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Abstract
In the present study, binocular vision properties were modeled using a single elementary

wavelet. Opponent responses (ON-OFF) appeared in the first stages of the neural coding in
the retina. This property was assumed to build an adequate wavelet showing a positive part
(On) and a negative part (OFF). We have examined the experimental orientation and
position disparity given by Bishop. We assumed that the theoretical position disparity was
given by a combination of two wavelets for a given orientation disparity . A change in 8
implied a change in the magnitude of one of the wavelets and consequently a change in the
wavelets combination. There was a close match between the theoretical and experimental

position disparity curves according to the changes in orientation disparity.
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1. Introduction
Several previous physiological studies have shown that there are various receptive field

organizations within the retina, the lateral geniculate nucleus and the cortical level [37].
The type 1 exhibits center-surround spatial and chromatic opponency. The type 2 exhibits a
chromatic opponency (e.g. blue-yellow), without spatial opponency. The modified type 2
exhibits a center-surround spatial opponency and a chromatic opponency only in the
center. The type 3 exhibits an achromatic center opposed by an achromatic surround. The
double opponent cells (DOC) [1] exhibit a center-surround organization with a chromatic
opponency in the center (for example R+G-) and an opposed chromatic opponency in the
surround (for example R-G+).

Many attempts have been made to describe the physiological properties of the visual
system with the help of various theoretical models. Rodieck [33] and then Enroth-Cugell
and Robson [12] introduced a difference of two Gaussians (DOG) to model ganglion cell
receptive fields. Another model was given by Marcelja [27] and Daugman [8] who
introduced the Gabor function and the joint space/spatial frequency uncertainty relation.
The Gabor transform provides a local description of the visual process. However, the
Gabor model is inadequate in some species [35, 39, 18]. Marr [28] used the Laplacian of
the Gaussian (V2G) called the "Mexican hat". However, this author had outlined that this
function cannot describe a type 1 chromatic receptive field [29]. Kulikowski, Marcelja, and
Bishop [20] used a Gabor function to relate the receptive fields to the spatial frequency and
orientation. Billock [1] reported a filtering mechanism to model the double opponent
receptive field. Croner and Kaplan [6] investigated the achromatic receptive field (type 3)
and contrast responses of ganglion cells using the difference of two Gaussians.

In a more general way, the previous theories were made under various hypotheses but
failed to explain several visual properties simultaneously. Most problems were considered
individually, in isolation from other visual process. The above theoretical studies examined
directly the spatial receptive field organization. However, another possible type of model
can be obtained by investigating the first stages of the visual process, from visual receptors
to ganglion cells. Chromatic and achromatic signals are carried by several elementary cells
as cones, horizontal, bipolar, amacrine, or ganglion cells [21]. A receptive field structure is
the result of several specific connectivities of these neurons. In order to explain color
vision and light adaptation, Guth [15, 16], then De Valois and De Valois [9, 10] proposed

multi-stage models.
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Using a multiresolution approach for a vision process model is attractive and remains an
open question. Wavelets are mathematical functions which are localized in space and
analyze the signal according to scale. A sharp or a coarse analysis is known as a
multiresolution analysis. The wavelet theory can be used in two different manners. First,
the wavelets can be considered as a mathematical tool to investigate a signal as an
electroencephalogram one [32, 34] or an electrocardiogram one [36]. The wavelet theory is
especially used to investigate digital image coding [24, 25, 17, 30]. Second, the wavelets
can be considered as a mathematical tool for modeling physiological properties. Li and
Atick [23] have shown the principle of efficient visual coding as implemented through
multiscale representation. Bradley [3] described a model of the human visual system based
on the wavelet transform.
The choice of an adequate wavelet function is always a crucial and difficult factor. To
build an adequate wavelet we have to investigate the first stages of the neural coding.
Numerous studies [22, 38, 7] have shown that the opponent responses (ON-OFF responses)
appear in the early neural synapses. An adequate wavelet must take into account this
property. Moreover, considering the binocular vision, the visual judgments of the depth
produce by the disparity differences of two vertical lines play an important role [40, 26].
The studies of Bishop [2] concerning the position and orientation disparities are
particularly interesting. This author showed how signals originating in each eye are
combined to obtain a binocular standard receptive field. Therefore, these results have to be
taken into account to build a mathematical model.
We have to address the problem from the following standpoint. Is it possible to have a
single conceptual framework to provide a description of several processes?
In such a way, we built a wavelet which verified the three following conditions:

a) The theoretical curves obtained have to be similar to corresponding experimental
curves ON-OFF response and Bishop data [2]).

b) The number of required theoretical coefficients have to be small and each of these
have correspond to a given property of the visual system.

¢) The model can be used to account other visual mechanisms.
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2. Methods

Wavelet function

The basic characteristics of the early visual processing, inside the retina, are ON-OFF
responses. There are parallel pathways through the retina, with On-channels and Off-
channels [19, 40]. A receptive field is composed of an ON-region and an OFF-region. The
simplest function to model an "ON-OFF" signal is the Haar function H, defined by the

following relations [4]:

H(x)=0 if x<0
H(x)=1 if 0<x<05
H(x)=-1 if 05<x<1.0
H(x)=0 if x<1.0

1)

However, the Haar function, which is a wavelet, is not an adequate model to reflect a
visual processing. Indeed, this function shows angular points with a gap between the
positive and the negative value, whereas the response of the visual system is continuous
and regular, such as the transmission of a signal by a receptive field. A more appropriate
wavelet should be determined. A continuous rising or decaying phase of a curve can be
modeled by hyperbolic functions. We have defined over R* a function ¥, having a positive
and negative region, by:

B 1—tanh?(x)
~ tanh(c) tanh( x) — coth(c) coth( x) )

Py (%)

ceR"
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Fig. 1 Plots of the function W, for five c-values. For all curves, the coefficients "a" and "z" are the

same:a=0.2;z=0.

Such a curve can have a shape similar to a Haar curve (Fig. 1).

We have checked that the function W verifies the following conditions [4].

a) The function integral converges:.[jm\P(x)dx <0

b) The function integral is null: ij‘l’(x)dx =0

c) The Fourier transform of the function is null when @ = 0.

If =0, then: | Tw(x)edx =0

d) The function has a higher number of vanishing moments (1-order moment, 2-order

moment, the even moments are null).

Consequently, the function ¥ is a wavelet, assuming a positive and a negative part. Thus, it

is particularly well adapted to reflect an ON-OFF signal.


https://doi.org/10.1101/256867
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/256867; this version posted January 30, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Wavelet family

The function specified by the above formula (Eqg. 2) is a "mother wavelet”. From the
mother wavelet we have obtained a wavelet family by introducing a dilation coefficient "a"
and a translation coefficient "z". Therefore, the family wavelet is given by the following

formula:

1-tanh2(X=%)
a

Y, (x;a,c,2) = 1 X
" N tanh(c)tanh(X;Z)—coth(c) coth(X;Z) @)

aeR”™ zeR ceR"

Note that the function contains the coefficient "c" which does not form part of the classical
wavelet theory. However, this coefficient plays an important role, as we will see further on.
It allows taking into account some of physiological properties of the visual system,
inducing the shape of the curve (Fig. 1). If "c" increases, then the curve approaches a Haar
function. For a given value of "c", the theoretical coefficient "a" determines the wavelet

width (Fig. 2). By varying the translation coefficient "z", one can scan the x-space (Fig. 3).

Fig. 2 Plots of the function W, for four a-values. Curve 1: a = 0.10; curve 2: a = 0.08; curve 3:
a = 0.06; curve 4: a = 0.04. For all curves, the coefficients c and z are the same: c=7; z=0.
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0 10 20 30 40

Fig. 3 Plots of the function ¥, for five z-values. Curve 1: z = 0; curve 2: z = 10; curve 3: z = 20;
curve 4: z = 30; curve 5: z = 40. For all curves, the coefficients a and ¢ are the same: a=0.4; c = 6.

Bishop’s data

We compared the above wavelet versus the data published by Bishop [2]. The neural
mechanisms have been studied by this author in the striate cortex of the cat. A stereopair of
lines was viewed in a stereoscope. The two retinal images, XrYr (right eye) and X_ Y (left
eye) were at an angle to one another. The position disparity was deduced to the length of
the line YLYRr. The angle between the two images was the orientation disparity. The
orientation and position disparity changes occurred in the right eye with the left eye image
held constant. The position and orientation disparities were expressed in terms of a visual
angle. The data given by Bishop [2] are represented by the points in Fig. 5a and 5b. The
angle B was the orientation disparity for the right eye. The left eye image held constant at

93°. The data points were recorded in orientation steps of 3°.
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3. Results
If we assumed that one retina response is modeled by a wavelet, then, the combination of

two wavelets was able to reproduce the position and orientation disparities (two retina
responses).

First, let us consider two wavelets (Fig. 4) defined by:

Y, (x) =-¥Y(x;a,c,z,) and Y,(x)=Y(x;a,c,z,) (4)
0.5r vl
0
05 :
-4 2 0 2 4
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y2
0
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-4 2 0 2 4
o5- V1tw2
0
05 : : : : :
-4 -2 0 2 4
X

Fig. 4 The upper figure shows the wavelet Yi(x;a,c,z1), the central figure shows the wavelet
Y2 (x;a,¢,22) and the lower figure shows a binocular response. The wavelet coefficients are:
a=0.46;c=1,; z1=-0.32; zz = 0.44. The three curves share a common abscissa.

We introduced a theoretical angle o to represent the orientation disparity  and two
parameters A and B. The full amplitude of the resulting theoretical curve was adjusted to
the corresponding Bishop's curve by varying the parameter A and the position of the
resulting theoretical curve was given by the parameter B. Thus, we obtained the following

equation:
R(X; ) = Ax(sin(é—ga)x‘lfl(x)wlfz(x)) + B 5)

where X is the position disparity expressed in degree.

R(x;a) represents the theoretical binocular response for a given theoretical orientation
disparity a.

The locations of wavelet centers are z; and zz, respectively. The distance between the two
centers represents the distance between the two retinas. During the experimental

measurements this distance was held constant; zo — z; = constant.
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Second, the calibration of the model was achieved through a middle value of the
orientation disparity: B = 86°. For this value the experimental curve was a standard
receptive field. To model this curve, we have determined the values of the wavelet
coefficients. The coefficient "c" was chosen in an arbitrary manner by setting: ¢ = 1. The
other coefficients were calculated by minimizing the normalized root mean squared
deviations (NRMSD) between the data and the theoretical values. We obtained:

a=0.46,z; =-0.32, A =360, B = 165.

a(®) =B -59° (6)

2,=21+0.76 @)

The parameter A converts an arbitrary theoretical unit into the unit of Bishop’s data (a
number of spikes).

By using Eq. 5 we obtained the continuous curve of the Fig. 5a for = 86°.
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Fig. 5a and 5b At each orientation disparity 3, a curve of position disparity is plotted (x-axis in
degrees). The points represent the position disparity redrawn from Bishop [2]. The y-axis
represents the total spike count. The orientation disparities  are given at increment of 3°. The
continuous lines are obtained by combining two wavelets according to Eq. 5.

Third, the following results were obtained by using Eqs 5, 6 and 7, and the above values of
"a", A, and B. The disparity theoretical curves for the others -values were performed by
varying o.. As mentioned above, an increase in coefficient "c" produced an increase in the
theoretical curves. To match the theoretical curve to the experimental points, we calculated
a value of the coefficient "c" for each p-value. Following the same idea we calculated a z:-

value for each -value.

Table 1 summarizes the performance of the coefficients calculations. The NRMSD given

in this table are the minimal values which were obtained by varying "c" and "z1".

On the basis of this analysis, the theoretical curves of the Fig. 5a and Fig. 5b were
obtained. The relationship between "c" and the orientation disparity is revealed by the Fig.

6. To a first approximation, two linear relations can be regarded as satisfactory.
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Fig. 6 Coefficient "c" change plotted as a function of orientation disparity 3. The points were
deduced from the Table 1. The straight lines were obtained by use of a linear regression.

Table 1 Wavelet coefficients "c" and "z1" for a given orientation disparity.

B c z1 | NRMSD*
65° 0.35 -1.14 0.26
68° 0.40 -0.94 0.28
71° 0.45 -0.84 0.23
74° 0.55 -0.64 0.17
7° 0.70 -0.54 0.13
80° 0.80 -0.45 0.11
83° 0.90 -0.38 0.06
86° 1.00 -0.32 0.04
89° 1.00 -0.29 0.06
92° 0.90 -0.30 0.08
95° 0.76 -0.21 0.13
98° 0.66 -0.14 0.16
101° 0.40 -0.12 0.33
104° 040 | +0.11 0.36
107° 0.39 -0.05 0.34
110° 0.32 -0.01 0.43

* Normalized Root Mean Squared Deviation.
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4. Discussion
We defined a wavelet function which take into account different processes of the visual

information. We can obtain a plausible model by considering a certain number of visual

properties.

Shape of the theoretical and experimental curves

We now have good evidence that there are ON-OFF responses in the earlier levels of the
retina [31]. Consequently, we defined a wavelet which presents a positive region (ON), and
a negative region (OFF). Then, we could expect that such wavelet was able to model
binocular vision properties. Indeed, a good agreement was shown with the data found by
Bishop [2], in particular with the position and orientation disparities. It is particularly
interesting to compare the theoretical curves and the experimental points of the Fig. 5a and
Fig. 5b. The theoretical changes of the curves were obtained by varying the theoretical
orientation disparity o (Eq. 5). Likewise, the a-change was deduced from the pB-change
using Egq. 6. On the other hand, it is interesting to note that both theoretical and
experimental curve changes are the same. We can see figure 5a, for p = 65°, is a unique
right-hand minimum for a positive position disparity. As 3 (or o) increases, a second left-
hand minimum appears, located in a negative position disparity. This minimum increases
until the value of B reaches 86°. As B still increases, the second minimum progressively

decreases and disappears about 3 = 104°.

Theoretical coefficients

The required coefficients were in few in number: "c", "z", and "a". These estimated
coefficients have significant physiological interpretations.

Let us recall that the coefficient "c" was not deduced from the wavelet theory. Nevertheless
it has a specific meaning in the case of the binocular vision. Bishop [2] noticed that any
binocular response was larger than the sum of the corresponding monocular responses.
This property is reflected by the coefficient "c". The visual information processing
achieved through different channels. A channel feature should be characterized by a value
of "c" which is similar to an amplification coefficient. The Fig. 6 shows that the coefficient
"c" is not an arbitrary coefficient. Indeed, the coefficient "c" can be deduced from the B—

value.
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The coefficient "a" determines the wavelet width. The visual system adapts to the image
size. It can see a large surface or a small point. This property is reflected by the dilation
coefficient. The smaller the wavelet step, the better the analysis. The Bishop's data were
obtained with a stimulus width held constant. Consequently, the dilation coefficient did not
play any role in the present study. The representation of an image in the visual cortex
involves both spatial position and spatial frequency variables [20]. In the present study the
spatial variable is the position disparity x and the spatial frequency variable is the
coefficient "a" as we deduced from the Eq. 3.

The coefficient "z" is the classical translation coefficient of the wavelet theory. In the
present study it indicates the spatial position of a retina with regard to the incident
stimulus. If an eye position "z1" is used as a reference value, then the second eye position
"z2" may be known. Moreover, the visual system is able to scan the viewed surface. This
property is reflected by the translation coefficient. The actual eye movements explore a
viewed surface using numerous successive saccades [5, 11]. Each saccade is reflected by a
small variation Az of the translation coefficient.

We can conclude that the estimated coefficients used in our study are consistent with the

basic properties of the visual system.

Chromatic receptive fields and contrast sensitivity function

The present wavelet model can be used to build various chromatic fields, as we have
shown in a previous study [14]. We have defined chromatic wavelets in the following way.
For example, the positive segment of a chromatic wavelet represented a response of a
green stimulus and the negative segment represented a response of a red stimulus. Thus,
we obtained a chromatic wavelet Green-Red. Such a wavelet modeled one of the curves
given by De Valois and De Valois [9, 10]. Under the same conditions we obtained a Blue-
Yellow wavelet. The De Valois and De Valois [9, 10] chromatic curves were obtained by
combining several chromatic wavelets. Then, the simple chromatic receptive fields (type 1
and 3, for example) were obtained by a linear combination of two chromatic wavelets. The
more complex chromatic receptive fields (type 2, 2-modified, Double Opponent Cells)
were obtained by combining several chromatic wavelets.

After obtaining an adequate wavelet function, it becomes possible to use all the properties
of the wavelet theory. The wavelet transform is a particularly appropriate tool to model
other visual system properties, such as the contrast sensitivity function, or the view of an

illuminance gradient between a bright and a dark area [13]. The wavelet transform
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provides a flexible window which automatically narrows when observing high frequency

phenomena and widens when observing low frequency phenomena.
5. Conclusion

In the present approach, several properties of the visual system were modeled within a
single conceptual framework. Even in view of the progress of wavelet analysis in recent
years, the question is far from being settled. The place of the wavelet in the visual
processing levels cannot easily be found. However, the wavelet function and the wavelet
transform reflect a visual processing hierarchy. Such a representation is very economical in
terms of coefficient number. We have shown that a model based on the wavelet theory
enables one to find several visual properties. At the output of the retina, i.e. the ganglion
cells, the wavelet is consistent with the measured responses. At another stage of the
process, linear combinations are consistent with binocular vision properties. Finally, a
wavelet transform can be situated at the cortical regions. We have explored the theory in
simple visual systems with a static object, without eye movement. The model presented
here is a first approach. Predictions of visual performances would require a study of
various variables as time or movement. A more elaborated model should include

recognition of objects at a distance.
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