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Abstract

Whole genome sequencing studies applied to large populations or biobanks with
extensive phenotyping raise new analytic challenges. The need to consider many
variants at a locus or group of genes simultaneously and the potential to study many
correlated phenotypes with shared genetic architecture provide opportunities for
discovery and inference that are not addressed by the traditional one variant-one
phenotype association study. Here we introduce a model comparison approach we refer
to as MRP for rare variant association studies that considers correlation, scale, and
location of genetic effects across a group of genetic variants, phenotypes, and studies.
We consider the use of summary statistic data to apply univariate and multivariate
gene-based meta-analysis models for identifying rare variant associations with an
emphasis on protective protein-truncating variants that can expedite drug discovery.
Through simulation studies, we demonstrate that the proposed model comparison
approach can improve ability to detect rare variant association signals. We also apply
the model to two groups of phenotypes from the UK Biobank: 1) asthma diagnosis
(43,626 cases), eosinophil counts, forced expiratory volume, and forced vital capacity;
and 2) glaucoma diagnosis (5,863 cases), intra-ocular pressure, and corneal resistance
factor. We are able to recover known associations such as the protective association
between rs146597587 in IL33 and asthma (log10 (Bayes Factor) = 29.4). We also find
evidence for novel protective associations between rare variants in ANGPTL7 and
glaucoma (log10 (Bayes Factor) = 13.1). Overall, we show that the MRP model
comparison approach is able to retain and improve upon useful features from
widely-used meta-analysis approaches for rare variant association analyses and prioritize
protective modifiers of disease risk.
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Author summary

Due to the continually decreasing cost of acquiring genetic data, we are now beginning
to see large collections of individuals for which we have both genetic information and
trait data such as disease status, physical measurements, biomarker levels, and more.
These datasets offer new opportunities to find relationships between inherited genetic
variation and disease. While it is known that there are relationships between different
traits, typical genetic analyses only focus on analyzing one genetic variant and one
phenotype at a time. Additionally, it is difficult to identify rare genetic variants that
are associated with disease due to their scarcity, even among large sample sizes. In this
work, we present a method for identifying associations between genetic variation and
disease that considers multiple rare variants and phenotypes at the same time. By
sharing information across rare variant and phenotypes, we improve our ability to
identify rare variants associated with disease compared to considering a single rare
variant and a single phenotype. The method can be used to identify candidate disease
genes as well as genes that might represent attractive drug targets.

Introduction 1

Sequencing technologies are quickly transforming human genetic studies of complex 2

traits: it is increasingly possible to obtain whole genome sequence data on thousands of 3

samples at manageable costs. As a result, the genome-wide study of rare variants 4

(minor allele frequency [MAF] < 1%) and their contribution to disease susceptibility 5

and phenotype variation is now feasible [1–4]. 6

In genetic studies of diseases or continuous phenotypes, rare variants are hard to 7

assess individually due to the limited number of copies of each rare variant. Hence, to 8

boost the ability to detect a signal, evidence is usually ‘aggregated’ across variants. 9

When designing an ‘aggregation’ method, there are three questions that are usually 10

considered. First, across which biological units should variants be combined; second, 11

which variants mapping within those units should be included [5]; and third, which 12

statistical model should be used [6]? Given the widespread observations of shared 13

genetic risk factors across distinct diseases, there is also considerable motivation to use 14

gene discovery approaches that leverage the information from multiple phenotypes 15

jointly. In other words, rather than only aggregating variants that may have effects on a 16

single phenotype, we can also bring together sets of phenotypes for which a single 17

variant or sets of variants might have effects. 18

In this paper, we present a Bayesian multiple rare variants and phenotypes (MRP) 19

model comparison approach for identifying rare variant associations as an alternative to 20

current widely-used statistical tests. The MRP framework exploits correlation, scale, or 21

location (direction) of genetic effects in a broad range of rare variant association study 22

designs including: case-control; multiple diseases and shared controls; single continuous 23

phenotype; multiple continuous phenotypes; or a mixture of case-control and multiple 24

continuous phenotypes (Fig 1). MRP makes use of Bayesian model comparison, 25

whereby we compute a Bayes Factor (BF) defined as the ratio of the marginal 26

likelihoods of the observed data under two models: 1) a pre-specified null where all 27

genetic effects are zero; and 2) an alternative model where factors like correlation, scale, 28

or location of genetic effects are considered. The BF is an alternative to p-values from 29

traditional hypothesis testing. For MRP, the BF represents the statistical evidence for a 30

non-zero effect for a particular group of rare variants on the phenotype(s) of interest. 31

While many large genetic consortia collect both raw genotype and phenotype data, in 32

practice, sharing of individual genotype and phenotype data across groups is difficult to 33

achieve. To address this, MRP can take summary statistics, such as estimates of effect 34
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size and the corresponding standard error from typical single variant-single phenotype 35

linear or logistic regressions, as input data. Furthermore, we use insights from Liu et 36

al. [7] and Cichonska et al. [8] who suggest the use of additional summary statistics, like 37

covariance estimates across variants and studies, respectively, that would enable lossless 38

ability to detect gene-based association signals using summary statistics alone. 39

Aggregation techniques rely on variant annotations to assign variants to groups for 40

analysis. MRP allows for the inclusion of priors on the spread of effect sizes that can be 41

adjusted depending on what type of variants are included in the analysis. For instance, 42

protein truncating variants (PTVs) [9, 10] are an important class of variants that are 43

more likely to be functional because they often disrupt the normal function of a gene. 44

This biological knowledge can be reflected in the choices of priors for PTVs in MRP. 45

Since PTVs typically abolish or severely alter gene function, there is particular interest 46

in identifying protective PTV modifiers of human disease risk that may serve as targets 47

for therapeutics [11–13]. We therefore demonstrate how the MRP model comparison 48

approach can improve discovery of such protective signals by modeling the location 49

(direction) of genetic effects which prioritizes variants or genes that are consistent with 50

protecting against disease. 51

To evaluate the performance of MRP and to study its behavior we use simulations 52

and compare it to other commonly used approaches. Some simple alternatives to MRP 53

include univariate approaches for rare variant association studies including the sequence 54

kernel association test (SKAT) [14], and the burden test, which we show are special 55

cases of the MRP model comparison when we assign the prior correlation of genetic 56

effects across different variants to be zero or one. 57

We applied MRP to summary statistics for two groups of related phenotypes from 58

the UK Biobank. First, we applied MRP to asthma (HC382: the corresponding 59

phenotype label in Global Biobank Engine [https://biobankengine.stanford.edu]), 60

eosinophil count (INI30150), forced expiratory volume in 1-second (FEV1, INI3063), 61

and forced vital capacity (FVC, INI3062) and recovered the reported association 62

between a rare PTV in IL33 and asthma [15,16]. We also applied MRP to glaucoma 63

(HC276), intra-ocular pressure (INI5263), and corneal resistance factor (INI5265) and 64

find evidence that rare coding variants in ANGPTL7 protect against glaucoma. These 65

analyses show that MRP recovers results from typical single variant-single phenotype 66

analyses while identifying new rare variant associations that include protective modifiers 67

of disease risk. 68

Materials and Methods 69

Description of MRP 70

In this section, we provide an overview of the MRP model comparison approach. Refer 71

to S1 Appendix for a detailed description. MRP models GWAS summary statistics as 72

being distributed according to one of two models. The null model is that the regression 73

effect sizes obtained across all studies for a group of variants and a group of phenotypes 74

is zero. The alternative model is that summary statistics are distributed according to a 75

multivariate normal distribution with mean zero and covariance matrix described below. 76

MRP compares the evidence for the null and alternative model using a Bayes Factor 77

(BF) that quantifies the amount of evidence for each model as the ratio of the marginal 78

likelihoods of the observed data under two models. 79

To define the alternative model, we must specify the prior correlation structure, 80

scale, and location (direction) of the effect sizes. Let N be the number of individuals 81

and K the number of phenotype measurements on each individual. Let M be the 82

number of variants in a testing unit G, where G can be, for example, a gene, pathway, 83
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or a network. Let S be the number of studies where data is obtained from - this data 84

may be in the form of raw genotypes and phenotypes or summary statistics including 85

linkage-disequilibrium, effect sizes (or odds ratio), and standard error of the effect size. 86

When considering multiple studies (S > 1), multiple rare variants (M > 1), and 87

multiple phenotypes (K > 1), we define the prior correlation structure of the effect sizes 88

as an SMK × SMK matrix U. In practice, we define U as a Kronecker product, an 89

operation of matrices of arbitrary size, of three sub-matrices: 90

• an S×S matrix Rstudy containing the correlations of genetic effects among studies 91

where different values can be used to compare different models of association, such 92

as for identifying heterogeneity of effect sizes between populations [17]; 93

• an M ×M matrix Rvar containing the correlations of genetic effects among 94

genetic variants, which may reflect the assumption that all the PTVs in a gene 95

may have the same biological consequence [9, 10, 18] or prior information obtained 96

through integration of additional data sources, such as functional assay 97

data [5, 19], otherwise zero correlation of genetic effects may be assumed, which is 98

used in dispersion tests like C-alpha [20,21] and SKAT [14]; and 99

• a K ×K matrix Rphen containing the correlations of genetic effects among 100

phenotypes, which may be obtained from common variant data [22–24]. 101

The variance-covariance matrix of the effect sizes may be obtained from readily 102

available summary statistic data such as in-study LD matrices, effect size estimates (or 103

log odds ratios), and the standard errors of the effect size estimates (S1 Appendix). 104

MRP allows users to specify priors that reflect knowledge of the variants and 105

phenotypes under study. For instance, we can define an independent effects model 106

where each variant in the model may have different effect sizes. In this case, Rvar is the 107

identity matrix which reflects the assumption that the effect sizes of the variants are not 108

correlated. We can also define a similar effects model by setting every value of Rvar to 109

∼ 1. This model assumes that all variants under consideration have similar effect sizes 110

(with possibly differences in scale). This model may be appropriate for PTVs where 111

each variant completely disrupts the function of the gene, leading to a gene knockout. 112

The prior on the scale of effect sizes can also be used to denote which variants may have 113

larger effect sizes. For instance, emerging empirical genetic studies have shown that 114

within a gene, PTVs may have stronger effects than missense variants [25]. This can be 115

reflected by adjusting the prior spread of effect sizes (σ) for PTVs (S1 Appendix). 116

Similarly, we can utilize a prior on the location (direction) of effects to specify 117

alternative models where we seek to identify variants with protective effects against 118

disease. Thus far we have assumed that the prior mean, or location, of genetic effects is 119

zero which makes it feasible to analyze a large number of phenotypes without 120

enumerating the prior mean across all phenotypes. To proactively identify genetic 121

variants that have effects that are consistent with a protective profile for a disease, we 122

can include a non-zero vector as a prior mean of genetic effect (S1 Appendix). We can 123

exploit information from Mendelian randomization studies of common variants, such as 124

recent findings where rare truncating loss-of-function variants in PCSK9 were found to 125

decrease LDL and triglyceride levels and decrease CAD risk [11,26–28] to identify 126

situations where such a prior is warranted. 127

Applying MRP to variants from a testing unit G yields a BF for that testing unit 128

that describes the evidence that rare variants in that testing unit have a nonzero effect 129

on the traits used in the model. For instance, consider genes as testing units. By 130

running MRP, we obtain a BF for each gene that represents the evidence that rare 131

variants in that gene affect the traits of interest. These BF can be used to identify 132

specific genes that may be linked to disease. Although we see advantages in adopting a 133
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Bayesian perspective for MRP, our approach could be used in a frequentist context by 134

calculating a BF and using it as a test statistic to compute p-values (S1 Appendix, 135

Fig 2). 136

HDF5 Tables 137

Although summary statistics are quicker to read and process than raw data, the number 138

of studies meta-analyzed in this work is expected to be sufficiently large to require 139

optimizations in data representation and processing (S1 Fig). Our solution was the use 140

of the HDF5 (Hierarchical Data Format 5) data representation to enable rapid 141

processing of effect size, uncertainty, and cross-trait estimate data. HDF5 is a fast and 142

lightweight file format designed for scientific data. It has bindings for R, Python, 143

C/C++, Java, and nearly every other population programming language. Reading data 144

from a table within a HDF5 file can be an order of magnitude faster than reading text 145

files from a Unix file, and it makes it easier to organize data within an internal structure. 146

UK Biobank Data 147

GWAS Summary Statistics 148

We performed genome-wide association analysis using PLINK v2.00a(17 July 2017) as 149

previously described [15]. For asthma, we used the Firth fallback in PLINK, a hybrid 150

algorithm which normally uses the logistic regression code described in [29], but 151

switches to a port of logistf() 152

(https://cran.r-project.org/web/packages/logistf/index.html) in two cases: 153

(1) one of the cells in the 2x2 allele count by case/control status contingency table is 154

empty (2) logistic regression was attempted since all the contingency table cells were 155

nonzero, but it failed to converge within the usual number of steps. We used the 156

following covariates in our analysis: age, sex, array type, and the first four principal 157

components, where array type is a binary variable that represents whether an individual 158

was genotyped with UK Biobank Axiom Array or UK BiLEVE Axiom Array. For 159

variants that were specific to one array, we did not use array as a covariate. 160

Asthma and glaucoma cases were defined using both Hospital Episode Statistics and 161

verbal questionnaire responses. We used the provided values from the UK Biobank for 162

eosinophil counts, forced vital capacity (FVC), forced expiratory volume in 1-second 163

(FEV1), intra-ocular pressure, and corneal resistance factor. The phenotype codes used 164

throughout (asthma=HC382, eosinophil count=INI30150, FEV1=INI3063, 165

FVC=INI3062, glaucoma=HC276, intra-ocular pressure=INI5263, and corneal 166

resistance factor=INI5265) correspond to the phenotype codes used on the Global 167

Biobank Engine [https://biobankengine.stanford.edu]. 168

Genetic Correlations 169

We calculated the genetic correlation between the two groups of traits (asthma, 170

eosinophil counts, FVC, FEV1 and glaucoma, intra-ocular pressure, corneal resistance 171

factor) using the MultiVariate Polygenic Mixture Model (MVPMM) [30]. Briefly, 172

MVPMM estimates genetic correlation given GWAS summary statistics (effect size and 173

standard error of effect size estimate) by modeling GWAS summary statistics as 174

generated from one of two mixture components. Summary statistics from variants in the 175

null component are modeled as being drawn from a multivariate normal distribution 176

with zero mean and covariance matrix that captures correlation in the summary 177

statistics due to the use of shared subjects or other sources of correlation. Summary 178

statistics from variants in the non-null component are modeled as being drawn from a 179
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multivariate normal distribution with zero mean, but the covariance matrix for the 180

non-null component combines the covariance matrix from the null component with 181

another covariance matrix that captures the genetic correlation between the phenotypes 182

being considered. We observed similar genetic correlations using LD score regression (S2 183

Fig) [24]. 184

UK Biobank Asthma and Glaucoma Applications 185

For each group of traits (asthma, eosinophil counts, FVC, FEV1 and glaucoma, 186

intra-ocular pressure, corneal resistance factor), we applied MRP individually to each 187

phenotype as well as performing a joint analysis using all traits. We also applied a 188

model that prioritizes protective variants where we used non-zero priors for the variant 189

effect size of −0.5 for PTVs and −0.2 for missense alleles. For each analysis, we applied 190

MRP assuming an independent effects model and a similar effects model. We applied 191

Bayesian model averaging to the results of the independent and similar effects models 192

by summing the log10 BF for each gene from each model and dividing by two. The 193

Bayesian model averaging results are reported in the main text while the results for 194

each individual model are included in the Supporting Information. 195

For the Manhattan plots and tables, we removed any genes with non-unique gene 196

symbols. In cases where genes overlapped such that they shared rare variants and 197

therefore the same BF, we removed one gene. ANGPTL7 protein expression was 198

assessed using the HIPED protein expression database accessed through genecards.org 199

on 2017/1/29 [31]. We identified the protein 1JC9 A as homologous to the ANGPTL7 200

protein using the “3D structure mapping” link from dbSNP 201

(https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=28991009). We 202

retrieved the 3D structure image from the iCn3D Structure Viewer 203

(https://www.ncbi.nlm.nih.gov/Structure/icn3d/icn3d.html). 204

Variant Filtering 205

We used the variant filter table.tsv file available at 206

https://github.com/rivas-lab/public-resources (6f9f726) to filter variants on 207

the UK Biobank array for use with MRP. We first chose variants with minor allele 208

frequency less than 1%. We then filtered out all variants with all filters less than 209

one. This removes variants with missingness greater than 1% (calculated on an 210

array-specific basis for array-specific variants) or Hardy-Weinberg equilibrium p < 10−7. 211

This also removes some PTVs for which manual inspection revealed irregular cluster 212

plots [15]. We LD pruned the variants by only using variants with ld equal to one. We 213

included missense variants and PTVs indicated by the following annotations: 214

missense variant, stop gained, frameshift variant, splice acceptor variant, 215

splice donor variant, splice region variant, start lost, stop lost. We 216

removed variants whose regression effect size had standard error greater than 0.15. 217

Results 218

Simulation studies 219

We first verified the analytical derivations and examined the properties of the approach 220

under a simulation framework. 221
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Comparison to frequentist gene tests 222

For the analysis of multiple rare variants and a single phenotype we compared it to the 223

burden test and the SKAT test, commonly used statistical tests in rare variant 224

association studies of a single phenotype. We observe concordance between the 225

frequentist methods and the Bayesian models. To compare the Bayesian models we 226

compute p-values by using the BF as the test statistic and approximating it using 227

distribution properties of quadratic forms (S1 Appendix). As expected, an independent 228

effects model has high correlation with the gene-based test SKAT (r2 = 0.99), whereas 229

the similar effects model has high correlation with the burden test (r2 = 0.93, Fig 2A). 230

Summary statistic data 231

To study the behavior of MRP using summary statistics we simulate two scenarios: first, 232

the scenario where analysts have access to all the raw genotype and phenotype data; 233

and second, the scenario where analysts only have access to summary statistics data [7]. 234

We conducted 1000 simulation experiments where we let K (the number of phenotypes) 235

= 3, M (the number of variants) = 10, S (the number of studies) = 2, N0 (number of 236

individuals in study with access to all the data) = 10000, N1 (meta-analysis study 1) 237

= 5000, N2 (meta-analysis study 2) = 5000. We find that, under the scenario where 238

similar effects are assumed across studies, the Bayes Factors obtained using summary 239

statistics alone are strongly correlated (r2 = 1) to Bayes Factors obtained by the full 240

genotype and phenotype data (Fig 2B). 241

From single variant and single phenotype analysis to multiple variants and 242

multiple phenotypes 243

To validate the flexibility of the approach we conducted a simulation experiment where 244

we assumed an allelic architecture consistent to that discovered for APOC3 in relation 245

to coronary artery disease (CAD), triglycerides (TG), low-density lipoprotein cholesterol 246

(LDL-C), and high-density lipoprotein cholesterol (HDL-C) [28,32–34]. We simulated 247

three studies and applied the model comparison unit jointly to summary statistic data 248

obtained for each study (Supplementary Note). Overall, we observed that considering 249

the joint effects across multiple studies in a group of variants and phenotypes may 250

improve ability to detect gene-based signals (Fig 2C), and that considering prior mean 251

of genetic effects should aid in efforts to identify protective modifiers of disease risk 252

(Fig 2D). 253

Applications 254

We applied the MRP model comparison approach to summary statistic data generated 255

from single variant logistic regression and linear regression analysis for coding variants 256

on the UK Biobank array (Methods). We applied MRP separately to asthma and three 257

related traits as well as glaucoma and two related traits. 258

Asthma, eosinophil counts, forced expiratory volume, and forced vital 259

capacity 260

We first applied MRP to GWAS summary statistics for asthma, eosinophil count, forced 261

expiratory volume in 1-second (FEV1), and forced vital capacity (FVC) phenotypes. 262

Recent work has identified associations between the PTV rs146597587 in IL33 and 263

asthma and eosinophil counts [15,16]. FEV1 and FVC are measures of pulmonary 264

function that are used to diagnosis and classify pulmonary disease [35]. To demonstrate 265

the advantage of considering the phenotypes jointly, we applied MRP to rare missense 266
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variants and PTVs (MAF < 1%) for each phenotype separately (Fig 3A-D) as well as to 267

all phenotypes jointly (Fig 3E,F) and obtained log10 BF for each gene. We applied both 268

independent and similar effects models and used Bayesian model averaging to compute 269

a single BF per gene [36]. In agreement with previous studies, we observed evidence 270

that rare missense variants and/or PTVs in IL33 affect eosinophil counts and offer 271

protection from asthma from the single-phenotype analyses, though the evidence of 272

association was strongest for the joint analysis (log10 BF = 29.3, S1 Table) [15,16]. We 273

performed an analysis focused on identifying protective variants which also identified 274

the IL33 association (log10 BF = 29.4, Fig 3F). The results were similar using only 275

either the independent effects (S3 Fig) or similar effects models (S4 Fig). We inspected 276

the effect sizes from the marginal GWAS regressions for the rare variants included in 277

the analysis and found that the association identified by MRP is likely driven by the 278

PTV rs146597587 (Fig 3G). 279

We also found moderate evidence for association between rare coding variants in 280

CCR3 and asthma. The log10 BFs for CCR3 was 3.3 in the joint model compared to 281

only -0.5 in the asthma-only analysis (Fig 3, S1 Table). CCR3 is a chemokine receptor 282

that is highly expressed on eosinophils and has been a therapeutic focus for 283

asthma [37,38]. CCR3 was not reported in a large GWAS for allergic disease including 284

asthma [39] though CCR3 is near a locus associated with atopy in a previous 285

meta-analysis [40]. These results demonstrate that MRP can identify biologically 286

meaningful therapeutic targets that may be missed by standard GWAS approaches. 287

Considering multiple phenotypes jointly allows for the efficient prioritization of 288

disease genes. For instance, some genes like IL18RAP, ATP2A3, and FLG had log10 289

BFs greater than 4 in the asthma-only analysis but much smaller BFs in the joint 290

analyses indicating that rare variants in these genes are less likely to affect this group of 291

traits. Similarly, there were other genes like RP11-39K24.9 and IL17RA that had larger 292

BFs in the eosinophil count-only analysis but small BFs for the joint analyses 293

demonstrating MRP’s ability to integrate information across all phenotypes considered. 294

Glaucoma, intra-ocular pressure, and corneal resistance factor 295

We also applied MRP to missense variants and PTVs for glaucoma, intra-ocular 296

pressure, and corneal resistance factor as well as performing joint analyses. Intra-ocular 297

pressure is a measure of the fluid pressure in the eye, is associated with glaucoma risk, 298

and has been linked to genetic variants associated with glaucoma [41]. Corneal 299

resistance factor is a measure of the cornea’s ability to resist mechanical stress and has 300

been associated with glaucoma presence and severity [42–44]. While the individual 301

glaucoma analysis did not yield any associations with log10 BF greater than three, the 302

joint analysis identified rare coding variants in ANGPTL7 (log10 BF = 12.2), KLHL22 303

(log10 BF = 3.7), and WNT10A (log10 BF = 2.6) as associated with glaucoma 304

(Fig 4A-D, S2 Table). Applying the protective MRP model also identified the protective 305

association for ANGPTL7 against glaucoma and added support for associations for 306

KLHL22 and WNT10A (Fig 4E). We obtained similar results using the independent 307

effects (S5 Fig) or similar effects models (S6 Fig). 308

Expression of ANGPTL7 is upregulated in glaucoma and has been proposed to 309

regulate intra-ocular pressure and glaucoma risk [45,46]. The GWAS summary statistics 310

for the rare variants in ANGPTL7 suggest that the association with glaucoma is driven 311

by the missense variant rs28991009 that changes residue 175 from glutamine to histidine 312

(Fig 4F, G). According to the HIPED protein expression database, ANGPTL7 protein 313

is expressed at ∼ 0.7 parts per million in vitreous humor, the material between the lens 314

and retina of the eyeball; in contrast, the expression of ANGPTL7 protein is less than 315

0.01 parts per million in 68 other normal tissues [31]. Such tissue-specific activity may 316

make ANGPTL7 a useful therapeutic target. KLHL22 has not been previously 317
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associated with glaucoma though a suggestive association was reported for retinopathy 318

in individuals without diabetes [47]. WNT10A also has not been previously associated 319

with glaucoma though an exonic variant rs121908120 in WNT10A is associated with 320

central cornea thickness and increased risk of keratoconus, a disease of the cornea, 321

indicating that this gene may play a role in ocular diseases [48]. 322

Discussion 323

In this study, we developed a Bayesian model comparison approach MRP that shares 324

information across both variants and phenotypes to identify rare variant associations. 325

We used simulations to compare MRP to the widely used burden and SKAT tests for 326

identifying rare variant associations and found that jointly considering both variants 327

and phenotypes can improve the ability to detect associations. We also applied the 328

MRP model comparison framework to summary statistic data from two groups of traits 329

from the UK Biobank: asthma diagnosis, eosinophil counts, FEV1, and FVC; and 330

glaucoma diagnosis, intra-ocular pressure, and corneal resistance factor. We identified 331

strong evidence for the previously described association between the PTV rs146597587 332

in IL33 and asthma [15,16]. We also found evidence for a link between rare variants in 333

ANGPTL7 and glaucoma, consistent with previous experiments that suggested a role 334

for ANGPTL7 in glaucoma [45,46]. These results demonstrate the ability of the MRP 335

model comparison approach to leverage information across multiple phenotypes and 336

variants to discover rare variant associations. 337

As genetic data linked to high-dimensional phenotype data continues to be made 338

available through biobanks, health systems, and research programs, there is a large need 339

for statistical approaches that can leverage information across different genetic variants, 340

phenotypes, and studies to make strong inferences about disease-associated genes. The 341

approach presented here relies only on summary statistics from marginal association 342

analyses which can be shared with less privacy concerns compared to raw genotype and 343

phenotype data. Combining joint analysis of variants and phenotypes with 344

meta-analysis across studies offers new opportunities to identify gene-disease 345

associations. 346
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Figure Legends

Rare variant
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Fig 1. Schematic overview of MRP.
A: MRP is suitable for a broad range of rare variant association study designs including
(from left to right): i) case-control, ii) multiple diseases with shared controls, iii) single
quantitative phenotype, and iv) mixture of case-control and quantitative phenotypes.
B: Diagram of factors considered in rare variant association analysis including the
correlation matrices: Rstudy (expected correlation of genetic effects among a group of
studies), Rvar (expected correlation of genetic effects among a group of variants), and
Rphen (expected correlation of genetic effects among a group of phenotypes); the scale
parameter for genetic variant annotation; and the location of genetic effects, which may
be used to prioritize or identify protective modifiers of disease risk.
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A B

C D

Fig 2. Simulation studies.
A: Comparison of − log10(p-values) from frequentist BFMRP approximation for an
independent effects and a similar effects model to commonly used gene-based statistical
tests (skat and burden). B: Comparison of log10(Bayes Factors) obtained when raw
genotype and phenotype data is available to a scenario where summary statistics only
was available and similar effects across studies is assumed. C: From single variant and
single phenotype to multiple variants and multiple phenotypes gene discovery: ROC
curves for detecting gene association to any of the phenotypes using single variant/single
phenotype association (green) to multiple variants and multiple phenotypes association
(purple). D: ROC curves for detecting gene association when incorporating prior mean
of genetic effects (orange) to identify protective alleles.
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Fig 3. Results for asthma application.
log10 Bayes Factors from applying MRP and Bayesian model averaging to summary
statistics for missense and protein-truncating variants from (A) asthma (HC382), (B)
eosinophil counts (INI30150), (C) forced vital capacity (FVC, INI3062), (D) forced
expiratory volume in 1-second (FEV1, INI3063), (E) all four traits jointly, and (F) all
four traits jointly with focus on protective effects. The four genes outside of chromosome
6 with the largest Bayes Factors greater than three are labeled in each plot. Only log10

Bayes Factors greater than -5 are plotted. (F) − log10 p-values (left panel) and estimated
effect sizes with 95% confidence intervals (right panel) for missense variants and PTVs
in IL33 for each phenotype

16/25

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 14, 2018. ; https://doi.org/10.1101/257162doi: bioRxiv preprint 

https://doi.org/10.1101/257162
http://creativecommons.org/licenses/by/4.0/


1 3 5 7 9 11 13 15 17 1921
0

5

10

15

lo
g 1

0 B
ay

es
 F

ac
to

r

Glaucoma

log10 BF < 2 2 log10 BF < 3

1 3 5 7 9 11 13 15 17 1921
0

5

10

15

lo
g 1

0 B
ay

es
 F

ac
to

r

ANGPTL7

KLHL22

Intra-ocular pressure, Goldmann-correlated (left)

log10 BF < 2
2 log10 BF < 3

log10 BF > 3

1 3 5 7 9 11 13 15 17 1921
0

5

10

15

lo
g 1

0 B
ay

es
 F

ac
to

r

ANGPTL7
GLI3

WNT10A

Corneal resistance factor (left)

log10 BF < 2
2 log10 BF < 3

log10 BF > 3

1 3 5 7 9 11 13 15 17 1921
0

5

10

15

lo
g 1

0 B
ay

es
 F

ac
to

r

ANGPTL7

KLHL22

Joint

log10 BF < 2
2 log10 BF < 3

log10 BF > 3

1 3 5 7 9 11 13 15 17 19 21
0

5

10

15

lo
g 1

0 B
ay

es
 F

ac
to

r ANGPTL7

KLHL22

Joint, protective

log10 BF < 2 2 log10 BF < 3 log10 BF > 3

0 10
log10 p-value

Glaucoma

Intra-ocular pressure,
Goldmann-correlated

(left)

Corneal resistance factor
(left)

2 1 0
Effect size 

rs28991009
rs28991002
rs200058074

A B

C D

E

F G

Fig 4. Results for glaucoma application.
log10 Bayes Factors from applying MRP and Bayesian model averaging to summary
statistics for missense and protein-truncating variants from (A) glaucoma (HC276), (B)
intra-ocular pressure (INI5263), (C) corneal resistance factor (INI5265), and (D) all three
traits jointly. (E) shows the results of a joint analysis focused on finding rare variants
that protect against glaucoma. The genes outside of chromosome 6 with with Bayes
Factor greater than three are indicated by arrows. Only log10 Bayes Factors greater
than zero are plotted. F: − log10 p-values (left panel) and estimated effect sizes with
95% confidence intervals (right panel) for missense variants and PTVs in ANGPTL7 for
all three phenotypes. G: Location of rs28991009 variant (green, p.Q175H, NM 021146)
for the protein 1JC9 A homologous to ANGPTL7.
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Supporting Information Legends

S1 Appendix. MRP model details. Specification of the MRP model including
the likelihood function, priors, and Bayes factor calculation.
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S1 Fig. HDF5 Implementation. Our HDF5 implementation contained the
following components: first, a group with one table per annotation file. All effect size
(beta) values and study-specific annotations were contained here, and the number of
tables is limited by S (the number of studies) ×K (the number of traits). Second, a
group with site-site covariance data. While these covariance matrices may have
dimension M (the number of variants) ×M , we store the data as tables, each row
specifiying the covariance between two variants. The number of tables should be the
same as the previous set, capped by
S (the number of studies) ×K (the number of traits). Third, we store one table with
sigma values for each study/phenotype combination. In the event that the traits were
rank-normal transformation was performed these sigma values are equal to 1. These are
used to compute correlation between two datasets. Finally, we store a matrix/table pair
for Vy null and its index. The Vy null matrix has dimensions (S ×K) × (S ×K) each
entry specifying the estimated correlation of effect sizes between two datasets. The
index table encodes row/column position of each dataset.
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S2 Fig. Genetic correlations. Genetic correlations for (A) asthma and related
phenotypes and (B) glaucoma and related phenotypes estimated using MVPMM.
Genetic correlations for (C) asthma and related phenotypes and (D) glaucoma and
related phenotypes estimated using LD score regression.
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S3 Fig. Results for independent effects model applied to asthma,
eosinophil counts, FEV1, and FVC. log10 Bayes Factors from applying MRP
independent effects model to summary statistics for missense and protein-truncating
variants from (A) asthma (HC382), (B) eosinophil counts (INI30150), (C) forced vital
capacity (FVC, INI3062), (D) forced expiratory volume in 1-second (FEV1, INI3063),
(E) all four traits jointly, and (F) all four traits jointly with focus on protective effects.
The four genes outside of chromosome 6 with the largest Bayes Factors greater than
three are labeled in each plot. Only log10 Bayes Factors greater than -5 are plotted.
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S4 Fig. Results for similar effects model applied to asthma, eosinophil
counts, FEV1, and FVC. log10 Bayes Factors from applying MRP similar effects
model to summary statistics for missense and protein-truncating variants from (A)
asthma (HC382), (B) eosinophil counts (INI30150), (C) forced vital capacity (FVC,
INI3062), (D) forced expiratory volume in 1-second (FEV1, INI3063), (E) all four traits
jointly, and (F) all four traits jointly with focus on protective effects. The four genes
outside of chromosome 6 with the largest Bayes Factors greater than three are labeled
in each plot. Only log10 Bayes Factors greater than -5 are plotted.
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S5 Fig. Results for independent effects model applied to glaucoma
intra-ocular pressure, and corneal resistance factor. log10 Bayes Factors from
applying MRP independent effects model to summary statistics for missense and
protein-truncating variants from (A) glaucoma (HC276), (B) intra-ocular pressure
(INI5263), (C) corneal resistance factor (INI5265), and (D) all three traits jointly. (E)
shows the results of a joint analysis focused on finding rare variants that protect against
glaucoma. The genes outside of chromosome 6 with with Bayes Factor greater than
three are indicated by arrows. Only log10 Bayes Factors greater than zero are plotted.
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S6 Fig. Results for similar effects model applied to glaucoma intra-ocular
pressure, and corneal resistance factor. log10 Bayes Factors from applying MRP
similar effects model to summary statistics for missense and protein-truncating variants
from (A) glaucoma (HC276), (B) intra-ocular pressure (INI5263), (C) corneal resistance
factor (INI5265), and (D) all three traits jointly. (E) shows the results of a joint
analysis focused on finding rare variants that protect against glaucoma. The genes
outside of chromosome 6 with with Bayes Factor greater than three are indicated by
arrows. Only log10 Bayes Factors greater than zero are plotted.
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Tables

Gene Joint, protective Joint Eosinophil count FVC FEV1 Asthma

IL33 29.4 29.3 30.6 -2.3 -2.2 8.1
CCR3 3.1 3.3 7.4 -1.4 -1.6 -0.5
RP11-39K24.9 0.8 1.8 4.9 -0.1 -0.4 0.3
SCMH1 0.5 4.7 -1.5 7.7 3.8 -0.7
MUSTN1 0.4 1.1 -1.2 2.9 2.9 -0.6
ZFAT 0.3 1.3 -2.0 4.7 3.1 -0.4
ELN 0.2 2.5 -1.0 5.6 2.9 -0.6
C14orf39 -0.7 -0.0 -1.1 3.5 2.5 0.0
TMEM110 -0.9 1.1 -1.0 3.3 3.1 -0.6
IL17RA -4.4 3.1 7.9 -2.7 -2.5 -1.1
IL18RAP -9.6 -0.9 -1.0 -1.6 -1.7 3.5
ATP2A3 -11.9 -0.8 -1.2 -2.1 -2.2 5.8
FLG -20.1 -17.2 -6.0 -7.4 -8.5 4.0

S1 Table. Highlighted genes from asthma analysis. log10 Bayes Factors for
genes highlighted in Figure 3.

Gene Joint, protective Joint Glaucoma Intra-ocular pressure,
Goldmann-correlated

Corneal resistance
factor

ANGPTL7 13.1 12.2 1.7 10.5 6.4
KLHL22 3.1 3.7 -0.2 3.9 2.2
WNT10A 2.6 2.6 -0.2 -0.6 3.1
GLI3 0.5 2.3 -0.4 -0.1 4.3

S2 Table. Highlighted genes from glaucoma analysis. log10 Bayes Factors for
genes highlighted in Figure 4.
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