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2 Abstract.— Advances in high-throughput sequencing techniques now allow relatively easy
3 and affordable sequencing of large portions of the genome, even for non-model organisms.
2 Many phylogenetic studies reduce costs by focusing their sequencing efforts on a selected
s set of targeted loci, commonly enriched using sequence capture. The advantage of this

s approach is that it recovers a consistent set of loci, each with high sequencing depth, which
a7 leads to more confidence in the assembly of target sequences. High sequencing depth can
s also be used to identify phylogenetically informative allelic variation within sequenced

2 individuals, but allele sequences are infrequently assembled in phylogenetic studies.

s Instead, many scientists perform their phylogenetic analyses using contig sequences which
a1 result from the de novo assembly of sequencing reads into contigs containing only canonical
2 nucleobases, and this may reduce both statistical power and phylogenetic accuracy. Here,
;3 we develop an easy-to-use pipeline to recover allele sequences from sequence capture data,
s and we use simulated and empirical data to demonstrate the utility of integrating these

5 allele sequences to analyses performed under the Multispecies Coalescent (MSC) model.

s Our empirical analyses of Ultraconserved Element (UCE) locus data collected from the

s South American hummingbird genus Topaza demonstrate that phased allele sequences

s carry sufficient phylogenetic information to infer the genetic structure, lineage divergence,
3 and biogeographic history of a genus that diversified during the last three million years.

s The phylogenetic results support the recognition of two species, and suggest a high rate of
an  gene flow across large distances of rainforest habitats but rare admixture across the

2 Amazon River. Our simulations provide evidence that analyzing allele sequences leads to
s more accurate estimates of tree topology and divergence times than the more common

« approach of using contig sequences.

s (Keywords: SNP, heterozygous sites, target enrichment, gene tree, species tree,

s mitochondrial genome, Trochilidae, Aves)
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a7 Massive Parallel Sequencing (MPS) techniques enable time- and cost-efficient

s generation of DNA sequence data. Instead of using MPS to sequence complete genomes,
s many researchers choose to focus their sequencing efforts on a set of target loci to lower

so costs while achieving higher coverage and more reliable sequencing of these target regions
si (Faircloth et al.|2012} 2013; [Mirarab et al.|[2014; Smith et al.|2014; [Faircloth 2015; Harvey
2 et al.[2016; [Meiklejohn et al.|2016). These multilocus datasets typically contain hundreds
53 or thousands of target loci, and most are generated through enrichment techniques such as
s+ sequence capture (synonym: target enrichment, |Gnirke et al.| (2009))). After collecting

55 sequence data from these targeted loci, many researchers assemble their high coverage

ss  sequence reads into “contigs” using de movo genome assembly software, and the “contig

s sequence” output by these assemblers often ignore the variants at heterozygous positions
ss that are expected in diploid organisms. Typically, variable positions are treated as

s sequencing errors and assembly algorithms output “contig sequences” containing the more
o probable (i.e., numerous) variant while discarding the alternative (Igbal et al.2012). As a
s1 result, the “contig sequences” that are produced contain only canonical nucleobases, losing
&2 the information about read variability at variable positions. Hereafter, we use “contigs”

s and “contig sequences” to refer to the sequences that are output by de novo assemblers.

64 One alternative approach to generating contig sequences uses the depth of

6 sequencing coverage to programatically identify variable positions within a targeted locus
e (also known as “calling” single nucleotide polymorphisms (SNPs)) and subsequently

e sorting (or “phasing”) these SNPs into two allele sequences or “haplotypes” which

s represent alleles on the same chromosome present at that locus. These approaches have

s been used to estimate demographic parameters such as effective population size, rate of

70 migration, and the amount of gene flow between and within populations. However, it is

n rarely acknowledged (c.f. Lischer et al.2014; [Potts et al.| 2014} Schrempf et al.|[2016

722 |Eriksson et al.|[2017) that allelic sequences are useful for phylogenetic studies to improve
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the estimation of gene trees, species trees, and divergence times (Garrick et al.[2010; Potts |

et al[2014; |Lischer et al|2014). The common practice of neglecting allelic information in

phylogenetic studies possibly results from historical inertia and a lack of computational
pipelines to prepare allele sequences for phylogenetic analysis using MPS data.
In addition to the problems of determining allelic sequences, the proper analysis of

allelic information in phylogenetic studies remains a challenging and intensively discussed

topic (Garrick et al|2010} Lischer et al.[2014; Potts et al.[|2014} [Schrempf et al.|2016;

Leaché and Oaks |2017). Various approaches have been proposed to include this

information into phylogenetic methods (Lischer et al.|2014; Potts et al.2014; [Schrempf |

2016). One is to code heterozygous sites using the International Union of Pure and

Applied Chemistry (IUPAC) ambiguity codes and to include these as additional characters

in existing substitution models for gene tree and species tree inference (Potts et al.|2014;

Schrempf et al[2016). While these studies demonstrate that integrating additional allelic

information in this manner increases accuracy in phylogenetic inference,
found that coding heterozygous sites as [UPAC ambiguity codes in phylogenetic
models biases the results toward older divergence time estimates. Instead,
introduced a method of repeated random haplotype sampling (RRHS) in which
allele sequences are repeatedly concatenated across many loci, using a random haplotype
for any given locus in each replicate. In their approach, they then analyzed thousands of
concatenation replicates separately for phylogenetic tree estimation and summarized the
results between replicates, thereby integrating the allelic information in the form of
uncertainty intervals. However, there are two important shortcomings of this approach: 1.

concatenating unlinked loci (and in particular allele sequences from unlinked loci) in a

random manner is known to produce incorrect topologies (Degnan and Rosenberg|2009)

often with false confidence (Edwards et al.|2007; [Kolaczkowski and Thornton|2004;

Kubatko and Degnan|2007; Mossel and Vigoda||2005), which is not accounted for when
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o doing so repeatedly and summarizing the resulting trees, and 2. running thousands of tree
w0 estimation replicates based on extensive amounts of sequence data results in unfeasibly long
101 computation times, particularly for Markov-Chain Monte Carlo (MCMC) based softwares
102 such as MrBayes or BEAST. Hence, there is need to find proper solutions to include

103 heterozygous information in phylogenetic analyses, as concluded by |Lischer et al.| (2014).

104 Here, we introduce the bioinformatic assembly of allele sequences from UCE data

s (Fig. [I) and demonstrate a full integration of allele sequences to species tree estimation

s under the multispecies coalescent (MSC) model. In our approach, we treat each allelic

w7 sequence of an individual at a given locus as an independent sample from the population,
s and we analyze these sequences using the species tree and delimitation software STACEY
o (Jones et al.|[2014; Jones [2017)), which allows for this approach by not requiring a priori

o clade- or species-assignments. We first demonstrate the empirical utility of this approach
w1 by resolving the shallow genetic structure (<1 Ma) within two recognized morphospecies of
2 the South American hummingbird genus Topaza, with a dataset of 2,386 ultraconserved

s elements (UCEs, see Faircloth et al. (2012))). We then validate this approach, using

s simulated data, and we find evidence that allele sequences yield more accurate results in

us terms of species tree estimation and species delimitation than the contig sequence approach
us that ignores heterozygous information. Further, our simulation results provide evidence

7 that compiling phased allele sequences and treating these as individual samples

us outperforms alternative approaches of coding heterozygous information, such as analyzing
ne  sequences containing IUPAC ambiguity codes or analyzing isolated SNPs. We conclude

o that allele phasing for sequence capture data can be critical for correct species delimitation
121 and phylogeny estimation, particularly in recently diverged groups, and that analyses using
122 phased allele sequences should be considered as one, potential “best practice” for analyzing

123 sequence capture datasets in a phylogenetic context.
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MATERIALS AND METHODS

125 Study System

e The genus Topaza and its sister genus Florisuga form the Topazes group, which together
127 with the Hermits represent the most ancient branch within the hummingbird family

s (Trochilidae) (McGuire et al.|2014)). Topazes are estimated to have diverged as a separate
120 lineage from all other hummingbirds around 21.5 Ma, whereas the most recent common
130 ancestor (MRCA) of Topaza and Florisuga lived approximately 19 Ma (McGuire et al.

i 2014)). At present, there are two morphospecies recognized within Topaza, namely the

132 Fiery Topaz, T. pyra (Gould, 1846), and the Crimson Topaz, T. pella (Linnaeus, 1758).
133 However, the species status of 7. pyra has been challenged by some authors (Schuchmann
3 1999; Ornés-Schmitz and Schuchmann|2011)), who consider this genus to be monotypic.

135 Topaz hummingbirds are endemic to the Amazonian rainforest and are some of the most
13 spectacular and largest hummingbirds worldwide, measuring up to 23 cm (adult males,

137 including tail feathers) and weighing up to 12 g (Schuchmann et al.|2016; del Hoyo et al.
133 [2016a)). These birds are usually found in the forest canopy along forest edges and clearings,
130 and are often seen close to river banks (Ornés-Schmitz and Schuchmann![2011). There is
1w morphological evidence for several subspecies within both currently recognized Topaza

1 species (Peters [1945; Schuchmann|[1999; Hu et al.|2000; |Ornés-Schmitz and Schuchmann

12 2011)) that we investigate using genetic data.

143 Sequence Data Generation

e We extracted DNA from the muscle tissue of 10 vouchered hummingbirds (9 Topaza, one

us  Florisuga, see Table 1)) using the Qiagen DNeasy Blood and Tissue Kit according to the
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s manufacturer’s instructions (Qiagen GmbH, Hilden, Germany). These samples cover most
17 of the genus’ total geographic range (Fig. [2)) and all morphologically recognized

s intraspecific taxa (Schuchmann et al.|2016; ldel Hoyo et al|2016a). All samples were

1o sonicated with a Covaris S220 to a fragment length of 800 base pairs (bp). Paired-end,

150 size-selected (range 600-800bp) DNA libraries were prepared for sequencing, using the

151 magnetic-bead based NEXTflexTM Rapid DNA-Seq Kit (Bioo Scientific Corporation,

152 Austin, TX, USA), following the user’s manual (v14.02).

153 We used the “Tetrapods-UCE-2.5Kv1” bait set (uce-2.5k-probes.fasta),

15« consisting of 2,560 baits (each 120 bp), targeting 2,386 UCEs, as described by [Faircloth
155 et al| (2012). The bait sequences were downloaded from http://ultraconserved.org and
15 synthesized by MYcroarray (Biodiscovery LLC, Ann Arbor, MI, USA). Sequence

157 enrichment was performed using a MYbaits kit according to the enclosed user manual

158 (v1.3.8). The enriched libraries were then sequenced using 250 bp, paired-end sequencing
150 on an [llumina MiSeq machine (Illumina Inc., San Diego, CA, USA). Library preparation,
10 sequence enrichment and sequencing were performed by the Sahlgrenska Genomics Core

161 Facility in Gothenburg, Sweden.

162 Mitochondrial Genome

13 10 infer a dated mitochondrial phylogeny for the genus Topaza to compare with the

14 nuclear phylogeny, we used off-target mitochondrial reads to assemble the complete

155 mitochondrial genome for all samples. We found that as many as 4.5% of all sequence

16 reads were of mitochondrial origin, even though no baits targeting mitochondrial loci were
17 used during sequence capture. An alignment of the assembled mitochondrial genomes for
s all samples was analyzed in BEAST (Drummond et al.[2012). Dating priors included

160 clock-rate priors for three mitochondrial genes, estimated for honeycreepers by [Lerner et al.

o (2011)) and node-age priors within the genus Topaza that were estimated by [McGuire et al.
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1 (2014)). The resulting phylogeny and estimated divergence times are shown in . A detailed
12 description of the assembly and phylogenetic analysis of the mitochondrial genome data
73 can be found in online Appendix 1 (Supplemental Material available on Dryad,

s doi:10.5061/dryad.hq3vq).

175 UCE Data Processing

e For this study we generated five different types of datasets, which we analyzed under the
1wz MSC. These five datasets represent different coding schemes for heterozygous information

s and are listed and described in the following sections.

wo 1. UCFE contig alignments.— Because contig sequences are commonly used in phylogenetic
10 analyses of MPS datasets (e.g. Faircloth et al.| (2012); [Smith et al.| (2014); Faircloth

1 (2015), we generated multiple sequence alignments (MSAs) of contigs for all UCE loci in
12 order to test the accuracy of the phylogenetic estimation of this approach.

183 To create MSAs from UCE contig data, we followed the suggested workflow from

18« the PHYLUCE documentation

s (http://phyluce.readthedocs.io/en/latest/tutorial-one.html). We applied the

185 PHYLUCE default settings unless otherwise stated. First we quality-filtered and cleaned
17 raw [llumina reads of adapter contamination with Trimmomatic (Bolger et al.[|2014)), which
18 1S implemented in the PHYLUCE function illumiprocessor. The reads were then

180 assembled into contigs using the software ABYSS (Simpson et al.[2009) as implemented in
1o the PHYLUCE pipeline. In order to identify contigs representing UCE loci, all assembled
11 contigs were mapped against the UCE reference sequences from the bait sequence file

102 (uce-2.5k-probes.fasta), using the PHYLUCE function match_contigs_to_probes.py.
13 We extracted only those sequences that matched UCE loci and that were present in all

s samples (n=820). These UCE sequences were then aligned for each locus (Fig. (1)) using

s MAFFT (Katoh et al.[2009).
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ws 2. UCFE allele alignments.— We altered the typical UCE workflow in order to retrieve the
17 allelic information that is lost when collapsing multiple reads into a single contig sequence
s (Fig. . To create this new workflow, we extracted all UCE contigs for each sample

199 separately and treated each resulting contig set as a sample-specific reference library for

20 read mapping (reference-based assembly). We then mapped the cleaned reads against each
2 reference library on a per sample basis, using CLC-mapper from the CLC Workbench

22 software. The mapped reads were sorted and then phased with SAMtools v0.1.19 (Li et al.
203 2009)), using the commands samtools sort and samtools phase, respectively. This

20 phasing function is based on a dynamic programming algorithm that uses read connectivity
205 across multiple variable sites to determine the two phases of any given diploid locus (He

206 et al.|[2010). Further, this algorithm uses paired-end read information to reach connectivity
207 over longer distances and it minimizes the problem of accidentally phasing a sequencing

208 error, by applying the minimum error correction function (He et al.[2010).

200 UCE data provide an excellent dataset for allele phasing based on read connectivity,
210 because the read coverage across any given UCE locus typically is highest in the center and
an - decreases toward the ends. This makes it possible to phase throughout the complete locus
212 without any breaks in the sequence. Even in cases where the only variable sites are found
213 on opposite ends of the locus, the insert size we targeted in this study (800 bp), in

212 combination with paired-end sequencing, enabled the phasing process to bridge the

25 complete locus (average length of compiled UCE-sequences in our study was 870 bp).

216 The two phased output files (BAM format) were inspected for proper variant

27 separation for all loci using Tablet (Milne et al.[2013]). We then collapsed each allele BAM
218 file into a single consensus sequence per haplotype and exported the two resulting allele

29 sequences for each sample in FASTA format. In order to separate true heterozygous sites
20 from occasional variants introduced by sequencing errors, we only made a nucleotide call if

21 the respective nucleotide was supported by at least three reads. Ambiguous positions were
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22 coded with the IUPAC code ‘N’ in the allele consensus sequences. We explored the

23 difference in the treatment of heterozygous positions between the contigs produced by the
24 de novo assembler ABYSS and our phased allele sequences in detail (exemplary for one

»s sample) in online Appendix 2 (Supplemental Material).

226 In the next, step we aligned the allele sequences between all samples, separately for
2 each UCE locus, using MAFFT (Fig. [I). We integrated this complete workflow into the
28 UCE processing software PHYLUCE (Faircloth/[2015) with slight alterations, one of which
20 is the use of the open-source mapping program bwa (Li and Durbin|2010) in place of

230 CLC-mapper.

o 3. UCE IUPAC consensus sequence alignments.— We generated an additional set of

2 alignments by merging the two allele sequences for each individual into one consensus

23 sequence with heterozygous sites coded as IUPAC ambiguity codes

2 (merge_allele_sequences_ambiguity_codes.py, available from:

255 github.com/tobiashofmann88/UCE-data-management/). We used this dataset to test

236 whether our allele phasing approach improved phylogenetic inference when compared to
237 the IUPAC consensus approach applied in other studies, where heterozygous positions are
238 coded as ITUPAC ambiguity codes in a consensus sequence for each locus and individual

20 (Potts et al.|2014; Schrempf et al.|2016]).

a0 4. UCE chimeric allele alignments.— To investigate whether correct phasing of

21 heterozygous sites is essential or if similar results are achieved by randomly placing

22 variants in either allele sequence, we generated a dataset with chimeric allele sequence
23 alignments. We created these alignments by applying a custom python script

24 (shuffle_snps_in_allele_alignments.py, available from:

25 github.com/tobiashofmann88/UCE-data-management/) to the phased allele sequence

as  alignments and randomly shuffling the two variants at each polymorphic position between
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the two allele sequences for each individual. This process leads, in many cases, to an
incorrect combination of variants on each allele sequence, thereby creating chimeric allele
sequences. The resulting alignments contain the same number of sequences as the phased
allele alignments (two sequences per individual), whereas the contig alignments and the
TUPAC consensus alignments contain only half as many sequences (one sequence per

individual).

5. UCE SNP alignment.— A common approach to analyzing heterozygous information is
to reduce the sequence information to only a single variant SNP per locus. This
data-reduction approach is often chosen because multilocus datasets of the size generated
in this study can be incompatible with Bayesian MSC methods applied to the full sequence
data, due to extremely long computational times and convergence issues. Instead,
alignments of unlinked SNPs can be used to infer species trees and species demographics
under the MSC model with the BEAST2 package SNAPP (Bryant et al.|2012)), a program
specifically designed for such data. However, extracting and filtering SNPs from BAM files
with existing software (such as the Genome Analysis Toolkit (GATK), McKenna et al.
(2010)) and converting these into a SNAPP compatible format can be cumbersome,
because SNAPP requires positions with exactly two different states, coded in the following
manner: individual homozygous for the original state = “0”, heterozygous = “1”, and
homozygous for the derived state = “2”.

To alleviate this problem, we developed a python function that extracts biallelic
SNPs directly from allele sequence MSAs (snps_from_uce_alignments.py, available from:
github.com/tobiashofmann88/snp_extraction_from_alignments/). Extracting SNPs from
MSAs in this manner is a straightforward and simple way to generate a SNP dataset
compatible with SNAPP, and does not require re-visiting the BAM files. A similar

program is also available in the R-package phrynomics (Leaché et al.[2015)). We used this
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22 approach to extract one variable position per alignment (to ensure unlinked SNPs) that
a3 had exactly two different states among all Topaza samples, not allowing for positions with

2+ missing data or ambiguities. This produced a SNP dataset of 598 unlinked SNPs.

75 Generation of Simulated UCE Data

s 'To assess the accuracy of the phylogenetic inferences resulting from different data

o7 processing approaches, we simulated UCE data similar to those discussed in the five

;s processing schemes we applied to the empirical Topaza data. However, because this

279 approach required us to simulate allele alignments before generating contig alignments,
20 steps one and two, below, are reversed from their order, above. We repeated all steps
21 involving the generation and analyses of simulated data to produce 10 independent

22 simulation replicates.

23 1. Simulated allele alignments.— In order to simulate allele alignments similar to our

s empirical data we first estimated species divergence times and population sizes from the

25 empirical UCE allele MSAs under the MSC model (Rannala and Yang|2003) using the

286 Bayesian MCMC program BPP v3.1 (Yang|2015). We applied the AO0 model, which

27 estimates divergence times and population sizes from MSAs for a given species tree

28 topology. As input topology we used the species tree topology resulting from the analysis of
280 the empirical allele MSAs in STACEY, assigning the Topaza samples to five separate taxa
20 (corresponding to colored clades in Figure [3b). An initial BPP analysis did not converge in
201 reasonable computational time, a problem that has previously been reported for UCE

22 datasets containing several hundred loci (Giarla and Esselstyn [2015). To avoid this issue,
203 we split the 820 UCE alignments randomly into 10 subsets of equal size (n=82) and

2 analyzed these separately with identical settings in BPP. The MCMC was set for 150,000

25 generations (burn-in 50,000), sampling every 10 generations. We summarized the estimates
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206 for population sizes and divergence times across all 10 individual runs. We then applied the
27 mean values of these estimates to the species tree topology, by using the estimated

208 divergence times as branch lengths and estimated population sizes as node values, resulting
20 in the species tree in Figure [dlg. This tree was used to simulate sequence alignments with
300 the MCcoal simulator, which is integrated into BPP. Equivalent to the empirical data, we
sn simulated sequence data for five taxa (D, E, X, Y, and Z) and one outgroup taxon (F, not
32 shown in Figure [4g). In the simulations, these taxa were simulated as true species under

53 the MSC model. In order to mimic the empirical allele data, we simulated four individuals
3¢ for species ‘D’ (equivalent to two allele sequences for 2 samples), four for species ‘E’, four
05 for species ‘X’ two for species ‘Y’ (two allele sequences for one sample), four for species ‘Z’,
306 and two for the outgroup species ‘F’. In this manner we simulated 820 UCE allele MSAs of
307 848 bp length (a value equal to the average alignment length of the empirical allele

28 alignments). The resulting simulated allele MSAs are equivalent to our empirical allele

30 MSAs, containing two phased allele sequences for every individual that differ only in true

s heterozygous sites and which are not expected to contain read-errors.

su 2. Simulated contig alignments.— To simulate UCE contig MSAs that contain sequences
;12 similar to contigs generated by assemblers like ABYSS, Velvet or Trinity, which pick only
a3 one of the two variants at a heterozygous site, we merged the sequences within each

se coalescent species in pairs of two (equivalent to pairs of allele sequences). Each pair of

a5 allele sequences was joined into one contig sequence by randomly picking one of the two
a6 variants at each heterozygous site across all loci. As in the empirical contig assembly

si7 - approach, our simulation approach may generate chimeric contig sequences.

ang 3. Simulated IUPAC consensus alignments.— Next, we generated IUPAC consensus MSAs
319 in the same manner as we generated the simulated contig MSAs in the previous step, with

»o  the exception that all heterozygous sites were coded with IUPAC ambiguity codes instead


https://doi.org/10.1101/255752
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/255752; this version posted April 12, 2018. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

;1 of randomly picking one of the two variants.

2 4. Simulated chimeric allele alignments.— We generated chimeric allele sequence MSAs
»23  from the simulated allele MSAs by randomly shuffling the heterozygous sites between each

34 pair of sequences using the same pairs as in the previous two steps.

s O, Simulated SNP alignment.— Finally, we extracted two different SNP datasets from the
2 simulated phased allele MSAs. The first SNP dataset (SNPs complete) was extracted in

27 the same manner as described for the empirical data (one SNP per locus for all loci) which
»s resulted in a total alignment length of 820 SNPs for the simulated data. We extracted an
20 additional SNP dataset (SNPs reduced) from only the subset of the 150 simulated allele

;0 alignments that were used for the sequence-based MSC analyses (see next section below).
s The resulting dataset of 150 SNPs was used to compare the phylogenetic inference based
sz on SNP data versus that based on full sequence data, if the same number of loci is being
;3 analyzed. This enabled us to evaluate the direct effect of reducing the full sequence

;14 information in the MSAs to one single SNP for each of the selected 150 loci.

335 MSC Analyses of Empirical and Simulated UCE Data

1 Sequence-based tree estimation.— To jointly infer gene trees and species trees, we analyzed
sz each of the generated sets of MSAs (processing schemes 1-4 for empirical and simulated)

1s under the MSC model, using the DISSECT method (Jones et al.|[2014)) implemented in

130 STACEY (Jones|2017), which is available as a BEAST2 (Bouckaert et al.|2014)) package.
s STACEY allows *BEAST analyses without prior taxonomic assignments, searching the tree
s space while simultaneously collapsing very shallow clades in the species tree (controlled by
s> the parameter collapseHeight). This collapsing avoids a common violation of the MSC

ss model that occurs when samples belonging to the same coalescent species are assigned to
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sa separate taxa in *BEAST. This feature makes STACEY suitable for analyzing allele

us  sequences, because they do not have to be constrained to belong to the same taxon and can
us be treated as independent samples from a population. STACEY runs with the usual

s *BEAST operators, but integrates out the population size parameter and has new MCMC
us  proposal distributions to more efficiently sample the species tree, which decreases the time
a9 until convergence. In order to reach even faster convergence, we reduced the number of loci
0 for this analysis by selecting the 150 allele MSAs with the most parsimony informative

i1 sites. This selection was made for both the empirical and the simulated allele MSAs. The
2 same 150 loci were selected for all other processing schemes.

353 Prior to analysis, we estimated the most appropriate substitution model for each of
3¢ the 150 loci with jModeltest (Supplementary Table S1) using BIC. We used BEAUTI

35 v2.4.4 to create an input file for STACEY in which we unlinked substitution models, clock
56 models and gene trees for all loci. We did not apply any taxon assignments, thereby

7 treating every sequence as a separate taxon. We chose a strict clock for all loci and fixed
s the average clock rate for one random locus to 1.0, while estimating all other clock rates in
10 relation to this locus. To ensure that all resulting species trees were scaled to an average
0 clock rate of 1.0, we rescaled every species tree from the posterior distribution (post

;1 analysis) using the average clock rate of the respective MCMC step. We applied the

w2 S TACEY-specific BirthDeathCollapse model as a species tree prior, choosing a value of

33 le-b for the collapseHeight parameter. Other settings were: bdcGrowthRate = log normal
3¢ (M=4.6, S=1.5); collapseWeight = beta (alpha=2, beta=2); popPriorScale = log normal
s (M=-7, S=2); relativeDeathRate = beta (alpha=1.0, beta=1.0). For the IUPAC consensus
w6 data, we enabled the processing of ambiguous sites by adding useAmbiguities="true" to
7 the gene tree likelihood priors for all loci in the STACEY XML file. All analyses were run
s for 1,000,000,000 MCMC generations or until convergence (ESS values >200), logging every

30 20,000 generations. Convergence was assessed using Tracer v1.6 (Rambaut et al.2013). We
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sro then summarized the posterior tree distribution into one Maximum Clade Credibility tree
s (i.e. tree in the posterior sample that has the maximum product of posterior clade

s probabilities) with TreeAnnotator v2.4.4, discarding the first 10% of trees as burn-in.

373 For the simulated data, we analyzed the posterior species tree distributions of each
s analysis with the program SpeciesDelimitationAnalyser (part of the STACEY

w5 distribution). This program produces a similarity matrix that contains the posterior

ss  probabilities of belonging to the same cluster for each pair of sequences. This analysis was
w7 run with a collapseHeight value of le-5 (identical to the collapseHeight used in the

s STACEY analysis), while discarding the first 10% of trees as burn-in.

sro SNP-based tree estimation.— To estimate the species tree phylogeny from the extracted
;0 SNP data, we analyzed the empirical and simulated SNP data in SNAPP. We did not

s apply prior clade assignments to the samples in the SNP alignment (each sample was

32 assigned as its own taxon). We set coalescent rate and mutation rates to be estimated

33 based on the input data, and we chose a Yule species tree model with default settings (A =
3¢ 0.00765). We ran the analysis for 10,000,000 generations, sampling trees and other

ss  parameters from the posterior every 1,000 generations. Unlike STACEY, SNAPP assumes
;6 correct assignments of all sequences to coalescent species. Using the simulated SNP data,
;7 we therefore tested how our approach of assigning every individual as its own coalescent
s species affects the resulting phylogenetic inference. We did so by running a separate

380 analysis for both simulated SNP datasets (complete and reduced) with correct species

30 assignments (assignments as in Figure dk).

301 Additional Analyses

52 We ran additional analyses of the contig and the phased allele MSAs for both the empirical

33 and simulated data using a summary coalescent approach as implemented in MP-EST (Yu


https://doi.org/10.1101/255752
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/255752; this version posted April 12, 2018. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

s+ et al.|2007), which can be found in online Appendix 3 (Supplemental Material) and

ss  Supplementary Figures S1-S3.

RESULTS

307 UCE Summary Statistics

s Alignment statistics— In the following we use the term “polymorphic sites” for those

399 positions within a MSA alignment of a given locus where we find at least two different

wo states at a particular position among the sequences for all samples. This does not require a
w1 particular individual being heterozygous for the given position, since we do not search for
w2 SNPs on a per sample basis but rather for SNPs within the genus Topaza. In this manner,
w3 we found that the empirical UCE contig sequence alignments had an average of 2.8

w4 polymorphic sites per locus and an average alignment length of 870 bp. In contrast,

ws phasing the empirical UCE data to create allele alignments led to 4.5 polymorphic sites per
we locus and an average alignment length of 848 bp, representing a 60% increase in

a7 polymorphic sites per locus. This increase of polymorphic sites was attributable to the fact
ws that many variants get lost during contig assembly, because ABYSS and other tested

w0 contig assemblers, namely Trinity and Velvet, often eliminate one of the two variants at

a0 heterozygous positions (see below). The reduced length of the allele alignments in

a1 comparison to the contig alignments was due to conservative alignment clipping thresholds
a2 implemented in PHYLUCE, which clips alignment ends if less than 50% of sequences are
a3 present. Because the allele phasing algorithm divides the FAST(Q reads into two allele bins
as  and because a nucleotide is only called if it is supported by at least three high-quality

a5 FASTQ reads, we lost some of the nucleotide calls at areas of low read coverage (mostly at


https://doi.org/10.1101/255752
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/255752; this version posted April 12, 2018. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

a6 the ends of a locus) when comparing the allele sequences to the contig sequences. More

a7 information about the distribution of lengths and variable sites within the empirical UCE
ais  data can be found in the Supplementary Figures S4 and S5. The simulated contig MSAs
a0 had an average of 3.2 polymorphic sites per locus, after excluding the outgroup (average
w0 calculated across all 10 simulation replicates). The simulated allele MSAs, on the other

a1 hand, contained an average of 5.4 polymorphic sites (69% increase) across 10 independent
s simulation replicates. An overview of parsimony informative sites, variable sites and length

w3 of each alignment (simulated and empirical data) can be found in Supplementary Table S2.

w24 MSC Results of Empirical UCE Data

w25 The MSC species tree results for all tested processing schemes of the empirical UCE data
w6 (contig sequences, allele sequences, [IUPAC consensus sequences, chimeric allele sequences
w2 and SNPs) strongly support the monophyly of both T. pyra and T. pella with 100%

»2s  Bayesian posterior probability (PP) (Fig. |3|and Supplementary Fig. S6). In all MSC

x0 analyses, we also see strongly supported genetic structure within 7. pella (> 97% PP),

a0 separating the northern samples (5 and 6, sampled north of the Amazon River) from the
s southern ones (7, 8 and 9, sampled south of the Amazon River). Additionally, within the
. shallow southern T. pella clade, all datasets, with exception of the IUPAC consensus data
= (Fig. ), strongly support a genetic distinction (> 99% PP) between sample 7 from the
24 Amazon River delta and the other southern 7. pella samples (8 and 9). Further, the

s analysis of the phased allele MSAs returns a phylogenetic signal, possibly also tracking a
a6 genetic divergence between a northern and a southern clade within 7. pyra, but their

s monophyly is not very strongly supported (Fig. ) This pattern is further supported by
a3 the mitochondrial phylogeny, which shows the same divergence within 7. pyra, dated at

220 0.68 million years ago (Fig. |2l and online Appendix 1).
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440 MSC' Results of Stmulated Data

a1 Species tree topology.— We analyzed six different datasets under the MSC model for each
w2 of the ten simulation replicates: contig sequence MSAs (n=150, STACEY), allele sequence
w3 MSAs (n=150, STACEY), IUPAC consensus MSAs (n=150, STACEY), chimeric allele

us MSAs (n=150, STACEY), reduced SNP data (n=150, SNAPP), and the complete SNP

ws dataset (n=820, SNAPP). All resulting species trees (Fig. [dh-f) correctly return the

us topology of the species tree that was used to simulate the data (Fig. ) across all ten

w7 simulation replicates (Supplementary Fig. S7). All central nodes in the species trees are

ws  supported by >90% PP in all analyses, with the exception of the species tree resulting

ao  from the reduced SNP dataset, which shows very weak support for two nodes and has a

w0 large uncertainty interval around the root-height (Fig. ) However, these shortcomings
1 disappeared when we added more (unlinked) SNPs to the dataset (Fig. |4f). The full SNP
2 dataset (n=820) produced the correct species tree topology with high node support

w53 consistently throughout all ten independently simulated datasets (Supplementary Fig. S8).
s The SNAPP species tree topology appeared to be unaffected by the chosen clade

sss  assignment model; while we allowed every sequence to be its own taxon in Figure de and f,
6 we also applied the correct species assignment (as in Fig. ) in two additional analyses for
ss7 one of the simulation replicates (reduced and complete SNP data) that returned the same

s8 tree topology (Supplementary Figs. S9 and S10).

w0 Species delimitation.— Although the inferred species tree topology was consistent among
o all four sequence-based MSC analyses (Fig. —d)7 the inferred node heights varied

w1 considerably between the species trees resulting from the different data processing schemes.
w2 For the contig sequence data (Fig. [fh) and the chimeric allele data (Fig. [4{1), the node

3 heights within the five simulated species (D,E,X,Y,Z) were too high, which led to an

w4 oOverestimation of the number of coalescent species in the dataset (see similarity matrices).
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w5 Conversely, the phased allele data (Fig. [db) and the IUPAC consensus data (Fig. [4k)
w6 correctly delimited the five coalescent species from the simulation input tree (Fig. ig). The

w7 STACEY results showed the same pattern in all ten simulation replicates (Fig. S7).

ws  Accuracy of divergence time estimation.— For all four sequence-based analyses (Fig. —d)
w0 the average substitution rate across all loci was set to ‘1’. Under these settings, we

a0 expected the absolute values of the sequence-based analyses to return the node height

an values of the simulation input tree, which used substitution rates scaled in the same

a2 manner. The phased allele MSAs produced the most accurate estimation of divergence

a3 times out of all tested datasets (see proximity of estimates to simulation input value,

aa represented by green line in Figure [5)). This was the case for all nodes in the species tree,
«s namely (D)E), (Y,2), (X,(Y,Z)), and ((D,E)(X,(Y,Z))). The divergence time estimates

as  resulting from the phased allele data accurately recovered the true values and did not show
a7 any bias throughout ten simulation replicates (Supplementary Fig. S11). This contrasts

as - with the contig MSAs and the chimeric allele MSAs that consistently overestimated the

aro height of all nodes and the IUPAC consensus MSAs which consistently underestimated the

0 height of all nodes (Figs. p|and S11).

DI1SCUSSION
1 Phased Allele Sequences Return The Most Accurate Phylogeny
483 We tested whether phylogenetic inference improves by phasing sequence capture

s data into allele sequences, in comparison to the standard workflow of analyzing contig
s sequences (Faircloth et al.[2012; McCormack et al.[2012; Smith et al.[2014} Faircloth |2015)).

ss  The answer is yes. We find that phased allele data outperform contig sequences in terms of
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s species delimitation (Fig. ) and divergence time estimation (Fig. . Contig sequence

s MSAs on the other hand lead to a consistent overestimation of divergence times (Fig. |5]),
a0 which in turn lead to an overestimation of the number of coalescent species in our

w0 simulated data (Fig. [4a). These results support earlier work by Lischer et al.| (2014)), who
w1 concluded that consensus sequences introduce a bias towards older node heights. Because
22 both our empirical and simulated data represent rather shallow phylogenetic relationships,
w3 future research is required to determine if these findings also apply to datasets representing
sa divergence events occurring in deeper time.

495 Besides these practical advantages of using phased allele sequences for phylogenetic
w6 analyses, there are further theoretical arguments for compiling and analyzing allele

w7 sequence MSAs from sequence capture datasets.

208 First, allele sequences represent the smallest evolutionary unit on which selection
w0 and other evolutionary processes act. Therefore, the coalescent models that underlie our
s0 phylogenetic methods, including the MSC model |Degnan and Rosenberg (2009), have been
so0 developed for allele sequences. Contig sequences, on the other hand, represent an artificial
so2 and possibly chimeric sequence construct that arises from merging all read variation at a
53 given locus into a single sequence. This process masks information by eliminating one of
s the two variants at a heterozygous site (online Appendix 2). This shortcoming of the most
ss common assemblers (e.g. ABYSS, Trinity and Velvet) is due to the fact that they were

so6 designed to assemble sequences of haploid genomes and they are not optimized for

sov heterozygous sequences or genomes (Bodily et al.|[2015).

508 Second, not only are allele sequences the more appropriate data type, but phasing
so0  sequence capture data also leads to a doubling of the effective sample size, since two

s sequences are compiled for a diploid individual, in contrast to the single sequence per

su individual that is recovered when taking the contig approach. Here, we demonstrate how

sz these sequences can be properly applied as independent samples from a population by
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si3 using the assignment-free BirthDeathCollapse model as implemented in STACEY. Because
s STACEY requires no a prior: assignment of sequences to taxa, it avoids a violation of the
sis. MSC that would occur when analyzing allele sequences as separate taxa in *BEAST, since
sis TBEAST assumes each taxon constitutes a separate coalescent species.

517 Third, sequence capture datasets such as UCEs are optimal for allele phasing

si8  because they contain high read coverage collected across short genomic intervals that are
s19 optimal for read-connectivity based phasing. The workflow developed in this study is now
s20 fully integrated into the PHYLUCE pipeline, making allele phasing for sequence capture

ss1 data easily available to a broad user group.

522 Phasing of Heterozygous Sites Matters

s23 Several studies have accounted for heterozygosity by inserting [UPAC ambiguity codes into
s2« their sequences at variable positions (Potts et al.[2014; Schrempf et al.|2016|), rather than
s phasing SNPs to produce separate allele sequences. Here, we directly compared these two
s26 approaches, and found that the IUPAC consensus sequences performed equally well to the
s2» phased allele sequences for estimating the species tree topology (Fig. . However, IUPAC
s consensus sequence data led to a consistent underestimation of the divergence times of all
s» mnodes in the species tree (Fig. [5). Our results contrast with those of (Lischer et al|2014),
s who reported an overestimation of divergence times for alignments containing TUPAC

sn  ambiguity codes. The differences between our results may simply be caused by the different
s tree inference programs used. |Lischer et al.| (2014) applied a Neighbour Joining (NJ) tree
s algorithm as implemented in the software PHYLIP (Felsenstein|2005) that treats two

s sequences containing the same ambiguity codes as identical. In effect, the approach used by
s |Lischer et al.| (2014) did not directly investigate the effect of IUPAC ambiguity codes on

s3  phylogenetic estimates but rather the effect of removing heterozygous sites. Our approach

s37 - of analyzing [UPAC consensus sequences under the MSC in STACEY, on the other hand,
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properly integrates these [IUPAC ambiguity codes into the calculation of the gene tree
likelihoods. Thus, we conclude that [IUPAC ambiguity codes introduce a bias towards
younger divergence times, even when properly integrated into the phylogenetic model. The
underlying cause of this discrepancy should be further investigated in future studies.

We also tested whether the improved performance of phased allele sequences in
comparison to contig or IUPAC consensus sequence data may merely be an effect of
doubling the number of sequences in the MSAs, by analyzing a dataset of chimeric allele
sequences with randomly shuffled SNPs. As with the contig data, the chimeric allele data
led to an overestimation of the number of coalescent species (Fig. ) and to a biased
estimation towards older divergence times (Fig. [5)). The fact that contig sequences and
chimeric allele sequences produce very similar results in our analyses is not surprising,
because contigs, themselves, represent chimeric consensus sequences of the variation found
at a locus within an individual. The similarity of the results between contig MSAs and
chimeric allele MSAs also shows that the number of sequences being analyzed does not
affect the estimated topology, species delimitation or divergence time estimates (Figs.
and .

Based on the findings discussed above, we conclude that proper phasing of
heterozygous positions is preferable to the alternative of coding heterozygous sites as
IUPAC ambiguity codes, particularly when the estimation of divergence times is of interest.
Further, allele sequences are theoretically more appropriate input for coalescent models and
should be the preferred data type input to these models. The scalability of this approach
to larger sample sizes and the applicability of our results to studies of older divergences are
questions that should be investigated in future studies.

One additional issue that we do not address in this study are the effects of
sequencing errors. While sequencing errors can potentially be a serious issue particularly for

datasets affected by low read coverage, we do not expect sequencing errors to be assembled
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se« into our final allele sequences, due to our relatively high read coverage per exported variant
sss (>three reads each). The effects of sequencing errors and incorrectly inferred read

sss  variability on downstream analyses are subjects that need to be explored in future studies.

567 Practicality of Using Phased Allele Data in Multilocus Phylogenetics

see  In this study, we analyze MSAs resulting from the different processing schemes in a MSC
seo framework using the STACEY BirthDeathCollapse tree model. However, due to the size

s0  (number of samples and loci) of many sequence capture datasets, it is often unfeasible to
sn - analyze all MSAs jointly in one MSC analysis because of computational limitations (Smith
sz et al.|[2014; Manthey et al.|2016). This problem is exacerbated when working with allele

s MSAs compared to the contig or [IUPAC consensus approach, because each alignment

sz contains twice the number of sequences, leading to a doubling of tips in all estimated gene
sis  trees. Here we outline three different strategies of addressing this problem:

576 1. One reasonable approach to data reduction is to use a subset of the allele MSAs
sr7 - for phylogeny estimation. We chose this approach here and reduced the UCE dataset from
ss 820 MSAs to 150 MSAs in order to reach convergence of the MCMC (BirthDeathCollapse
so without taxon-assignments) within a reasonable time frame (three to four days, single core
ss0 on a Mac Pro, Late 2013, 3.5 GHz 6-Core Intel Xeon E5 processor). This approach has the
ss1  advantage that we can fully integrate the allelic sequence information and avoid a priori

sz assignments of allele sequences to taxa. However this approach discards the majority of the
53 multilocus information by excluding most MSAs from the analysis.

584 2. An alternative approach to data reduction, while keeping the multilocus

sss information of all loci, is to analyze only a single polymorphic position (SNP) per MSA

sss  using SNAPP (Bryant et al.2012). We find that phased allele MSAs provide an excellent
ss7  template for SNP extraction; since all polymorphisms present in the allele sequences have

sss already undergone quality and coverage filters, it is very straightforward to extract SNPs
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directly from the allele MSAs. We provide an open-source script for this purpose which
also converts the extracted SNPs into a SNAPP compatible format. In our study, this
approach produced the correct species tree topology and also estimated the relative
node-heights correctly (Fig. [f). However, SNAPP can only estimate relative and not
absolute values for divergence times (Bryant et al|2012), in contrast to sequence-based
analyses (Fig. —d) that deliver absolute divergence time estimates. A more thorough
discussion about extracting SNPs from sequence capture data can be found in online
Appendix 4 (Supplemental Material).

3. Another common approach is to abdicate the more appropriate but
computationally heavy co-estimation of gene trees and species trees of the MCMC-based
MSC methods and chose species tree methods that separate gene tree and species tree
estimation into two consecutive steps. This family of methods is often referred to as
summary coalescent methods. In this approach gene trees are estimated separately for each
MSA. In a subsequent step, the estimated gene trees are used to infer the most likely
species tree. The advantage of this approach is that the number of independent loci being
analyzed does not constitute a serious computational limitation, because every gene tree is
estimated independently, which allows for efficient computational parallelization. On the
other hand, summary coalescent methods are sensitive to the number of informative sites
per individual locus (Gatesy and Springer|2014; Springer and Gatesy|2014). Given that
our phased allele MSAs contained on average 60% more polymorphic sites than the contig
MSAs (69% for the simulated data), we argue that phased allele MSAs may lead to more
precise phylogenetic estimates under the summary coalescent approach in comparison to
contig MSAs. In our case, the summary coalescent approach was not very suitable, due to
rather conserved alignments with limited number of informative sites for individual gene
tree inference, which obscured the inference of branch lengths in the species tree (online

Appendix 3). However, in the case of our simulated data, we observed a more precise
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a5 estimate of the species tree topology based on phased allele MSAs when compared to those
a6 based on contig MSAs (online Appendix 3). In conclusion the summary coalescent

s17 approach can be suitable if the individual alignments contain a sufficient number of

s1s parsimony informative sites for gene tree inference, and for this reason it is likely that

s19  phased allele MSAs might return more precise phylogenetic estimates than contig MSAs.

s20 However, further simulation studies are required to properly test this hypothesis.

621 Phylogenetic relationships in Topaza

s22  One or two species? — Our results show a separation of two lineages within the genus

23 Topaza that is dated at ca. 2.4 Ma in the mitochondrial tree (Fig. [2 and online Appendix
e 1). These lineages are consistent with the previously described morphospecies T. pyra

e (Gould, 1846) and T. pella (Linnaeus, 1758) that are generally accepted in the

s ornithological community (Hu et al.[2000; del Hoyo et al.|2016a)). However, the species

sz status of T. pyra has been challenged by some authors (Ornés-Schmitz and Schuchmann
s28 [2011; Schuchmann!|{1999). These authors concluded that Topaza is a monotypic genus with
s20 T. pyra being a subspecies of T. pella, which they refer to as T. pella pyra. Our results

630 consistently support T. pyra as a separate lineage across all analyses, lending no support

en  for the conspecificity of these two taxa (Fig. [3)).

sz Genetic divergence within morphospecies.— One aim of this study was to evaluate the

33 genetic structure within the two morphospecies, T. pyra and T. pella. The mitochondrial
e tree shows two divergent clades within 7. pyra (Fig. [2| and online Appendix 1), but these
e3s clades are not strongly supported by the UCE data (Fig. |3, even though the allele

36 sequence data are picking up a signal that possibly indicates two clades are in the process
e of diversifying (Fig. [3b). For T. pella, on the other hand, we consistently find the same

s3s  clades throughout all multilocus MSC analyses (Fig. , leading us to distinguish between
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30 the following populations that are congruent with previous morphological subspecies

ss0 descriptions: a northern 7. pella population (T. pella pella), a southern T. pella

s population (7. pella microrhyncha) and a separate population occupying the estuary

s region of Amazon River (T. pella smaragdula). We discuss these phylogenetic conclusions

s43 in more detail in online Appendix 5 (Supplemental Material).

saa  Summarizing biogeographic remarks.— The presence of genetically similar individuals

s sampled at great geographic distances (e.g. samples 5 and 6) suggests that Topaza

a6 hummingbirds maintain high levels of gene flow across vast distances of rainforest habitat.
sz At the same time, we find indicators of phylogenetic structure within species,

sas distinguishing samples that are separated by only a small geographic distance (see e.g.

sa0 samples 6 and 8). These samples are however separated by the Amazon River, which has

0 been found to constitute a dispersal barrier for various species of birds and many other

1 animals (Remsen and Parker||1983} Clair| 2003; [Hayes and Sewlal|2004; Moore et al.|2008;

es2 |Fernandes et al|2012; Ribas et al.[|2012; Thom and Aleixo|2015). Even though some

53 hummingbird species are known to disperse across large distances (Wyman et al.|2004;

es¢ Russell et al.[[1994)), the Amazon River and its associated habitats (such as seasonally

ess flooded forests) may be part of a complex network of factors that inhibit gene flow among

56 populations of Topaza hummingbirds.

CONCLUSIONS

s This study provides evidence that the assembly of phased allele sequence MSAs improves
o phylogenetic inference under the MSC model. We find that contig sequences, on the other
s0 hand, which are commonly used for phylogenetic inference, lead to biases in the estimation
1 Of divergence times. Additionally, phased allele sequence MSAs provide a useful template

sz for the extraction of SNP data, and SNP data can be applied as an alternative dataset for
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phylogenetic inference, circumventing some computational limitations when analyzing
multilocus full-sequence data with MCMC-based MSC methods. Our empirical results
suggest the separation of two species within the genus Topaza, and we further find genetic
structure within one of these species, justifying the definition of separate subspecies. Based
on our empirical and simulated results, we conclude that allele phasing should be
considered as one “best practice” for processing sequence capture data, although the
sample-size, phylogenetic scale, and analytical limitations of this approach have not yet

been well-established.

SUPPLEMENTARY MATERIAL

Supplementary material, including Supplemental Figs. S1-S11, Supplemental Tables S1
and S2, online Appendices 1-5 as well as data files, can be found in the Dryad data

repository at https://doi.org/10.5061/dryad.hq3vq.

AVAILABILITY

The documentation for the allele phasing workflow, which we included into the PHYLUCE
pipeline, can be found here:
http://phyluce.readthedocs.io/en/latest/tutorial-two.html. The script for
extracting SNPs from MSAs is available here:
https://github.com/tobiashofmann88/snp_extraction_from_alignments. All
processing and analyses steps executed on the data are stored in bash-scripts on our
project GitHub page at https://github.com/tobiashofmann88/topaza_uce. The raw
sequencing reads are stored in the NCBI Short Read Archive (SRA) at

https://www.ncbi.nlm.nih.gov/sra/SRP135707.
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Table 1: Sequenced specimens and coordinates of their sampling locations, subspecies iden-
tifications based on morphological characters, abbreviation for sample providers: INPA =
Instituto Nacional de Pesquisas da Amazonia, MPEG = Museum Paraense Emilio Goeldi,
USNM = NMNH, Smithsonian Institution, Washington DC, USA.

ID Taxon Subspecies  Voucher number Latitude Longitude
1 Topaza pyra amaruni INPA A1106 -0.044167 -66.94944
2 T. pyra pyra MPEG 62475 -1.559444  -65.88006
3 T. pyra pyra MPEG 62474 -4.083889  -60.66050
4 T. pyra pyra MPEG 52721 -7.350000 -73.66667
5 T. pella NA USNM 586322 7.220000  -60.29000
6 T. pella pella INPA A3319 -1.927900 -59.41600
7 T. pella smaragdula MPEG 61688 -1.950000 -51.60000
8 T. pella macrorhyncha  MPEG 65603 -5.352417  -57.47500
9 T. pella NA INPA A6233 -9.028550 -64.24231
1 Florisuga fusca NA MPEG 70697 -15.15972  -39.04500
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Figure 1: Depiction of the workflow used in this manuscript. Colored boxes represent dif-
ferent types of multiple sequence alignments (MSAs) used for phylogenetic inference in this
study. In addition to the standard UCE workflow (boxlabel: classic workflow) of gener-
ating contig MSAs (Faircloth et al.2012; Smith et al.|[2014}; Faircloth| 2015), we extended
the bioinformatic processing in order to generate UCE allele MSAs, and to extract single
nucleotide polymorphism (SNPs) from these allele MSAs (boxlabel: upgraded workflow).
We added these new functions to the PHYLUCE pipeline (Faircloth|2015). Additional data
processing steps (boxlabel: additional steps) were executed in this study in order to test
different codings of heterozygous positions.
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Figure 2: Distribution ranges and mitochondrial phylogeny of the South American hum-
mingbird genus Topaza. Tip labels of phylogeny and numbers on map represent sample
[Ds (Table 1)) of sequenced Topaza specimens. Node labels in phylogeny show mean diver-
gence time estimates for mitochondrial lineages, with node bars representing the surrounding
uncertainty (95% highest posterior density (HPD)). All nodes are supported with 100% pos-
terior probability (PP), as indicated by asterisks. Polygons on map represent distribution
ranges of the two morphospecies (7. pyra and T. pella) as estimated by BirdLife Interna-
tional (http://www.birdlife.org). Transparent symbols (triangles and circles) represent
Topaza sightings, which were downloaded from the eBird database (Sullivan et al. [2009).

The major river systems in the Amazon drainage basin are labeled and emphasized in size
for better visibility. Topaza illustrations were provided by del Hoyo et al.| (2016b)).
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a) Contig sequence alignments (n=150) b) Phased allele alignments (n=150)
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Figure 3: Multispecies Coalescent (MSC) species trees for the empirical Topaza data, based
on four different data types used in this study: contig sequence MSAs, phased allele sequence
MSAs, IUPAC consensus sequence MSAs and SNP data. a) STACEY species tree from UCE
contig alignments (n=150), b) STACEY species tree from UCE allele alignments (n=150),
c) STACEY species tree from UCE IUPAC consensus alignments (n=150) and d) SNAPP
species tree from UCE SNP data (1 SNP per locus if present, n=598). Shown are the
Maximum Clade Credibility trees (node values = PP, error-bars = 95% HPD of divergence
times) and a plot of the complete posterior species tree distribution (excluding burn-in).
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Figure 4: MSC species tree results for different data processing schemes of simulated data.
a) to d) show the STACEY results of the four different types of MSAs analyzed in this
study. Displayed in these panels are the Maximum Clade Credibility trees and the similarity
matrices depicting the posterior probability of two samples belonging to the same clade, as
calculated with SpeciesDelimitationAnalyser. Dark panels depict a high pairwise similarity,
whereas light panels depict low similarity scores (see legend). e) and f) show the Maximum
Clade Credibility trees resulting from SNAPP for our two SNP datasets, (reduced and com-
plete). g) shows the species tree under which the sequence data were simulated in this study.
Node support values in PP, blue bars representing 95% HPD confidence intervals.
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Figure 5: Posterior distributions of divergence times, estimated with STACEY. Each panel

represents a different node in the STACEY species tree (see panel titles)
vertical lines show the means of these posterior distributions. The solid vertical line shows

the true node height value, which is the node height for the respective clade in the input

sity plots of the posterior node-height distribution (excl.
species tree, under which the sequence alignments were simulated.
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