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Göteborg, Sweden;9

2Gothenburg Global Biodiversity Centre, Box 461, SE-405 30, Göteborg, Sweden10
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Abstract.— Advances in high-throughput sequencing techniques now allow relatively easy22

and affordable sequencing of large portions of the genome, even for non-model organisms.23

Many phylogenetic studies reduce costs by focusing their sequencing efforts on a selected24

set of targeted loci, commonly enriched using sequence capture. The advantage of this25

approach is that it recovers a consistent set of loci, each with high sequencing depth, which26

leads to more confidence in the assembly of target sequences. High sequencing depth can27

also be used to identify phylogenetically informative allelic variation within sequenced28

individuals, but allele sequences are infrequently assembled in phylogenetic studies.29

Instead, many scientists perform their phylogenetic analyses using contig sequences which30

result from the de novo assembly of sequencing reads into contigs containing only canonical31

nucleobases, and this may reduce both statistical power and phylogenetic accuracy. Here,32

we develop an easy-to-use pipeline to recover allele sequences from sequence capture data,33

and we use simulated and empirical data to demonstrate the utility of integrating these34

allele sequences to analyses performed under the Multispecies Coalescent (MSC) model.35

Our empirical analyses of Ultraconserved Element (UCE) locus data collected from the36

South American hummingbird genus Topaza demonstrate that phased allele sequences37

carry sufficient phylogenetic information to infer the genetic structure, lineage divergence,38

and biogeographic history of a genus that diversified during the last three million years.39

The phylogenetic results support the recognition of two species, and suggest a high rate of40

gene flow across large distances of rainforest habitats but rare admixture across the41

Amazon River. Our simulations provide evidence that analyzing allele sequences leads to42

more accurate estimates of tree topology and divergence times than the more common43

approach of using contig sequences.44

(Keywords: SNP, heterozygous sites, target enrichment, gene tree, species tree,45

mitochondrial genome, Trochilidae, Aves)46
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Massive Parallel Sequencing (MPS) techniques enable time- and cost-efficient47

generation of DNA sequence data. Instead of using MPS to sequence complete genomes,48

many researchers choose to focus their sequencing efforts on a set of target loci to lower49

costs while achieving higher coverage and more reliable sequencing of these target regions50

(Faircloth et al. 2012, 2013; Mirarab et al. 2014; Smith et al. 2014; Faircloth 2015; Harvey51

et al. 2016; Meiklejohn et al. 2016). These multilocus datasets typically contain hundreds52

or thousands of target loci, and most are generated through enrichment techniques such as53

sequence capture (synonym: target enrichment, Gnirke et al. (2009)). After collecting54

sequence data from these targeted loci, many researchers assemble their high coverage55

sequence reads into “contigs” using de novo genome assembly software, and the “contig56

sequence” output by these assemblers often ignore the variants at heterozygous positions57

that are expected in diploid organisms. Typically, variable positions are treated as58

sequencing errors and assembly algorithms output “contig sequences” containing the more59

probable (i.e., numerous) variant while discarding the alternative (Iqbal et al. 2012). As a60

result, the “contig sequences” that are produced contain only canonical nucleobases, losing61

the information about read variability at variable positions. Hereafter, we use “contigs”62

and “contig sequences” to refer to the sequences that are output by de novo assemblers.63

One alternative approach to generating contig sequences uses the depth of64

sequencing coverage to programatically identify variable positions within a targeted locus65

(also known as “calling” single nucleotide polymorphisms (SNPs)) and subsequently66

sorting (or “phasing”) these SNPs into two allele sequences or “haplotypes” which67

represent alleles on the same chromosome present at that locus. These approaches have68

been used to estimate demographic parameters such as effective population size, rate of69

migration, and the amount of gene flow between and within populations. However, it is70

rarely acknowledged (c.f. Lischer et al. 2014; Potts et al. 2014; Schrempf et al. 2016;71

Eriksson et al. 2017) that allelic sequences are useful for phylogenetic studies to improve72
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the estimation of gene trees, species trees, and divergence times (Garrick et al. 2010; Potts73

et al. 2014; Lischer et al. 2014). The common practice of neglecting allelic information in74

phylogenetic studies possibly results from historical inertia and a lack of computational75

pipelines to prepare allele sequences for phylogenetic analysis using MPS data.76

In addition to the problems of determining allelic sequences, the proper analysis of77

allelic information in phylogenetic studies remains a challenging and intensively discussed78

topic (Garrick et al. 2010; Lischer et al. 2014; Potts et al. 2014; Schrempf et al. 2016;79

Leaché and Oaks 2017). Various approaches have been proposed to include this80

information into phylogenetic methods (Lischer et al. 2014; Potts et al. 2014; Schrempf81

et al. 2016). One is to code heterozygous sites using the International Union of Pure and82

Applied Chemistry (IUPAC) ambiguity codes and to include these as additional characters83

in existing substitution models for gene tree and species tree inference (Potts et al. 2014;84

Schrempf et al. 2016). While these studies demonstrate that integrating additional allelic85

information in this manner increases accuracy in phylogenetic inference, Lischer et al.86

(2014) found that coding heterozygous sites as IUPAC ambiguity codes in phylogenetic87

models biases the results toward older divergence time estimates. Instead, Lischer et al.88

(2014) introduced a method of repeated random haplotype sampling (RRHS) in which89

allele sequences are repeatedly concatenated across many loci, using a random haplotype90

for any given locus in each replicate. In their approach, they then analyzed thousands of91

concatenation replicates separately for phylogenetic tree estimation and summarized the92

results between replicates, thereby integrating the allelic information in the form of93

uncertainty intervals. However, there are two important shortcomings of this approach: 1.94

concatenating unlinked loci (and in particular allele sequences from unlinked loci) in a95

random manner is known to produce incorrect topologies (Degnan and Rosenberg 2009)96

often with false confidence (Edwards et al. 2007; Kolaczkowski and Thornton 2004;97

Kubatko and Degnan 2007; Mossel and Vigoda 2005), which is not accounted for when98
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doing so repeatedly and summarizing the resulting trees, and 2. running thousands of tree99

estimation replicates based on extensive amounts of sequence data results in unfeasibly long100

computation times, particularly for Markov-Chain Monte Carlo (MCMC) based softwares101

such as MrBayes or BEAST. Hence, there is need to find proper solutions to include102

heterozygous information in phylogenetic analyses, as concluded by Lischer et al. (2014).103

Here, we introduce the bioinformatic assembly of allele sequences from UCE data104

(Fig. 1) and demonstrate a full integration of allele sequences to species tree estimation105

under the multispecies coalescent (MSC) model. In our approach, we treat each allelic106

sequence of an individual at a given locus as an independent sample from the population,107

and we analyze these sequences using the species tree and delimitation software STACEY108

(Jones et al. 2014; Jones 2017), which allows for this approach by not requiring a priori109

clade- or species-assignments. We first demonstrate the empirical utility of this approach110

by resolving the shallow genetic structure (<1 Ma) within two recognized morphospecies of111

the South American hummingbird genus Topaza, with a dataset of 2,386 ultraconserved112

elements (UCEs, see Faircloth et al. (2012)). We then validate this approach, using113

simulated data, and we find evidence that allele sequences yield more accurate results in114

terms of species tree estimation and species delimitation than the contig sequence approach115

that ignores heterozygous information. Further, our simulation results provide evidence116

that compiling phased allele sequences and treating these as individual samples117

outperforms alternative approaches of coding heterozygous information, such as analyzing118

sequences containing IUPAC ambiguity codes or analyzing isolated SNPs. We conclude119

that allele phasing for sequence capture data can be critical for correct species delimitation120

and phylogeny estimation, particularly in recently diverged groups, and that analyses using121

phased allele sequences should be considered as one, potential “best practice” for analyzing122

sequence capture datasets in a phylogenetic context.123

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 12, 2018. ; https://doi.org/10.1101/255752doi: bioRxiv preprint 

https://doi.org/10.1101/255752
http://creativecommons.org/licenses/by-nd/4.0/


Materials and Methods124

Study System125

The genus Topaza and its sister genus Florisuga form the Topazes group, which together126

with the Hermits represent the most ancient branch within the hummingbird family127

(Trochilidae) (McGuire et al. 2014). Topazes are estimated to have diverged as a separate128

lineage from all other hummingbirds around 21.5 Ma, whereas the most recent common129

ancestor (MRCA) of Topaza and Florisuga lived approximately 19 Ma (McGuire et al.130

2014). At present, there are two morphospecies recognized within Topaza, namely the131

Fiery Topaz, T. pyra (Gould, 1846), and the Crimson Topaz, T. pella (Linnaeus, 1758).132

However, the species status of T. pyra has been challenged by some authors (Schuchmann133

1999; Ornés-Schmitz and Schuchmann 2011), who consider this genus to be monotypic.134

Topaz hummingbirds are endemic to the Amazonian rainforest and are some of the most135

spectacular and largest hummingbirds worldwide, measuring up to 23 cm (adult males,136

including tail feathers) and weighing up to 12 g (Schuchmann et al. 2016; del Hoyo et al.137

2016a). These birds are usually found in the forest canopy along forest edges and clearings,138

and are often seen close to river banks (Ornés-Schmitz and Schuchmann 2011). There is139

morphological evidence for several subspecies within both currently recognized Topaza140

species (Peters 1945; Schuchmann 1999; Hu et al. 2000; Ornés-Schmitz and Schuchmann141

2011) that we investigate using genetic data.142

Sequence Data Generation143

We extracted DNA from the muscle tissue of 10 vouchered hummingbirds (9 Topaza, one144

Florisuga, see Table 1) using the Qiagen DNeasy Blood and Tissue Kit according to the145
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manufacturer’s instructions (Qiagen GmbH, Hilden, Germany). These samples cover most146

of the genus’ total geographic range (Fig. 2) and all morphologically recognized147

intraspecific taxa (Schuchmann et al. 2016; del Hoyo et al. 2016a). All samples were148

sonicated with a Covaris S220 to a fragment length of 800 base pairs (bp). Paired-end,149

size-selected (range 600-800bp) DNA libraries were prepared for sequencing, using the150

magnetic-bead based NEXTflexTM Rapid DNA-Seq Kit (Bioo Scientific Corporation,151

Austin, TX, USA), following the user’s manual (v14.02).152

We used the “Tetrapods-UCE-2.5Kv1” bait set (uce-2.5k-probes.fasta),153

consisting of 2,560 baits (each 120 bp), targeting 2,386 UCEs, as described by Faircloth154

et al. (2012). The bait sequences were downloaded from http://ultraconserved.org and155

synthesized by MYcroarray (Biodiscovery LLC, Ann Arbor, MI, USA). Sequence156

enrichment was performed using a MYbaits kit according to the enclosed user manual157

(v1.3.8). The enriched libraries were then sequenced using 250 bp, paired-end sequencing158

on an Illumina MiSeq machine (Illumina Inc., San Diego, CA, USA). Library preparation,159

sequence enrichment and sequencing were performed by the Sahlgrenska Genomics Core160

Facility in Gothenburg, Sweden.161

Mitochondrial Genome162

To infer a dated mitochondrial phylogeny for the genus Topaza to compare with the163

nuclear phylogeny, we used off-target mitochondrial reads to assemble the complete164

mitochondrial genome for all samples. We found that as many as 4.5% of all sequence165

reads were of mitochondrial origin, even though no baits targeting mitochondrial loci were166

used during sequence capture. An alignment of the assembled mitochondrial genomes for167

all samples was analyzed in BEAST (Drummond et al. 2012). Dating priors included168

clock-rate priors for three mitochondrial genes, estimated for honeycreepers by Lerner et al.169

(2011) and node-age priors within the genus Topaza that were estimated by McGuire et al.170
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(2014). The resulting phylogeny and estimated divergence times are shown in 2. A detailed171

description of the assembly and phylogenetic analysis of the mitochondrial genome data172

can be found in online Appendix 1 (Supplemental Material available on Dryad,173

doi:10.5061/dryad.hq3vq).174

UCE Data Processing175

For this study we generated five different types of datasets, which we analyzed under the176

MSC. These five datasets represent different coding schemes for heterozygous information177

and are listed and described in the following sections.178

1. UCE contig alignments.— Because contig sequences are commonly used in phylogenetic179

analyses of MPS datasets (e.g. Faircloth et al. (2012); Smith et al. (2014); Faircloth180

(2015)), we generated multiple sequence alignments (MSAs) of contigs for all UCE loci in181

order to test the accuracy of the phylogenetic estimation of this approach.182

To create MSAs from UCE contig data, we followed the suggested workflow from183

the PHYLUCE documentation184

(http://phyluce.readthedocs.io/en/latest/tutorial-one.html). We applied the185

PHYLUCE default settings unless otherwise stated. First we quality-filtered and cleaned186

raw Illumina reads of adapter contamination with Trimmomatic (Bolger et al. 2014), which187

is implemented in the PHYLUCE function illumiprocessor. The reads were then188

assembled into contigs using the software ABYSS (Simpson et al. 2009) as implemented in189

the PHYLUCE pipeline. In order to identify contigs representing UCE loci, all assembled190

contigs were mapped against the UCE reference sequences from the bait sequence file191

(uce-2.5k-probes.fasta), using the PHYLUCE function match_contigs_to_probes.py.192

We extracted only those sequences that matched UCE loci and that were present in all193

samples (n=820). These UCE sequences were then aligned for each locus (Fig. 1) using194

MAFFT (Katoh et al. 2009).195
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2. UCE allele alignments.— We altered the typical UCE workflow in order to retrieve the196

allelic information that is lost when collapsing multiple reads into a single contig sequence197

(Fig. 1). To create this new workflow, we extracted all UCE contigs for each sample198

separately and treated each resulting contig set as a sample-specific reference library for199

read mapping (reference-based assembly). We then mapped the cleaned reads against each200

reference library on a per sample basis, using CLC-mapper from the CLC Workbench201

software. The mapped reads were sorted and then phased with SAMtools v0.1.19 (Li et al.202

2009), using the commands samtools sort and samtools phase, respectively. This203

phasing function is based on a dynamic programming algorithm that uses read connectivity204

across multiple variable sites to determine the two phases of any given diploid locus (He205

et al. 2010). Further, this algorithm uses paired-end read information to reach connectivity206

over longer distances and it minimizes the problem of accidentally phasing a sequencing207

error, by applying the minimum error correction function (He et al. 2010).208

UCE data provide an excellent dataset for allele phasing based on read connectivity,209

because the read coverage across any given UCE locus typically is highest in the center and210

decreases toward the ends. This makes it possible to phase throughout the complete locus211

without any breaks in the sequence. Even in cases where the only variable sites are found212

on opposite ends of the locus, the insert size we targeted in this study (800 bp), in213

combination with paired-end sequencing, enabled the phasing process to bridge the214

complete locus (average length of compiled UCE-sequences in our study was 870 bp).215

The two phased output files (BAM format) were inspected for proper variant216

separation for all loci using Tablet (Milne et al. 2013). We then collapsed each allele BAM217

file into a single consensus sequence per haplotype and exported the two resulting allele218

sequences for each sample in FASTA format. In order to separate true heterozygous sites219

from occasional variants introduced by sequencing errors, we only made a nucleotide call if220

the respective nucleotide was supported by at least three reads. Ambiguous positions were221
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coded with the IUPAC code ‘N’ in the allele consensus sequences. We explored the222

difference in the treatment of heterozygous positions between the contigs produced by the223

de novo assembler ABYSS and our phased allele sequences in detail (exemplary for one224

sample) in online Appendix 2 (Supplemental Material).225

In the next, step we aligned the allele sequences between all samples, separately for226

each UCE locus, using MAFFT (Fig. 1). We integrated this complete workflow into the227

UCE processing software PHYLUCE (Faircloth 2015) with slight alterations, one of which228

is the use of the open-source mapping program bwa (Li and Durbin 2010) in place of229

CLC-mapper.230

3. UCE IUPAC consensus sequence alignments.— We generated an additional set of231

alignments by merging the two allele sequences for each individual into one consensus232

sequence with heterozygous sites coded as IUPAC ambiguity codes233

(merge_allele_sequences_ambiguity_codes.py, available from:234

github.com/tobiashofmann88/UCE-data-management/). We used this dataset to test235

whether our allele phasing approach improved phylogenetic inference when compared to236

the IUPAC consensus approach applied in other studies, where heterozygous positions are237

coded as IUPAC ambiguity codes in a consensus sequence for each locus and individual238

(Potts et al. 2014; Schrempf et al. 2016).239

4. UCE chimeric allele alignments.— To investigate whether correct phasing of240

heterozygous sites is essential or if similar results are achieved by randomly placing241

variants in either allele sequence, we generated a dataset with chimeric allele sequence242

alignments. We created these alignments by applying a custom python script243

(shuffle_snps_in_allele_alignments.py, available from:244

github.com/tobiashofmann88/UCE-data-management/) to the phased allele sequence245

alignments and randomly shuffling the two variants at each polymorphic position between246
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the two allele sequences for each individual. This process leads, in many cases, to an247

incorrect combination of variants on each allele sequence, thereby creating chimeric allele248

sequences. The resulting alignments contain the same number of sequences as the phased249

allele alignments (two sequences per individual), whereas the contig alignments and the250

IUPAC consensus alignments contain only half as many sequences (one sequence per251

individual).252

5. UCE SNP alignment.— A common approach to analyzing heterozygous information is253

to reduce the sequence information to only a single variant SNP per locus. This254

data-reduction approach is often chosen because multilocus datasets of the size generated255

in this study can be incompatible with Bayesian MSC methods applied to the full sequence256

data, due to extremely long computational times and convergence issues. Instead,257

alignments of unlinked SNPs can be used to infer species trees and species demographics258

under the MSC model with the BEAST2 package SNAPP (Bryant et al. 2012), a program259

specifically designed for such data. However, extracting and filtering SNPs from BAM files260

with existing software (such as the Genome Analysis Toolkit (GATK), McKenna et al.261

(2010)) and converting these into a SNAPP compatible format can be cumbersome,262

because SNAPP requires positions with exactly two different states, coded in the following263

manner: individual homozygous for the original state = “0”, heterozygous = “1”, and264

homozygous for the derived state = “2”.265

To alleviate this problem, we developed a python function that extracts biallelic266

SNPs directly from allele sequence MSAs (snps_from_uce_alignments.py, available from:267

github.com/tobiashofmann88/snp extraction from alignments/). Extracting SNPs from268

MSAs in this manner is a straightforward and simple way to generate a SNP dataset269

compatible with SNAPP, and does not require re-visiting the BAM files. A similar270

program is also available in the R-package phrynomics (Leaché et al. 2015). We used this271
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approach to extract one variable position per alignment (to ensure unlinked SNPs) that272

had exactly two different states among all Topaza samples, not allowing for positions with273

missing data or ambiguities. This produced a SNP dataset of 598 unlinked SNPs.274

Generation of Simulated UCE Data275

To assess the accuracy of the phylogenetic inferences resulting from different data276

processing approaches, we simulated UCE data similar to those discussed in the five277

processing schemes we applied to the empirical Topaza data. However, because this278

approach required us to simulate allele alignments before generating contig alignments,279

steps one and two, below, are reversed from their order, above. We repeated all steps280

involving the generation and analyses of simulated data to produce 10 independent281

simulation replicates.282

1. Simulated allele alignments.— In order to simulate allele alignments similar to our283

empirical data we first estimated species divergence times and population sizes from the284

empirical UCE allele MSAs under the MSC model (Rannala and Yang 2003) using the285

Bayesian MCMC program BPP v3.1 (Yang 2015). We applied the A00 model, which286

estimates divergence times and population sizes from MSAs for a given species tree287

topology. As input topology we used the species tree topology resulting from the analysis of288

the empirical allele MSAs in STACEY, assigning the Topaza samples to five separate taxa289

(corresponding to colored clades in Figure 3b). An initial BPP analysis did not converge in290

reasonable computational time, a problem that has previously been reported for UCE291

datasets containing several hundred loci (Giarla and Esselstyn 2015). To avoid this issue,292

we split the 820 UCE alignments randomly into 10 subsets of equal size (n=82) and293

analyzed these separately with identical settings in BPP. The MCMC was set for 150,000294

generations (burn-in 50,000), sampling every 10 generations. We summarized the estimates295
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for population sizes and divergence times across all 10 individual runs. We then applied the296

mean values of these estimates to the species tree topology, by using the estimated297

divergence times as branch lengths and estimated population sizes as node values, resulting298

in the species tree in Figure 4g. This tree was used to simulate sequence alignments with299

the MCcoal simulator, which is integrated into BPP. Equivalent to the empirical data, we300

simulated sequence data for five taxa (D, E, X, Y, and Z) and one outgroup taxon (F, not301

shown in Figure 4g). In the simulations, these taxa were simulated as true species under302

the MSC model. In order to mimic the empirical allele data, we simulated four individuals303

for species ‘D’ (equivalent to two allele sequences for 2 samples), four for species ‘E’, four304

for species ‘X’, two for species ‘Y’ (two allele sequences for one sample), four for species ‘Z’,305

and two for the outgroup species ‘F’. In this manner we simulated 820 UCE allele MSAs of306

848 bp length (a value equal to the average alignment length of the empirical allele307

alignments). The resulting simulated allele MSAs are equivalent to our empirical allele308

MSAs, containing two phased allele sequences for every individual that differ only in true309

heterozygous sites and which are not expected to contain read-errors.310

2. Simulated contig alignments.— To simulate UCE contig MSAs that contain sequences311

similar to contigs generated by assemblers like ABYSS, Velvet or Trinity, which pick only312

one of the two variants at a heterozygous site, we merged the sequences within each313

coalescent species in pairs of two (equivalent to pairs of allele sequences). Each pair of314

allele sequences was joined into one contig sequence by randomly picking one of the two315

variants at each heterozygous site across all loci. As in the empirical contig assembly316

approach, our simulation approach may generate chimeric contig sequences.317

3. Simulated IUPAC consensus alignments.— Next, we generated IUPAC consensus MSAs318

in the same manner as we generated the simulated contig MSAs in the previous step, with319

the exception that all heterozygous sites were coded with IUPAC ambiguity codes instead320
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of randomly picking one of the two variants.321

4. Simulated chimeric allele alignments.— We generated chimeric allele sequence MSAs322

from the simulated allele MSAs by randomly shuffling the heterozygous sites between each323

pair of sequences using the same pairs as in the previous two steps.324

5. Simulated SNP alignment.— Finally, we extracted two different SNP datasets from the325

simulated phased allele MSAs. The first SNP dataset (SNPs complete) was extracted in326

the same manner as described for the empirical data (one SNP per locus for all loci) which327

resulted in a total alignment length of 820 SNPs for the simulated data. We extracted an328

additional SNP dataset (SNPs reduced) from only the subset of the 150 simulated allele329

alignments that were used for the sequence-based MSC analyses (see next section below).330

The resulting dataset of 150 SNPs was used to compare the phylogenetic inference based331

on SNP data versus that based on full sequence data, if the same number of loci is being332

analyzed. This enabled us to evaluate the direct effect of reducing the full sequence333

information in the MSAs to one single SNP for each of the selected 150 loci.334

MSC Analyses of Empirical and Simulated UCE Data335

Sequence-based tree estimation.— To jointly infer gene trees and species trees, we analyzed336

each of the generated sets of MSAs (processing schemes 1-4 for empirical and simulated)337

under the MSC model, using the DISSECT method (Jones et al. 2014) implemented in338

STACEY (Jones 2017), which is available as a BEAST2 (Bouckaert et al. 2014) package.339

STACEY allows *BEAST analyses without prior taxonomic assignments, searching the tree340

space while simultaneously collapsing very shallow clades in the species tree (controlled by341

the parameter collapseHeight). This collapsing avoids a common violation of the MSC342

model that occurs when samples belonging to the same coalescent species are assigned to343
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separate taxa in *BEAST. This feature makes STACEY suitable for analyzing allele344

sequences, because they do not have to be constrained to belong to the same taxon and can345

be treated as independent samples from a population. STACEY runs with the usual346

*BEAST operators, but integrates out the population size parameter and has new MCMC347

proposal distributions to more efficiently sample the species tree, which decreases the time348

until convergence. In order to reach even faster convergence, we reduced the number of loci349

for this analysis by selecting the 150 allele MSAs with the most parsimony informative350

sites. This selection was made for both the empirical and the simulated allele MSAs. The351

same 150 loci were selected for all other processing schemes.352

Prior to analysis, we estimated the most appropriate substitution model for each of353

the 150 loci with jModeltest (Supplementary Table S1) using BIC. We used BEAUTI354

v2.4.4 to create an input file for STACEY in which we unlinked substitution models, clock355

models and gene trees for all loci. We did not apply any taxon assignments, thereby356

treating every sequence as a separate taxon. We chose a strict clock for all loci and fixed357

the average clock rate for one random locus to 1.0, while estimating all other clock rates in358

relation to this locus. To ensure that all resulting species trees were scaled to an average359

clock rate of 1.0, we rescaled every species tree from the posterior distribution (post360

analysis) using the average clock rate of the respective MCMC step. We applied the361

STACEY-specific BirthDeathCollapse model as a species tree prior, choosing a value of362

1e-5 for the collapseHeight parameter. Other settings were: bdcGrowthRate = log normal363

(M=4.6, S=1.5); collapseWeight = beta (alpha=2, beta=2); popPriorScale = log normal364

(M=-7, S=2); relativeDeathRate = beta (alpha=1.0, beta=1.0). For the IUPAC consensus365

data, we enabled the processing of ambiguous sites by adding useAmbiguities="true" to366

the gene tree likelihood priors for all loci in the STACEY XML file. All analyses were run367

for 1,000,000,000 MCMC generations or until convergence (ESS values >200), logging every368

20,000 generations. Convergence was assessed using Tracer v1.6 (Rambaut et al. 2013). We369
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then summarized the posterior tree distribution into one Maximum Clade Credibility tree370

(i.e. tree in the posterior sample that has the maximum product of posterior clade371

probabilities) with TreeAnnotator v2.4.4, discarding the first 10% of trees as burn-in.372

For the simulated data, we analyzed the posterior species tree distributions of each373

analysis with the program SpeciesDelimitationAnalyser (part of the STACEY374

distribution). This program produces a similarity matrix that contains the posterior375

probabilities of belonging to the same cluster for each pair of sequences. This analysis was376

run with a collapseHeight value of 1e-5 (identical to the collapseHeight used in the377

STACEY analysis), while discarding the first 10% of trees as burn-in.378

SNP-based tree estimation.— To estimate the species tree phylogeny from the extracted379

SNP data, we analyzed the empirical and simulated SNP data in SNAPP. We did not380

apply prior clade assignments to the samples in the SNP alignment (each sample was381

assigned as its own taxon). We set coalescent rate and mutation rates to be estimated382

based on the input data, and we chose a Yule species tree model with default settings (λ =383

0.00765). We ran the analysis for 10,000,000 generations, sampling trees and other384

parameters from the posterior every 1,000 generations. Unlike STACEY, SNAPP assumes385

correct assignments of all sequences to coalescent species. Using the simulated SNP data,386

we therefore tested how our approach of assigning every individual as its own coalescent387

species affects the resulting phylogenetic inference. We did so by running a separate388

analysis for both simulated SNP datasets (complete and reduced) with correct species389

assignments (assignments as in Figure 4g).390

Additional Analyses391

We ran additional analyses of the contig and the phased allele MSAs for both the empirical392

and simulated data using a summary coalescent approach as implemented in MP-EST (Yu393
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et al. 2007), which can be found in online Appendix 3 (Supplemental Material) and394

Supplementary Figures S1-S3.395

Results396

UCE Summary Statistics397

Alignment statistics.— In the following we use the term “polymorphic sites” for those398

positions within a MSA alignment of a given locus where we find at least two different399

states at a particular position among the sequences for all samples. This does not require a400

particular individual being heterozygous for the given position, since we do not search for401

SNPs on a per sample basis but rather for SNPs within the genus Topaza. In this manner,402

we found that the empirical UCE contig sequence alignments had an average of 2.8403

polymorphic sites per locus and an average alignment length of 870 bp. In contrast,404

phasing the empirical UCE data to create allele alignments led to 4.5 polymorphic sites per405

locus and an average alignment length of 848 bp, representing a 60% increase in406

polymorphic sites per locus. This increase of polymorphic sites was attributable to the fact407

that many variants get lost during contig assembly, because ABYSS and other tested408

contig assemblers, namely Trinity and Velvet, often eliminate one of the two variants at409

heterozygous positions (see below). The reduced length of the allele alignments in410

comparison to the contig alignments was due to conservative alignment clipping thresholds411

implemented in PHYLUCE, which clips alignment ends if less than 50% of sequences are412

present. Because the allele phasing algorithm divides the FASTQ reads into two allele bins413

and because a nucleotide is only called if it is supported by at least three high-quality414

FASTQ reads, we lost some of the nucleotide calls at areas of low read coverage (mostly at415
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the ends of a locus) when comparing the allele sequences to the contig sequences. More416

information about the distribution of lengths and variable sites within the empirical UCE417

data can be found in the Supplementary Figures S4 and S5. The simulated contig MSAs418

had an average of 3.2 polymorphic sites per locus, after excluding the outgroup (average419

calculated across all 10 simulation replicates). The simulated allele MSAs, on the other420

hand, contained an average of 5.4 polymorphic sites (69% increase) across 10 independent421

simulation replicates. An overview of parsimony informative sites, variable sites and length422

of each alignment (simulated and empirical data) can be found in Supplementary Table S2.423

MSC Results of Empirical UCE Data424

The MSC species tree results for all tested processing schemes of the empirical UCE data425

(contig sequences, allele sequences, IUPAC consensus sequences, chimeric allele sequences426

and SNPs) strongly support the monophyly of both T. pyra and T. pella with 100%427

Bayesian posterior probability (PP) (Fig. 3 and Supplementary Fig. S6). In all MSC428

analyses, we also see strongly supported genetic structure within T. pella (≥ 97% PP),429

separating the northern samples (5 and 6, sampled north of the Amazon River) from the430

southern ones (7, 8 and 9, sampled south of the Amazon River). Additionally, within the431

shallow southern T. pella clade, all datasets, with exception of the IUPAC consensus data432

(Fig. 3c), strongly support a genetic distinction (≥ 99% PP) between sample 7 from the433

Amazon River delta and the other southern T. pella samples (8 and 9). Further, the434

analysis of the phased allele MSAs returns a phylogenetic signal, possibly also tracking a435

genetic divergence between a northern and a southern clade within T. pyra, but their436

monophyly is not very strongly supported (Fig. 3b). This pattern is further supported by437

the mitochondrial phylogeny, which shows the same divergence within T. pyra, dated at438

0.68 million years ago (Fig. 2 and online Appendix 1).439
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MSC Results of Simulated Data440

Species tree topology.— We analyzed six different datasets under the MSC model for each441

of the ten simulation replicates: contig sequence MSAs (n=150, STACEY), allele sequence442

MSAs (n=150, STACEY), IUPAC consensus MSAs (n=150, STACEY), chimeric allele443

MSAs (n=150, STACEY), reduced SNP data (n=150, SNAPP), and the complete SNP444

dataset (n=820, SNAPP). All resulting species trees (Fig. 4a-f) correctly return the445

topology of the species tree that was used to simulate the data (Fig. 4g) across all ten446

simulation replicates (Supplementary Fig. S7). All central nodes in the species trees are447

supported by ≥90% PP in all analyses, with the exception of the species tree resulting448

from the reduced SNP dataset, which shows very weak support for two nodes and has a449

large uncertainty interval around the root-height (Fig. 4e). However, these shortcomings450

disappeared when we added more (unlinked) SNPs to the dataset (Fig. 4f). The full SNP451

dataset (n=820) produced the correct species tree topology with high node support452

consistently throughout all ten independently simulated datasets (Supplementary Fig. S8).453

The SNAPP species tree topology appeared to be unaffected by the chosen clade454

assignment model; while we allowed every sequence to be its own taxon in Figure 4e and f,455

we also applied the correct species assignment (as in Fig. 4g) in two additional analyses for456

one of the simulation replicates (reduced and complete SNP data) that returned the same457

tree topology (Supplementary Figs. S9 and S10).458

Species delimitation.— Although the inferred species tree topology was consistent among459

all four sequence-based MSC analyses (Fig. 4a-d), the inferred node heights varied460

considerably between the species trees resulting from the different data processing schemes.461

For the contig sequence data (Fig. 4a) and the chimeric allele data (Fig. 4d), the node462

heights within the five simulated species (D,E,X,Y,Z) were too high, which led to an463

overestimation of the number of coalescent species in the dataset (see similarity matrices).464
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Conversely, the phased allele data (Fig. 4b) and the IUPAC consensus data (Fig. 4c)465

correctly delimited the five coalescent species from the simulation input tree (Fig. 4g). The466

STACEY results showed the same pattern in all ten simulation replicates (Fig. S7).467

Accuracy of divergence time estimation.— For all four sequence-based analyses (Fig. 4a-d)468

the average substitution rate across all loci was set to ‘1’. Under these settings, we469

expected the absolute values of the sequence-based analyses to return the node height470

values of the simulation input tree, which used substitution rates scaled in the same471

manner. The phased allele MSAs produced the most accurate estimation of divergence472

times out of all tested datasets (see proximity of estimates to simulation input value,473

represented by green line in Figure 5). This was the case for all nodes in the species tree,474

namely (D,E), (Y,Z), (X,(Y,Z)), and ((D,E)(X,(Y,Z))). The divergence time estimates475

resulting from the phased allele data accurately recovered the true values and did not show476

any bias throughout ten simulation replicates (Supplementary Fig. S11). This contrasts477

with the contig MSAs and the chimeric allele MSAs that consistently overestimated the478

height of all nodes and the IUPAC consensus MSAs which consistently underestimated the479

height of all nodes (Figs. 5 and S11).480

Discussion481

Phased Allele Sequences Return The Most Accurate Phylogeny482

We tested whether phylogenetic inference improves by phasing sequence capture483

data into allele sequences, in comparison to the standard workflow of analyzing contig484

sequences (Faircloth et al. 2012; McCormack et al. 2012; Smith et al. 2014; Faircloth 2015).485

The answer is yes. We find that phased allele data outperform contig sequences in terms of486
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species delimitation (Fig. 4) and divergence time estimation (Fig. 5). Contig sequence487

MSAs on the other hand lead to a consistent overestimation of divergence times (Fig. 5),488

which in turn lead to an overestimation of the number of coalescent species in our489

simulated data (Fig. 4a). These results support earlier work by Lischer et al. (2014), who490

concluded that consensus sequences introduce a bias towards older node heights. Because491

both our empirical and simulated data represent rather shallow phylogenetic relationships,492

future research is required to determine if these findings also apply to datasets representing493

divergence events occurring in deeper time.494

Besides these practical advantages of using phased allele sequences for phylogenetic495

analyses, there are further theoretical arguments for compiling and analyzing allele496

sequence MSAs from sequence capture datasets.497

First, allele sequences represent the smallest evolutionary unit on which selection498

and other evolutionary processes act. Therefore, the coalescent models that underlie our499

phylogenetic methods, including the MSC model Degnan and Rosenberg (2009), have been500

developed for allele sequences. Contig sequences, on the other hand, represent an artificial501

and possibly chimeric sequence construct that arises from merging all read variation at a502

given locus into a single sequence. This process masks information by eliminating one of503

the two variants at a heterozygous site (online Appendix 2). This shortcoming of the most504

common assemblers (e.g. ABYSS, Trinity and Velvet) is due to the fact that they were505

designed to assemble sequences of haploid genomes and they are not optimized for506

heterozygous sequences or genomes (Bodily et al. 2015).507

Second, not only are allele sequences the more appropriate data type, but phasing508

sequence capture data also leads to a doubling of the effective sample size, since two509

sequences are compiled for a diploid individual, in contrast to the single sequence per510

individual that is recovered when taking the contig approach. Here, we demonstrate how511

these sequences can be properly applied as independent samples from a population by512
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using the assignment-free BirthDeathCollapse model as implemented in STACEY. Because513

STACEY requires no a priori assignment of sequences to taxa, it avoids a violation of the514

MSC that would occur when analyzing allele sequences as separate taxa in *BEAST, since515

*BEAST assumes each taxon constitutes a separate coalescent species.516

Third, sequence capture datasets such as UCEs are optimal for allele phasing517

because they contain high read coverage collected across short genomic intervals that are518

optimal for read-connectivity based phasing. The workflow developed in this study is now519

fully integrated into the PHYLUCE pipeline, making allele phasing for sequence capture520

data easily available to a broad user group.521

Phasing of Heterozygous Sites Matters522

Several studies have accounted for heterozygosity by inserting IUPAC ambiguity codes into523

their sequences at variable positions (Potts et al. 2014; Schrempf et al. 2016), rather than524

phasing SNPs to produce separate allele sequences. Here, we directly compared these two525

approaches, and found that the IUPAC consensus sequences performed equally well to the526

phased allele sequences for estimating the species tree topology (Fig. 4). However, IUPAC527

consensus sequence data led to a consistent underestimation of the divergence times of all528

nodes in the species tree (Fig. 5). Our results contrast with those of (Lischer et al. 2014),529

who reported an overestimation of divergence times for alignments containing IUPAC530

ambiguity codes. The differences between our results may simply be caused by the different531

tree inference programs used. Lischer et al. (2014) applied a Neighbour Joining (NJ) tree532

algorithm as implemented in the software PHYLIP (Felsenstein 2005) that treats two533

sequences containing the same ambiguity codes as identical. In effect, the approach used by534

Lischer et al. (2014) did not directly investigate the effect of IUPAC ambiguity codes on535

phylogenetic estimates but rather the effect of removing heterozygous sites. Our approach536

of analyzing IUPAC consensus sequences under the MSC in STACEY, on the other hand,537
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properly integrates these IUPAC ambiguity codes into the calculation of the gene tree538

likelihoods. Thus, we conclude that IUPAC ambiguity codes introduce a bias towards539

younger divergence times, even when properly integrated into the phylogenetic model. The540

underlying cause of this discrepancy should be further investigated in future studies.541

We also tested whether the improved performance of phased allele sequences in542

comparison to contig or IUPAC consensus sequence data may merely be an effect of543

doubling the number of sequences in the MSAs, by analyzing a dataset of chimeric allele544

sequences with randomly shuffled SNPs. As with the contig data, the chimeric allele data545

led to an overestimation of the number of coalescent species (Fig. 4d) and to a biased546

estimation towards older divergence times (Fig. 5). The fact that contig sequences and547

chimeric allele sequences produce very similar results in our analyses is not surprising,548

because contigs, themselves, represent chimeric consensus sequences of the variation found549

at a locus within an individual. The similarity of the results between contig MSAs and550

chimeric allele MSAs also shows that the number of sequences being analyzed does not551

affect the estimated topology, species delimitation or divergence time estimates (Figs. 4552

and 5).553

Based on the findings discussed above, we conclude that proper phasing of554

heterozygous positions is preferable to the alternative of coding heterozygous sites as555

IUPAC ambiguity codes, particularly when the estimation of divergence times is of interest.556

Further, allele sequences are theoretically more appropriate input for coalescent models and557

should be the preferred data type input to these models. The scalability of this approach558

to larger sample sizes and the applicability of our results to studies of older divergences are559

questions that should be investigated in future studies.560

One additional issue that we do not address in this study are the effects of561

sequencing errors. While sequencing errors can potentially be a serious issue particularly for562

datasets affected by low read coverage, we do not expect sequencing errors to be assembled563
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into our final allele sequences, due to our relatively high read coverage per exported variant564

(>three reads each). The effects of sequencing errors and incorrectly inferred read565

variability on downstream analyses are subjects that need to be explored in future studies.566

Practicality of Using Phased Allele Data in Multilocus Phylogenetics567

In this study, we analyze MSAs resulting from the different processing schemes in a MSC568

framework using the STACEY BirthDeathCollapse tree model. However, due to the size569

(number of samples and loci) of many sequence capture datasets, it is often unfeasible to570

analyze all MSAs jointly in one MSC analysis because of computational limitations (Smith571

et al. 2014; Manthey et al. 2016). This problem is exacerbated when working with allele572

MSAs compared to the contig or IUPAC consensus approach, because each alignment573

contains twice the number of sequences, leading to a doubling of tips in all estimated gene574

trees. Here we outline three different strategies of addressing this problem:575

1. One reasonable approach to data reduction is to use a subset of the allele MSAs576

for phylogeny estimation. We chose this approach here and reduced the UCE dataset from577

820 MSAs to 150 MSAs in order to reach convergence of the MCMC (BirthDeathCollapse578

without taxon-assignments) within a reasonable time frame (three to four days, single core579

on a Mac Pro, Late 2013, 3.5 GHz 6-Core Intel Xeon E5 processor). This approach has the580

advantage that we can fully integrate the allelic sequence information and avoid a priori581

assignments of allele sequences to taxa. However this approach discards the majority of the582

multilocus information by excluding most MSAs from the analysis.583

2. An alternative approach to data reduction, while keeping the multilocus584

information of all loci, is to analyze only a single polymorphic position (SNP) per MSA585

using SNAPP (Bryant et al. 2012). We find that phased allele MSAs provide an excellent586

template for SNP extraction; since all polymorphisms present in the allele sequences have587

already undergone quality and coverage filters, it is very straightforward to extract SNPs588
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directly from the allele MSAs. We provide an open-source script for this purpose which589

also converts the extracted SNPs into a SNAPP compatible format. In our study, this590

approach produced the correct species tree topology and also estimated the relative591

node-heights correctly (Fig. 4f). However, SNAPP can only estimate relative and not592

absolute values for divergence times (Bryant et al. 2012), in contrast to sequence-based593

analyses (Fig. 4a-d) that deliver absolute divergence time estimates. A more thorough594

discussion about extracting SNPs from sequence capture data can be found in online595

Appendix 4 (Supplemental Material).596

3. Another common approach is to abdicate the more appropriate but597

computationally heavy co-estimation of gene trees and species trees of the MCMC-based598

MSC methods and chose species tree methods that separate gene tree and species tree599

estimation into two consecutive steps. This family of methods is often referred to as600

summary coalescent methods. In this approach gene trees are estimated separately for each601

MSA. In a subsequent step, the estimated gene trees are used to infer the most likely602

species tree. The advantage of this approach is that the number of independent loci being603

analyzed does not constitute a serious computational limitation, because every gene tree is604

estimated independently, which allows for efficient computational parallelization. On the605

other hand, summary coalescent methods are sensitive to the number of informative sites606

per individual locus (Gatesy and Springer 2014; Springer and Gatesy 2014). Given that607

our phased allele MSAs contained on average 60% more polymorphic sites than the contig608

MSAs (69% for the simulated data), we argue that phased allele MSAs may lead to more609

precise phylogenetic estimates under the summary coalescent approach in comparison to610

contig MSAs. In our case, the summary coalescent approach was not very suitable, due to611

rather conserved alignments with limited number of informative sites for individual gene612

tree inference, which obscured the inference of branch lengths in the species tree (online613

Appendix 3). However, in the case of our simulated data, we observed a more precise614
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estimate of the species tree topology based on phased allele MSAs when compared to those615

based on contig MSAs (online Appendix 3). In conclusion the summary coalescent616

approach can be suitable if the individual alignments contain a sufficient number of617

parsimony informative sites for gene tree inference, and for this reason it is likely that618

phased allele MSAs might return more precise phylogenetic estimates than contig MSAs.619

However, further simulation studies are required to properly test this hypothesis.620

Phylogenetic relationships in Topaza621

One or two species?.— Our results show a separation of two lineages within the genus622

Topaza that is dated at ca. 2.4 Ma in the mitochondrial tree (Fig. 2 and online Appendix623

1). These lineages are consistent with the previously described morphospecies T. pyra624

(Gould, 1846) and T. pella (Linnaeus, 1758) that are generally accepted in the625

ornithological community (Hu et al. 2000; del Hoyo et al. 2016a). However, the species626

status of T. pyra has been challenged by some authors (Ornés-Schmitz and Schuchmann627

2011; Schuchmann 1999). These authors concluded that Topaza is a monotypic genus with628

T. pyra being a subspecies of T. pella, which they refer to as T. pella pyra. Our results629

consistently support T. pyra as a separate lineage across all analyses, lending no support630

for the conspecificity of these two taxa (Fig. 3).631

Genetic divergence within morphospecies.— One aim of this study was to evaluate the632

genetic structure within the two morphospecies, T. pyra and T. pella. The mitochondrial633

tree shows two divergent clades within T. pyra (Fig. 2 and online Appendix 1), but these634

clades are not strongly supported by the UCE data (Fig. 3), even though the allele635

sequence data are picking up a signal that possibly indicates two clades are in the process636

of diversifying (Fig. 3b). For T. pella, on the other hand, we consistently find the same637

clades throughout all multilocus MSC analyses (Fig. 3), leading us to distinguish between638
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the following populations that are congruent with previous morphological subspecies639

descriptions: a northern T. pella population (T. pella pella), a southern T. pella640

population (T. pella microrhyncha) and a separate population occupying the estuary641

region of Amazon River (T. pella smaragdula). We discuss these phylogenetic conclusions642

in more detail in online Appendix 5 (Supplemental Material).643

Summarizing biogeographic remarks.— The presence of genetically similar individuals644

sampled at great geographic distances (e.g. samples 5 and 6) suggests that Topaza645

hummingbirds maintain high levels of gene flow across vast distances of rainforest habitat.646

At the same time, we find indicators of phylogenetic structure within species,647

distinguishing samples that are separated by only a small geographic distance (see e.g.648

samples 6 and 8). These samples are however separated by the Amazon River, which has649

been found to constitute a dispersal barrier for various species of birds and many other650

animals (Remsen and Parker 1983; Clair 2003; Hayes and Sewlal 2004; Moore et al. 2008;651

Fernandes et al. 2012; Ribas et al. 2012; Thom and Aleixo 2015). Even though some652

hummingbird species are known to disperse across large distances (Wyman et al. 2004;653

Russell et al. 1994), the Amazon River and its associated habitats (such as seasonally654

flooded forests) may be part of a complex network of factors that inhibit gene flow among655

populations of Topaza hummingbirds.656

Conclusions657

This study provides evidence that the assembly of phased allele sequence MSAs improves658

phylogenetic inference under the MSC model. We find that contig sequences, on the other659

hand, which are commonly used for phylogenetic inference, lead to biases in the estimation660

of divergence times. Additionally, phased allele sequence MSAs provide a useful template661

for the extraction of SNP data, and SNP data can be applied as an alternative dataset for662
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phylogenetic inference, circumventing some computational limitations when analyzing663

multilocus full-sequence data with MCMC-based MSC methods. Our empirical results664

suggest the separation of two species within the genus Topaza, and we further find genetic665

structure within one of these species, justifying the definition of separate subspecies. Based666

on our empirical and simulated results, we conclude that allele phasing should be667

considered as one “best practice” for processing sequence capture data, although the668

sample-size, phylogenetic scale, and analytical limitations of this approach have not yet669

been well-established.670

Supplementary Material671

Supplementary material, including Supplemental Figs. S1-S11, Supplemental Tables S1672

and S2, online Appendices 1-5 as well as data files, can be found in the Dryad data673

repository at https://doi.org/10.5061/dryad.hq3vq.674

Availability675

The documentation for the allele phasing workflow, which we included into the PHYLUCE676

pipeline, can be found here:677

http://phyluce.readthedocs.io/en/latest/tutorial-two.html. The script for678

extracting SNPs from MSAs is available here:679

https://github.com/tobiashofmann88/snp_extraction_from_alignments. All680

processing and analyses steps executed on the data are stored in bash-scripts on our681

project GitHub page at https://github.com/tobiashofmann88/topaza_uce. The raw682

sequencing reads are stored in the NCBI Short Read Archive (SRA) at683

https://www.ncbi.nlm.nih.gov/sra/SRP135707.684
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Table 1: Sequenced specimens and coordinates of their sampling locations, subspecies iden-
tifications based on morphological characters, abbreviation for sample providers: INPA =
Instituto Nacional de Pesquisas da Amazônia, MPEG = Museum Paraense Emı́lio Goeldi,
USNM = NMNH, Smithsonian Institution, Washington DC, USA.

ID Taxon Subspecies Voucher number Latitude Longitude

1 Topaza pyra amaruni INPA A1106 -0.044167 -66.94944
2 T. pyra pyra MPEG 62475 -1.559444 -65.88006
3 T. pyra pyra MPEG 62474 -4.083889 -60.66050
4 T. pyra pyra MPEG 52721 -7.350000 -73.66667
5 T. pella NA USNM 586322 7.220000 -60.29000
6 T. pella pella INPA A3319 -1.927900 -59.41600
7 T. pella smaragdula MPEG 61688 -1.950000 -51.60000
8 T. pella microrhyncha MPEG 65603 -5.352417 -57.47500
9 T. pella NA INPA A6233 -9.028550 -64.24231
10 Florisuga fusca NA MPEG 70697 -15.15972 -39.04500
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Figure 1: Depiction of the workflow used in this manuscript. Colored boxes represent dif-
ferent types of multiple sequence alignments (MSAs) used for phylogenetic inference in this
study. In addition to the standard UCE workflow (boxlabel: classic workflow) of gener-
ating contig MSAs (Faircloth et al. 2012; Smith et al. 2014; Faircloth 2015), we extended
the bioinformatic processing in order to generate UCE allele MSAs, and to extract single
nucleotide polymorphism (SNPs) from these allele MSAs (boxlabel: upgraded workflow).
We added these new functions to the PHYLUCE pipeline (Faircloth 2015). Additional data
processing steps (boxlabel: additional steps) were executed in this study in order to test
different codings of heterozygous positions.
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Figure 2: Distribution ranges and mitochondrial phylogeny of the South American hum-
mingbird genus Topaza. Tip labels of phylogeny and numbers on map represent sample
IDs (Table 1) of sequenced Topaza specimens. Node labels in phylogeny show mean diver-
gence time estimates for mitochondrial lineages, with node bars representing the surrounding
uncertainty (95% highest posterior density (HPD)). All nodes are supported with 100% pos-
terior probability (PP), as indicated by asterisks. Polygons on map represent distribution
ranges of the two morphospecies (T. pyra and T. pella) as estimated by BirdLife Interna-
tional (http://www.birdlife.org). Transparent symbols (triangles and circles) represent
Topaza sightings, which were downloaded from the eBird database (Sullivan et al. 2009).
The major river systems in the Amazon drainage basin are labeled and emphasized in size
for better visibility. Topaza illustrations were provided by del Hoyo et al. (2016b).
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a) Contig sequence alignments (n=150) b) Phased allele alignments (n=150)

c) IUPAC consensus alignments (n=150) d) SNPs (n=598)

Figure 3: Multispecies Coalescent (MSC) species trees for the empirical Topaza data, based
on four different data types used in this study: contig sequence MSAs, phased allele sequence
MSAs, IUPAC consensus sequence MSAs and SNP data. a) STACEY species tree from UCE
contig alignments (n=150), b) STACEY species tree from UCE allele alignments (n=150),
c) STACEY species tree from UCE IUPAC consensus alignments (n=150) and d) SNAPP
species tree from UCE SNP data (1 SNP per locus if present, n=598). Shown are the
Maximum Clade Credibility trees (node values = PP, error-bars = 95% HPD of divergence
times) and a plot of the complete posterior species tree distribution (excluding burn-in).
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a) Contig sequence alignments (n=150) b) Phased allele alignments (n=150)

c) IUPAC consensus alignments (n=150) d) Chimeric allele alignments (n=150)

e) SNPs reduced (n=150) f) SNPs complete (n=820) g) Simulation species tree

Figure 4: MSC species tree results for different data processing schemes of simulated data.
a) to d) show the STACEY results of the four different types of MSAs analyzed in this
study. Displayed in these panels are the Maximum Clade Credibility trees and the similarity
matrices depicting the posterior probability of two samples belonging to the same clade, as
calculated with SpeciesDelimitationAnalyser. Dark panels depict a high pairwise similarity,
whereas light panels depict low similarity scores (see legend). e) and f) show the Maximum
Clade Credibility trees resulting from SNAPP for our two SNP datasets, (reduced and com-
plete). g) shows the species tree under which the sequence data were simulated in this study.
Node support values in PP, blue bars representing 95% HPD confidence intervals.
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Figure 5: Posterior distributions of divergence times, estimated with STACEY. Each panel
represents a different node in the STACEY species tree (see panel titles) and shows den-
sity plots of the posterior node-height distribution (excl. 10% burnin) for each of the 4
sequence-based processing schemes: contig sequences, phased allele sequences, IUPAC con-
sensus sequences and chimeric allele sequences (see legend for color-codes). The dotted
vertical lines show the means of these posterior distributions. The solid vertical line shows
the true node height value, which is the node height for the respective clade in the input
species tree, under which the sequence alignments were simulated.
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