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Abstract

Whole genome sequencing studies applied to large populations or biobanks with
extensive phenotyping raise new analytic challenges. The need to consider many
variants at a locus or group of genes simultaneously and the potential to study many
correlated phenotypes with shared genetic architecture provide opportunities for
discovery and inference that are not addressed by the traditional one variant-one
phenotype association study. Here we introduce a model comparison approach we refer
to as MRP for rare variant association studies that considers correlation, scale, and
location of genetic effects across a group of genetic variants, phenotypes, and studies.
We consider the use of summary statistic data to apply univariate and multivariate
gene-based meta-analysis models for identifying rare variant associations with an
emphasis on protective protein-truncating variants that can expedite drug discovery.
Through simulation studies, we demonstrate that the proposed model comparison
approach can improve ability to detect rare variant association signals. We also apply
the model to two groups of phenotypes from the UK Biobank: 1) asthma diagnosis
(43,626 cases), eosinophil counts, forced expiratory volume, and forced vital capacity;
and 2) glaucoma diagnosis (5,863 cases), intra-ocular pressure, and corneal resistance
factor. We are able to recover known associations such as the protective association
between rs146597587 in IL33 and asthma (log,, (Bayes Factor) = 29.4). We also find
evidence for novel protective associations between rare variants in ANGPTL7 and
glaucoma (log;, (Bayes Factor) = 13.1). Overall, we show that the MRP model
comparison approach is able to retain and improve upon useful features from
widely-used meta-analysis approaches for rare variant association analyses and prioritize
protective modifiers of disease risk.
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Author summary

Due to the continually decreasing cost of acquiring genetic data, we are now beginning
to see large collections of individuals for which we have both genetic information and
trait data such as disease status, physical measurements, biomarker levels, and more.
These datasets offer new opportunities to find relationships between inherited genetic
variation and disease. While it is known that there are relationships between different
traits, typical genetic analyses only focus on analyzing one genetic variant and one
phenotype at a time. Additionally, it is difficult to identify rare genetic variants that
are associated with disease due to their scarcity, even among large sample sizes. In this
work, we present a method for identifying associations between genetic variation and
disease that considers multiple rare variants and phenotypes at the same time. By
sharing information across rare variant and phenotypes, we improve our ability to
identify rare variants associated with disease compared to considering a single rare
variant and a single phenotype. The method can be used to identify candidate disease
genes as well as genes that might represent attractive drug targets.

Introduction

Sequencing technologies are quickly transforming human genetic studies of complex
traits: it is increasingly possible to obtain whole genome sequence data on thousands of
samples at manageable costs. As a result, the genome-wide study of rare variants
(minor allele frequency [MAF] < 1%) and their contribution to disease susceptibility
and phenotype variation is now feasible [1-4].

In genetic studies of diseases or continuous phenotypes, rare variants are hard to
assess individually due to the limited number of copies of each rare variant. Hence, to
boost the ability to detect a signal, evidence is usually ‘aggregated’ across variants.
When designing an ‘aggregation’ method, there are three questions that are usually
considered. First, across which biological units should variants be combined; second,
which variants mapping within those units should be included [5]; and third, which
statistical model should be used [6]7 Given the widespread observations of shared
genetic risk factors across distinct diseases, there is also considerable motivation to use
gene discovery approaches that leverage the information from multiple phenotypes
jointly. In other words, rather than only aggregating variants that may have effects on a
single phenotype, we can also bring together sets of phenotypes for which a single
variant or sets of variants might have effects.

In this paper, we present a Bayesian multiple rare variants and phenotypes (MRP)
model comparison approach for identifying rare variant associations as an alternative to
current widely-used statistical tests. The MRP framework exploits correlation, scale, or
location (direction) of genetic effects in a broad range of rare variant association study
designs including: case-control; multiple diseases and shared controls; single continuous
phenotype; multiple continuous phenotypes; or a mixture of case-control and multiple
continuous phenotypes (Fig . MRP makes use of Bayesian model comparison,
whereby we compute a Bayes Factor (BF) defined as the ratio of the marginal
likelihoods of the observed data under two models: 1) a pre-specified null where all
genetic effects are zero; and 2) an alternative model where factors like correlation, scale,
or location of genetic effects are considered. The BF is an alternative to p-values from
traditional hypothesis testing. For MRP, the BF represents the statistical evidence for a
non-zero effect for a particular group of rare variants on the phenotype(s) of interest.

While many large genetic consortia collect both raw genotype and phenotype data, in
practice, sharing of individual genotype and phenotype data across groups is difficult to
achieve. To address this, MRP can take summary statistics, such as estimates of effect
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size and the corresponding standard error from typical single variant-single phenotype
linear or logistic regressions, as input data. Furthermore, we use insights from Liu et
al. [7] and Cichonska et al. [8] who suggest the use of additional summary statistics, like
covariance estimates across variants and studies, respectively, that would enable lossless
ability to detect gene-based association signals using summary statistics alone.

Aggregation techniques rely on variant annotations to assign variants to groups for
analysis. MRP allows for the inclusion of priors on the spread of effect sizes that can be
adjusted depending on what type of variants are included in the analysis. For instance,
protein truncating variants (PTVs) [9,[L0] are an important class of variants that are
more likely to be functional because they often disrupt the normal function of a gene.
This biological knowledge can be reflected in the choices of priors for PTVs in MRP.
Since PTVs typically abolish or severely alter gene function, there is particular interest
in identifying protective PTV modifiers of human disease risk that may serve as targets
for therapeutics [11413]. We therefore demonstrate how the MRP model comparison
approach can improve discovery of such protective signals by modeling the location
(direction) of genetic effects which prioritizes variants or genes that are consistent with
protecting against disease.

To evaluate the performance of MRP and to study its behavior we use simulations
and compare it to other commonly used approaches. Some simple alternatives to MRP
include univariate approaches for rare variant association studies including the sequence
kernel association test (SKAT) [14], and the burden test, which we show are special
cases of the MRP model comparison when we assign the prior correlation of genetic
effects across different variants to be zero or one.

We applied MRP to summary statistics for two groups of related phenotypes from
the UK Biobank. First, we applied MRP to asthma (HC382: the corresponding
phenotype label in Global Biobank Engine [https://biobankengine.stanford.edul),
eosinophil count (INI30150), forced expiratory volume in 1-second (FEV, INI3063),
and forced vital capacity (FVC, INI3062) and recovered the reported association
between a rare PTV in IL38% and asthma [15,/16]. We also applied MRP to glaucoma
(HC276), intra-ocular pressure (INI5263), and corneal resistance factor (INI5265) and
find evidence that rare coding variants in ANGPTL7 protect against glaucoma. These
analyses show that MRP recovers results from typical single variant-single phenotype
analyses while identifying new rare variant associations that include protective modifiers
of disease risk.

Materials and Methods
Description of MRP

In this section, we provide an overview of the MRP model comparison approach. Refer
to for a detailed description. MRP models GWAS summary statistics as
being distributed according to one of two models. The null model is that the regression
effect sizes obtained across all studies for a group of variants and a group of phenotypes
is zero. The alternative model is that summary statistics are distributed according to a
multivariate normal distribution with mean zero and covariance matrix described below.
MRP compares the evidence for the null and alternative model using a Bayes Factor
(BF) that quantifies the amount of evidence for each model as the ratio of the marginal
likelihoods of the observed data under two models.

To define the alternative model, we must specify the prior correlation structure,
scale, and location (direction) of the effect sizes. Let N be the number of individuals
and K the number of phenotype measurements on each individual. Let M be the
number of variants in a testing unit G, where G can be, for example, a gene, pathway,
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or a network. Let S be the number of studies where data is obtained from - this data "
may be in the form of raw genotypes and phenotypes or summary statistics including &
linkage-disequilibrium, effect sizes (or odds ratio), and standard error of the effect size. s
When considering multiple studies (S > 1), multiple rare variants (M > 1), and &

multiple phenotypes (K > 1), we define the prior correlation structure of the effect sizes s
as an SMK x SM K matrix U. In practice, we define U as a Kronecker product, an 80
operation of matrices of arbitrary size, of three sub-matrices: %

e an S x S matrix Rgudy containing the correlations of genetic effects among studies o
where different values can be used to compare different models of association, such o

as for identifying heterogeneity of effect sizes between populations |17]; 0

e an M x M matrix R,,; containing the correlations of genetic effects among o
genetic variants, which may reflect the assumption that all the PTVs in a gene %

may have the same biological consequence [9,/10,[18] or prior information obtained o
through integration of additional data sources, such as functional assay o7

data [5}/19], otherwise zero correlation of genetic effects may be assumed, which is o

used in dispersion tests like C-alpha [2021] and SKAT |[14]; and %

e a K x K matrix Ryhen containing the correlations of genetic effects among 100
phenotypes, which may be obtained from common variant data [22H24]. 101

The variance-covariance matrix of the effect sizes may be obtained from readily 102
available summary statistic data such as in-study LD matrices, effect size estimates (or 10
log odds ratios), and the standard errors of the effect size estimates (S1 Appendix]). 104
MRP allows users to specify priors that reflect knowledge of the variants and 105
phenotypes under study. For instance, we can define an independent effects model 106

where each variant in the model may have different effect sizes. In this case, R,y is the 107
identity matrix which reflects the assumption that the effect sizes of the variants are not 10
correlated. We can also define a similar effects model by setting every value of Ry, to 100
~ 1. This model assumes that all variants under consideration have similar effect sizes 1o
(with possibly differences in scale). This model may be appropriate for PTVs where m
each variant completely disrupts the function of the gene, leading to a gene knockout. 12
The prior on the scale of effect sizes can also be used to denote which variants may have 13

larger effect sizes. For instance, emerging empirical genetic studies have shown that 114
within a gene, PTVs may have stronger effects than missense variants [25]. This can be s
reflected by adjusting the prior spread of effect sizes (o) for PTVs . 116

Similarly, we can utilize a prior on the location (direction) of effects to specify u7
alternative models where we seek to identify variants with protective effects against 118
disease. Thus far we have assumed that the prior mean, or location, of genetic effects is 110
zero which makes it feasible to analyze a large number of phenotypes without 120
enumerating the prior mean across all phenotypes. To proactively identify genetic 121

variants that have effects that are consistent with a protective profile for a disease, we 122
can include a non-zero vector as a prior mean of genetic effect (S1 Appendix)). We can 1
exploit information from Mendelian randomization studies of common variants, such as 1
recent findings where rare truncating loss-of-function variants in PCSK9 were found to 12
decrease LDL and triglyceride levels and decrease CAD risk [1126/{28] to identify 126
situations where such a prior is warranted. 127

Applying MRP to variants from a testing unit G yields a BF for that testing unit 128
that describes the evidence that rare variants in that testing unit have a nonzero effect 120

on the traits used in the model. For instance, consider genes as testing units. By 130
running MRP, we obtain a BF for each gene that represents the evidence that rare 131
variants in that gene affect the traits of interest. These BF can be used to identify 132

specific genes that may be linked to disease. Although we see advantages in adopting a 133
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Bayesian perspective for MRP, our approach could be used in a frequentist context by

calculating a BF and using it as a test statistic to compute p-values (S1 Appendix]
Fig [2).

HDF5 Tables

Although summary statistics are quicker to read and process than raw data, the number
of studies meta-analyzed in this work is expected to be sufficiently large to require
optimizations in data representation and processing . Our solution was the use
of the HDF5 (Hierarchical Data Format 5) data representation to enable rapid
processing of effect size, uncertainty, and cross-trait estimate data. HDF5 is a fast and
lightweight file format designed for scientific data. It has bindings for R, Python,
C/C++, Java, and nearly every other population programming language. Reading data
from a table within a HDF5 file can be an order of magnitude faster than reading text

files from a Unix file, and it makes it easier to organize data within an internal structure.

UK Biobank Data
GWAS Summary Statistics

We performed genome-wide association analysis using PLINK v2.00a(17 July 2017) as
previously described [15]. For asthma, we used the Firth fallback in PLINK, a hybrid
algorithm which normally uses the logistic regression code described in [29], but
switches to a port of logistf ()
(https://cran.r-project.org/web/packages/logistf/index.html)) in two cases:
(1) one of the cells in the 2x2 allele count by case/control status contingency table is
empty (2) logistic regression was attempted since all the contingency table cells were
nonzero, but it failed to converge within the usual number of steps. We used the
following covariates in our analysis: age, sex, array type, and the first four principal
components, where array type is a binary variable that represents whether an individual
was genotyped with UK Biobank Axiom Array or UK BiLEVE Axiom Array. For
variants that were specific to one array, we did not use array as a covariate.

Asthma and glaucoma cases were defined using both Hospital Episode Statistics and
verbal questionnaire responses. We used the provided values from the UK Biobank for
eosinophil counts, forced vital capacity (FVC), forced expiratory volume in 1-second
(FEV4), intra-ocular pressure, and corneal resistance factor. The phenotype codes used
throughout (asthma=HC382, eosinophil count=INI30150, FEV;=INI3063,
FVC=INI3062, glaucoma=HC276, intra-ocular pressure=INI5263, and corneal
resistance factor=INI5265) correspond to the phenotype codes used on the Global
Biobank Engine |[https://biobankengine.stanford.edu].

Genetic Correlations

We calculated the genetic correlation between the two groups of traits (asthma,
eosinophil counts, FVC, FEV; and glaucoma, intra-ocular pressure, corneal resistance
factor) using the MultiVariate Polygenic Mixture Model (MVPMM) [30]. Briefly,
MVPMM estimates genetic correlation given GWAS summary statistics (effect size and
standard error of effect size estimate) by modeling GWAS summary statistics as
generated from one of two mixture components. Summary statistics from variants in the
null component are modeled as being drawn from a multivariate normal distribution
with zero mean and covariance matrix that captures correlation in the summary
statistics due to the use of shared subjects or other sources of correlation. Summary
statistics from variants in the non-null component are modeled as being drawn from a
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multivariate normal distribution with zero mean, but the covariance matrix for the
non-null component combines the covariance matrix from the null component with
another covariance matrix that captures the genetic correlation between the phenotypes
being considered. We observed similar genetic correlations using LD score regression (S2|

[24].

UK Biobank Asthma and Glaucoma Applications

For each group of traits (asthma, eosinophil counts, FVC, FEV; and glaucoma,
intra-ocular pressure, corneal resistance factor), we applied MRP individually to each
phenotype as well as performing a joint analysis using all traits. We also applied a
model that prioritizes protective variants where we used non-zero priors for the variant
effect size of —0.5 for PTVs and —0.2 for missense alleles. For each analysis, we applied
MRP assuming an independent effects model and a similar effects model. We applied
Bayesian model averaging to the results of the independent and similar effects models
by summing the log;, BF for each gene from each model and dividing by two. The
Bayesian model averaging results are reported in the main text while the results for
each individual model are included in the Supporting Information.

For the Manhattan plots and tables, we removed any genes with non-unique gene
symbols. In cases where genes overlapped such that they shared rare variants and
therefore the same BF, we removed one gene. ANGPTL7 protein expression was
assessed using the HIPED protein expression database accessed through genecards.org
on 2017/1/29 [31]. We identified the protein 1JC9_A as homologous to the ANGPTL7
protein using the “3D structure mapping” link from dbSNP
(https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=28991009). We
retrieved the 3D structure image from the iCn3D Structure Viewer
(https://www.ncbi.nlm.nih.gov/Structure/icn3d/icn3d.html).

Variant Filtering

We used the variant _filter_table.tsv file available at
https://github.com/rivas-lab/public-resources| (6{9f726) to filter variants on
the UK Biobank array for use with MRP. We first chose variants with minor allele
frequency less than 1%. We then filtered out all variants with all_filters less than
one. This removes variants with missingness greater than 1% (calculated on an

array-specific basis for array-specific variants) or Hardy-Weinberg equilibrium p < 1077,

This also removes some PTVs for which manual inspection revealed irregular cluster
plots [15]. We LD pruned the variants by only using variants with 1d equal to one. We
included missense variants and PTVs indicated by the following annotations:
missense_variant, stop_gained, frameshift_variant, splice_acceptor_variant,
splice_donor_variant, splice_region_variant, start_lost, stop_lost. We
removed variants whose regression effect size had standard error greater than 0.15.

Results

Simulation studies

We first verified the analytical derivations and examined the properties of the approach
under a simulation framework.
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Comparison to frequentist gene tests

For the analysis of multiple rare variants and a single phenotype we compared it to the
burden test and the SKAT test, commonly used statistical tests in rare variant
association studies of a single phenotype. We observe concordance between the
frequentist methods and the Bayesian models. To compare the Bayesian models we
compute p-values by using the BF as the test statistic and approximating it using
distribution properties of quadratic forms . As expected, an independent
effects model has high correlation with the gene-based test SKAT (r? = 0.99), whereas
the similar effects model has high correlation with the burden test (72 = 0.93, Fig )

Summary statistic data

To study the behavior of MRP using summary statistics we simulate two scenarios: first,
the scenario where analysts have access to all the raw genotype and phenotype data;

and second, the scenario where analysts only have access to summary statistics data [7].

We conducted 1000 simulation experiments where we let K (the number of phenotypes)
=3, M (the number of variants) = 10, S (the number of studies) = 2, Ny (number of
individuals in study with access to all the data) = 10000, N; (meta-analysis study 1)
= 5000, Ny (meta-analysis study 2) = 5000. We find that, under the scenario where
similar effects are assumed across studies, the Bayes Factors obtained using summary
statistics alone are strongly correlated (r? = 1) to Bayes Factors obtained by the full
genotype and phenotype data (Fig )

From single variant and single phenotype analysis to multiple variants and
multiple phenotypes

To validate the flexibility of the approach we conducted a simulation experiment where
we assumed an allelic architecture consistent to that discovered for APOCS in relation
to coronary artery disease (CAD), triglycerides (TG), low-density lipoprotein cholesterol
(LDL-C), and high-density lipoprotein cholesterol (HDL-C) [28,3234]. We simulated
three studies and applied the model comparison unit jointly to summary statistic data
obtained for each study (Supplementary Note). Overall, we observed that considering
the joint effects across multiple studies in a group of variants and phenotypes may
improve ability to detect gene-based signals (Fig ), and that considering prior mean
of genetic effects should aid in efforts to identify protective modifiers of disease risk

(Fig 2D).

Applications

We applied the MRP model comparison approach to summary statistic data generated
from single variant logistic regression and linear regression analysis for coding variants
on the UK Biobank array (Methods). We applied MRP separately to asthma and three
related traits as well as glaucoma and two related traits.

Asthma, eosinophil counts, forced expiratory volume, and forced vital
capacity

We first applied MRP to GWAS summary statistics for asthma, eosinophil count, forced
expiratory volume in 1-second (FEV7), and forced vital capacity (FVC) phenotypes.
Recent work has identified associations between the PTV rs146597587 in IL33 and
asthma and eosinophil counts [15/16]. FEV; and FVC are measures of pulmonary
function that are used to diagnosis and classify pulmonary disease [35]. To demonstrate
the advantage of considering the phenotypes jointly, we applied MRP to rare missense
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variants and PTVs (MAF < 1%) for each phenotype separately (Fig —D) as well as to
all phenotypes jointly (Fig ,F) and obtained log,, BF for each gene. We applied both
independent and similar effects models and used Bayesian model averaging to compute
a single BF per gene [36]. In agreement with previous studies, we observed evidence
that rare missense variants and/or PTVs in IL33 affect eosinophil counts and offer
protection from asthma from the single-phenotype analyses, though the evidence of
association was strongest for the joint analysis (log;, BF = 29.3, [15,/16]). We
performed an analysis focused on identifying protective variants which also identified
the IL33 association (log,, BF = 29.4, Fig ) The results were similar using only
either the independent effects or similar effects models . We inspected
the effect sizes from the marginal GWAS regressions for the rare variants included in
the analysis and found that the association identified by MRP is likely driven by the
PTV rs146597587 (Fig BG).

We also found moderate evidence for association between rare coding variants in
CCR3 and asthma. The log,, BFs for CCR3 was 3.3 in the joint model compared to
only -0.5 in the asthma-only analysis (Fig . CCRS is a chemokine receptor
that is highly expressed on eosinophils and has been a therapeutic focus for
asthma [37,[38]. CCR3 was not reported in a large GWAS for allergic disease including
asthma [39] though CCRS is near a locus associated with atopy in a previous
meta-analysis [40]. These results demonstrate that MRP can identify biologically
meaningful therapeutic targets that may be missed by standard GWAS approaches.

Considering multiple phenotypes jointly allows for the efficient prioritization of
disease genes. For instance, some genes like ILISRAP, ATP2A3, and FLG had log;,
BF's greater than 4 in the asthma-only analysis but much smaller BFs in the joint
analyses indicating that rare variants in these genes are less likely to affect this group of
traits. Similarly, there were other genes like RP11-39K24.9 and IL17RA that had larger
BF's in the eosinophil count-only analysis but small BF's for the joint analyses

demonstrating MRP’s ability to integrate information across all phenotypes considered.

Glaucoma, intra-ocular pressure, and corneal resistance factor

We also applied MRP to missense variants and PTVs for glaucoma, intra-ocular
pressure, and corneal resistance factor as well as performing joint analyses. Intra-ocular
pressure is a measure of the fluid pressure in the eye, is associated with glaucoma risk,
and has been linked to genetic variants associated with glaucoma [41]. Corneal
resistance factor is a measure of the cornea’s ability to resist mechanical stress and has
been associated with glaucoma presence and severity [42-44]. While the individual
glaucoma analysis did not yield any associations with log;, BF greater than three, the
joint analysis identified rare coding variants in ANGPTL7 (log,, BF = 12.2), KLHL22
(log,o BF = 3.7), and WNT10A (log,, BF = 2.6) as associated with glaucoma

(Fig [4]A-D, . Applying the protective MRP model also identified the protective
association for ANGPTL7 against glaucoma and added support for associations for
KLHL22 and WNT10A (Fig[dE). We obtained similar results using the independent
effects or similar effects models .

Expression of ANGPTL7 is upregulated in glaucoma and has been proposed to
regulate intra-ocular pressure and glaucoma risk [45,46]. The GWAS summary statistics
for the rare variants in ANGPTL7 suggest that the association with glaucoma is driven
by the missense variant rs28991009 that changes residue 175 from glutamine to histidine
(Fig , G). According to the HIPED protein expression database, ANGPTL7 protein
is expressed at ~ 0.7 parts per million in vitreous humor, the material between the lens
and retina of the eyeball; in contrast, the expression of ANGPTL7 protein is less than
0.01 parts per million in 68 other normal tissues [31]. Such tissue-specific activity may
make ANGPTL7 a useful therapeutic target. KLHL22 has not been previously
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associated with glaucoma though a suggestive association was reported for retinopathy
in individuals without diabetes [47]. WNT10A also has not been previously associated
with glaucoma though an exonic variant rs121908120 in WNT10A is associated with
central cornea thickness and increased risk of keratoconus, a disease of the cornea,
indicating that this gene may play a role in ocular diseases [48].

Discussion

In this study, we developed a Bayesian model comparison approach MRP that shares
information across both variants and phenotypes to identify rare variant associations.
We used simulations to compare MRP to the widely used burden and SKAT tests for
identifying rare variant associations and found that jointly considering both variants
and phenotypes can improve the ability to detect associations. We also applied the
MRP model comparison framework to summary statistic data from two groups of traits
from the UK Biobank: asthma diagnosis, eosinophil counts, FEV;, and FVC; and
glaucoma diagnosis, intra-ocular pressure, and corneal resistance factor. We identified
strong evidence for the previously described association between the PTV rs146597587
in IL33 and asthma [15,/16]. We also found evidence for a link between rare variants in
ANGPTL7 and glaucoma, consistent with previous experiments that suggested a role
for ANGPTL7 in glaucoma [45{46]. These results demonstrate the ability of the MRP
model comparison approach to leverage information across multiple phenotypes and
variants to discover rare variant associations.

As genetic data linked to high-dimensional phenotype data continues to be made
available through biobanks, health systems, and research programs, there is a large need
for statistical approaches that can leverage information across different genetic variants,
phenotypes, and studies to make strong inferences about disease-associated genes. The
approach presented here relies only on summary statistics from marginal association
analyses which can be shared with less privacy concerns compared to raw genotype and
phenotype data. Combining joint analysis of variants and phenotypes with
meta-analysis across studies offers new opportunities to identify gene-disease
associations.
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Figure Legends
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Fig 1. Schematic overview of MRP.

A: MRP is suitable for a broad range of rare variant association study designs including
(from left to right): i) case-control, ii) multiple diseases with shared controls, iii) single
quantitative phenotype, and iv) mixture of case-control and quantitative phenotypes.
B: Diagram of factors considered in rare variant association analysis including the
correlation matrices: Rgpuay (expected correlation of genetic effects among a group of
studies), Ryar (expected correlation of genetic effects among a group of variants), and
Rphen (expected correlation of genetic effects among a group of phenotypes); the scale
parameter for genetic variant annotation; and the location of genetic effects, which may
be used to prioritize or identify protective modifiers of disease risk.
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Fig 2. Simulation studies.

A: Comparison of —log,q(p-values) from frequentist BFygrp approximation for an
independent effects and a similar effects model to commonly used gene-based statistical
tests (skat and burden). B: Comparison of logl0(Bayes Factors) obtained when raw
genotype and phenotype data is available to a scenario where summary statistics only
was available and similar effects across studies is assumed. C: From single variant and
single phenotype to multiple variants and multiple phenotypes gene discovery: ROC
curves for detecting gene association to any of the phenotypes using single variant/single
phenotype association (green) to multiple variants and multiple phenotypes association
(purple). D: ROC curves for detecting gene association when incorporating prior mean
of genetic effects (orange) to identify protective alleles.
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expiratory volume in 1-second (FEVy, INI3063), (E) all four traits jointly, and (F) all
four traits jointly with focus on protective effects. The four genes outside of chromosome
6 with the largest Bayes Factors greater than three are labeled in each plot. Only log,,
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Fig 4. Results for glaucoma application.

log,, Bayes Factors from applying MRP and Bayesian model averaging to summary
statistics for missense and protein-truncating variants from (A) glaucoma (HC276), (B)
intra-ocular pressure (INI5263), (C) corneal resistance factor (INI5265), and (D) all three
traits jointly. (E) shows the results of a joint analysis focused on finding rare variants
that protect against glaucoma. The genes outside of chromosome 6 with with Bayes
Factor greater than three are indicated by arrows. Only log,, Bayes Factors greater
than zero are plotted. F: —log,, p-values (left panel) and estimated effect sizes with
95% confidence intervals (right panel) for missense variants and PTVs in ANGPTL7 for
all three phenotypes. G: Location of rs28991009 variant (green, p.Q175H, NM_021146)
for the protein 1JC9_A homologous to ANGPTL7.
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Supporting Information Legends

S1 Appendix. MRP model details. Specification of the MRP model including
the likelihood function, priors, and Bayes factor calculation.
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S1 Fig. HDF5 Implementation. Our HDF5 implementation contained the
following components: first, a group with one table per annotation file. All effect size
(beta) values and study-specific annotations were contained here, and the number of
tables is limited by S (the number of studies) x K (the number of traits). Second, a
group with site-site covariance data. While these covariance matrices may have
dimension M (the number of variants) x M, we store the data as tables, each row
specifiying the covariance between two variants. The number of tables should be the
same as the previous set, capped by

S (the number of studies) x K (the number of traits). Third, we store one table with
sigma values for each study/phenotype combination. In the event that the traits were
rank-normal transformation was performed these sigma values are equal to 1. These are
used to compute correlation between two datasets. Finally, we store a matrix/table pair
for Vy null and its index. The Vy null matrix has dimensions (S x K) x (S x K) each
entry specifying the estimated correlation of effect sizes between two datasets. The
index table encodes row/column position of each dataset.
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S2 Fig. Genetic correlations. Genetic correlations for (A) asthma and related
phenotypes and (B) glaucoma and related phenotypes estimated using MVPMM.

Genetic correlations for (C) asthma and related phenotypes and (D) glaucoma and
related phenotypes estimated using LD score regression.
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S3 Fig. Results for independent effects model applied to asthma,
eosinophil counts, FEV;, and FVC. log,, Bayes Factors from applying MRP
independent effects model to summary statistics for missense and protein-truncating
variants from (A) asthma (HC382), (B) eosinophil counts (IN130150), (C) forced vital
capacity (FVC, INI3062), (D) forced expiratory volume in 1-second (FEVy, INI3063),
(E) all four traits jointly, and (F) all four traits jointly with focus on protective effects.
The four genes outside of chromosome 6 with the largest Bayes Factors greater than
three are labeled in each plot. Only log;, Bayes Factors greater than -5 are plotted.
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S4 Fig. Results for similar effects model applied to asthma, eosinophil
counts, FEV;, and FVC. log;, Bayes Factors from applying MRP similar effects
model to summary statistics for missense and protein-truncating variants from (A)
asthma (HC382), (B) eosinophil counts (INI30150), (C) forced vital capacity (FVC,
INI3062), (D) forced expiratory volume in 1-second (FEVy, INI3063), (E) all four traits
jointly, and (F) all four traits jointly with focus on protective effects. The four genes
outside of chromosome 6 with the largest Bayes Factors greater than three are labeled
in each plot. Only log,, Bayes Factors greater than -5 are plotted.
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S5 Fig. Results for independent effects model applied to glaucoma
intra-ocular pressure, and corneal resistance factor. log,, Bayes Factors from
applying MRP independent effects model to summary statistics for missense and
protein-truncating variants from (A) glaucoma (HC276), (B) intra-ocular pressure
(INT15263), (C) corneal resistance factor (INI5265), and (D) all three traits jointly. (E)
shows the results of a joint analysis focused on finding rare variants that protect against
glaucoma. The genes outside of chromosome 6 with with Bayes Factor greater than
three are indicated by arrows. Only log,;, Bayes Factors greater than zero are plotted.
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S6 Fig. Results for similar effects model applied to glaucoma intra-ocular
pressure, and corneal resistance factor. log,, Bayes Factors from applying MRP
similar effects model to summary statistics for missense and protein-truncating variants
from (A) glaucoma (HC276), (B) intra-ocular pressure (INI5263), (C) corneal resistance
factor (INI5265), and (D) all three traits jointly. (E) shows the results of a joint
analysis focused on finding rare variants that protect against glaucoma. The genes
outside of chromosome 6 with with Bayes Factor greater than three are indicated by
arrows. Only log;, Bayes Factors greater than zero are plotted.
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genes highlighted in Figure

Tables
Gene Joint, protective | Joint | Eosinophil count | FVC | FEV; | Asthma
IL33 29.4 29.3 30.6 -2.3 -2.2 8.1
CCRS3 3.1 3.3 7.4 -14 -1.6 -0.5
RP11-39K24.9 | 0.8 1.8 4.9 -0.1 -0.4 0.3
SCMH1 0.5 4.7 -1.5 7.7 3.8 -0.7
MUSTN1 0.4 1.1 -1.2 2.9 2.9 -0.6
ZFAT 0.3 1.3 -2.0 4.7 3.1 -0.4
ELN 0.2 2.5 -1.0 5.6 2.9 -0.6
C140rf39 -0.7 -0.0 -1.1 3.5 2.5 0.0
TMEM110 -0.9 1.1 -1.0 3.3 3.1 -0.6
ILI7TRA -4.4 3.1 7.9 -2.7 -2.5 -1.1
IL1S8RAP -9.6 -0.9 -1.0 -1.6 -1.7 3.5
ATP2A3 -11.9 -0.8 -1.2 -2.1 -2.2 5.8
FLG -20.1 -17.2 | -6.0 -74 -8.5 4.0
S1 Table. Highlighted genes from asthma analysis. log,, Bayes Factors for
genes highlighted in Figure
Gene Joint, protective | Joint | Glaucoma| Intra-ocular pressure, | Corneal resistance
Goldmann-correlated | factor
ANGPTL7 | 13.1 12.2 1.7 10.5 6.4
KLHL22 3.1 3.7 -0.2 3.9 2.2
WNT10A 2.6 2.6 -0.2 -0.6 3.1
GLI3 0.5 2.3 -0.4 -0.1 4.3
S2 Table. Highlighted genes from glaucoma analysis. log;, Bayes Factors for
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