 Enterobacterales 0.193 2 Bilophila -0.380
3 Klebsellia 0.114 3 Parabacteroides -0.134
4 Haemophilus 0.426 4 Paraprevotella -0.233
5 Akkermansia 0.103 5 Alistipes -0.302
6 Prevotella 0.250 6 Adlercreutzia -0.126
7 Eggerthella 0.153 7 Collinsella -0.155
8 Actinomyces 0.105 8 Megamonas -0.270
9 Bifidobacterium 0.445 9 Roseburia -0.324

10 Veillonella 0.758 10 Coprococcus -0.277
11 Megasphaera 0.132 11 Eubacterium -0.171
12 Lactobacillus 0.270 12 Subdoligranulum -0.319
13 Streptococcaceae 0.502 13 Ruminococcus -0.735
14 Blautia 0.356 14 Oscillibacter -0.189
15 Clostridium 0.475 15 Erysipelotrichaceae -0.197

Fig. 6. Visualization of the cirrhosis features found by PopPhy-CNN. (A) An annotated
phylogenetic tree from the cirrhosis dataset showing sub-trees found important in the
disease patients (red) as well as the healthy patients(green). (B) The table highlights
features at the bottom of a subtree and whose score’s magnitude is greater than 0.1.

negative scores constitute important features found in healthy patients,
and zero represents unimportant features. The feature extraction was
not only able to capture these features, but the ancestral nodes as well,
which can be observed from the visualized the phylogenetic tree. The
phylogenetic tree created from the Cirrhosis dataset can be seen in Fig. 6.
A color gradient was applied to the nodes and edges. For nodes in the
tree, healthy features are colored green and disease features are colored
red, with yellow constituting unimportant features. The edges are colored
in a similar gradient based on the average score of the connected nodes. A
gradient was also applied to the edge thickness in order to better visualize
the difference in scores. This visualization can facilitate the interpretation
of extracted features in the context of the phynogenetic tree.

3.5 Evaluation of Extracted Features for Prediction

We compared the extracted top 20 features found in PopPhy-CNN, RF,
and LASSO for each dataset. In PopPhy-CNN’s extracted features, about
half of the features were not from the original OTUs, indicating the
ability of PopPhy-CNN in finding important hierarchical combinations.
However, for comparison with the other methods, the overlap of the top
20 OTUs found in the original input vectors was plotted in Fig. 7(A).
We observed that the overlap was not large and it becomes smaller in the
harder datasets.

Next we evaluated whether the sets of features could be used in
building better prediction models in SVM, which is the only model that
does not have any feature selection capacity in our evaluation. To do this,
we trained SVM models using the top features ranging from 1 to 50. For
PopPhy-CNN, we again only use OTUs found in the original OTU vector.
We also combined the features from both classes into a single ranked list
for benchmarking. For a baseline comparisons, we used a ranking list
based on signal-to-noise ratio as well as the average feature rankings from
the RF models. The SVM models were trained using 10 times 10 fold
cross-validation using the same partitions and trained in the same way
as described in the model evaluation. The results for all the three feature
ranking sets are summarized in Fig. 7(B). Again, we observe that cirrhosis
is best predicted by the OTUs found important in the cirrhosis patients, as
the set of important OTUs in cirrhosis patients performs the best. For the
T2D dataset, all models performed about the same, which may imply that
there may have been only a few discriminatory features that were easy to
capture, but these features could only predict a portion of the dataset well.
In the obesity dataset, we observe a distinct pattern. Neither the healthy
nor the disease features perform well on their own. However, when they
were combined, we see a significant improvement in AUC. The resulting
SVM models even outperformed the original RF model at a few points.

In a separate study in which we only selected the top 10% of
maximum activations and the top 10% most frequent activation locations,
we did not notice a difference in the performance of the cirrhosis features
or the type 2 diabetes features. However, the obesity features were not
able to improve SVM at all and both sets as well as the combination
set of features oscillated around 0.5. When we removed the filtering, we
noticed a change in the features selected in the obesity dataset as well as
the improved performance.

Taken together, the evaluation demonstrates that our feature extraction
procedure can identify more informative features than traditional feature
selection methods. Using these features in SVM models led to improved
performance with the best improvement observed in the hardest dataset.

3.6 Computation time

The PopPhy-CNN was implemented using the Theano library and was run
using an NVIDIA Titan XP GPU. Table 2 shows the average time for one
network to train. We trained each network 400 epochs using stochastic
gradient descent (batch size of 1).

Table 2. Training Time

Training Time
Cirrhosis 17 minutes 36 seconds

T2D 33 minutes 54 seconds
Obesity 18 minutes 40 seconds
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Fig. 7. Benchmarking of feature selection using features extracted from PopPhy-CNN. (A) Venn diagrams of the top twenty features selected from the combined set of features
from PopPhy-CNN, RF, and LASSO. (B) Features extracted from PopPhy-CNN are benchmarked against features found by RF (purple) and by using signal-to-noise ratio (yellow).
Three different sets of features from the PopPhy-CNN are represented: disease (red), healthy (green), combined set (teal). The selected features are used to train an SVM model
using 10 times 10-fold cross validation. The orange horizontal dashed line is the average AUC computed for SVM using the whole feature set and the dashed purple line is the
average AUC for RF using the whole feature set.

4 Discussion
We have developed a novel architecture for CNN, PopPhy-CNN, for
the prediction of the host phenotype from a metagenomic sample. The
key contribution is leveraging biological knowledge in microbial taxa
relative abundance profiles through a phylogenetic tree by our novel
propagation and embedding procedure. The 2D matrix input obtained
from this procedure enables CNNs to exploit the topological structure
of the phylogenetic tree for developing more accurate predictive models.
Using three metagenomic datasets, we showed that PopPhy-CNN models
are more accurate than the model with the conventional vector input
(1D-CNN), which does not take advantage of the biological knowledge
in the phylogentic tree. In addition, we also shown that PopPhy-CNN
outperformed RF, SVMs and LASSO models, establishing the evidence
that CNNs can deliver more robust performance without requiring
excessively large training sets.

We have also demonstrated the feasibility of extracting informative
features from the learned CNN models and showed that the extracted
features can improve the performance of SVMs compared with the
models built on the entire feature sets. In addition, SVMs with the
selected feature sets also performed better than SVMs trained on features
ranked based on the criterion of the signal-to-noise ratio and features
taken from RF models. This is especially intriguing, because the results
provide the evidence that the activation maps on the first layer of the
CNNs maintain spatial relationship between the microbial taxa on the

phylogenetic tree. This implies that PopPhy-CNN benefits from learning
informative features on the populated phylogentic tree embedded in the
matrix format.

The use of phylogentic tree to imprint relevant biological knowledge
in metagenomic data has been seen in several different machine learning
models. For example, a class of phylogenetic-based feature weighting
algorithms was proposed to group the relevant taxa into clades and
the highly ranked groups in conjunction with RF had an improved
classification performance [30]. The phylogentic information was also
utilized in sparse linear discriminant models with the simultaneous use
of intermediate nodes and leaves on a phylogentic tree [31].

There are a few applications using DNN for host phenotype
prediction. The first large scale evaluation is the application of multi-
layer and recursive neural networks (RNNs) to determine body parts
where the microbiome samples were taken using the input form of OTU
vectors [11]. It has shown different performance of DNN models; a
simple layer neural network and RF performed better than DNN models,
and that RNNs could reveal a hierarchical structure among the samples.
However, CNNs were not used in their study, and no explicit biological
knowledge represented by the OTUs were explored in other DNNs
for model learning. In a recent preprint, Fioravanti et al. described a
different CNN architecture that explores the distance between nodes on
a phynogentic tree by the patristic distance (the sum of the lengths of all
branches connecting two OTUs on the tree) [29]. Their approach is to
embed the phylogenetic tree in an Euclidean space. The computational
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analysis reported promising results on a synthetic data and on a gut
metagenomics data from 222 inflammatory bowel disease patients and
38 healthy subjects, compared to linear SVMs, RF and a baseline fully
connected multi-layer perceptron neural network.

The development of techniques to interpret CNNs models and using
CNNs for extracting deep features have been an active research topic.
For example, one study shows that a pre-trained CNN can be used
for extracting local features based on one dataset, and retrained for
classification for distinct datasets [32]. In another study, a novel CNN
architecture is proposed to learn low dimensional CNNs for image
retrieval in high-resolution remote sensing [33]. In addition, CNNs are
applied for EEG decoding and for visualizing the informative EEG
features [34]. In a recent paper, Shrikumar and colleagues proposed
an algorithm that promotes the learning of important features through
propagating activation differences [35]. It presents a successful example
in identifying regulatory DNA motifs.

There are several directions for further study. The phylogenetic
tree is the one of the core components in the PopPhy-CNN learning
framework. It is likely that different trees constructed from different
methods may affect the predictive performance and may also identify
different microbial features. Furthermore, the current embedding scheme
is designed to prevent sparsity in the matrix while preserving spatial
phylogenetic relationships. This can create areas where the descendant
nodes are not directly under their ancestors, allowing for unique patterns
to be picked up by the CNN. However, one shortcoming arises when
descendant nodes are shifted far enough away from the ancestral
nodes, preventing CNN kernels from capturing them together. Therefore,
different ways of embedding the populated trees into the matrix format
may also affect the model performance.

Although the evaluation of our CNNs was conducted using the OTUs
profiles obtained from the WMS sequencing platform, our method can be
readily applied to the metagenomic data represented at any taxonomic
levels if the number of taxa and the sample size are in the similar
magnitude as the ones used in this work. However, if the number of
microbial taxa substantially outnumbers that of the learning samples,
more effective regularization schemes or algorithms that promote the
learning of important features in CNNs are likely necessary.

5 Conclusion
PopPhy-CNN can be readily used for developing a predictive model from
a metagenomic dataset of moderate size. It also facilitates the extraction
and visualization of a ranked microbial taxonomic set for biological
interpretation of the learned predictive model.
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