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23 Abstract:

24 Background: Here we outline a method of applying existing machine learning (ML) approaches to aid
25  citation screening in an on-going broad and shallow systematic review of preclinical animal studies,

26  with the aim of achieving a high performing algorithm comparable to human screening.

27  Methods: We applied ML approaches to a broad systematic review of animal models of depression
28  at the citation screening stage. We tested two independently developed ML approaches which used
29  different classification models and feature sets. We recorded the performance of the ML approaches
30 onanunseen validation set of papers using sensitivity, specificity and accuracy. We aimed to achieve
31  95% sensitivity and to maximise specificity. The classification model providing the most accurate
32 predictions was applied to the remaining unseen records in the dataset and will be used in the next
33  stage of the preclinical biomedical sciences systematic review. We used a cross validation technique
34 to assign ML inclusion likelihood scores to the human screened records, to identify potential errors

35  made during the human screening process (error analysis).

36  Results: ML approaches reached 98.7% sensitivity based on learning from a training set of 5749
37  records, with an inclusion prevalence of 13.2%. The highest level of specificity reached was 86%.
38  Performance was assessed on an independent validation dataset. Human errors in the training and
39  validation sets were successfully identified using assigned the inclusion likelihood from the ML
40  model to highlight discrepancies. Training the ML algorithm on the corrected dataset improved the
41  specificity of the algorithm without compromising sensitivity. Error analysis correction leads to a 3%
42  improvement in sensitivity and specificity, which increases precision and accuracy of the ML

43  algorithm.
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Conclusions: This work has confirmed the performance and application of ML algorithms for
screening in systematic reviews of preclinical animal studies. It has highlighted the novel use of ML
algorithms to identify human error. This needs to be confirmed in other reviews, , but represents a
promising approach to integrating human decisions and automation in systematic review

methodology.

Key-words: machine learning, systematic review, analysis of human error, citation screening,

automation tools
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52 Background:

53  The rate of publication of primary research is increasing exponentially within biomedicine [1].
54  Researchers find it increasingly difficult to keep up with new findings and discoveries even within a
55  single biomedical domain, an issue that has been emerging for a number of years [2]. Synthesising
56 research — either informally or through systematic reviews - becomes increasingly resource
57 intensive as searches retrieve larger and larger corpuses of potentially relevant papers for reviewers

58  toscreen for relevance to the research question at hand.

59  This increase in rate of publication is seen in the animal literature. In an update to a systematic
60  review of animal models of neuropathic pain, 11,880 further unique records were retrieved in 2015,
61  to add to 33,184 unique records identified in a search conducted in 2012. In the field of animal
62  models of depression, the number of unique records retrieved from a systematic search increased

63  from 70,365 in May 2016 to 76,679 in August 2017.

64  The use of text-mining tools and machine learning (ML) algorithms to aid systematic review is
65 becoming an increasingly popular approach to reduce human burden and monetary resources
66 required and to reduce the time taken to complete such reviews [3; 4; 5]. ML algorithms are
67  primarily employed at the screening stage in the systematic review process. This screening stage
68  involves categorising records identified from the search into ‘Relevant’ or ‘Not-Relevant’ to the
69  research question, typically performed by two independent human reviewers with discrepancies
70  reconciled by a third. This decision is typically made on the basis of the title and abstract of an article
71 in the first instance. In previous experience at CAMARADES (Collaborative Approach to Meta-
72 Analysis and Review of Animal Data from Experimental Studies), screening a preclinical systematic
73  review with 33,184 unique search results took 9 months, representing (because of dual screening)
74  around 18 person months in total. Based partly on this, we estimate that a systematic review with
75  roughly 10,000 publications retrieved takes a minimum of 40 weeks. In clinical systematic reviews,

76  Borah and colleagues [6] showed the average clinical systematic review registered on PROSPERO
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77  (International Prospective Register of Systematic Reviews) takes an average 67.3 weeks to complete.
78 ML algorithms can be employed to learn this categorisation ability, based on training instances that

79 have been screened by human reviewers [7].

80  Several applications of ML are possible. The least burdensome is when a review is being updated,
81  where categorisations from the original review are used to train a classifier, which is then applied to
82  new documents identified in the updated search [7; 8; 9]. When a screening is performed de novo,
83  without such previous collection, humans first categorise an initial set of search returns, which are
84  used to train an ML model. The performance of the model is then tested (either in a validation set or
85  with k fold cross validation); if performance does not meet a required threshold then more records
86  are screened, chosen either through random sampling or, using active learning [10], on the basis
87  either of those with highest uncertainty of predictions [11; 12] or alternatively from those most
88 likely to be included[13; 14; 15]. Here we use a de novo search with subsequent training sets
89 identified by random sampling, and we introduce a novel use of machine prediction, in identifying

90  human error in screening decisions.

91  Machine learning approaches have been evaluated in context of systematic reviews of several
92 medical problems including drug class efficacy assessment [7; 8; 12], genetic associations [9], public
93 health [16; 13], cost-effectiveness analyses [9], toxicology [3], treatment effectiveness [17; 18] and
94  nutrition [17]. To the best of our knowledge there have been only two attempts to apply such
95 techniques to reviews of preclinical animal studies [3; 19]. These can be broad and shallow reviews

96  orfocussed and detailed reviews, and can have varying prevalence of inclusion.

97 Here we outline the ML approach taken to assist in screening a corpus for a broad and shallow
98  systematic review seeking to summarise studies using non-human animal models of depression,
99  based on a corpus of 70,365 records retrieved from two online biomedical databases. In this paper,

100  our aim was to identify the amount of training data required for an algorithm to achieve the level of
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101  performance of two independent human screeners, so that we might reduce the human resource

102  required.

103  Sena and colleagues developed guidelines for the appraisal of systematic reviews of animal studies
104  [20]. These guidelines consider dual extraction by two independent human reviewers as a feature of
105 a high quality review. From a large corpus of reviews conducted by CAMARADES we estimate the
106  inter-screener agreement to be between 95% and 99%. Errors may occur at random (due to fatigue
107  or distraction) or, more consequentially, systematic error, which, if included in a training set, might
108  be propagated into a ML algorithm. Sources of systematic errors with certain types of records being
109  at greater risk of misclassification. To our knowledge the nature of this 5% residual human error in
110  systematic review methodology has not been formally investigated. The training data used for ML
111  categorisation is based on training instances that has been screened by two independent human

112 screeners.

113 We therefore aimed to explore the use of established ML algorithms as part of a preclinical
114  systematic review framework at the classification stage, to investigate if the ML algorithms could be
115  used to improve the human gold standard by identifying human screening errors and thus improve

116  the overall performance of ML.

117

118 Methods:

119  We applied two independent machine learning approaches to the screening of a large (70,365

120  records) systematic review. Because we did could not predict how many training instances would be
121  required we first selected 2000 records at random to provide the first training set. Of these, only

122 1993 were suitable due to data deposition errors. These were then screened by 2 human reviewers
123 with previous experience with reviews of animal studies, with a third expert reviewer reconciling any

124  differences. The resulting ML algorithms gave a score between 0 and 1. To ensure that the true
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125  sensitivity was likely to be 95% or higher we chose as our cut-point the value for which the lower
126  bound of the 95% confidence interval of the observed sensitivity exceeded 95% when applied to the
127  unseen validation dataset. We the repeated this process adding a further 1000 randomly selected
128 (996 useable) citations to the training set; and then again adding a further 3000 randomly selected
129 (2760 useable) citations to the training set. At each stage, performance of the approaches was

130 assessed on a validation set of unseen documents, using a number of different metrics. Next, the
131  best performing algorithm was used to identify human errors in the training and validation sets by
132  selecting those with the largest discrepancy between the human decision (characterised as 0 for
133 exclude or 1 for include) and the machine prediction (a continuous variable between 0 and 1).

134  Performance of the approaches trained on the full 5749 records is reported here, and of each of the
135 iterations is available in Supplementary Materials 1. The error analysis was assessed on the net

136  reclassification index, and the performance of the ML approach is compared before and after

137 correcting the errors in human screening using AUC.

138

139  Step 1: Application of ML tools to screening of a large preclinical systematic review.

140

141  Training Sets:

142 70,365 potentially relevant records were identified from Pubmed and EMBASE The search strings
143  were composed of the animal filters devised by the Systematic Review Center for Laboratory animal
144  Experimentation (SYRCLE) [21; 22], NOT reviews, comments, or letters AND a depression disorder
145  string (for full search strings see [23]). The training set and the validation set were chosen at random
146  from the 70,365 by assigning each record a random number using the RAND function in excel and
147  ranking them from smallest to largest. The training set consisted of 5749 records. The validation set

148  consisted of 1251 records. The training set and validation set were screened by two independent
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149  human screeners with any discrepancies reconciled by a third independent human screener. The
150  human screening process involved an online tool (app.syrf.org), which randomly presents a reviewer
151  with arecord, with the title and abstract displayed. The reviewer makes a decision about the record,
152  included (1) or excluded (0). A second reviewer is also randomly presented with records. If a record
153 receives two ‘included’ decisions, the screening for this record is considered complete. If reviewer 1
154 and reviewer 2 disagree, the record gets presented to a third reviewer who makes a decision. The
155 record then has an average inclusion score of 0.666 or 0.333. Any record that has an inclusion score
156 above 0.6 is included, those scoring less than 0.6 are excluded, and screening is considered
157  complete. Datasets are available on Zenodo, as described in “Availability of Data & Materials” below,
158  Performance was assessed at each level on a validation set of unseen records. The training and
159  validation set were selected consecutively from the initial random ordering. For the training set of
160 5749 records, the validation set was the subsequent 1251 records. This validation set had more than
161 150 “included” records, which can give reasonably precise 95% confidence intervals for sensitivity

162  and specificity.

163 << Insert Experimental Setup Diagram here >>

164  Figure 1. Diagram of the Layout of the Study.

165

166 Feature Generation:

167 First, documents in the training set were transformed into a representation appropriate for the
168  machine learning algorithms. Documents were created by concatenating the title and the abstract.
169  Every case (document) is represented by a fixed number of features, numerical quantities describing
170 certain properties that might be used by the classifier to extract rules and make predictions about

171  inclusion. The classifiers described below used generally similar approaches
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172 We used “bag-of-words” (BoW) to characterise document titles and abstracts in both classifiers. To
173 account for the relative importance of words within a given document, and difference in words used
174  between documents we used ‘Term Frequency — Inverse Document Frequency’ (TD-IDF). This is

175 defined as:
176

tfidf (w;, d;) = tf (w;, d;) *L

{d:w; € d}|
177  The score for the i-th word in context of the j-th document takes into account not only how many
178  times the word occurred there (tf), but also how many other documents (d) from the whole corpus
179 (D) contain it as well. This helps to reduce the score for words that are common for all documents
180  and therefore have little predictive power. This helps the classifier to focus on terms which help to
181 distinguish between documents, rather than on terms which occur frequently [24]. We allowed n-
182  grams; did not use stemming; and used the MySQL text indexing functionality “stopword” list to
183  remove frequently occurring words which provide little relevant information for classification

184  purposes. [25]

185  Because bag-of-words representation generates as many unigram features as there are words in the
186  collection (typically at least several thousand); and many more when using higher-order n-grams, we
187  used additional approaches. Latent Semantic Indexing (LSI) and Latent Dirichlet Allocation (LDA)
188 represent textual data in a more efficient way. In LS| [26], the training set is represented as a matrix,
189  where rows correspond to documents, columns to terms (words or n-grams), while cells contain
190 frequency or TF/IDF score of a given term in a given document. The matrix is then decomposed
191  using a general matrix factorisation technique known as Singular Value Decomposition (SVD) and
192  truncated to the first n dimensions. Because of the properties of SVD the new features will be such
193  linear combinations of features of the old space that minimise the differences between the original

194  and the transformed space. In case of textual data it means that those words that frequently occur
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195 in the same documents (probably because of the similar meaning) will be treated in the same way.
196  The n is set a-priori to a reasonably low value — usually a few hundred. LDA exploits distributional
197  similarities between words, but based on explaining document contents using a Bayesian network
198 [27]. This method is based on the premise that every document is a mixture of topics, which in turn
199 consist of related words. The correspondence between documents and topics and between topics
200 and words can be inferred via Gibbs sampling process. As a result, similarly to LSI, every document is
201 represented by a sequence of n numbers, indicating how related it is to every topic [28]. Unlike in
202  SVD, the model fitness to the data cannot be expressed through the amount of variance of the
203  original matrix it explains and the optimal number of topics may be different for every collection and
204  classification task. Following previous work in the domain [13] and the user guide for MALLET (the
205  tool we use for LDA, which recommends values between 200 and 400) we elected to generate 300
206  topics Here we use three feature sets, Bow, LDA and SVD (LSl) individually, in pairs and finally all
207  together; preliminary evaluation through the cross-validation on the training set suggests that

208  LDA+SVD and bag-of-words with a simple linear classifier deliver the most robust performance.

209

210

211 Classifiers:

212 Following the transformations made in feature selection, the documents are then used to train the
213 machine learning classifier. The classifier most commonly used for document classification in context
214 of systematic reviews [11; 13; 8; 9; 12; 14; 15; 17] is the Support Vector Machine (SVM) as it has
215  frequently been used for tasks involving text.). SVM is a supervised learning algorithm, learning to
216  classify new documents based on a training set of labelled documents [31]. This algorithm
217  represents training documents as points in a multi-dimensional space defined by all available
218  features. To be able to classify cases into positive and negative category, it seeks a hyperplane

219  dividing the space into one side corresponding to included documents and the other to excluded
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220  ones. Based on the training data, the optimal hyperplane is constructed so that it maximises both
221 the number of training cases located on the “correct” side of decision boundary and their distance
222 from the plane (margin). The new, unseen, documents are then ranked according to their location
223  with respect to the boundary. Those far from it are confidently predicted as included or excluded,
224 according to which side of the plane they lie. The cases which the model has less confidence about
225  will be located close to the hyperplane. Logistic regression is a similar linear classifier, which instead
226  of hyperplane, seeks such coefficients of a linear combination of feature values that will give high
227  values for positive cases (included documents) and low for negative (excluded documents). Both of
228  these approaches could be enriched with feature selection elements to mitigate the problems with

229 multitude of features.

230

231  Three feature sets (Bow, LDA and SVD (LSI)) were tested on SVMs, logistic regression and random
232 forests [32]. The two algorithms described below performed best for this dataset of 70,365 records,

233 on the broad topic of preclinical animal models of depression.

234

235  Approaches:

236  Here, two approaches were developed independently, using different classification models and

237  feature representations, but sharing the linear classification principles.

238  Approach 1:

239  Approach one used a tri-gram ‘bag-of-words’ model for feature selection and implemented a linear
240  support vector machine with Stochastic Gradient Descent (SGD) as supported by the SciKit-Learn
241  python library [33]. This classifier was chosen it is efficient, scales well to large numbers of records,
242 and provides an easily interpretable list of probability estimates when predicting class membership

243 (i.e. scores for each document lying between 0 and 1).Efficiency and interpretability are important,


https://doi.org/10.1101/255760
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/255760; this version posted October 30, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

244  as this classifier is already deployed in a large systematic review platform [34], and any deployed
245  algorithm therefore needs not to be too computationally demanding, and its results understood by
246  users who are not machine learning specialists. The tri-gram feature selection approach without any
247 additional feature engineering also reflects the generalist need of deployment on a platform used in
248 a wide range of reviews: the algorithm needs to be generalisable across disciplines and literatures,
249  and not ‘over-fitted’ to a specific area. For example, the tri-gram “randomised controlled trial” has
250 quite different implications for classification compared with “randomised controlled trials” (i.e.
251 ‘“trials’ in plural). The former might be a report of a randomised controlled trial; while the latter is
252  often found in reports of systematic reviews of randomised trials. Stemming would remove the ‘s’ on
253  trials and thus lose this important information. Here, the algorithm needs to be generalisable across
254  disciplines and literatures, and not be ‘over-fitted’ to a specific area. This approach aims to give the
255  best compromise between reliable performance across a wide range of domains and that achievable

256  from a workflow that has been highly tuned to a specific context.

257

258  Approach 2:

259  Approach 2 used a regularised logistic regression model built on LDA and SVD features. Namely, the
260  document text (consisting of title and abstract) was first lemmatised with the tool GENIA tagger [35]
261 and then converted into bag of words representation of unigrams, which was then used to create
262  two types of features. First, the word frequencies were converted into a matrix TF/IDF scores, which
263  was then decomposed via SVD implemented in scikit-learn library and truncated to the first 300
264 dimensions. Second, an LDA model was built using MALLET library [36], setting 300 as a number of
265  topics. As a result each document was represented by 600 features, and an L1-regularised logistic

266  regression model was built using glmnet package [37] in R statistical framework [38].

267  In this procedure every document is represented with a constant, manageable number of features,

268 irrespective of corpus or vocabulary size. As a result, we can use a relatively simple classification
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269  algorithm and expect good performance with short processing time even for very large collections.
270  This feature is particularly useful when running the procedure numerous times in cross-validation

271 mode for error analysis (see below).

272

273 For a given unseen test instance, the logistic regression returns a score corresponding to the
274  probability of it being relevant according to the current model. An optimal cut-off score that gives

275  the best performance is calculated as described above.

276

277  Assessing Machine Learning Performance:

278  The facets of a machine learning algorithm performance that would be most beneficial to this field
279  of research are high sensitivity (see table 1), at a level comparable to the 95% we estimate is
280  achieved by two independent human screeners. We therefore need to be confident that the
281  sensitivity is 95% or higher, which we do by setting our cut point such that the lower bound of the
282  95% confidence interval of the observed sensitivity is 95% or higher. Once the level of sensitivity has
283  been reached, the aim is to maximise specificity, to reduce the number of irrelevant records
284  included by an algorithm. Although specificity at 95% sensitivity is our goal, we provide values of

285  other measures for better illustration of the performance.

286  Performance metrics:

287 Performance was assessed using sensitivity (or recall), specificity, precision, accuracy, and Work
288  Saved over Sampling (WSS) (see table 1), carried out in R (R version 3.4.2; [38]) using the ‘caret’
289 package [39]. 95% Confidence Intervals were calculated using the efficient-score method [40]. Cut-
290 offs for were determined manually for each approach by taking the score that achieved 95%

291  sensitivity (including the lower 95% confidence level), and the specificity at this score was calculated.

292
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Table 1. Equations used to assess performance of machine learning algorithms

Sensitivity or Recall TP / (TP+FN)
Specificity TN / (TN+FP)
Precision TP/ (TP+FP)
Accuracy (TP+TN) / (TP+FP+FN+TN)
WSS@95% ((TN+FN) / N) - (1.0 -0.95)
All equations from [5].
293
294

295  Step 2: Application of ML tools to training datasets to identify human error.
296  Error Analysis Methods:

297  The methodology for the error analysis was outlined in an a priori protocol, published on the
298 CAMARADES website on 18™ December 2016 [41]. To generate the machine learning scores for the
299  set of records that were originally used to train the machine (5749 records), the non-exhaustive
300 cross-validation method, 5-fold validation, was used. This method involved randomly partitioning
301 the set of records into 5 equal sized subsamples. One subsample was set aside, and the remaining 4
302  subsamples were used to train the algorithm [42]. Thanks to this process, every record has a score
303  computed by a machine learning model built without including it in the training portion. These
304  scores were used to highlight discrepancies or disagreements between machine decision and human
305 decision. The documents were ordered by the machine assigned labels in order of predictive
306  probability, from most likely to be relevant to least likely to be relevant. The original human assigned
307  scores were placed next to the machine-assigned scores, to highlight potential errors in the human
308  decision. A single human reviewer (experienced in animal systematic reviews) manually reassessed
309 the records where discrepancies were highlighted starting with the most discrepant. To avoid
310 reassessing the full 5749 record dataset, a stopping rule was established such that if the initial

311 human decision was correct for five consecutive records, further records were not reassessed.
312

313 << Insert Error Analysis Diagram here Figure 2 >>
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314  Figure 2. Error Analysis.

315 The methodology for using cross-validation to assign ML predicted probability scores. The ML
316  predicted probability scores for the records were checked against the original human inclusion

317 decision.

318

319  After the errorsin the training set were investigated and corrected as described above a new model
320  was built on the updated training data. The outcome of error analysis is presented as reclassification
321  tables, the area under the curve (AUC) being used to compare the performance of the ML algorithm
322 trained on the ‘old’ training set of records, and the net reclassification index (NRI) [43] used to

323  compare the performance of the classifier built on the updated training data with the performance

324  of the classifier built on the original training data. The following equation was used:

325  NRl pinary outcomes = {Sensitivity + Specificity) second test - (Sensitivity + Specificity) first test

326 [44]

327  The AUC was calculated using the DeLong method in the ‘pROC’ package in R [45].

328  Further, we applied the same technique as above to identify human screening errors in the
329  validation dataset. Due to the small number of records in the validation set (1251 records), it was
330 assumed that every error would be likely to impact measured performance, and so the manual
331  screening of the validation set involved revisiting every record where the human and machine
332  decision were incongruent. The number of reclassified records was noted. The inter-rater reliability
333 of all screening decisions on training set and validation set between Reviewer 1 and Reviewer 2 were

334  analysed using the ‘Kappa.test’ function in the ‘fmsb’ package in R [46].

335
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336 Results:

337 In this section we first describe the performance from the ML algorithms. We then show the results
338 from the analysis of human error, and finally describe the performance of the ML algorithm after

339  human errors in the training and validation set have been corrected.

340

341  Performance of Machine Learning Algorithms

342  Table 2 shows the performance of the two machine learning approaches from the SLIM (Systematic
343  Living Information Machine) collaboration. The desired sensitivity of 95% (including lower bound
344  95% Cl) has been reach by both approaches. Both approaches reached 98.7% sensitivity based on
345  learning from a training set of 5749 records, with an inclusion prevalence of 13.2% (see below).

346  Approach 1 reached a higher specificity level of 86%. This is visualised on an AUC curve (figure 1).

347
Table 2. Performance of machine learning approaches on depression training dataset.
Approach 1 Approach 2
Training Set Size 5749 5749
Optimal Cut-Off Score 0.1 0.07
Sensitivity 98.7% 98.7%
Upper 95% CI 0.997 0.997
Lower 95% CI 0.949 0.949
Specificity 86.0% 84.7%
Precision 50% 47.66%
Accuracy 1096/1251 = 87.6% 1081/1251= 86.4%
WSS@95% 0.705 0.693
348
349

350 Figure 3. Performance of Machine Learning Approaches.
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351  For the interactive version of this plot with cut-off values, see code and data at
352  https://github.com/abannachbrown/The-use-of-text-mining-and-machine-learning-algorithms-in-

353  systematic-reviews/blob/master/ML-fig3.html!

354

355  <Figure 3 here >

356

357

358 Error Analysis & Reclassification

359  Cohen’s k was run to determine the interrater agreement of screening decisions between Reviewer
360 1 and Reviewer 2. K =0.791 (95% Cl, 0.769 to 0.811), p < 0.0001, with 281 records requiring a third
361 reviewer decision. To assess whether machine learning algorithms can identify human error and
362  therefore improve the training data, error analysis was conducted. Seventy-five papers out of 5749
363  papers had predictive scores very far from the human assigned labels, so were reassessed to see if
364  these were due to human errors. Out of 75 rescreened papers, the machine corrected the human
365 decision 47 times. The machine was wrong, (i.e. the initial human decision was correct) 28 times.
366  The validation set was also rescreened. Ten papers out of the 1251 records were identified as
367 potential human errors. OQut of 10 errors, the machine corrected 8 human decisions. These 8 records
368  were all falsely excluded by the human and were now included. The initial human decision was

369 correct twice.

370  To calculate human error in the training set, the number of errors identified (47) out of the training
371  set (5749 records) was calculated to be at least 0.8%. Of the 47 records reclassified, 11 records were
372  falsely included in the original screening process and were now correctly excluded, and 36 records
373  were falsely excluded in the original screening process and were now correctly included. The

374 machine correctly identified human screening errors, which were calculated to be just under 1% of
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the dual screened training set. Forty-seven papers out of 760 were ‘correctly’ reclassified, 6% of the

included papers.

Similarly, the human error rate in the validation set (1251 records) was 0.6%. Again looking at the
prevalence of inclusion in this dataset (155/1251), which is 12.4%, the 8 records of out the now 163
were correctly reclassified which is 4.9% reclassified. All 8 records we falsely excluded in the original

screening process and are now correctly included.

Test 1: 98.7% + 86% = 184.7%
Test 2: 98.2% + 89.3% = 187.5%

NRI =3.2%

We consider the updated validation set to be the new gold standard as 8 records were now
included. The confusion matrix for the performance of the machine learning algorithm after the

error analysis update on the training records is displayed below in table 3.

Table 3. Reclassification of records in validation after error analysis.

Test 1 — Original Machine Learning Algorithms results

Test 2 — Post-error In Out Total
analysis ML results | In 153 153 306
160 116 276
Out 2 943 945
3 972 975
Total 155 1096 1251
163 1088

Analysing the human errors identified by the machine learning algorithm and correcting for these

errors and re-teaching the algorithm leads to improved performance of the algorithm, particularly its
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393  sensitivity. This can save considerable human time in the screening stage of a systematic review.
394  Consider the remaining approximately 64,000 papers, if the ML algorithm results are 3% more
395  accurate, that is approximately 2000 papers that are correctly ‘excluded’ that would not be

396 forwarded for data extraction.

397

398  After Error Analysis: Improving Machine Learning

399  Using the error analysis technique above, of the 47 errors identified in the full training dataset of
400 5749 records, 0.8% were corrected. We retrained approach 1 on the corrected training set and
401  measured performance on the corrected validation set of 1251 records as we consider this to be the
402  ‘new’ gold standard. The performance of the original approach 1 and updated approach 1 was
403  assessed on the corrected validation set of 1251 records. The performance of this retrained
404  algorithm in comparison to the performance of the original classifier 5 on the updated validation set

405 is shown in table 4.

406

Table 4. Performance of machine learning approach after error analysis.

Updated Approach 1 Original Approach 1

Cut-Off 0.09 0.10

Sensitivity 98.7% 98.7%

Upper 95% Cl of Sensitivity 0.997 0.997

Lower 95% Cl of Sensitivity 0.949 0.949

Specificity 88.3% 86.7%

Precision 55.9% 52.61%

Accuracy 89.7% 88.2%

WSS@95% 961/ 1251 - (0.05) = 0.718 945/1251 - (0.05) = 0.705
407
408

409  Figure 4. Performance of Approach 1 after error analysis.
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410  The updated approach is retrained on the corrected training set after error analysis correction.
411  Performance on both the original and the updated approach is measured on the corrected validation
412  set (with error analysis correction). For the interactive version of this plot with exact cut-off values,

413  see code and data at https://github.com/abannachbrown/The-use-of-text-mining-and-machine-

414 learning-algorithms-in-systematic-reviews/blob/master/error-analysis-plot.html

415  <Figure 4 here >

416

417  We compared the area under the ROC curve for the original approach 1 and the updated approach
418 1. The AUC for the original approach 1 was 0.9272 (95% Cl calculated using DeLong method; 0.914-
419  0.9404). The AUC for the updated approach 1 was 0.9355 (95% Cl calculated using DeLong method;
420  0.9227-0.9483). Delong's test to compare the AUC between the ROC of the two approaches was

421  applied /, Z=-2.3685, p =0.0178.

422 Discussion:

423 Document Classification:

424  We have shown machine learning algorithms to have high levels of performance, with 98.7%
425  sensitivity and 88.3% specificity; this sensitivity is comparable to two independent human screeners.
426  The objectives for selecting ML approaches in this project was to achieve a minimum 95% sensitivity
427  (including lower bound confidence intervals), to minimise the number of potentially relevant papers
428  which are wrongly excluded. Thereafter, algorithms were then chosen on the basis of their

429  specificity. to reduce the subsequent human time required to sort through and assess papers.

430  The two approaches have similar performance. The slight differences may reflect the method of
431  feature generation. These algorithms have high performance on this specific topic of animal models
432 of depression. As demonstrated previously, the performance of various classifiers can alter

433  depending on the topic and specificity of the research question [3].
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434  In this study, the cut-off points were selected using the decisions on the validation set to achieve the
435  desired performance. Although this allows the measurement of the maximum possible gain using a
436  given approach in an evaluation setting, in practice (e.g. when updating a review), the true scores
437  would not be available. The problem of choosing a cut-off threshold, equivalent to deciding when to
438  stop when using a model for prioritising relevant documents, remains an open research question in
439  information retrieval. Based on their experience with a given tool, a reviewer may come up with a
440 heuristic fitting their workflow, e.g. if no new includes are seen in the 100 highest-ranked
441 documents, then everything else could be discarded as well. More sophisticated approaches have
442  also been tested [47], but they do not guarantee achieving a desired sensitivity level. It has to be
443  noted that ML-based prioritisation could be useful even if no cut-off is used and all documents are
444  screened manually, since seeing the relevant documents first can help to organise the process and
445  thus reduce the workload [5]. In a similar broad preclinical research project in neuropathic pain it
446  took 18 person months to screen 33,814 unique records — based on these numbers it would take an
447  estimated 40 person months to screen 70,365 unique records. Performance of machine learning
448  tools demonstrated in this paper can greatly reduce the amount of human resource needed for

449  initial title and abstract screening of a large corpus of records retrieved from a broad search.

450  We have applied the algorithm to the full dataset (remaining 63,365 records) and are in the process
451  of full-text screening. Following this process, it will allow a more in depth learning on the part of the

452  machine that it can apply to any updates to the search.

453

454 Error Analysis:

455 By using the ML algorithm to classify the likelihood of inclusion for each record in the training set,
456  we highlighted discrepancies between the human inclusion or exclusion decision and the machine
457  decision. Using this technique, we identified human errors, which were then corrected to update the

458  training set.
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459  Human screening of the training set was conducted using the “majority vote” system; it is interesting
460  to consider the potential reasons for errors or ‘misclassifications’ arising in this process. Reviewers’
461  interpretation of the “breadth” of this wide review might be one contributing factor to
462 discrepancies. With a less clear cut-off, reviewers are unsure of where some articles should be
463 included. Discrepancies arising where Reviewer 1 was more inclusive and where Reviewer 2 was less
464 inclusive, thereby Reviewer 3 will be the deciding factor. A different approach whereby Reviewer 1
465 and 2 discuss discrepancies might be a pinpoint the exact reasons for misunderstandings or different
466 interpretations of the inclusion criteria. However, for larger projects when using a crowd-sourcing
467  approach with many individual people contributing to each Reviewer, this may not be a practical

468 solution.

469  We have successfully identified human screening errors which were calculated to be just under 1%
470  of the training set which was dual screened by two independent human reviewers. The prevalence
471  of inclusion in this training set is 13.2% (760 out of the 5749), so an error of 0.8% is likely to be
472  important Therefore errors of false inclusion or exclusion in the training sets may have a substantial
473 impact on the learning of the ML algorithm. This error analysis results in a 3% increase or change in
474  sensitivity and specificity, with increased precision, accuracy, and work saved over sampling of the
475  algorithm. We observed an increase in specificity of 1.6% without compromise to sensitivity. In a
476  systematic review with this number of records this saves considerable human resources, as the

477  number of records required to screen reduces by at least 1125.

478  This error analysis was an initial pilot with stopping criteria where if the initial human decision was
479  correct five consecutive times, further records were not reassessed. It is possible and likely that
480  there are further errors in the human screened training set. A more in-depth analysis of the training
481  dataset, investigating every instance where the human and machine decision were incongruent,
482  might identify more errors and further increase the precision and accuracy of machine learning

483 approaches, further reducing human resources required for this stage of systematic review. We have
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shown here that even with minimal intervention (only assessing incongruent records until the
original human decision was correct 5 consecutive times), the performance of ML approaches can be

improved.

Limitations & Future Directions:

Here we show the best performing algorithms for this dataset with a broad research question. Other
dissimilar research questions or topics may require different levels of training data to achieve the
same levels of performance, or may require different topic modelling approaches or classifiers. The
best performing algorithm, outlined in this paper, is being applied in an ongoing research project,
therefore the ‘true’ inclusion and exclusion results for the remaining 63365 records is not yet known.

The “true’ results will unfold with the fullness of time.

These machine learning algorithms are deployed in an existing systematic review online platform,
EPPI-Reviewer [34], and are in the process of being integrated into the Systematic Review Facility

(SyRF) tool, which is focused on the preclinical domain (www.app.syrf.org). This will improve the

ease of use of machine learning functions for systematic reviewers, increase the usage of machine
learning algorithms for systematic review and significantly reduce the amount of human resources
required to conduct systematic review across a range of topics. By allowing a degree of user control
over which classifiers and the levels of performance are required for each specific research project.
With a broad collaboration such as SLIM we aim to test many ML algorithms across a range of
research topics to identify which classifiers perform best under which circumstances, to be able to

provide recommendations to users of SyRF.

This paper outlines a pilot approach to using machine learning algorithms to identify human errors in

current systematic review methodology. Future research can investigate this concept more
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508  thoroughly by setting up a more comprehensive experimental design. After further investigation into
509 the extent of human error in dual reviewing, the picture will be clearer as to the scale of human
510  error and to what extent a machine learning algorithm can identify and aid in rectifying this. These

511  tools can could be integrated into systematic review platforms, such as SyRF (www.app.syrf.org),

512 and may provide feedback to the systematic reviewer during screening, and could ultimately flag
513 incorrectly screened records as the human screens them for inclusion in a dataset for machine

514 training.
515
516 Conclusions:

517  We have demonstrated that machine learning techniques can be successfully applied to an ongoing,
518  broad pre-clinical systematic review. We have demonstrated that machine learning techniques can
519  be used to identify human errors in the training and validation datasets. We have demonstrated that
520  updating the learning of the algorithm after error analysis improves performance. This error analysis
521  technique requires further detailed elucidation and validation. These machine learning techniques
522 are in the process of being integrated into existing systematic review applications to enable more
523  wide-spread use. In future, machine learning and error analysis techniques that are optimised for
524  different types of review topics and research questions can be applied seamlessly within the existing

525  methodological framework.

526

527

528 List of Abbreviations:
529

530 1. Area Under the Curve (AUC)

531 2. Bag-of-Words (BoW)
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3. Collaborative Approach to Meta-Analysis and Review of Animal Data from Experimental
Studies (CAMARADES)

4. Latent Dirichlet Allocation (LDA)

5. Latent Semantic Indexing (LSI)

6. Machine learning (ML)

7. Net Reclassification Index (NRI)

8. PROSPERO (International Prospective Register of Systematic Reviews)

9. Singular Value Decomposition (SVD)

10. SLIM (Systematic Living Information Machine) collaboration

11. Stochastic Gradient Descent (SGD)

12. Support Vector Machine (SVM)

13. Systematic Review Center for Laboratory animal Experimentation (SYRCLE)

14. Systematic Review Facility (SyRF)

15. Term Frequency — Inverse Document Frequency (TD-IDF)

16. Work Saved over Sampling (WSS)
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559  The results of the classification algorithms and the R code used to generate the results is available on

560 GitHub: https://github.com/abannachbrown/The-use-of-text-mining-and-machine-learning-

561 algorithms-in-systematic-reviews.
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Figure Titles & Legends:

Figure 1. Diagram of the Layout of the Study.

Figure 2. Error Analysis.
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The methodology for using cross-validation to assign ML predicted probability scores. The ML
predicted probability scores for the records were checked against the original human inclusion

decision.

Figure 3. Performance of Machine Learning Approaches.

For the interactive version of this plot with cut-off values, see code and data at
https://github.com/abannachbrown/The-use-of-text-mining-and-machine-learning-algorithms-in-

systematic-reviews/blob/master/ML-fig3.html|

Figure 4. Performance of Approach 1 after Error Analysis.

The updated approach is retrained on the corrected training set after error analysis correction.
Performance on both the original and the updated approach is measured on the corrected validation
set (with error analysis correction). For the interactive version of this plot with exact cut-off values,

see code and data at https://github.com/abannachbrown/The-use-of-text-mining-and-machine-

learning-algorithms-in-systematic-reviews/blob/master/error-analysis-plot.html
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Fig 1. Diagram of Experimental Setup.
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Fig 4. Performance of Approach 1 after error analysis. The updated approach is Click here to access/download;Figure;error-pngzoom (1).png %
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