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 21 

 22 

Abstract:  23 

Background: Here we outline a method of applying existing machine learning (ML) approaches to aid 24 

citation screening in an on-going broad and shallow systematic review of preclinical animal studies, 25 

with the aim of achieving a high performing algorithm comparable to human screening.  26 

Methods: We applied ML approaches to a broad systematic review of animal models of depression 27 

at the citation screening stage. We tested two independently developed ML approaches which used 28 

different classification models and feature sets. We recorded the performance of the ML approaches 29 

on an unseen validation set of papers using sensitivity, specificity and accuracy. We aimed to achieve 30 

95% sensitivity and to maximise specificity. The classification model providing the most accurate 31 

predictions was applied to the remaining unseen records in the dataset and will be used in the next 32 

stage of the preclinical biomedical sciences systematic review. We used a cross validation technique 33 

to assign ML inclusion likelihood scores to the human screened records, to identify potential  errors 34 

made during the human screening process (error analysis).  35 

Results: ML approaches reached 98.7% sensitivity based on learning from a training set of 5749 36 

records, with an inclusion prevalence of 13.2%. The highest level of specificity reached was 86%. 37 

Performance was assessed on an independent validation dataset. Human errors in the training and 38 

validation sets were successfully identified using assigned the inclusion likelihood from the ML 39 

model to highlight discrepancies. Training the ML algorithm on the corrected dataset improved the 40 

specificity of the algorithm without compromising sensitivity. Error analysis correction leads to a 3% 41 

improvement in sensitivity and specificity, which increases precision and accuracy of the ML 42 

algorithm.  43 
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Conclusions: This work has confirmed the performance and application of ML algorithms for 44 

screening in systematic reviews of preclinical animal studies. It has highlighted the novel use of ML 45 

algorithms to identify human error. This needs to be confirmed in other reviews, , but represents  a 46 

promising approach to integrating human decisions and automation in systematic review 47 

methodology. 48 

 49 

Key-words: machine learning, systematic review, analysis of human error, citation screening, 50 

automation tools  51 
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Background:  52 

The rate of publication of primary research is increasing exponentially within biomedicine [1]. 53 

Researchers find it increasingly difficult to keep up with new findings and discoveries even within a 54 

single biomedical domain, an issue that has been emerging for a number of years [2]. Synthesising 55 

research – either informally or through systematic reviews -  becomes increasingly resource 56 

intensive as searches retrieve larger and larger corpuses of potentially relevant papers for reviewers 57 

to screen for relevance to the research question at hand.  58 

This increase in rate of publication is seen in the animal literature. In an update to a systematic 59 

review of animal models of neuropathic pain, 11,880 further unique records were retrieved in 2015, 60 

to add to 33,184 unique records identified in a search conducted in 2012. In the field of animal 61 

models of depression, the number of unique records retrieved from a systematic search increased 62 

from 70,365 in May 2016 to 76,679  in August 2017.  63 

The use of text-mining tools and machine learning (ML) algorithms to aid systematic review is 64 

becoming an increasingly popular approach to reduce human burden and monetary resources 65 

required and to reduce the time taken to complete such reviews [3; 4; 5]. ML algorithms are 66 

primarily employed at the screening stage in the systematic review process. This screening stage 67 

involves categorising records identified from the search into ‘Relevant’ or ‘Not-Relevant’ to the 68 

research question, typically performed by two independent human reviewers with discrepancies 69 

reconciled by a third. This decision is typically made on the basis of the title and abstract of an article 70 

in the first instance. In previous experience at CAMARADES (Collaborative Approach to Meta-71 

Analysis and Review of Animal Data from Experimental Studies), screening a preclinical systematic 72 

review with 33,184 unique search results took 9 months, representing (because of dual screening) 73 

around 18 person months in total. Based partly on this, we estimate that a systematic review with 74 

roughly 10,000 publications retrieved takes a minimum of 40 weeks. In clinical systematic reviews, 75 

Borah and colleagues [6] showed the average clinical systematic review registered on PROSPERO 76 
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(International Prospective Register of Systematic Reviews) takes an average 67.3 weeks to complete.  77 

ML algorithms can be employed to learn this categorisation ability, based on training instances that 78 

have been screened by human reviewers [7].  79 

Several applications of ML are possible. The least burdensome is when a review is being updated, 80 

where categorisations from the original review are used to train a classifier, which is then applied to 81 

new documents identified in the updated search [7; 8; 9]. When a screening is performed de novo,  82 

without such previous collection, humans first categorise an initial set of search returns, which are 83 

used to train an ML model. The performance of the model is then tested (either in a validation set or 84 

with k fold cross validation); if performance does not meet a required threshold then more records 85 

are screened, chosen either through random sampling or, using active learning [10], on the basis 86 

either of those with highest uncertainty of predictions [11; 12] or alternatively from those most 87 

likely to be included[13; 14; 15]. Here we use a de novo search with subsequent training sets 88 

identified by random sampling, and we introduce a novel use of machine prediction, in identifying 89 

human error in screening decisions. 90 

Machine learning approaches have been evaluated in context of systematic reviews of several 91 

medical problems including drug class efficacy assessment [7; 8; 12], genetic associations [9], public 92 

health [16; 13], cost-effectiveness analyses [9], toxicology [3], treatment effectiveness [17; 18] and 93 

nutrition [17]. To the best of our knowledge there have been only two attempts to apply such 94 

techniques to reviews of preclinical animal studies [3; 19]. These can be broad and shallow reviews 95 

or focussed and detailed reviews, and can have varying prevalence of inclusion.   96 

Here we outline the ML approach taken to assist in screening a corpus for a broad and shallow 97 

systematic review seeking to summarise studies using non-human animal models of depression, 98 

based on a corpus of 70,365 records retrieved from two online biomedical databases. In this paper, 99 

our aim was to identify the amount of training data required for an algorithm to achieve the level of 100 
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performance of two independent human screeners, so that we might reduce the human resource 101 

required.  102 

Sena and colleagues developed guidelines for the appraisal of systematic reviews of animal studies 103 

[20]. These guidelines consider dual extraction by two independent human reviewers as a feature of 104 

a high quality review. From a large corpus of reviews conducted by CAMARADES we estimate the 105 

inter-screener agreement to be between 95% and 99%. Errors may occur at random (due to fatigue 106 

or distraction) or, more consequentially, systematic error, which, if included in a training set, might 107 

be propagated into a ML algorithm. Sources of systematic errors with certain types of records being 108 

at greater risk of misclassification. To our knowledge the nature of this 5% residual human error in 109 

systematic review methodology has not been formally investigated. The training data used for ML 110 

categorisation is based on training instances that has been screened by two independent human 111 

screeners.  112 

We therefore aimed to explore the use of established ML algorithms as part of a preclinical 113 

systematic review framework at the classification stage, to investigate if the ML algorithms could be 114 

used to improve the human gold standard by identifying human screening errors and thus improve 115 

the overall performance of ML.  116 

 117 

Methods:  118 

We applied two independent machine learning approaches to the screening of a large (70,365 119 

records) systematic review. Because we did could not predict how many training instances would be 120 

required we first selected 2000 records at random to provide the first training set. Of these, only 121 

1993 were suitable due to data deposition errors. These were then screened by 2 human reviewers 122 

with previous experience with reviews of animal studies, with a third expert reviewer reconciling any 123 

differences. The resulting ML algorithms gave a score between 0 and 1. To ensure that the true 124 
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sensitivity was likely to be 95% or higher we chose as our cut-point the value for which the lower 125 

bound of the 95% confidence interval of the observed sensitivity exceeded 95% when applied to the 126 

unseen validation dataset. We the repeated this process adding a further 1000 randomly selected 127 

(996 useable) citations to the training set; and then again adding a further 3000 randomly selected 128 

(2760 useable) citations to the training set. At each stage, performance of the approaches was 129 

assessed on a validation set of unseen documents, using a number of different metrics. Next, the 130 

best performing algorithm was used to identify human errors in the training and validation sets by 131 

selecting those with the largest discrepancy between the human decision (characterised as 0 for 132 

exclude or 1 for include) and the machine prediction (a continuous variable between 0 and 1). 133 

Performance of the approaches trained on the full 5749 records is reported here, and of each of the 134 

iterations is available in Supplementary Materials 1. The error analysis was assessed on the net 135 

reclassification index, and the performance of the ML approach is compared before and after 136 

correcting the errors in human screening using AUC. 137 

 138 

Step 1: Application of ML tools to screening of a large preclinical systematic review.  139 

 140 

Training Sets:  141 

70,365 potentially relevant records were identified from Pubmed and EMBASE  The search strings 142 

were composed of the animal filters devised by the Systematic Review Center for Laboratory animal 143 

Experimentation (SYRCLE) [21; 22], NOT reviews, comments, or letters AND a depression disorder 144 

string (for full search strings see [23]). The training set and the validation set were chosen at random 145 

from the 70,365 by assigning each record a random number using the RAND function in excel and 146 

ranking them from smallest to largest. The training set consisted of 5749 records. The validation set 147 

consisted of 1251 records. The training set and validation set were screened by two independent 148 
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human screeners with any discrepancies reconciled by a third independent human screener. The 149 

human screening process involved an online tool (app.syrf.org), which randomly presents a reviewer 150 

with a record, with the title and abstract displayed. The reviewer makes a decision about the record, 151 

included (1) or excluded (0). A second reviewer is also randomly presented with records. If a record 152 

receives two ‘included’ decisions, the screening for this record is considered complete. If reviewer 1 153 

and reviewer 2 disagree, the record gets presented to a third reviewer who makes a decision. The 154 

record then has an average inclusion score of 0.666 or 0.333. Any record that has an inclusion score 155 

above 0.6 is included, those scoring less than 0.6 are excluded, and screening is considered 156 

complete. Datasets are available on Zenodo, as described in “Availability of Data & Materials” below, 157 

Performance was assessed at each level on a validation set of unseen records. The training and 158 

validation set were selected consecutively from the initial random ordering. For the training set of 159 

5749 records, the validation set was the subsequent 1251 records. This validation set had more than 160 

150 “included” records, which can give reasonably precise 95% confidence intervals for sensitivity 161 

and specificity.   162 

<< Insert Experimental Setup Diagram here >>  163 

Figure 1. Diagram of the Layout of the Study.  164 

 165 

Feature Generation: 166 

First, documents in the training set were transformed into a representation appropriate for the 167 

machine learning algorithms. Documents were created by concatenating the title and the abstract. 168 

Every case (document) is represented by a fixed number of features, numerical quantities describing 169 

certain properties that might be used by the classifier to extract rules and make predictions about 170 

inclusion. The classifiers described below used generally similar approaches  171 
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We used “bag-of-words” (BoW) to characterise document titles and abstracts in both classifiers. To 172 

account for the relative importance of words within a given document, and difference in words used 173 

between documents we used ‘Term Frequency – Inverse Document Frequency’ (TD-IDF). This is 174 

defined as: 175 

 176 

�������� , ��� 	 ����� , ��� 

|�|

|
�:�� � ��|
 

The score for the i-th word in context of the j-th document takes into account not only how many 177 

times the word occurred there (tf), but also how many other documents (d) from the whole corpus 178 

(D) contain it as well. This helps to reduce the score for words that are common for all documents 179 

and therefore have little predictive power. This helps the classifier to focus on terms which help to 180 

distinguish between documents, rather than on terms which occur frequently [24]. We allowed n-181 

grams; did not use stemming; and used the MySQL text indexing functionality “stopword” list to 182 

remove frequently occurring words which provide little relevant information for classification 183 

purposes. [25] 184 

Because bag-of-words representation generates as many unigram features as there are words in the 185 

collection (typically at least several thousand); and many more when using higher-order n-grams, we 186 

used additional approaches. Latent Semantic Indexing (LSI) and Latent Dirichlet Allocation (LDA) 187 

represent textual data in a more efficient way. In LSI [26], the training set is represented as a matrix, 188 

where rows correspond to documents, columns to terms (words or n-grams), while cells contain 189 

frequency or TF/IDF score of a given term in a given document.  The matrix is then decomposed 190 

using a general matrix factorisation technique known as Singular Value Decomposition (SVD) and 191 

truncated to the first n dimensions. Because of the properties of SVD the new features will be such 192 

linear combinations of features of the old space that minimise the differences between the original 193 

and the transformed space. In case of textual data it means that those words that frequently occur 194 
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in the same documents (probably because of the similar meaning) will be treated in the same way. 195 

The n is set a-priori to a reasonably low value – usually a few hundred. LDA exploits distributional 196 

similarities between words, but based on explaining document contents using a Bayesian network 197 

[27]. This method is based on the premise that every document is a mixture of topics, which in turn 198 

consist of related words. The correspondence between documents and topics and between topics 199 

and words can be inferred via Gibbs sampling process. As a result, similarly to LSI, every document is 200 

represented by a sequence of n numbers, indicating how related it is to every topic [28]. Unlike in 201 

SVD, the model fitness to the data cannot be expressed through the amount of variance of the 202 

original matrix it explains and the optimal number of topics may be different for every collection and 203 

classification task. Following previous work in the domain [13] and the user guide for MALLET (the 204 

tool we use for LDA, which recommends values between 200 and 400) we elected to generate 300 205 

topics Here we use three feature sets, BoW, LDA and SVD (LSI) individually, in pairs and finally all 206 

together; preliminary evaluation through the cross-validation on the training set suggests that 207 

LDA+SVD and bag-of-words with a simple linear classifier deliver the most robust performance. 208 

 209 

 210 

Classifiers: 211 

Following the transformations made in feature selection, the documents are then used to train the 212 

machine learning classifier. The classifier most commonly used for document classification in context 213 

of systematic reviews [11; 13; 8; 9; 12; 14; 15; 17] is the Support Vector Machine (SVM) as it has 214 

frequently been used for tasks involving text.). SVM is a supervised learning algorithm, learning to 215 

classify new documents based on a training set of labelled documents [31]. This algorithm 216 

represents training documents as points in a multi-dimensional space defined by all available 217 

features. To be able to classify cases into positive and negative category, it seeks a hyperplane 218 

dividing the space into one side corresponding to included documents and the other to excluded 219 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 30, 2018. ; https://doi.org/10.1101/255760doi: bioRxiv preprint 

https://doi.org/10.1101/255760
http://creativecommons.org/licenses/by-nc/4.0/


ones. Based on the training data, the optimal hyperplane is constructed so that it maximises both 220 

the number of training cases located on the “correct” side of decision boundary and their distance 221 

from the plane (margin). The new, unseen, documents are then ranked according to their location 222 

with respect to the boundary. Those far from it are confidently predicted as included or excluded, 223 

according to which side of the plane they lie. The cases which the model has less confidence about 224 

will be located close to the hyperplane. Logistic regression is a similar linear classifier, which instead 225 

of hyperplane, seeks such coefficients of a linear combination of feature values that will give high 226 

values for positive cases (included documents) and low for negative (excluded documents). Both of 227 

these approaches could be enriched with feature selection elements to mitigate the problems with 228 

multitude of features. 229 

 230 

Three feature sets (BoW, LDA and SVD (LSI)) were tested on SVMs, logistic regression and random 231 

forests [32]. The two algorithms described below performed best for this dataset of 70,365 records, 232 

on the broad topic of preclinical animal models of depression. 233 

 234 

Approaches:   235 

Here, two approaches were developed independently, using different classification models and 236 

feature representations, but sharing the linear classification principles. 237 

Approach 1:  238 

Approach one used a tri-gram ‘bag-of-words’ model for feature selection and implemented a linear 239 

support vector machine with Stochastic Gradient Descent (SGD) as supported by the SciKit-Learn 240 

python library [33].  This classifier was chosen it is efficient, scales well to large numbers of records, 241 

and provides an easily interpretable list of probability estimates when predicting class membership 242 

(i.e. scores for each document lying between 0 and 1).Efficiency and interpretability are important, 243 
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as this classifier is already deployed in a large systematic review platform [34], and any deployed 244 

algorithm therefore needs not to be too computationally demanding, and its results understood by 245 

users who are not machine learning specialists. The tri-gram feature selection approach without any 246 

additional feature engineering also reflects the generalist need of deployment on a platform used in 247 

a wide range of reviews: the algorithm needs to be generalisable across disciplines and literatures, 248 

and not ‘over-fitted’ to a specific area. For example, the tri-gram “randomised controlled trial” has 249 

quite different implications for classification compared with “randomised controlled trials” (i.e. 250 

‘trials’ in plural). The former might be a report of a randomised controlled trial; while the latter is 251 

often found in reports of systematic reviews of randomised trials. Stemming would remove the ‘s’ on 252 

trials and thus lose this important information. Here, the algorithm needs to be generalisable across 253 

disciplines and literatures, and not be ‘over-fitted’ to a specific area. This approach aims to give the 254 

best compromise between reliable performance across a wide range of domains and that achievable 255 

from a workflow that has been highly tuned to a specific context. 256 

 257 

Approach 2:  258 

Approach 2 used a regularised logistic regression model built on LDA and SVD features. Namely, the 259 

document text (consisting of title and abstract) was first lemmatised with the tool GENIA tagger [35] 260 

and then converted into bag of words representation of unigrams, which was then used to create 261 

two types of features. First, the word frequencies were converted into a matrix TF/IDF scores, which 262 

was then decomposed via SVD implemented in scikit-learn library and truncated to the first 300 263 

dimensions. Second, an LDA model was built using MALLET library [36], setting 300 as a number of 264 

topics. As a result each document was represented by 600 features, and an L1-regularised logistic 265 

regression model was built using glmnet package [37] in R statistical framework [38]. 266 

In this procedure every document is represented with a constant, manageable number of features, 267 

irrespective of corpus or vocabulary size. As a result, we can use a relatively simple classification 268 
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algorithm and expect good performance with short processing time even for very large collections. 269 

This feature is particularly useful when running the procedure numerous times in cross-validation 270 

mode for error analysis (see below). 271 

 272 

For a given unseen test instance, the logistic regression returns a score corresponding to the 273 

probability of it being relevant according to the current model. An optimal cut-off score that gives 274 

the best performance is calculated as described above.  275 

 276 

Assessing Machine Learning Performance: 277 

The facets of a machine learning algorithm performance that would be most beneficial to this field 278 

of research are high sensitivity (see table 1), at a level comparable to the 95% we estimate is 279 

achieved by two independent human screeners. We therefore need to be confident that the 280 

sensitivity is 95% or higher, which we do by setting our cut point such that the lower bound of the 281 

95% confidence interval of the observed sensitivity is 95% or higher. Once the level of sensitivity has 282 

been reached, the aim is to maximise specificity, to reduce the number of irrelevant records 283 

included by an algorithm.  Although specificity at 95% sensitivity is our goal, we provide values of 284 

other measures for better illustration of the performance.  285 

Performance metrics:  286 

Performance was assessed using sensitivity (or recall), specificity, precision, accuracy, and Work 287 

Saved over Sampling (WSS) (see table 1), carried out in R (R version 3.4.2; [38]) using the ‘caret’ 288 

package [39]. 95% Confidence Intervals were calculated using the efficient-score method [40].  Cut-289 

offs for were determined manually for each approach by taking the score that achieved 95% 290 

sensitivity (including the lower 95% confidence level), and the specificity at this score was calculated.  291 

 292 
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Table 1. Equations used to assess performance of machine learning algorithms 

Sensitivity or Recall TP / (TP+FN) 

Specificity TN / (TN+FP) 

Precision TP / (TP+FP) 

Accuracy (TP+TN) / (TP+FP+FN+TN) 

WSS@95% ((TN+FN) / N) – (1.0 – 0.95) 
  All equations from [5].  

 293 

 294 

Step 2: Application of ML tools to training datasets to identify human error. 295 

Error Analysis Methods:  296 

The methodology for the error analysis was outlined in an a priori protocol, published on the 297 

CAMARADES website on 18
th

 December 2016 [41]. To generate the machine learning scores for the 298 

set of records that were originally used to train the machine (5749 records), the non-exhaustive 299 

cross-validation method, 5-fold validation, was used. This method involved randomly partitioning 300 

the set of records into 5 equal sized subsamples. One subsample was set aside, and the remaining 4  301 

subsamples were used to train the algorithm [42]. Thanks to this process, every record has a score 302 

computed by a machine learning model built without including it in the training portion. These 303 

scores were used to highlight discrepancies or disagreements between machine decision and human 304 

decision. The documents were ordered by the machine assigned labels in order of predictive 305 

probability, from most likely to be relevant to least likely to be relevant. The original human assigned 306 

scores were placed next to the machine-assigned scores, to highlight potential errors in the human 307 

decision. A single human reviewer (experienced in animal systematic reviews) manually reassessed 308 

the records where discrepancies were highlighted starting with the most discrepant. To avoid 309 

reassessing the full 5749 record dataset, a stopping rule was established such that if the initial 310 

human decision was correct for five consecutive records, further records were not reassessed.  311 

 312 

<< Insert Error Analysis Diagram here Figure 2 >> 313 
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Figure 2. Error Analysis.  314 

The methodology for using cross-validation to assign ML predicted probability scores. The ML 315 

predicted probability scores for the records were checked against the original human inclusion 316 

decision.  317 

 318 

After the errors in the training set were investigated and corrected as described above a new model 319 

was built on the updated training data. The outcome of error analysis is presented as reclassification 320 

tables, the area under the curve (AUC) being used to compare the performance of the ML algorithm 321 

trained on the ‘old’ training set of records, and the net reclassification index (NRI) [43] used to 322 

compare the performance of the classifier built on the updated training data with the performance 323 

of the classifier built on the original training data. The following equation was used: 324 

NRI binary outcomes = (Sensitivity + Specificity) second test - (Sensitivity + Specificity) first test 325 

[44]  326 

The AUC was calculated using the DeLong method in the ‘pROC’ package in R [45].  327 

Further, we applied the same technique as above to identify human screening errors in the 328 

validation dataset. Due to the small number of records in the validation set (1251 records), it was 329 

assumed that every error would be likely to impact measured performance, and so the manual 330 

screening of the validation set involved revisiting every record where the human and machine 331 

decision were incongruent. The number of reclassified records was noted. The inter-rater reliability 332 

of all screening decisions on training set and validation set between Reviewer 1 and Reviewer 2 were 333 

analysed using the ‘Kappa.test’ function in the ‘fmsb’ package in R [46].  334 

 335 
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Results: 336 

In this section we first describe the performance from the ML algorithms. We then show the results 337 

from the analysis of human error, and finally describe the performance of the ML algorithm after 338 

human errors in the training and validation set have been corrected.  339 

 340 

Performance of Machine Learning Algorithms 341 

Table 2 shows the performance of the two machine learning approaches from the SLIM (Systematic 342 

Living Information Machine) collaboration. The desired sensitivity of 95% (including lower bound 343 

95% CI) has been reach by both approaches. Both approaches reached 98.7% sensitivity based on 344 

learning from a training set of 5749 records, with an inclusion prevalence of 13.2% (see below). 345 

Approach 1 reached a higher specificity level of 86%. This is visualised on an AUC curve (figure 1).  346 

 347 

Table 2. Performance of machine learning approaches on depression training dataset. 

 Approach 1 Approach 2 

Training Set Size 5749 5749 

Optimal Cut-Off Score 0.1 0.07 

Sensitivity 98.7% 98.7% 

Upper 95% CI 0.997 0.997 

Lower 95% CI 0.949 0.949 

Specificity 86.0% 84.7% 

Precision 50% 47.66% 

Accuracy 1096/1251 = 87.6% 1081/1251= 86.4% 

WSS@95% 0.705 0.693 

 348 

 349 

Figure 3. Performance of Machine Learning Approaches.  350 
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For the interactive version of this plot with cut-off values, see code and data at 351 

https://github.com/abannachbrown/The-use-of-text-mining-and-machine-learning-algorithms-in-352 

systematic-reviews/blob/master/ML-fig3.html   353 

 354 

< Figure 3 here > 355 

 356 

 357 

Error Analysis & Reclassification 358 

Cohen’s κ was run to determine the interrater agreement of screening decisions between Reviewer 359 

1 and Reviewer 2. Κ = 0.791 (95% CI, 0.769 to 0.811), p < 0.0001, with 281 records requiring a third 360 

reviewer decision. To assess whether machine learning algorithms can identify human error and 361 

therefore improve the training data, error analysis was conducted. Seventy-five papers out of 5749 362 

papers had predictive scores very far from the human assigned labels, so were reassessed to see if 363 

these were due to human errors. Out of 75 rescreened papers, the machine corrected the human 364 

decision 47 times. The machine was wrong, (i.e. the initial human decision was correct) 28 times. 365 

The validation set was also rescreened. Ten papers out of the 1251 records were identified as 366 

potential human errors. Out of 10 errors, the machine corrected 8 human decisions. These 8 records 367 

were all falsely excluded by the human and were now included. The initial human decision was 368 

correct twice.   369 

To calculate human error in the training set, the number of errors identified (47) out of the training 370 

set (5749 records) was calculated to be at least 0.8%. Of the 47 records reclassified, 11 records were 371 

falsely included in the original screening process and were now correctly excluded, and 36 records 372 

were falsely excluded in the original screening process and were now correctly included. The 373 

machine correctly identified human screening errors, which were calculated to be just under 1% of 374 
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the dual screened training set. Forty-seven papers out of 760 were ‘correctly’ reclassified, 6% of the 375 

included papers.  376 

Similarly, the human error rate in the validation set (1251 records) was 0.6%. Again looking at the 377 

prevalence of inclusion in this dataset (155/1251), which is 12.4%, the 8 records of out the now 163 378 

were correctly reclassified which is 4.9% reclassified. All 8 records we falsely excluded in the original 379 

screening process and are now correctly included.  380 

 381 

Test 1: 98.7% + 86% = 184.7%   382 

Test 2: 98.2% + 89.3% = 187.5% 383 

NRI = 3.2%  384 

 385 

We consider the updated validation set to be the new gold standard as 8 records were now 386 

included. The confusion matrix for the performance of the machine learning algorithm after the 387 

error analysis update on the training records is displayed below in table 3.   388 

 389 

Table 3. Reclassification of records in validation after error analysis. 

Test 1 – Original Machine Learning Algorithms results 

Test 2 – Post-error 

analysis ML results 

 In  Out Total 

In 153 

 

                       160 

153 

 

                         116 

306 

 

                     276 

Out 2 

 

                          3 

943 

 

                        972 

945 

 

                     975 

 Total 155 

 

                      163 

1096 

 

                   1088 

1251 

 390 

Analysing the human errors identified by the machine learning algorithm and correcting for these 391 

errors and re-teaching the algorithm leads to improved performance of the algorithm, particularly its 392 
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sensitivity. This can save considerable human time in the screening stage of a systematic review. 393 

Consider the remaining approximately 64,000 papers, if the ML algorithm results are 3% more 394 

accurate, that is approximately 2000 papers that are correctly ‘excluded’ that would not be 395 

forwarded for data extraction.  396 

 397 

After Error Analysis: Improving Machine Learning 398 

Using the error analysis technique above, of the 47 errors identified in the full training dataset of 399 

5749 records, 0.8% were corrected.  We retrained approach 1 on the corrected training set and 400 

measured performance on the corrected validation set of 1251 records as we consider this to be the 401 

‘new’ gold standard. The performance of the original approach 1 and updated approach 1 was 402 

assessed on the corrected validation set of 1251 records. The performance of this retrained 403 

algorithm in comparison to the performance of the original classifier 5 on the updated validation set 404 

is shown in table 4.  405 

 406 

Table 4.  Performance of machine learning approach after error analysis. 

 Updated Approach 1  Original Approach 1 

Cut-Off 0.09 0.10 

Sensitivity 98.7% 98.7% 

Upper 95% CI of Sensitivity 0.997 0.997 

Lower 95% CI of Sensitivity 0.949 0.949 

Specificity 88.3% 86.7% 

Precision 55.9% 52.61% 

Accuracy 89.7% 88.2% 

WSS@95% 961/ 1251 – (0.05) = 0.718 945/1251 – (0.05) = 0.705 

 407 

 408 

Figure 4. Performance of Approach 1 after error analysis.  409 
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The updated approach is retrained on the corrected training set after error analysis correction. 410 

Performance on both the original and the updated approach is measured on the corrected validation 411 

set (with error analysis correction).  For the interactive version of this plot with exact cut-off values, 412 

see code and data at https://github.com/abannachbrown/The-use-of-text-mining-and-machine-413 

learning-algorithms-in-systematic-reviews/blob/master/error-analysis-plot.html  414 

< Figure 4 here > 415 

 416 

We compared the area under the ROC curve for the original approach 1 and the updated approach 417 

1. The AUC for the original approach 1 was 0.9272 (95% CI calculated using DeLong method; 0.914-418 

0.9404). The AUC for the updated approach 1 was 0.9355 (95% CI calculated using DeLong method; 419 

0.9227-0.9483). DeLong’s test to compare the AUC between the ROC of the two approaches was 420 

applied ‘, Z = -2.3685, p = 0.0178.   421 

Discussion:  422 

Document Classification: 423 

We have shown machine learning algorithms to have high levels of performance, with 98.7% 424 

sensitivity and 88.3% specificity; this sensitivity is comparable to two independent human screeners. 425 

The objectives for selecting ML approaches in this project was to achieve a minimum 95% sensitivity 426 

(including lower bound confidence intervals), to minimise the number of potentially relevant papers 427 

which are wrongly excluded. Thereafter, algorithms were then chosen on the basis of their 428 

specificity. to reduce the subsequent human time required to sort through and assess papers.  429 

The two approaches have similar performance. The slight differences may reflect the method of 430 

feature generation. These algorithms have high performance on this specific topic of animal models 431 

of depression. As demonstrated previously, the performance of various classifiers can alter 432 

depending on the topic and specificity of the research question [3].    433 
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In this study, the cut-off points were selected using the decisions on the validation set to achieve the 434 

desired performance. Although this allows the measurement of the maximum possible gain using a 435 

given approach in an evaluation setting, in practice (e.g. when updating a review), the true scores 436 

would not be available. The problem of choosing a cut-off threshold, equivalent to deciding when to 437 

stop when using a model for prioritising relevant documents, remains an open research question in 438 

information retrieval. Based on their experience with a given tool, a reviewer may come up with a 439 

heuristic fitting their workflow, e.g. if no new includes are seen in the 100 highest-ranked 440 

documents, then everything else could be discarded as well. More sophisticated approaches have 441 

also been tested [47], but they do not guarantee achieving a desired sensitivity level. It has to be 442 

noted that ML-based prioritisation could be useful even if no cut-off is used and all documents are 443 

screened manually, since seeing the relevant documents first can help to organise the process and 444 

thus reduce the workload [5]. In a similar broad preclinical research project in neuropathic pain it 445 

took 18 person months to screen 33,814 unique records – based on these numbers it would take an 446 

estimated 40 person months to screen 70,365 unique records. Performance of machine learning 447 

tools demonstrated in this paper can greatly reduce the amount of human resource needed for 448 

initial title and abstract screening of a large corpus of records retrieved from a broad search.  449 

We have applied the algorithm to the full dataset (remaining 63,365 records) and are in the process 450 

of full-text screening. Following this process, it will allow a more in depth learning on the part of the 451 

machine that it can apply to any updates to the search.  452 

 453 

Error Analysis:  454 

By using the ML algorithm to classify the likelihood of inclusion for each record in the training set, 455 

we highlighted discrepancies between the human inclusion or exclusion decision and the machine 456 

decision. Using this technique, we identified human errors, which were then corrected to update the 457 

training set.  458 
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Human screening of the training set was conducted using the “majority vote” system; it is interesting 459 

to consider the potential reasons for errors or ‘misclassifications’ arising in this process. Reviewers’ 460 

interpretation of the “breadth” of this wide review might be one contributing factor to 461 

discrepancies. With a less clear cut-off, reviewers are unsure of where some articles should be 462 

included. Discrepancies arising where Reviewer 1 was more inclusive and where Reviewer 2 was less 463 

inclusive, thereby Reviewer 3 will be the deciding factor. A different approach whereby Reviewer 1 464 

and 2 discuss discrepancies might be a pinpoint the exact reasons for misunderstandings or different 465 

interpretations of the inclusion criteria. However, for larger projects when using a crowd-sourcing 466 

approach with many individual people contributing to each Reviewer, this may not be a practical 467 

solution.  468 

We have successfully identified human screening errors which were calculated to be just under 1% 469 

of the training set which was dual screened by two independent human reviewers. The prevalence 470 

of inclusion in this training set is 13.2% (760 out of the 5749), so an error of 0.8% is likely to be 471 

important Therefore errors of false inclusion or exclusion in the training sets may have a substantial 472 

impact on the learning of the ML algorithm.  This error analysis results in a 3% increase or change in 473 

sensitivity and specificity, with increased precision, accuracy, and work saved over sampling of the 474 

algorithm. We observed an increase in specificity of 1.6% without compromise to sensitivity. In a 475 

systematic review with this number of records this saves considerable human resources, as the 476 

number of records required to screen reduces by at least 1125.  477 

This error analysis was an initial pilot with stopping criteria where if the initial human decision was 478 

correct five consecutive times, further records were not reassessed. It is possible and likely that 479 

there are further errors in the human screened training set. A more in-depth analysis of the training 480 

dataset, investigating every instance where the human and machine decision were incongruent, 481 

might identify more errors and further increase the precision and accuracy of machine learning 482 

approaches, further reducing human resources required for this stage of systematic review. We have 483 
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shown here that even with minimal intervention (only assessing incongruent records until the 484 

original human decision was correct 5 consecutive times), the performance of ML approaches can be 485 

improved.    486 

 487 

Limitations & Future Directions:  488 

Here we show the best performing algorithms for this dataset with a broad research question. Other 489 

dissimilar research questions or topics may require different levels of training data to achieve the 490 

same levels of performance, or may require different topic modelling approaches or classifiers. The 491 

best performing algorithm, outlined in this paper, is being applied in an ongoing research project, 492 

therefore the ‘true’ inclusion and exclusion results for the remaining 63365 records is not yet known. 493 

The ‘true’ results will unfold with the fullness of time. 494 

These machine learning algorithms are deployed in an existing systematic review online platform, 495 

EPPI-Reviewer [34], and are in the process of being integrated into the Systematic Review Facility 496 

(SyRF) tool, which is focused on the preclinical domain (www.app.syrf.org). This will improve the 497 

ease of use of machine learning functions for systematic reviewers, increase the usage of machine 498 

learning algorithms for systematic review and significantly reduce the amount of human resources 499 

required to conduct systematic review across a range of topics. By allowing a degree of user control 500 

over which classifiers and the levels of performance are required for each specific research project. 501 

With a broad collaboration such as SLIM we aim to test many ML algorithms across a range of 502 

research topics to identify which classifiers perform best under which circumstances, to be able to 503 

provide recommendations to users of SyRF.  504 

 505 

This paper outlines a pilot approach to using machine learning algorithms to identify human errors in 506 

current systematic review methodology. Future research can investigate this concept more 507 
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thoroughly by setting up a more comprehensive experimental design. After further investigation into 508 

the extent of human error in dual reviewing, the picture will be clearer as to the scale of human 509 

error and to what extent a machine learning algorithm can identify and aid in rectifying this. These 510 

tools can could be integrated into systematic review platforms, such as SyRF (www.app.syrf.org), 511 

and may provide feedback to the systematic reviewer during screening, and could ultimately flag 512 

incorrectly screened records as the human screens them for inclusion in a dataset for machine 513 

training.  514 

 515 

Conclusions:  516 

We have demonstrated that machine learning techniques can be successfully applied to an ongoing, 517 

broad pre-clinical systematic review. We have demonstrated that machine learning techniques can 518 

be used to identify human errors in the training and validation datasets. We have demonstrated that 519 

updating the learning of the algorithm after error analysis improves performance. This error analysis 520 

technique requires further detailed elucidation and validation. These machine learning techniques 521 

are in the process of being integrated into existing systematic review applications to enable more 522 

wide-spread use. In future, machine learning and error analysis techniques that are optimised for 523 

different types of review topics and research questions can be applied seamlessly within the existing 524 

methodological framework.  525 

 526 

 527 

List of Abbreviations:  528 

 529 

1. Area Under the Curve (AUC) 530 

2.  Bag-of-Words (BoW) 531 
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3. Collaborative Approach to Meta-Analysis and Review of Animal Data from Experimental 532 

Studies (CAMARADES)  533 

4. Latent Dirichlet Allocation (LDA)  534 

5. Latent Semantic Indexing (LSI) 535 

6. Machine learning (ML) 536 

7. Net Reclassification Index (NRI) 537 

8. PROSPERO (International Prospective Register of Systematic Reviews) 538 

9. Singular Value Decomposition (SVD)  539 

10. SLIM (Systematic Living Information Machine) collaboration 540 

11. Stochastic Gradient Descent (SGD) 541 

12. Support Vector Machine (SVM) 542 

13. Systematic Review Center for Laboratory animal Experimentation (SYRCLE) 543 

14. Systematic Review Facility (SyRF) 544 

15. Term Frequency – Inverse Document Frequency (TD-IDF) 545 

16. Work Saved over Sampling (WSS) 546 
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Figure 1. Diagram of the Layout of the Study.  711 
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Figure 2. Error Analysis.  714 
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The methodology for using cross-validation to assign ML predicted probability scores. The ML 715 

predicted probability scores for the records were checked against the original human inclusion 716 

decision.  717 

 718 

Figure 3. Performance of Machine Learning Approaches.   719 

For the interactive version of this plot with cut-off values, see code and data at  720 

https://github.com/abannachbrown/The-use-of-text-mining-and-machine-learning-algorithms-in-721 

systematic-reviews/blob/master/ML-fig3.html   722 

 723 

Figure 4. Performance of Approach 1 after Error Analysis.  724 

The updated approach is retrained on the corrected training set after error analysis correction. 725 

Performance on both the original and the updated approach is measured on the corrected validation 726 

set (with error analysis correction).  For the interactive version of this plot with exact cut-off values, 727 

see code and data at https://github.com/abannachbrown/The-use-of-text-mining-and-machine-728 

learning-algorithms-in-systematic-reviews/blob/master/error-analysis-plot.html  729 
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Fig 1. Diagram of Experimental Setup. Click here to access/download;Figure;fig1.png
.
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Fig 2. Diagram displaying the methodology for using cross-validation to assign ML
predicted probability scores. The ML predicted probability scores for the records were

Click here to access/download;Figure;error-analysis-diagram.jpg
.
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Fig 3. Performance of Machine Learning Approaches For the interactive version of this
plot with cut-off values.

Click here to access/download;Figure;ML12-pngzoom (1).png
.
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Fig 4. Performance of Approach 1 after error analysis. The updated approach is
retrained on the corrected training set after error analysis correction. Performance on

Click here to access/download;Figure;error-pngzoom (1).png
.
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