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Abstract 
The critical role of alternative splicing (AS) in cell functioning has recently become apparent, 
whether in studying tissue- or cell-specific regulation, or understanding molecular mechanisms 
governing a complex disorder. Studying the rewiring, or edgetic, effects of alternatively spliced 
isoforms on protein interactome can provide system-wide insights into these questions. 
Unfortunately, high-throughput experiments for such studies are expensive and time-consuming, 
hence the need to develop an in-silico approach. Here, we formulated the problem of 
characterization the edgetic effects of AS on protein-protein interactions (PPIs) as a binary 
classification problem and introduced a first computational approach to solve it. We first 
developed a supervised feature-based classifier that benefited from the traditional features 
describing a PPI, the problem-specific features that characterized the difference between the 
reference and alternative isoforms, and a novel domain interaction potential that allowed 
pinpointing the domains employed during a specific PPI. We then expanded this approach by 
including a large set of unlabeled interactomics data and developing a semi-supervised learning 
method. Our method called AS-IN (Alternatively Splicing INteraction prediction) Tool was 
compared with the state-of-the-art PPI prediction tools and showed a superior performance, 
achieving 0.92 in precision and recall. We demonstrated the utility of AS-IN Tool by applying it 
to the transcriptomic data obtained from the brain and liver tissues of a healthy mouse and 
western diet fed mouse that developed type two diabetes. We showed that the edgetic effects of 
differentially expressed transcripts associated with the disease condition are system-wide and 
unlikely to be detected by looking only at the gene-specific expression levels.  
 
Introduction 
Protein-protein interactions (PPIs) underlie many key mechanisms of cellular functioning (1). 
With thousands of PPIs simultaneously occurring in every cell of an organism, an average protein 
is expected to interact with two or more other proteins forming large molecular assemblies, 
transporting proteins, facilitating a chemical reaction, protecting the organism from pathogens, 
and carrying out other basic functions (2-4). Throughout the past two decades, there have been 
efforts in characterizing the experimentally confirmed PPIs by describing the structure of 
molecular complexes and interaction interfaces formed through the PPI (5, 6), determining a 
protein function that is controlled by the interaction (7), and understanding the evolutionary 
principles shared between the homologous interactions (8, 9). More recently, several studies have 
been published that focus on studying the interaction-rewiring, edgetic, effects of genetic 
variations cause by genetic diseases (10, 11). The edgetic effects on the whole protein 
interactome of other types of variation, such as copy-number variation, epigenetic variation, and 
transcriptional variation, or alternative splicing, are far less studied (2, 12). 
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Alternative pre-mRNA splicing due to either natural or disease-causing variation in transcriptome 
is a process by which the same gene can result in different gene products through selective 
inclusions and exclusions of the gene’s exons and introns (13).  While many alternative splicing 
events naturally occur in different tissues, cells, and under different cellular conditions, a growing 
number of alternatively spliced genes have been associated with genetic disorders, including 
cancer, neurodevelopmental and heart diseases, and others (2, 14, 15). Alternative splicing has 
been shown to alter the protein function (16). The range of functional variation between the 
alternatively spliced isoforms may vary drastically: from a complete loss of original function, due 
to misfolding and removal by the cell degradation mechanism of the corresponding alternatively 
spliced isoform, to a subtle difference in the protein functioning, or perhaps the gain of a new 
function, due to acquiring by the isoform of a new exon that encodes a new functional protein 
domain. Recently, a high-throughput interactomics study has demonstrated a wide-spread 
interaction rewiring by the alternatively spliced gene products (12). In some cases, new 
interactions were shown to be formed. In spite of being very accurate, these large-scale 
experiments are time-consuming and expensive. Thus, there is a need for a cheaper and faster, in-
silico, approach. However to date, no computational approaches that predict the edgetic effects of 
alternatively spliced variants have been introduced. 
 
Here, we propose and compare two machine learning approaches that predict if an alternatively 
spliced isoform will disrupt the original interaction originally formed by a reference isoform. 
Machine learning has been previously used in bioinformatics applications that focus on 
characterization of functional effects caused by the genetic and posttranscriptional variation (10, 
12). The applications often define this problem as a classification task and leverage supervised 
learning approaches, including deep learning, where the training set includes labeled variants for 
which the function is known and is experimentally validated. The supervised learning approach is 
designed to benefit from the labeled training set in order to provide an accurate prediction, 
however the labeling (i.e., functional annotation) may not be feasible for large datasets required 
by many supervised methods. As an alternative option, a semi-supervised learning method can be 
introduced, where in addition to the labeled training set, the method can benefit from the 
knowledge of a large unlabeled dataset, i.e., consisting of alternatively spliced isoforms with 
unknown functional effects. The semi-supervised learning methods have been popular in the 
areas of data mining and pattern recognition (17), and have recently been applied to the biological 
and biomedical data (10, 18). 
 
Both of our new methods, supervised learning and semi-supervised learning, leverage features 
that focus on determining and characterizing the key differences between the reference isoform 
that is involved in the original PPI with bait, protein and the alternative isoform whose rewiring 
property we need to determine. The assessment of the methods has shown that both methods 
perform remarkably well, correctly characterizing 9 out of 10 alternatively spliced variants. We 
then demonstrate the utility of this approach by applying it to the tissue-specific transcriptomics 
datasets obtained from the healthy and western diet-fed and obese mice with the goal to 
discovering the disease-specific variants with the interaction-rewiring functional impact. In 
summary, the proposed novel approaches for characterization of edgetic effects of alternatively 
spliced genes provide a cheap and fast, but nevertheless accurate, alternative to the interactomics 
experiments and can be used to streamline the high-throughput experimental design by focusing 
on the most promising candidate isoforms. 
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Methods 

Overall design and problem formulation 
Our approach, Alternative Splicing INteraction prediction Tool (AS-IN Tool), is designed to 
address a problem of characterization the rewiring, or edgetic, effects of alternative splicing, 
which can be formulated as the following binary classification problem (Fig. 1A): Given a 
known, reference, isoform A1 that is involved in a protein-protein interaction A1−B, with another 
protein B, will an alternatively spliced isoform of A1, A2, preserve the interaction with B or 
disrupt, i.e. eliminate, it? Triplets (A1, A2, B) where A2 preserve the interaction with B, given the 
knowledge that A1 and B interact, are labeled as members of the negative class. Alternatively, 
triplets (A1, A2, B) where the alternatively spliced isoform A2 will disrupt the interaction with B 
are labeled as members of the positive class. Each of the two developed methods presented in this 
work is a feature-based approach (Fig. 1B). Specifically, the features encode the information 

concerning the known interaction A1−B, 
and information about the changes 
between A2 and A1 that may result in the 
disrupted interaction. 

Supervised classifiers  
Support Vector Machines (SVM) belongs 
to a family of widely used supervised 
classifiers (19). It is also among the most 
well-established and popular machine 
learning approaches in bioinformatics 
(20, 21). SVM classifiers range from a 
simple linear, maximum margin, or 
classifier, where one needs to find a 
decision boundary separating two classes 
and represented as a hyperplane in a 
multi-dimensional feature space, to a 
more complex classifier represented by a 
non-linear decision boundary through 
introducing a non-linear kernel function. 
Here, two kernel functions were 
explored: linear and radial basis function 
(RBF) implemented in libsvm library 
(22). For the SVM models, the parameter 
optimization was performed using grid 
search. Optimal values gamma=0.005 
and C = 9 were obtained after the search 
in range from gamma=0.001 to gamma=1 
with a step 0.002, and from C=1 to 
C=100 with a step 1.  
  
Next, since a majority of our features are 

 
   Figure 1: A. Characterization of edgetic effects of AS on PPI 
formulated as a binary classification problem. B: Outline of the 
overall computational approach. 
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not correlated, one can expect for another supervised learning classifier, random forest (RF), to be 
well-suited for the dataset. Random forest (23) is an ensemble classifier, which combines 
multiple supervised learning classifiers to get a prediction. Random forest uses the ideas of 
bagging and random split decisions to predict a class of untrained vectors. In bagging, a random 
selection of the examples in the training set is used to build each decision. A random forest 
algorithm consists of three basic steps: 

1. Draw bootstrap samples; 
2. Build decision tree for each sample with the following modifications: select best predictor 

for node not from all available features but from their random subset; 
3. Predict class based on the majority vote of resulting trees. 

In this work, the random forest models were trained using scikit-learn package (24), with the 
default parameters, including Gini criterion. 

Semi-supervised classifier based on iterative self-learning random forest 
One of the main bottlenecks of supervised learning is the cost of labeling data. The idea behind a 
semi-supervised learning approach is to utilize a large amount of unlabeled data to improve 
results of the supervised algorithm. There is a number of existing approaches to the combining of 
labeled and unlabeled information that try to exploit the underlying structure of the unlabeled 
data. In most cases, the learning algorithm attempts to find clusters in order to modify the 
decision boundaries. Here, we implement a simple semi-supervised learning approach, called 
iterative self-learning random forest, that has previously shown to outperform more advanced 
semi-supervised learning methods on the protein interaction data represented by heterogeneous 
features (10). The algorithm starts with a labeled training dataset and a pool of unlabeled feature 
vectors (Fig. S1, Supplementary Data). At each step, the algorithm trains a supervised learning 
classifier on the labeled training set. Then, it evaluates the model using a grouped 10-fold cross-
validation over the training set. Next, the algorithm is applied to the remaining unlabeled dataset, 
predicting their labels, selecting several examples, and adding them to the training set. After 
multiple iterations, the model with the best evaluation score is selected. 

Feature design, evaluation, and selection 

The question we are answering in this work, if the alternatively spliced isoform A2 would retain 
an interaction originally established between the reference isoform A1 and its interaction partner, 
is somewhat similar to the PPI prediction task. However, here we want to leverage alternative 
splicing information and the knowledge about the previous interaction as much as possible. This 
naturally imposes a structure on the features we generate. So far we are using 3 groups of 
features: (1) biochemical features of the reference isoform and its interacting partner, (2) domain 
interaction statistical potentials, and (3) so-called delta features. The first group of features are the 
most straightforward ones and are inspired by the PPI prediction methods (25). These features 
provide a general outline of different properties of the known interaction. Biochemical features 
include molecular weight, number of residues, average residue weight, charge, isoelectric point, 
A280 molecular extinction coefficient for both reduced and cysteine bridges, and several others 
characteristics (Table S1, Supplementary Data).  
 
The second group represents novel features derived from our DOMMINO database of 
macromolecular interactions (25). The rationale behind using this group of features is the 
following: given that an average protein includes multiple protein domains (1), it is important to 
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know which domains are directly involved in a particular PPI. The interdomain interaction is one 
of the major driving forces behind a protein-protein interaction, with the protein domains often 
having preferences of interacting with other protein domains. Thus, the frequency of domain-
domain interactions differs across different families of related domains. The quantification of 
those odds is defined as the statistical potential. There are two types of statistical potentials 
introduced in this work: (1) calculated for a domain from a specific domain family, and (2) 
calculated for a pair of domains. Statistical potential Pi for a single domain Di is calculated based 
on the total number of interactions NDi extracted from our DOMMINO database for the specific 
SCOP family (26) this domain belongs to. The SCOP families for each protein sequence are 
defined using SUPERFAMILY tool (27). Statistical potential Pij for a pair of domain Di and Dj is 
calculated based on the total number of occurrences Nij of the interactions between all domains 
from the same two SCOP families as Di and Dj. Those numbers were transformed into probability 
using Maxwell-Boltzmann statistic: 
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where Nmean is the average number of interactions for one domain and M is the average number 
of interactions for a pair of domains present in database. 
 
The third group, the “delta” features, includes selected characteristics of alternative splicing 
events. Specifically, the features are designed to capture the differences between the original 
reference isoform and alternatively spliced variant, which may result in a loss of interaction. 
There are four subgroups of these features. The first subgroup includes features describing the 
difference in the biochemical characteristics between the reference isoform A1 and alternatively 
spliced isoform A2. The second subgroup includes the difference between the statistical potentials 
of A1 and A2. The third subgroup is a set of simple sequence features that can be computed with a 
basic sequence alignment, but nevertheless may provide important knowledge. For instance, an 
exon skipping event that results in a large portion of protein missing, is usually more detrimental 
to interaction than several small exon skipping events. Similarly, the modifications in N- or C-
termini are less likely to result in the interaction rewiring than an equal-sized modification 
occurring in the protein body. The last subgroup is reliant on SCOP family domain information 
defied by SUPERFAMILY tool (27), which allows determining if the alternative splicing affects 
specific protein domains. 
 
To improve performance of the classifiers, three feature selection methods were explored 
including LASSO, recursive feature elimination (RFE), and principal component analysis (PCA) 
(28). LASSO is a regression model with l1 regularization. Because of the l1 penalty, a solution for 
the regression naturally contains zero coefficients for many features, thus discarding them from 
the model. RFE is a widely used feature selection algorithm that consecutively removes one 
feature from the model and evaluates the results using cross-validation. The optimal number of 
features is also determined by cross-validation. The last feature selection method, PCA, is a 
technique that performs the orthogonal transformation on the feature set to obtain linearly 
uncorrelated components. The number of selected principal components was determined by the 
98% explained variance cutoff threshold. Feature selection methods produced varying results for 
SVM and failed to improve performance of the random forest classifier, which, in turn, showed 
the most accurate performance among all supervised methods in our study. This result was 
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expected, since the total number of features is significantly smaller than the number of samples, 
so the random forest model does not overfit, and the influence of less informative features’ is 
limited due to the random subspace selection. 
 
Lastly, we analyze the importance of the individual features. For the calculation of feature 
importance, we use the mean decrease of impurity in the random forest model, our top-
performing supervised classifier. This is a tree-specific metric, and is directly related to the Gini 
impurity, calculated at each tree node (23). The same feature is present in multiple trees in a 
random forest model, thus the average decrease in impurity integrates the feedback from all trees 
that contain this feature.  

Method assessment 
The performance of the supervised and semi-supervised learning methods is assessed using two 
evaluation protocols: the cross-validation and comparison with the state-of-the-art ab-initio PPI 
prediction methods. The purpose of cross-validation is to obtain reliable evaluation of the fitted 
model. It helps to avoid overfitting, a phenomenon which occurs when the model is trained to be 
oversensitive to some specific signals present in a sample from a training set, but not common for 
the general population. The main idea is to divide the dataset into k subsets. Then, multiple 
iterations of retraining and re-evaluating model are carried out. For every iteration, the dataset is 
divided into a test set (represented by one of k subsets) and a training set (the rest of the data). 
Many variations of the cross-validation protocol exist based on the value of k, with leave-one-out 
cross-validation (k=1) and 10-fold cross-validation (k=10) being the most common. 10-fold cross-
validation is deemed to be one of the most stable protocols, so we are using it in this work. 
 
Regular cross-validation performs well if we can consider each of the data points to be truly 
independent. Unfortunately, it is not a case for our dataset, where multiple isoforms are the 
products of the same gene. If one subset of related isoforms is present in the training set and 
another subset is present in the testing set, then our model is provided with unfair advantage 
during the evaluation. Since we are expecting the model to generalize well, and thus, to work on 
novel isoforms, with no prior information about them, we want our evaluation to be as close to 
this scenario as possible. Therefore, the original 10-fold cross validation is modified into a 
grouped cross-validation. Specifically, we group all isoforms that are products of the same gene, 
and each group is then allocated exclusively either into the training set or into the test set. This 
grouped cross-validation protocol is more stringent and thus is expected to reduce the reported 
accuracy of the method. 
 
In our second evaluation, we compare the performance of our methods with the state-of-the-art ab 
initio PPI prediction tools, including TRI_Tool (M1) (29), LR_PPI (30) with negative set 1 (M2), 
and LR_PPI with negative set 2 (M3). One can apply each of these tools to predict if a PPI 
between A2 and B exists, independently of the knowledge of whether or not A1 and B interact. 
 
The performance of each method is measured using standard measures, including accuracy (Acc), 
recall (also called sensitivity, Rec), precision (Pre), f-measure (F1-score), Matthews correlation 
coefficient (MCC), and area under the curve (AUC). Area under the curve can be computed with 
the help of Gini coefficient (𝐺!): 

𝐴𝑈𝐶 = !!!!
!
𝐺! = 1− 𝑋! − 𝑋!!! 𝑌! + 𝑌!!! , 
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where 𝑋!  is a true positive rate (TPR), and 𝑌! is a false positive rate (FPR) for the threshold i. A 
pair (𝑋!,𝑌!) defines a point on the receiver operating characteristic (ROC) curve. 

Datasets 

For training and evaluation of the supervised machine learning classifiers, we use an 
experimental human high-throughput interactomics dataset developed for the purpose of 
analyzing AS effects (12). This dataset is initially randomly split for 10 fold cross validation 
protocol.  However, the folds are then modified to ensure all isoforms related to a gene are either 
in the test or training split, as described in the group cross validation protocol above.  
 
The second dataset of unknown effects by alternative isoforms is used as a source of the 
unlabeled data in the training of the semi-supervised classifier.  To obtain the unlabeled dataset, 
we first consider another high-throughput human interactome (12, 31-34). We then remove RNA-
protein interactions as well as interactions from the oligomeric complexes, leaving only PPIs 
between two individual proteins.  Then, to compile a list of AS isoforms for all proteins that are 
involved in the pre-processed list of PPIs, we downloaded the protein, gene, and isoform 
mapping from Ensembl (GRCh38 version 91) (35).  All protein-coding isoforms related to a 
reference protein that is involved in a PPI are then included into our list of AS isoforms. 

Case Study: An application of AS-IN to the diabetes-centered mouse interactome 
To test the utility of our approach, AS-IN is applied to study how alternatively spliced isoforms 
in a mouse model of type 2 diabetes (T2D) can rewire a disease-centered interactome. The dataset 
used for our case study is obtained from an environmentally derived T2D mouse model (36), 
where we extracted and analyzed RNA-Seq from brain and liver tissues between the diabetic and 
normal control mice. Previous studies have demonstrated that ingesting a western diet (WD), high 
in fat and refined carbohydrates, leads to activation of the Akt and mTOR pathways (37).  The 
activation of these signaling processes from the food intake, in turn, has been shown to result in 
inhibiting insulin metabolic signaling and leading to T2D (38).  Specifically, after 3 months of 
feeding the WD to C57BL/6J mice, T2D is developed.  To explore the AS effect on T2D in this 
pilot study, we selected two mice: one fed WD and one without.  From these mice, brain and 
liver were dissected and preserved using standard techniques. 
 
Using Qiagen’s RNeasy Mini Kit, total RNA is isolated from the dissected brain and liver 
samples.  Library preparation for RNA-Seq is done using TruSeq RNA v2 to isolate mRNA and 
prepare for sequencing.  After validating RNA quality using RNA integrity number (RIN) on an 
Agilent 2500 BioAnalyzer, samples are deep sequenced on an Illumina HiSeq 2000 using 2 lanes 
for each sample to achieve close to 100 million 75 paired-end reads per sample. The RNA 
sequencing analysis pipeline includes Trimmomatic with default settings to remove the low 
quality reads (39), Tophat v2 to align on GRCm38.p5 (40), and Cufflinks v2 to reassemble and 
quantify expression levels (41).  Due to only 1 sample per group (WD or wild type, brain or 
liver), we cannot rely on standard statistics to determine relevant isoforms.  Thus, we use a strict 
cutoff of 5 log2-fold changes between WD and wild type mice, for each of the two tissue types, to 
identify the relevant isoforms.   
 
The initial set of the relevant isoforms is further reduced based on the known gene association to 
T2D. To do that, we collect the data from Type 2 Diabetes Knowledge Portal 
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(http://www.type2diabetesgenetics.org/), which houses the data from multiple genome-wide 
association studies (GWAS) to identify genetic associations from single nucleotide variations 
(SNVs) with diabetes type 2 (42).  We downloaded the data from 9 GWAS studies (43-45) and 
selected the genes that are near to or carry SNVs with a p-value of 5*10-5 as associated with T2D. 
Finally, as a source of the reference PPIs, we construct the mouse interactome from STRING 
database, selecting all mouse PPI that have at least one experimental reference (46). 
 
Results 

Datasets and feature statistics 
The first dataset (D1) used to generate the training set for the supervised learning classifiers 
includes 2,501 interactions from 638 genes with 881 alternative spliced isoform. The number of 
isoform products each gene has ranges from 2 to 110, with an average of 14 isoforms per gene. 
The second dataset (D2) composed of known human PPIs (12, 31-34, 47) included 5,460 unique 
known interactions mediated by the total of 1,230 unique proteins (i.e., reference isoforms), 1,082 
of which had at least one alternative isoform (in addition to the reference isoform). In total, 4,885 
unique alternative isoforms were identified, and 42,654 new, unlabeled, triplets (A1, A2, B) were 
formed, where A1 interacts with B, but it is not known whether A2 interacts with B.  For this 
second dataset, the number of isoforms for each gene ranged from 1 to 92 with an average of 32 
isoforms per gene. The number of interactions per gene range from 1 to 680, with an average of 
31.96 interactions per protein. 
 
Of the three groups of features generated for each data point, perhaps the sparsest were the 
features corresponding to the occurrence frequency of the SCOP domains. This phenomenon was 
due to the fact that not all proteins were capable of having at least one SCOP domain predicted 
using SUPERFAMILY. On the other hand, not all SCOP families were represented across the set 
of proteins from D1 or D2 equally well.  Of 356 proteins in D1, 260 had 1 to 8 SCOP domains 
predicted by SUPERFAMILY, with a mean of 1.4.  Similarly, for 4,028 proteins in D2, 2,917 had 
1 to 25 SCOP domains annotated by SUPERFAMILY, with a mean of 2.  
 
Another interesting question was whether any of the delta features (third group, see Methods for 
more details) could be used to provide an accurate separating boundary. For instance, if an 
alternatively spliced isoform altered more than k residues of the reference isoform, then the 
alternative isoform would be predicted to eliminate the original interaction. There was a wide 
range of changes for each feature type, with the values seemingly independent of the fact if the 
alternative isoform disrupted the original interaction or not (Fig. 2A, B, C). The changes in the 
SCOP domains architecture in the alternative isoform, compared with the reference isoform can 
be grouped into three categories: no change, deleted domain, or modified domain. For D1, there 
were 874 (90%) reference isoforms with no change, 99 (10%) isoforms with at least one SCOP 
domain deleted, and 374 (38 %) with at least one SCOP domain modified.  For D2, there were 
11,456 (33%) reference isoforms with no change, 23,120 (67%) with at least one domain deleted, 
or 16,390 (47%) with at least one domain modified. 
 
Method Evaluation 
First, using D1, we evaluated the prediction accuracy of three supervised machine learning 
classifiers: SVM with linear and radial basis function kernels and random forest (Fig. 2D, Table 
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S2 in Suppl. Data). The results of 10-fold cross validation showed that random forest clearly 
outperformed the two SVM models, reaching the accuracy of 0.86, f-measure of 0.91, MCC of 
0.65 and AUC of 0.81. Next, to evaluate the importance of protein domain feature information, 
we assessed the same methods, but with two different feature vector definitions, one that includes 
the protein domain features, another one that excludes them.  Without protein domains, the 
performance slightly dropped, with the accuracy values ranged from 0.82 to 0.84, precision from 
0.85 to 0.88, recall from 0.91 to 0.94, F1-score from 0.88 to 0.89, MCC from 0.49 to 0.58, and 
AUC from 0.72 to 0.78. Similarly, to evaluate the importance of using the delta feature 
information, we assessed the same supervised classifiers with or without these features.  Without 
delta features the performance dropped, with the accuracy values ranging between 0.73 and 0.74, 
precision ranging between 0.73 and 0.75, and with MCC dropping to a record low range between 
0 and 0.09, with the recall being the only metric that improved, ranging from 0.96 to 1.0. 
  
Our second machine learning approach is a semi-supervised learning classifier, which 

 
Figure 2. Feature analysis and comparison of our machine learning models with general PPI prediction 
methods across 4 different metrics (accuracy, F1-score, MCC and AUC). (A) A correlation plot between 
features used for training machine learning models showing three distinct blocks which are associated with 
biochemical features of reference isoform, biochemical features of interacting protein and delta biochemical 
features. Each of those blocks is separate and does not show high correlations with other blocks. (B) A 
scatterplot based on delta frequency of leucine and another delta of 280MERC coefficient is a typical example of 
how the feature values are distributed between the representatives of two classes, suggesting that the pairwise 
comparisons cannot separate two classes well. (C) Isomap visualization of all features through a low-
dimensional embedding. Even through powerful manifold learning, we are unable to obtain separable classes in 
2D space, which suggests that the problem is challenging. (D) Performance of our supervised (blue) and semi-
supervised (purple) methods vs. three current ab-initio PPI prediction methods (orange) across four metrics.  
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incorporates a large number of unknown label data to train the model.  As a result, during the 
cross-validation the method provided the most accurate performance of all other methods.  The 
assessment values were: accuracy 0.88 (improvement of 0.02 over the top supervised learning 
classifier), precision 0.92 (improvement of 0.02), recall 0.92 (same as the top supervise 
classifier), f-score 0.92 (improvement of 0.01), MCC 0.7 (improvement of 0.05), and AUC 0.84 
(improvement of 0.03). 
 
To the best of our knowledge, this is the first work where a problem of determining the rewiring 
effect of an alternatively spliced isoform is addressed using a computational approach. However, 
the same question can be potentially addressed by (1) assuming that the alternative isoform is a 
new protein, and (2) predicting whether the isoform interacts with the corresponding interaction 
partner using an ab initio PPI prediction method, i.e., without prior knowledge about the 
interaction of the reference isoform and the same interaction partner. Our evaluation of the three 
state-of-the-art ab initio PPI prediction methods has shown that neither of the methods can be 
reliable used for our problem: the accuracy ranged between 0.46 and 0.58, recall values ranged 
between 0.29 and 0.5, precision was between 0.5 and 0.52, f-score was between 0.36 and 0.4, 
while MCC was between 0 and 0.05 (Fig. 2D). 

Case Study 

To demonstrate the utility of AS-IS Tool and extent to which the AS can ‘rewire’ a disease-
centered PPI network, we used our method to predict the edgetic effects due to the disease-
specific AS occurring in the brain and liver tissues and obtained from the RNA-Sequencing 
(RNA-Seq) data extracted from the tissue samples of the healthy mouse and Western Diet (WD) 

 
Figure 3: Case study of diabetes-centered mouse interactome.  Network focused on alternatively spliced 
isoforms expressed in the liver and brain tissues, which were found drastically different (at least 5 fold of log2 
expression values) between the control and T2D mice induced through Western Diet.  The effect of the 
alternative isoforms was predicted as either disrupting the original PPI (red) or preserving it (blue).  To provide 
context within diabetes, genes that are associated with T2D are colored magenta, while their interaction partners 
are colored gray. A few well-studied genes linked to T2D are highlighted: map3k7, yes1, spry1, dlg1, and ywhaz. 
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fed mouse that developed T2D.  Our deep RNA-sequencing data resulted in 1,899 AS isoforms 
from 1,608 genes for brain and 5,951 AS isoforms from 3,942 genes for liver with drastically 
different expression levels (>5 fold) between diabetic and normal mice samples.  In total, 6,745 
unique isoforms that were drastically differentially expressed were collected for both tissue types. 
 
We then used the experimentally confirmed interactomics data extracted from the STRING 
database to define 46,862 PPIs mediated by 7,730 mouse proteins corresponding to 7,630. The 
obtained mouse interactome was considered as the “reference” interactome. Combining this 
information with the obtained RNA-Seq data allowed us to provide the reference interactome for 
135 out of 6,745 unique proteins that were involved in 489 PPIs (Fig. 3). The 135 proteins 
corresponded to the reference isoforms for which 135 alternative isoforms were extracted, and 
AS-IS Tool was applied to see the edgetic effect of AS. Furthermore, we extracted 1,399 genes 
from T2D database, three of which were found in our dataset of 135 proteins associated with T2D 
(Fig. 4); these three proteins contributed to 17 PPIs.  In summary, AS-IN Tool predicted 128 
(26%) interactions, including 10 (59%) T2D-associated interactions to disrupt the corresponding 
reference interactome (Fig. 3). 
 
Discussion 
This work describes the first computational approach, AS-IN Tool, which attempts to 
characterize the edgetic effects of alternatively spliced isoforms on a protein-protein interaction.  
We formulate this problem by taking advantage of a known PPI, and then characterizing the 
difference between the reference and alternative isoforms. We develop two feature-based 
classification methods that leverage the supervised and semi-supervised learning paradigms, 
taking advantage of traditional features characterizing a PPI and learning the difference caused by 
alternative splicing.  When comparing our top models with the start-of-the-art sequence-based 
PPI prediction tools, the accuracy of both supervised and semi-supervised methods dominated all 

 
Figure 4: Case study of a gene associated with T2D, whose alternatively spliced isoforms were predicted 
by AS-IN Tool to rewire some of the currently known PPIs. A. The gene architecture, protein domain 
architecture, and structure based characterization of the alternatively spliced isoform of ywhab gene. The red part 
of the protein corresponds to the seventh exon and is spliced out in the alternative isoform, A2. B. As a result, 
two interactions were predicted to be disrupted by the alternatively spliced isoform A2 that had been determined 
to be significantly overexpressed in the tissue samples of WD-fed mouse with T2D disease phenotype, compared 
with the control. 
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three current methods. Furthermore, with the accuracy, precision and recall surpassing 90%, AS-
IN Tool becomes a great alternative to the experimental approaches and the only accurate 
computational approach for this task.  
 
While we understand that the results of predicting edgetic effects of AS isoforms on mouse 
interactome for our case-study are mere predictions that need experimental validations, we hope 
that our method can streamline the expensive and time-consuming high-throughput interactomics 
approach by first identifying a pool of candidate genes for the primer libraries and then 
pinpointing the isoforms of the outmost interest. AS-IN Tool is available for use as python 
software package located at https://github.com/korkinlab/asintool.  
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