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ABSTRACT 

 Metastasis is the primary cause of cancer patient morbidity and mortality but due to 

persisting gaps in our knowledge, it remains untreatable. Metastases often occur as patients’ 

tumors progress or recur after initial therapy. Tumor recurrence at the primary site may be driven 

by a cancer stem-like cell or tumor progenitor cell, while recurrence at a secondary site is driven 

by metastatic cancer stem cells or metastasis-initiating cells. Ongoing efforts are aimed at 

identifying and characterizing these stem-like cells driving recurrence and metastasis. One 

potential marker for the cancer stem-like cell subpopulation is CD117/c-kit, a tyrosine kinase 

receptor associated with cancer progression and normal stem cell maintenance. In our analyses, 

CD117 was expressed in several tissues and was highly expressed in bone marrow progenitor 

cells. Also, we uncovered that CD117 gene amplifications and mutations occurred in multiple 

cancers. Further, activation of CD117 by its ligand stem cell factor (SCF; kit ligand) in the 

progenitor cell niche stimulates several signaling pathways driving proliferation, survival, and 

migration. These signaling pathways were commonly altered in patients with CD117 

amplifications and mutations. Here, we examine evidence that the SCF/CD117 signaling axis 

controls cancer progression through the regulation of stemness and resistance to tyrosine kinase 

inhibitors. 
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1. Introduction 

 Primary tumors, when caught early, can be treated and in some cases the cancer is 

considered cured. A subset of patients will experience a recurrence of the primary tumor in the 

same site and it is hypothesized that this is due to remaining therapeutic resistant cells called 

cancer stem cells (CSCs). The CSC theory postulates that a subpopulation of tumor cells 

remaining after resection drive recurrence, while tumor cells surviving the circulation and arresting 

at metastatic sites driving tumor growth are metastatic CSC [1]. In either case, CSCs are capable 

of self-renewal and asymmetric division and may be able to recapitulate the initial tumor 

heterogeneity. Further, these CSC are more resistant to most treatments [1]–[8]. 

 Cancer progression and therapeutic resistance are directly related to metastasis, the main 

cause of cancer-related death. Currently there are no interventions to prevent metastasis or, in 

many cases, to treat the metastatic tumor. Thus, there is a need to understand how cells enter 

and survive the circulation and then develop into overt metastases in another niche or home. One 

current hypothesis in the field is that a subset of tumor cells control metastasis; while in the 

circulation these cells are called circulating tumor cells (CTCs) and when in the metastatic niche, 

disseminated tumor cells (DTCs). Although approximately 3.2x106
 cells/g tissue are shed from 

tumors daily, <0.01% develop into metastases [9],[10]. Thus, not all CTCs and DTCs can form a 

micro- or macrometastases, as many cells remain dormant within the metastatic tissue and many 

do not survive the shear stresses, oxygen tension changes, and other dangers of the circulation. 

Growth of the metastatic tumor and recapitulation of the primary tumor heterogeneity in a 

secondary site are driven by metastatic CSCs [11],[12]. Asymmetric division of CSCs allows for 

the maintenance of the CSC population as well as expansion of cells representing the full 

spectrum of the original heterogenic tumor. 

 Several markers for CTCs and CSCs have been postulated in the literature [13]. We and 

others have demonstrated that CD117 is expressed in aggressive cancers, on CTCs, and in 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 11, 2018. ; https://doi.org/10.1101/256099doi: bioRxiv preprint 

https://doi.org/10.1101/256099
http://creativecommons.org/licenses/by/4.0/


 
 
 4 

recurrent and resistant tumors [14]–[17]. This review will examine the evidence that CD117 and 

its activation in CSCs may control tumor progression and therapeutic resistance.  

 

2. Biology of the CD117 Receptor 

The CD117 gene, officially known as “v-kit Hardy-Zuckerman 4 feline sarcoma viral 

oncogene homologue,” is also more commonly known as c-kit, kit, or stem cell factor receptor. 

The CD117 gene consists of a single copy located on chromosome 4 (4q12) encompassing ~88 

kBases (kb) (base pairs 54,657,927 to 54,740,714) and spanning 21 exons producing a transcript 

of 5.23 kb. The cDNA of CD117 encodes a 976 amino acid protein of 145 kDa. The resultant 

protein is a type III receptor tyrosine kinase containing an extracellular domain with 5 Ig-like loops, 

a 23 amino acid highly hydrophobic transmembrane domain, and an intracellular domain with 

tyrosine kinase activity split by a kinase insert in an ATP-binding region and in the 

phosphotransferase domain [18]–[20]. The CD117 protein contains 10 known glycosylation sites 

and is largely conserved between species with the human protein having ~83% homology to 

mouse and ~68% homology to chicken [21]. CD117, a proto-oncogene, is also homologous to 

CSF-1R, PDGFRβ, PDGFRα, and FLT3 resulting in significant inhibitor overlap [22]. This tyrosine 

kinase family is defined by their extracellular binding domains which consists of an extracellular 

ligand binding domain with five immunoglobulin-like regions, a transmembrane domain, a 

juxtamembrane domain and an intracellular kinase domain which is separated by a short kinase 

insert [22],[23]. Receptor tyrosine kinases are an important piece in cell signaling and are 

responsible for maintaining cell functions such as cell survival, metabolism, cell growth and 

progression, proliferation, apoptosis, cell migration, and cell differentiation [24]–[26]. These are 

important in understanding the biology of cancer cells.  
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2.1 CD117 Splice Variants  

It has been demonstrated that CD117 of both mice and humans is expressed as two 

different isoforms, caused by alternative splicing, with only 4 amino acids differing (glycine, 

asparagine, asparagine, lysine, abbreviated as GNNK). These amino acids are either present or 

absent upstream of CD117’s transmembrane domain. Several studies demonstrated that these 

splice variants can affect different signal transduction pathways and their effects on tumorigenicity 

depending on the cell type, constitutive tyrosine phosphorylation, and association with 

phosphatidylinositol 3-kinase (PI3-K) [27],[28]. In 1999, a study demonstrated the isoform GNNK- 

transformed NIH3T2 fibroblasts caused tumorigenicity in nude mice [29]. Another study from 2003 

showed a great level of expression of the GNNK- isoform in testicular germline cell tumors 

compared to the normal testis which had a higher expression of GNKK+ CD117 receptor [30]. 

While GNNK- shows a higher affinity for SCF, CD117’s ligand as well as faster phosphorylation 

kinetics the GNNK- isoform is the dominating isoform in normal tissue such as bone marrow and 

melanocytes. In other studies, the ratio of GNNK+ to GNNK- are the same in both cancers and 

normal tissues [31]. Further studies are required to understand the physiological and oncogenic 

roles of these isoforms. 

 

2.2 Common CD117 Oncogenic Mutations 

 CD117 develops an overactivating or ligand-independent constitutive mutation to become 

oncogenic. Overactivation of CD117 cause alterations in the signaling pathways upregulating 

proliferation, cell survival, migration, and differentiation. Gain of function mutations have been 

linked to several malignancies including acute myeloid leukemia, gastrointestinal stromal tumor, 

mast cell leukemia, melanoma, and testicular cancer [32]. These mutations are shown to occur in 

the tyrosine kinase domain 1 (TK1, exon 17) in addition to the juxtadomain region (JM, exon 11). 

Less common mutations have been shown to occur in the extracellular domain (exons 2, 8, and 

9) as well as tyrosine kinase domain 2 (TK2, exons 13 and 14) [33]. These mutations can occur 
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in a variety of ways such as point mutations, frame deletions, and internal tandem repeats but 

rarely do we find more than one mutation of CD117 found in tumors. A list of mutations are further 

reviewed here [31],[34],[35].  

 

3. CD117 Expression in Normal Stem Cells 

Stem cells are defined by the National Institutes of Health as those that can divide for an 

indefinite period of time to develop specialized cells and organs [36]. These cells possess an 

ability to continuously self-renew and differentiate into unique cell types based upon their 

progenitor cells, allowing for tissue homeostasis and regeneration [37],[38]. This is made possible 

by asymmetrical cell division, whereby one daughter cell is identical to its mother, and the other 

daughter cell has continued potential for differentiation [39]–[41]. Stem cells express various 

markers dependent upon their resident tissues, but also express a few common markers including 

CD117+, Lin-, Sca1+ (for mice), CD133+, CD44+, and CD34+. The expression of CD117 in tissues 

and stem cell niches are show in Figure 1. CD117 is expressed, for example, on stem cell in the 

murine prostate. A single CD117 positive cell which was also Lin- Sca-1+ CD133+ CD44+ 

regenerated an entire secreting prostate when mixed with urogenital mesenchymal cells and 

implanted on the renal capsule. Thus, this CD117 expressing cell was considered a prostate stem 

cell in adult tissue [42]. While each tissue contains a subpopulation of stem cells, the largest 

reservoir of stem cells in the body is the bone marrow. 

Within the bone marrow there are several stem cell populations, but most prevalent are 

hematopoietic stem cells (HSC) [43],[44]. HSCs are pluripotent cells defined by their ability to 

proliferate and self-renew into all of the hematopoietic cell lineages throughout the organism's 

life-time [45]. These cells can also differentiate into endothelial cells [46]. CD117 plays an 

important role in the HSCs stemness, such as the ability to proliferate and differentiate [47]. 

Immature HSCs expresses CD34 in addition to CD117. As the cells mature and differentiate, they 

begin to lose the expression of CD117 along with their stemness. 
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Outside the bone marrow, CD117 is required for hematopoiesis in the spleen and liver 

niches. CD117 deletion in the spleen or bone marrow leads to a loss of the lymphocyte and 

erythrocyte lineages, while platelet numbers remained the same.[48] Thus, CD117 expression is 

required for several branches of hematopoietic cell differentiation.  

 

4. SCF Expression in Stem Cell Niches 

CD117’s sole ligand SCF, also known as mast cell growth factor, kit ligand (KL), or steel 

factor, is a hematopoietic cytokine derived from bone marrow that is widely expressed [46],[49]. 

This ligand is a glycosylated, non-covalent homodimer and is expressed at variable 

concentrations throughout the body. SCF exists either as a soluble secreted form (sSCF) or a 

membrane bound form (mSCF) depending on whether the region containing exon 6 is spliced, 

which leads to the released soluble form [20],[43],[50]. Both isoforms are bioactive but vary in 

their effectiveness in activating CD117 [51]. 

SCF plays an important role in stimulating mature and primitive HSCs maintaining survival, 

promoting proliferation, and regulating growth and development of HSCs [20],[52]–[54]. SCF is 

expressed in niche cells controlling CD117+ HSCs from mid gestation through adulthood [55]. 

Bone marrow niche cells express SCF including perivascular cells, endothelial cells, pericytes, 

mesenchymal stem cells, megakaryocytes, and stromal cells [56],[57]. Additionally, osteoblasts 

express SCF and control CD117-expressing HSC numbers near trabeculae [58]. Further, 

osteocytes, chondrocytes, and adipocytes differentiating from mesenchymal stem cells also 

express SCF [59]. SCF is expressed by megakaryocytes and osteoblasts and is capable of 

enhancing the differentiation of megakaryocytes and osteoclasts [60]. SCF deletion in endothelial 

cells or pericytes leads to HSC depletion in bone marrow [56],[59]. 

Outside the bone marrow, SCF is expressed in the spleen and liver to support 

extramedullary hematopoiesis [61],[62]. Within the spleen, SCF is expressed by red pulp 

endothelial cells and perivascular stromal cells and in the white pulp by central arteriolar cells and 
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rare stromal cells. Extramedullary hematopoiesis increased the numbers of these SCF-

expressing cells throughout the spleen. However, the CD117+ HSCs were only located in the red 

pulp of the normal spleen [63]. Thus, SCF controls CD117+ cell mobilization and homing to stem 

cell niches. 

 

5. CD117 Activated Signaling Pathways 

Activation of CD117 occurs when a SCF dimer binds with its extracellular domain. Inactive 

CD117 is found on the cell surface as a monomer; while SCF exists extracellularly as a dimer 

[32]. Upon binding of SCF, the CD117 receptor forms a homodimer causing autophosphorylation 

among specific tyrosine residues in the catalytic intracellular domain [22],[64]. CD117 

phosphorylation triggers several signal transduction pathways including; JAK/STAT, WNT, 

NOTCH, RAS/MAP kinase pathway, PI3 kinase, PLC-y pathway, and SRC pathway (Figure 2). 

Cell survival, proliferation, differentiation, and migration occur once CD117 is activated requiring 

overlap of these pathways [24],[34],[47],[53],[65],[66]. CD117 is then rapidly ubiquitinated by 

SOCS6 after autophosphorylation resulting in internalization and degradation. The downstream 

pathways are discussed in detail below. 

 

5.1 JAK/STAT Pathway 

The JAK/STAT pathway plays a significant role in cell proliferation and differentiation in both 

murine and human cells. SCF binding induces rapid activation of JAK2 and stimulates the 

phosphorylation of STATS1/2/5. Once STATs are phosphorylated they translocate to the nucleus 

where they regulate transcription of target genes responsible for cell proliferation [67],[68].  

 

5.2 RAS/MAP kinase pathway 
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Activation of the RAS/MAP kinase cascade occurs when activated CD117 recruits adaptor 

proteins containing a SH-2 domain such as GRB2, Shc, and SHP2. Grb2 will bind directly to 

CD117 at the phosphorylated Y703 and Y936 residues or indirectly to Shc or SHP2 [19],[69]. 

Once bound the GRB2 will associate with sos (Son-of-sevenless), a guanine nucleotide exchange 

factor, and this complex activates the G-protein Ras [19],[70]. Activation of Ras leads to the 

activation of Raf-1 which will activate MEK. MEK1/2 phosphorylates ERK1/2 which will 

phosphorylate and activates several transcription factors. The result of the activation of the 

RAS/MAP kinase cascade is regulation of cell proliferation, apoptosis, differentiation, adhesion, 

and mobility [53],[71],[72].  

 

5.3 PI3-Kinase/Akt Signaling Pathway  

PI3 kinase pathway is responsible for Akt and mTOR activity. This pathway has been 

shown to be activated by directly interacting with CD117 at Tyr-721 or indirectly by binding to the 

scaffold protein Gab2 which contacts the adapter protein Grb2 [24],[73]. The PI3-K pathway is 

the main pathway responsible for cell survival. Akt interacts with the pro-apoptotic factor BAD and 

causes inactivation leading to cells survival. Further, CD117 phosphorylation and activation of the 

PI3 kinase and SRC pathways contributes to SCF-mediated cell motility [74].  

 

5.4 SRC Family Kinase Pathways  

The GNKK- isoform of CD117 has displayed a stronger activation of SRC and SRC family 

kinases (SFK). These kinases can interact with several tyrosine residues on CD117 but only 

Tyr568 is required for activation. SCF can activate SFK specifically Lyn, Fyn, and PLCγ. Lyn 

activation has been shown to increase the activity of cyclin dependent kinase 2 (CDK2) as well 

as phosphorylation of Rb to promote cell proliferation [75],[76]. While Lyn has been shown to 

promote cell proliferation it was also demonstrated that Lyn can negatively regulate PI3-

kinase/AKT pathway, although the underlying mechanism is still unknown [77]. While Lyn can 
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negatively regulate the PI3-kinase pathway Fyn is able to phosphorylate Akt downstream. Fyn 

has also been shown to play a role in activating PLCγ when interacting with the truncated form of 

CD117 (tr-KIT) through mouse oocyte activation [77],[78].  

 

5.5 PLCγ Pathway 

Several studies show different docking sites for PLCγ. PLCγ can associate with the 

phosphorylated Tyr728, Tyr730, Tyr 936 and Tyr900 residues of CD117 [79]–[81]. PIP2 is 

hydrolyzed by PLCγ to generate DAG and IP3. DAG activates PKC by binding while IP3 causes 

the releases of Ca2+. PKC has a role in cell survival, proliferation and adhesion [24],[82]. Thus, 

activation of the SCF/CD117 signaling axis can drive cell survival, proliferation, and motility; 

important steps in cancer progression. 

 

6. CD117 Regulation of Cancer Progression 

Overactivation of CD117 is the primary mutation seen in several cancer types such as 

gastrointestinal tumors (GIST), mastocytosis, acute myelogenous leukemia (AML), and 

melanoma [22],[24],[83]. Recent studies and clinical trials suggested that CD117 can be used 

effectively for prognosis, particularly for predicting cancer metastasis and response to 

chemotherapy. Biomarkers involving CD117 were identified and studied across various tumor cell 

types [84],[85]. In a single study, CD117 was expressed in 21% of breast cancers, 17% of 

colorectal cancers, 35% of sarcomas, 36% of renal cell carcinomas, 17% ovarian cancers, and 

17% of hepatocellular tumors. While insignificant, there was a trend towards worse prognosis in 

these patients [86]. Further, 63% of AML patients had CD117 mutations, while 89-100% of GIST 

patient expressed CD117 [32]. Figure 3 shows CD117 (KIT gene) amplification and mutation in 

several cancers using datasets available through cBioPortal [87],[88]. Complete amplification, 

mutation, deletion and alterations for the CD117 KIT gene and the SCF KITLG genes are available 

in Tables S1 and S2, respectively. Genetic variants of CD117 (as a result of exon deletions) 
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identified poor prognosis in GIST patients following primary tumor resection [89]–[91]. A 2012 

study of resected tumors from 38 patients prior to treatment with imatinib found that 63% of tumors 

had mutations located on CD117 [92]. A 2017 study found that CD117 was expressed in 88% of 

surveyed cases where GIST had metastasized to bone, with the most common mutations in exon 

11 and 13 [93]. These activating mutations, particularly in exon 11, have been confirmed in similar 

studies analyzing GIST patients [94],[95]. 

Beyond GIST, in patients with primary ovarian high-grade serous carcinoma, high 

expression of CD117 suggested shorter disease free survival and peritoneal metastasis [96]. This 

resulted from the tumorigenic and chemoresistant nature of ovarian cancer cells with CD117+ 

phenotypes [97],[98]. Further, recent studies found that CD117+ cells in the circulation are 

predictive of advanced prostate cancer, with a positive correlation between CD117 expression 

and Gleason scores [14],[99]. A 2008 study suggested a trend of increased expression of CD117 

during prostate cancer metastasis to bone; a follow-up study in 2015 by the same lab found a 

novel pathway linking CD117 expression with BRCA2 downregulation that induced bone 

metastasis of prostate cancer [100]–[102]. Co-expression of CD117 and associated stem cell 

factors and ligands in breast carcinomas and small cell lung cancers have also been identified as 

playing a role in autocrine growth and tumor cell proliferation [103],[104]. Activating mutations and 

overexpression of the proto-oncogene CD117 are therefore important factors in considering tumor 

growth and metastasis in multiple solid tumors that develop outside the bone microenvironment.  

These findings are not consistent across all cancers, and the expression of CD117 may 

impact myeloid/erythroid-derived cancers differently than it does solid tumors. For example, the 

opposite is true in multiple myelomas, which originate in the bone marrow. CD117 expression in 

malignant plasma cells has been linked to improved prognosis in patients with multiple myeloma 

[105]–[107]. This suggests a more complicated relationship between CD117 expression and 

cancer prognosis than initially suspected. In short, while the prognostic value of CD117 appears 

promising, it remains an area in need of further study [108].  
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Complementing the role of CD117, SCF may also play a role in cancer progression. 

Particularly high levels of SCF are found in the bone marrow, one location for metastasis and 

thus, a SCF gradient may be one driver of bone metastasis. Bone marrow stromal cells and 

prostate cancer cells express both membrane and soluble SCF; however, BMSC express much 

higher levels of the soluble SCF. Once exposed to bone marrow, which is high in SCF, PC3 cells 

started to express CD117 [16], indicating that the bone microenvironment might induce CD117 

expression leading to over metastasis. Further, SCF production by hypoxic tissues induces 

CD117+ myeloid cell mobilization and homing [109]. Thus, interplay between SCF and CD117 

may drive cancer progression and metastasis. 

 

7. CD117 Regulation of Cancer Cell “Stemness” 

Studies suggest that CD117 plays an important role in cell differentiation and survival, 

particularly in its impact on CSCs. In a study on non-small cell lung cancer patients, tumor cells 

positively expressing CD117 exhibited CSC characteristics such as self-renewal and 

chemoresistance [110]. Similar characteristics are seen in CD117+ ovarian tumor cells in which 

CD117 expression is related to the “stemness” of particular cancer cells [98],[111]. Beyond 

cancer, healthy and developing T-cells and B-cells gradually lose expression of CD117 as they 

differentiate and mature (thereby losing their “stemness”), further suggesting that CD117 signaling 

is needed to keep cell plasticity [53],[112],[113].  

Activation of CD117 in cancer leads to activation of many downstream signaling pathways 

such as RAS/ERK, PI3-kinase, SRC, JAK/STAT, WNT, and NOTCH, and activation of these 

pathways are known to induce “stemness” or a stem-like phenotype. For example, the tyrosine 

kinase Src has been shown to interact with motifs on Akt-mTOR in acute myeloid leukemia (AML) 

cells, a process which upregulates signaling and stemness in AML [114]–[116]. In 2010, a study 

of human colon carcinoma and synovial sarcoma cell lines found that Ras/ERK pathways 

contributed in part to both the maintenance and acquisition of stemness in tumors [117]. The 
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associations of CD117 KIT gene mutations with mutated signaling pathways genes are shown in 

Table S3 for prostate cancer as an example. As such, cells exhibiting “stemness” are those that 

share some, or all, properties of stem cells [118],[119]. In fact, CD117+ prostate cancer cells may 

be CSC that express potential CSC markers Sox2, and Oct4. The cells can also generate tumors 

in serial tumor initiation experiments, a requirement for the classification as a CSC [15]. This ability 

to control “stemness” indicates that CD117 may be a marker for CSC. 

 

8. CD117 Resistance to Tyrosine Kinase Inhibitors 

Tyrosine kinase inhibitors (TKIs) are being tested in a variety of cancers expressing 

CD117 and other related tyrosine kinase receptors (Table 1). In particular, the TKI imatinib 

(Gleevec) is a standard treatment that has demonstrated specificity for inhibiting CD117, among 

other tyrosine kinases such as BCR-ABL [120],[121]. Early studies on imatinib in vitro and in 

human patients with GIST confirmed the role of CD117 in cancer metastasis. In these studies, 

imatinib was well tolerated and effective at targeting the tyrosine kinase domain of CD117 [122]–

[124]. Imatinib's inhibitory effects on CD117 (coupled with its inhibition of indoleamine 2,3-

dioxygenase, an immunosuppressive enzyme) have made it a first-line chemotherapeutic agent 

[125]–[127]. However, developing resistance to imatinib is not uncommon [128]. Unresectable 

metastatic imatinib-resistant GISTs led to the development of related TKIs such as sunitinib and 

regorafenib [129]–[132]. Tumor microenvironment SCF induces imatinib resistance by competing 

for binding site with a higher affinity for CD117 [133]. Imatinib induces M2 polarization of tumor 

associated macrophages and CD117 is upregulated in tumor with depleted of macrophages [134]. 

CD117 mutations in GIST are responsible for resistance to TKI treatment. 14% of GIST patients 

are initially resistant to imatinib and 50% develop resistance within 2 years of treatment. For most 

patients, sunitinib will then be used and effective unless one mutations, D816H/V is present which 

is resistant to both TKIs. Imatinib works better on inactive CD117 and prevents activation, but 

doesn’t bind to activated CD117 [135]. Failure of imatinib in treatment of chronic myeloid leukemia 
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(CML), which primarily inhibits BCR-ABL in this cancer cell line, led to the development of nilotinib 

as a second-line treatment, a drug that also exhibits anti-CD117 properties [136]–[138]. 

Clinical trials of imatinib and related TKIs are ongoing, with researchers studying effects 

on various cancer cell lines. Phase 3 randomized trials found that nilotinib was unsuccessful as 

either first-line therapy for GIST or as second-line therapy for imatinib-resistant GIST, relegating 

its use mainly to CML [139],[140]. In clinical trials of patients with AIDS-associated Karposi’s 

sarcoma, imatinib has demonstrated clinical benefit through its inhibition of both CD117 and 

platelet-derived growth factor (PDGF) [141]–[143]. Imatinib has also been shown to effectively 

treat melanoma that possesses an amplified or mutated CD117 oncogene [144],[145]. The anti-

angiogenesis properties of TKIs such as imatinib, sunitinib, and pazopanib (all of which also target 

CD117) have been posited as promising therapies for epithelial ovarian cancer, with clinical trials 

demonstrating efficacy and tolerability in all three drugs [146],[147]. To date, TKIs remain a focus 

of study, with both pilot and large scale clinical trials reporting data on their potential benefits in 

metastatic melanoma, fibromatosis, and neuroendocrine tumors [148]–[152].  

 

9. The Future of SCF/CD117 Signaling Axis in Cancer Treatment 

While there is continued study of the early generations of TKIs despite their broad 

reactivity and off-target effects, research continues to develop inhibitors specific for each 

individual kinase expressed on cancer cells. Ongoing studies into TKI treatment efficacy requires 

new tools for studying their effects in vivo and in vitro. Prior to phase 1 clinical trials, most 

treatments are tested in animal models and on human cell lines. Newer patient derived xenografts 

are allowing for testing in primary human samples, while metastasis-on-chip models [153],[154] 

permit high throughput screening of candidate compounds. The ability to directly target SCF-

secreting or CD117-expressing cells may improve patient treatment as CD117 activation and 

signaling is upregulated in a variety of tumors. Continued examination is also needed to define 

which tumor types and subset of patients would benefit from CD117 inhibition. A further 
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understanding of the role of CD117 in cancer progression is necessary for determining which 

patients should be treated and how the receptor can be targeted. 

Further, information on CD117's role in cancer progression would validate its use as a 

potential biomarker of CSCs in tissues and CTCs in the bloodstream. While multiple studies 

describe CD117-expressing cells as potential CTCs or metastatic tumor-initiating cells, the 

inability to properly isolate CTCs has prevented characterization of these two populations. 

Tracking CD117-expressing cells in a liquid biopsy would allow for definitive data confirming 

CD117 as a CTC marker in a variety of cancers and provide a way to evaluate patients in future 

CD117 inhibitor testing. Multiple labs have been developing microfluidic chips to isolate and 

quantify CTCs based on cell size, electromagnetic changes or cell surface marker expression 

[155],[156], which could be used for CD117. Further, the ability to enumerate CD117 expressing 

cells in tumor and the circulation could lead to improved tracking of response to treatment and 

therapeutic resistance in patients treated with TKIs. More recently, inhibitors specifically targeting 

CD117 were developed and tested in vitro in preventing cancer cell proliferation and migration 

[15],[157]. Further studies are needed to examine the effects of CD117-targeting in vivo and in 

phase 1 clinical trials. Further, combinatory targeting of CD117 with its downstream pathways 

may have improved efficacy. By targeting the CD117+ CSC population, in combination with 

conventional treatments working on the non-CSC population, cancer may finally be cured. 

  

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 11, 2018. ; https://doi.org/10.1101/256099doi: bioRxiv preprint 

https://doi.org/10.1101/256099
http://creativecommons.org/licenses/by/4.0/


 
 
 16 

Methods 

 Genomic datasets available on the EMBL-European Bioinformatics Institute Gene 

Expression Atlas (for normal tissues) and cBioPortal (for cancerous tissues) were mined for 

expression of CD117 (KIT) and SCF (KITLG) mutations. The expression level (TPM) was 

exported or the % of patients with mutations or amplifications recorded for each dataset. CD117 

(KIT) was queried with the signaling pathway genes in cBioPortal and the co-occurrence and p 

values recorded for each source dataset. CD117 expression (TPM value) and mean percentage 

±SEM of CD117 mutations or amplifications were graphed using GraphPad Prism 7.0. 

Supplementary Materials 

The following are available online Table S1: Mutations and Amplifications of CD117/KIT 

in Cancer Datasets, Table S2: Mutations and Amplifications of SCF/KITLG in Cancer Datasets 

and Table S3: Mutations and Amplifications of CD117/KIT and Associated Signaling Pathways in 

Cancer Datasets. 
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Table 1. Specificity of Tyrosine Kinase Inhibitors for CD117. N.A. indicates not available. 

 

 

  

Drug Name Trade Name Select targets 
(other than 

CD117) 

Bioavailability Specificity for 
CD117 

References 

Imatinib Gleevec/Glivec, 
STI571 

BCR-Abl, RET, 
PDGF-R 

98% 0.1 μM [158]–[160] 

Sunitinib Sutent, 
SU11248 

JAK/STAT, 
PDGF-R, 

Ras/MAPK, 
VEGFR 

50% (fasting) 26 nM [158],[160]–
[162] 

Nilotinib Tasigna BCR-Abl, Lck 30% N.A. [158],[163] 

Dasatinib Sprycel BCR-Abl, Src 14-34% 13 nM [158],[160],[16
4],[165] 

Axitinib Inlyta BCR-Abl, 
PDGFR, 
VEGFR 

58% 1.7 nM [158],[166],[16
7] 

Masitinib Masivet, 
Kinavet 

FGFR, 
PDGFR 

60% (animals) 200±40 nM [168]–[170] 

Pazopanib Votrient FGFR, 
PDGFR, 
VEGFR 

14-39% 146 nM [158],[160],[17
1],[172] 

Toceranib Palladia PDGFR, 
VEGFR 

77% <10 nM [173],[174] 

Cabozantinib XL184 VEGFR, c-Met 74-93% 4.6 nM [175] 

Flumatinib HH-GV-678 c-Abl, PDGFR N.A. 2.66 μM [176],[177] 
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Figure 3 
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Figure Legends 

Figure 1. CD117 is expressed in normal tissues. CD117 Expression in (A) normal tissues and 

(B) bone marrow progenitor cells using data mined from the EMBL-European Bioinformatics 

Institute Gene Expression Atlas [178]. 

Figure 2. CD117 activation stimulates multiple signaling pathways. SCF ligand binding to the 

CD117 receptor induced dimerization and downstream signaling resulting in proliferation, 

differentiation, survival, adhesion, motility and angiogenesis. 

Figure 3. CD117 is amplified or mutated in a variety of cancers. Genomic datasets in 

cBioPortal [87],[88] were examined for amplifications (A) or mutations (B) of the CD117 KIT 

gene. The mean percentage of patients with each cancer type with amplifications or 

mutations ±SEM are shown. 
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