

1

Version dated: April 12, 2018

2 RH: PHASING IMPROVES UTILITY OF UCES

3 **Allele Phasing Greatly Improves the Phylogenetic
4 Utility of Ultraconserved Elements**

5 TOBIAS ANDERMANN^{1,2}, ALEXANDRE M. FERNANDES³, URBAN OLSSON^{1,2}, MATS
6 TÖPEL^{2,4}, BERNARD PFEIL^{1,2}, BENGT OXELMAN^{1,2}, ALEXANDRE ALEIXO⁵, BRANT C.
7 FAIRCLOTH⁶ AND ALEXANDRE ANTONELLI^{1,2,7,8}

8 ¹*Department of Biological and Environmental Sciences, University of Gothenburg, SE-413 19,
9 Göteborg, Sweden;*

10 ²*Gothenburg Global Biodiversity Centre, Box 461, SE-405 30, Göteborg, Sweden*

11 ³*Universidade Federal Rural de Pernambuco, Serra Talhada, Brazil*

12 ⁴*Department of Marine Sciences, University of Gothenburg, SE-413 19, Göteborg, Sweden;*

13 ⁵*Museu Paraense Emílio Goeldi, Collection of Birds, Belém, Brazil*

14 ⁶*Department of Biological Sciences and Museum of Natural Science, Louisiana State University,
15 Baton Rouge, LA, U.S.A.*

16 ⁷*Gothenburg Botanical Garden, SE-413 19, Göteborg, Sweden*

17 ⁸*Harvard University, Department of Organismic and Evolutionary Biology, Cambridge, MA,
18 U.S.A.*

19 **Corresponding author:** Tobias Andermann, Department of Biological and
20 Environmental Sciences, University of Gothenburg, Carl Skottsbergs Gata 22B, SE-413 19,
21 Göteborg, Sweden; E-mail: tobias.andermann@bioenv.gu.se

22 *Abstract.*— Advances in high-throughput sequencing techniques now allow relatively easy
23 and affordable sequencing of large portions of the genome, even for non-model organisms.
24 Many phylogenetic studies reduce costs by focusing their sequencing efforts on a selected
25 set of targeted loci, commonly enriched using sequence capture. The advantage of this
26 approach is that it recovers a consistent set of loci, each with high sequencing depth, which
27 leads to more confidence in the assembly of target sequences. High sequencing depth can
28 also be used to identify phylogenetically informative allelic variation within sequenced
29 individuals, but allele sequences are infrequently assembled in phylogenetic studies.
30 Instead, many scientists perform their phylogenetic analyses using contig sequences which
31 result from the *de novo* assembly of sequencing reads into contigs containing only canonical
32 nucleobases, and this may reduce both statistical power and phylogenetic accuracy. Here,
33 we develop an easy-to-use pipeline to recover allele sequences from sequence capture data,
34 and we use simulated and empirical data to demonstrate the utility of integrating these
35 allele sequences to analyses performed under the Multispecies Coalescent (MSC) model.
36 Our empirical analyses of Ultraconserved Element (UCE) locus data collected from the
37 South American hummingbird genus *Topaza* demonstrate that phased allele sequences
38 carry sufficient phylogenetic information to infer the genetic structure, lineage divergence,
39 and biogeographic history of a genus that diversified during the last three million years.
40 The phylogenetic results support the recognition of two species, and suggest a high rate of
41 gene flow across large distances of rainforest habitats but rare admixture across the
42 Amazon River. Our simulations provide evidence that analyzing allele sequences leads to
43 more accurate estimates of tree topology and divergence times than the more common
44 approach of using contig sequences.
45 (Keywords: SNP, heterozygous sites, target enrichment, gene tree, species tree,
46 mitochondrial genome, Trochilidae, Aves)

47 Massive Parallel Sequencing (MPS) techniques enable time- and cost-efficient
48 generation of DNA sequence data. Instead of using MPS to sequence complete genomes,
49 many researchers choose to focus their sequencing efforts on a set of target loci to lower
50 costs while achieving higher coverage and more reliable sequencing of these target regions
51 (Faircloth et al. 2012, 2013; Mirarab et al. 2014; Smith et al. 2014; Faircloth 2015; Harvey
52 et al. 2016; Meiklejohn et al. 2016). These multilocus datasets typically contain hundreds
53 or thousands of target loci, and most are generated through enrichment techniques such as
54 sequence capture (synonym: target enrichment, Gnirke et al. (2009)). After collecting
55 sequence data from these targeted loci, many researchers assemble their high coverage
56 sequence reads into “contigs” using *de novo* genome assembly software, and the “contig
57 sequence” output by these assemblers often ignore the variants at heterozygous positions
58 that are expected in diploid organisms. Typically, variable positions are treated as
59 sequencing errors and assembly algorithms output “contig sequences” containing the more
60 probable (i.e., numerous) variant while discarding the alternative (Iqbal et al. 2012). As a
61 result, the “contig sequences” that are produced contain only canonical nucleobases, losing
62 the information about read variability at variable positions. Hereafter, we use “contigs”
63 and “contig sequences” to refer to the sequences that are output by *de novo* assemblers.

64 One alternative approach to generating contig sequences uses the depth of
65 sequencing coverage to programatically identify variable positions within a targeted locus
66 (also known as “calling” single nucleotide polymorphisms (SNPs)) and subsequently
67 sorting (or “phasing”) these SNPs into two allele sequences or “haplotypes” which
68 represent alleles on the same chromosome present at that locus. These approaches have
69 been used to estimate demographic parameters such as effective population size, rate of
70 migration, and the amount of gene flow between and within populations. However, it is
71 rarely acknowledged (*c.f.* Lischer et al. 2014; Potts et al. 2014; Schrempf et al. 2016;
72 Eriksson et al. 2017) that allelic sequences are useful for phylogenetic studies to improve

73 the estimation of gene trees, species trees, and divergence times (Garrick et al. 2010; Potts
74 et al. 2014; Lischer et al. 2014). The common practice of neglecting allelic information in
75 phylogenetic studies possibly results from historical inertia and a lack of computational
76 pipelines to prepare allele sequences for phylogenetic analysis using MPS data.

77 In addition to the problems of determining allelic sequences, the proper analysis of
78 allelic information in phylogenetic studies remains a challenging and intensively discussed
79 topic (Garrick et al. 2010; Lischer et al. 2014; Potts et al. 2014; Schrempf et al. 2016;
80 Leaché and Oaks 2017). Various approaches have been proposed to include this
81 information into phylogenetic methods (Lischer et al. 2014; Potts et al. 2014; Schrempf
82 et al. 2016). One is to code heterozygous sites using the International Union of Pure and
83 Applied Chemistry (IUPAC) ambiguity codes and to include these as additional characters
84 in existing substitution models for gene tree and species tree inference (Potts et al. 2014;
85 Schrempf et al. 2016). While these studies demonstrate that integrating additional allelic
86 information in this manner increases accuracy in phylogenetic inference, Lischer et al.
87 (2014) found that coding heterozygous sites as IUPAC ambiguity codes in phylogenetic
88 models biases the results toward older divergence time estimates. Instead, Lischer et al.
89 (2014) introduced a method of repeated random haplotype sampling (RRHS) in which
90 allele sequences are repeatedly concatenated across many loci, using a random haplotype
91 for any given locus in each replicate. In their approach, they then analyzed thousands of
92 concatenation replicates separately for phylogenetic tree estimation and summarized the
93 results between replicates, thereby integrating the allelic information in the form of
94 uncertainty intervals. However, there are two important shortcomings of this approach: 1.
95 concatenating unlinked loci (and in particular allele sequences from unlinked loci) in a
96 random manner is known to produce incorrect topologies (Degnan and Rosenberg 2009)
97 often with false confidence (Edwards et al. 2007; Kolaczkowski and Thornton 2004;
98 Kubatko and Degnan 2007; Mossel and Vigoda 2005), which is not accounted for when

99 doing so repeatedly and summarizing the resulting trees, and 2. running thousands of tree
100 estimation replicates based on extensive amounts of sequence data results in unfeasibly long
101 computation times, particularly for Markov-Chain Monte Carlo (MCMC) based softwares
102 such as MrBayes or BEAST. Hence, there is need to find proper solutions to include
103 heterozygous information in phylogenetic analyses, as concluded by Lischer et al. (2014).

104 Here, we introduce the bioinformatic assembly of allele sequences from UCE data
105 (Fig. 1) and demonstrate a full integration of allele sequences to species tree estimation
106 under the multispecies coalescent (MSC) model. In our approach, we treat each allelic
107 sequence of an individual at a given locus as an independent sample from the population,
108 and we analyze these sequences using the species tree and delimitation software STACEY
109 (Jones et al. 2014; Jones 2017), which allows for this approach by not requiring *a priori*
110 clade- or species-assignments. We first demonstrate the empirical utility of this approach
111 by resolving the shallow genetic structure (<1 Ma) within two recognized morphospecies of
112 the South American hummingbird genus *Topaza*, with a dataset of 2,386 ultraconserved
113 elements (UCEs, see Faircloth et al. (2012)). We then validate this approach, using
114 simulated data, and we find evidence that allele sequences yield more accurate results in
115 terms of species tree estimation and species delimitation than the contig sequence approach
116 that ignores heterozygous information. Further, our simulation results provide evidence
117 that compiling phased allele sequences and treating these as individual samples
118 outperforms alternative approaches of coding heterozygous information, such as analyzing
119 sequences containing IUPAC ambiguity codes or analyzing isolated SNPs. We conclude
120 that allele phasing for sequence capture data can be critical for correct species delimitation
121 and phylogeny estimation, particularly in recently diverged groups, and that analyses using
122 phased allele sequences should be considered as one, potential “best practice” for analyzing
123 sequence capture datasets in a phylogenetic context.

124

MATERIALS AND METHODS

125

Study System

126 The genus *Topaza* and its sister genus *Florisuga* form the Topazes group, which together
127 with the Hermits represent the most ancient branch within the hummingbird family
128 (Trochilidae) (McGuire et al. 2014). Topazes are estimated to have diverged as a separate
129 lineage from all other hummingbirds around 21.5 Ma, whereas the most recent common
130 ancestor (MRCA) of *Topaza* and *Florisuga* lived approximately 19 Ma (McGuire et al.
131 2014). At present, there are two morphospecies recognized within *Topaza*, namely the
132 Fiery Topaz, *T. pyra* (Gould, 1846), and the Crimson Topaz, *T. pella* (Linnaeus, 1758).
133 However, the species status of *T. pyra* has been challenged by some authors (Schuchmann
134 1999; Ornés-Schmitz and Schuchmann 2011), who consider this genus to be monotypic.
135 Topaz hummingbirds are endemic to the Amazonian rainforest and are some of the most
136 spectacular and largest hummingbirds worldwide, measuring up to 23 cm (adult males,
137 including tail feathers) and weighing up to 12 g (Schuchmann et al. 2016; del Hoyo et al.
138 2016a). These birds are usually found in the forest canopy along forest edges and clearings,
139 and are often seen close to river banks (Ornés-Schmitz and Schuchmann 2011). There is
140 morphological evidence for several subspecies within both currently recognized *Topaza*
141 species (Peters 1945; Schuchmann 1999; Hu et al. 2000; Ornés-Schmitz and Schuchmann
142 2011) that we investigate using genetic data.

143

Sequence Data Generation

144 We extracted DNA from the muscle tissue of 10 vouchered hummingbirds (9 *Topaza*, one
145 *Florisuga*, see Table 1) using the Qiagen DNeasy Blood and Tissue Kit according to the

¹⁴⁶ manufacturer's instructions (Qiagen GmbH, Hilden, Germany). These samples cover most
¹⁴⁷ of the genus' total geographic range (Fig. 2) and all morphologically recognized
¹⁴⁸ intraspecific taxa (Schuchmann et al. 2016; del Hoyo et al. 2016a). All samples were
¹⁴⁹ sonicated with a Covaris S220 to a fragment length of 800 base pairs (bp). Paired-end,
¹⁵⁰ size-selected (range 600-800bp) DNA libraries were prepared for sequencing, using the
¹⁵¹ magnetic-bead based NEXTflexTM Rapid DNA-Seq Kit (Bioo Scientific Corporation,
¹⁵² Austin, TX, USA), following the user's manual (v14.02).

¹⁵³ We used the "Tetrapods-UCE-2.5Kv1" bait set (`uce-2.5k-probes.fasta`),
¹⁵⁴ consisting of 2,560 baits (each 120 bp), targeting 2,386 UCEs, as described by Faircloth
¹⁵⁵ et al. (2012). The bait sequences were downloaded from <http://ultraconserved.org> and
¹⁵⁶ synthesized by MYcroarray (Biodiscovery LLC, Ann Arbor, MI, USA). Sequence
¹⁵⁷ enrichment was performed using a MYbaits kit according to the enclosed user manual
¹⁵⁸ (v1.3.8). The enriched libraries were then sequenced using 250 bp, paired-end sequencing
¹⁵⁹ on an Illumina MiSeq machine (Illumina Inc., San Diego, CA, USA). Library preparation,
¹⁶⁰ sequence enrichment and sequencing were performed by the Sahlgrenska Genomics Core
¹⁶¹ Facility in Gothenburg, Sweden.

¹⁶² *Mitochondrial Genome*

¹⁶³ To infer a dated mitochondrial phylogeny for the genus *Topaza* to compare with the
¹⁶⁴ nuclear phylogeny, we used off-target mitochondrial reads to assemble the complete
¹⁶⁵ mitochondrial genome for all samples. We found that as many as 4.5% of all sequence
¹⁶⁶ reads were of mitochondrial origin, even though no baits targeting mitochondrial loci were
¹⁶⁷ used during sequence capture. An alignment of the assembled mitochondrial genomes for
¹⁶⁸ all samples was analyzed in BEAST (Drummond et al. 2012). Dating priors included
¹⁶⁹ clock-rate priors for three mitochondrial genes, estimated for honeycreepers by Lerner et al.
¹⁷⁰ (2011) and node-age priors within the genus *Topaza* that were estimated by McGuire et al.

¹⁷¹ (2014). The resulting phylogeny and estimated divergence times are shown in 2. A detailed
¹⁷² description of the assembly and phylogenetic analysis of the mitochondrial genome data
¹⁷³ can be found in online Appendix 1 (Supplemental Material available on Dryad,
¹⁷⁴ doi:10.5061/dryad.hq3vq).

¹⁷⁵ *UCE Data Processing*

¹⁷⁶ For this study we generated five different types of datasets, which we analyzed under the
¹⁷⁷ MSC. These five datasets represent different coding schemes for heterozygous information
¹⁷⁸ and are listed and described in the following sections.

¹⁷⁹ 1. *UCE contig alignments*.— Because contig sequences are commonly used in phylogenetic
¹⁸⁰ analyses of MPS datasets (e.g. Faircloth et al. (2012); Smith et al. (2014); Faircloth
¹⁸¹ (2015)), we generated multiple sequence alignments (MSAs) of contigs for all UCE loci in
¹⁸² order to test the accuracy of the phylogenetic estimation of this approach.

¹⁸³ To create MSAs from UCE contig data, we followed the suggested workflow from
¹⁸⁴ the PHYLUCE documentation
¹⁸⁵ (<http://phyluce.readthedocs.io/en/latest/tutorial-one.html>). We applied the
¹⁸⁶ PHYLUCE default settings unless otherwise stated. First we quality-filtered and cleaned
¹⁸⁷ raw Illumina reads of adapter contamination with Trimmomatic (Bolger et al. 2014), which
¹⁸⁸ is implemented in the PHYLUCE function `illumiprocessor`. The reads were then
¹⁸⁹ assembled into contigs using the software ABYSS (Simpson et al. 2009) as implemented in
¹⁹⁰ the PHYLUCE pipeline. In order to identify contigs representing UCE loci, all assembled
¹⁹¹ contigs were mapped against the UCE reference sequences from the bait sequence file
¹⁹² (`uce-2.5k-probes.fasta`), using the PHYLUCE function `match_contigs_to_probes.py`.
¹⁹³ We extracted only those sequences that matched UCE loci and that were present in all
¹⁹⁴ samples (n=820). These UCE sequences were then aligned for each locus (Fig. 1) using
¹⁹⁵ MAFFT (Katoh et al. 2009).

196 *2. UCE allele alignments.*— We altered the typical UCE workflow in order to retrieve the
197 allelic information that is lost when collapsing multiple reads into a single contig sequence
198 (Fig. 1). To create this new workflow, we extracted all UCE contigs for each sample
199 separately and treated each resulting contig set as a sample-specific reference library for
200 read mapping (reference-based assembly). We then mapped the cleaned reads against each
201 reference library on a per sample basis, using CLC-mapper from the CLC Workbench
202 software. The mapped reads were sorted and then phased with SAMtools v0.1.19 (Li et al.
203 2009), using the commands `samtools sort` and `samtools phase`, respectively. This
204 phasing function is based on a dynamic programming algorithm that uses read connectivity
205 across multiple variable sites to determine the two phases of any given diploid locus (He
206 et al. 2010). Further, this algorithm uses paired-end read information to reach connectivity
207 over longer distances and it minimizes the problem of accidentally phasing a sequencing
208 error, by applying the minimum error correction function (He et al. 2010).

209 UCE data provide an excellent dataset for allele phasing based on read connectivity,
210 because the read coverage across any given UCE locus typically is highest in the center and
211 decreases toward the ends. This makes it possible to phase throughout the complete locus
212 without any breaks in the sequence. Even in cases where the only variable sites are found
213 on opposite ends of the locus, the insert size we targeted in this study (800 bp), in
214 combination with paired-end sequencing, enabled the phasing process to bridge the
215 complete locus (average length of compiled UCE-sequences in our study was 870 bp).

216 The two phased output files (BAM format) were inspected for proper variant
217 separation for all loci using Tablet (Milne et al. 2013). We then collapsed each allele BAM
218 file into a single consensus sequence per haplotype and exported the two resulting allele
219 sequences for each sample in FASTA format. In order to separate true heterozygous sites
220 from occasional variants introduced by sequencing errors, we only made a nucleotide call if
221 the respective nucleotide was supported by at least three reads. Ambiguous positions were

222 coded with the IUPAC code ‘N’ in the allele consensus sequences. We explored the
223 difference in the treatment of heterozygous positions between the contigs produced by the
224 *de novo* assembler ABYSS and our phased allele sequences in detail (exemplary for one
225 sample) in online Appendix 2 (Supplemental Material).

226 In the next, step we aligned the allele sequences between all samples, separately for
227 each UCE locus, using MAFFT (Fig. 1). We integrated this complete workflow into the
228 UCE processing software PHYLUCE (Faircloth 2015) with slight alterations, one of which
229 is the use of the open-source mapping program bwa (Li and Durbin 2010) in place of
230 CLC-mapper.

231 *3. UCE IUPAC consensus sequence alignments.*— We generated an additional set of
232 alignments by merging the two allele sequences for each individual into one consensus
233 sequence with heterozygous sites coded as IUPAC ambiguity codes
234 (`merge_allele_sequences_ambiguity_codes.py`, available from:
235 github.com/tobiashofmann88/UCE-data-management/). We used this dataset to test
236 whether our allele phasing approach improved phylogenetic inference when compared to
237 the IUPAC consensus approach applied in other studies, where heterozygous positions are
238 coded as IUPAC ambiguity codes in a consensus sequence for each locus and individual
239 (Potts et al. 2014; Schrempf et al. 2016).

240 *4. UCE chimeric allele alignments.*— To investigate whether correct phasing of
241 heterozygous sites is essential or if similar results are achieved by randomly placing
242 variants in either allele sequence, we generated a dataset with chimeric allele sequence
243 alignments. We created these alignments by applying a custom python script
244 (`shuffle_snps_in_allele_alignments.py`, available from:
245 github.com/tobiashofmann88/UCE-data-management/) to the phased allele sequence
246 alignments and randomly shuffling the two variants at each polymorphic position between

247 the two allele sequences for each individual. This process leads, in many cases, to an
248 incorrect combination of variants on each allele sequence, thereby creating chimeric allele
249 sequences. The resulting alignments contain the same number of sequences as the phased
250 allele alignments (two sequences per individual), whereas the contig alignments and the
251 IUPAC consensus alignments contain only half as many sequences (one sequence per
252 individual).

253 *5. UCE SNP alignment.*— A common approach to analyzing heterozygous information is
254 to reduce the sequence information to only a single variant SNP per locus. This
255 data-reduction approach is often chosen because multilocus datasets of the size generated
256 in this study can be incompatible with Bayesian MSC methods applied to the full sequence
257 data, due to extremely long computational times and convergence issues. Instead,
258 alignments of unlinked SNPs can be used to infer species trees and species demographics
259 under the MSC model with the BEAST2 package SNAPP (Bryant et al. 2012), a program
260 specifically designed for such data. However, extracting and filtering SNPs from BAM files
261 with existing software (such as the Genome Analysis Toolkit (GATK), McKenna et al.
262 (2010)) and converting these into a SNAPP compatible format can be cumbersome,
263 because SNAPP requires positions with exactly two different states, coded in the following
264 manner: individual homozygous for the original state = “0”, heterozygous = “1”, and
265 homozygous for the derived state = “2”.

266 To alleviate this problem, we developed a python function that extracts biallelic
267 SNPs directly from allele sequence MSAs (`snps_from_uce_alignments.py`, available from:
268 github.com/tobiashofmann88/snp_extraction_from_alignments/). Extracting SNPs from
269 MSAs in this manner is a straightforward and simple way to generate a SNP dataset
270 compatible with SNAPP, and does not require re-visiting the BAM files. A similar
271 program is also available in the R-package `phrynomics` (Leaché et al. 2015). We used this

272 approach to extract one variable position per alignment (to ensure unlinked SNPs) that
273 had exactly two different states among all *Topaza* samples, not allowing for positions with
274 missing data or ambiguities. This produced a SNP dataset of 598 unlinked SNPs.

275 *Generation of Simulated UCE Data*

276 To assess the accuracy of the phylogenetic inferences resulting from different data
277 processing approaches, we simulated UCE data similar to those discussed in the five
278 processing schemes we applied to the empirical *Topaza* data. However, because this
279 approach required us to simulate allele alignments before generating contig alignments,
280 steps one and two, below, are reversed from their order, above. We repeated all steps
281 involving the generation and analyses of simulated data to produce 10 independent
282 simulation replicates.

283 1. *Simulated allele alignments*.— In order to simulate allele alignments similar to our
284 empirical data we first estimated species divergence times and population sizes from the
285 empirical UCE allele MSAs under the MSC model (Rannala and Yang 2003) using the
286 Bayesian MCMC program BPP v3.1 (Yang 2015). We applied the A00 model, which
287 estimates divergence times and population sizes from MSAs for a given species tree
288 topology. As input topology we used the species tree topology resulting from the analysis of
289 the empirical allele MSAs in STACEY, assigning the *Topaza* samples to five separate taxa
290 (corresponding to colored clades in Figure 3b). An initial BPP analysis did not converge in
291 reasonable computational time, a problem that has previously been reported for UCE
292 datasets containing several hundred loci (Giarla and Esselstyn 2015). To avoid this issue,
293 we split the 820 UCE alignments randomly into 10 subsets of equal size (n=82) and
294 analyzed these separately with identical settings in BPP. The MCMC was set for 150,000
295 generations (burn-in 50,000), sampling every 10 generations. We summarized the estimates

296 for population sizes and divergence times across all 10 individual runs. We then applied the
297 mean values of these estimates to the species tree topology, by using the estimated
298 divergence times as branch lengths and estimated population sizes as node values, resulting
299 in the species tree in Figure 4g. This tree was used to simulate sequence alignments with
300 the MCcoal simulator, which is integrated into BPP. Equivalent to the empirical data, we
301 simulated sequence data for five taxa (D, E, X, Y, and Z) and one outgroup taxon (F, not
302 shown in Figure 4g). In the simulations, these taxa were simulated as true species under
303 the MSC model. In order to mimic the empirical allele data, we simulated four individuals
304 for species ‘D’ (equivalent to two allele sequences for 2 samples), four for species ‘E’, four
305 for species ‘X’, two for species ‘Y’ (two allele sequences for one sample), four for species ‘Z’,
306 and two for the outgroup species ‘F’. In this manner we simulated 820 UCE allele MSAs of
307 848 bp length (a value equal to the average alignment length of the empirical allele
308 alignments). The resulting simulated allele MSAs are equivalent to our empirical allele
309 MSAs, containing two phased allele sequences for every individual that differ only in true
310 heterozygous sites and which are not expected to contain read-errors.

311 *2. Simulated contig alignments.*— To simulate UCE contig MSAs that contain sequences
312 similar to contigs generated by assemblers like ABYSS, Velvet or Trinity, which pick only
313 one of the two variants at a heterozygous site, we merged the sequences within each
314 coalescent species in pairs of two (equivalent to pairs of allele sequences). Each pair of
315 allele sequences was joined into one contig sequence by randomly picking one of the two
316 variants at each heterozygous site across all loci. As in the empirical contig assembly
317 approach, our simulation approach may generate chimeric contig sequences.

318 *3. Simulated IUPAC consensus alignments.*— Next, we generated IUPAC consensus MSAs
319 in the same manner as we generated the simulated contig MSAs in the previous step, with
320 the exception that all heterozygous sites were coded with IUPAC ambiguity codes instead

321 of randomly picking one of the two variants.

322 *4. Simulated chimeric allele alignments.*— We generated chimeric allele sequence MSAs
323 from the simulated allele MSAs by randomly shuffling the heterozygous sites between each
324 pair of sequences using the same pairs as in the previous two steps.

325 *5. Simulated SNP alignment.*— Finally, we extracted two different SNP datasets from the
326 simulated phased allele MSAs. The first SNP dataset (SNPs complete) was extracted in
327 the same manner as described for the empirical data (one SNP per locus for all loci) which
328 resulted in a total alignment length of 820 SNPs for the simulated data. We extracted an
329 additional SNP dataset (SNPs reduced) from only the subset of the 150 simulated allele
330 alignments that were used for the sequence-based MSC analyses (see next section below).
331 The resulting dataset of 150 SNPs was used to compare the phylogenetic inference based
332 on SNP data versus that based on full sequence data, if the same number of loci is being
333 analyzed. This enabled us to evaluate the direct effect of reducing the full sequence
334 information in the MSAs to one single SNP for each of the selected 150 loci.

335 *MSC Analyses of Empirical and Simulated UCE Data*

336 *Sequence-based tree estimation.*— To jointly infer gene trees and species trees, we analyzed
337 each of the generated sets of MSAs (processing schemes 1-4 for empirical and simulated)
338 under the MSC model, using the DISSECT method (Jones et al. 2014) implemented in
339 STACEY (Jones 2017), which is available as a BEAST2 (Bouckaert et al. 2014) package.
340 STACEY allows *BEAST analyses without prior taxonomic assignments, searching the tree
341 space while simultaneously collapsing very shallow clades in the species tree (controlled by
342 the parameter collapseHeight). This collapsing avoids a common violation of the MSC
343 model that occurs when samples belonging to the same coalescent species are assigned to

344 separate taxa in *BEAST. This feature makes STACEY suitable for analyzing allele
345 sequences, because they do not have to be constrained to belong to the same taxon and can
346 be treated as independent samples from a population. STACEY runs with the usual
347 *BEAST operators, but integrates out the population size parameter and has new MCMC
348 proposal distributions to more efficiently sample the species tree, which decreases the time
349 until convergence. In order to reach even faster convergence, we reduced the number of loci
350 for this analysis by selecting the 150 allele MSAs with the most parsimony informative
351 sites. This selection was made for both the empirical and the simulated allele MSAs. The
352 same 150 loci were selected for all other processing schemes.

353 Prior to analysis, we estimated the most appropriate substitution model for each of
354 the 150 loci with jModeltest (Supplementary Table S1) using BIC. We used BEAUTI
355 v2.4.4 to create an input file for STACEY in which we unlinked substitution models, clock
356 models and gene trees for all loci. We did not apply any taxon assignments, thereby
357 treating every sequence as a separate taxon. We chose a strict clock for all loci and fixed
358 the average clock rate for one random locus to 1.0, while estimating all other clock rates in
359 relation to this locus. To ensure that all resulting species trees were scaled to an average
360 clock rate of 1.0, we rescaled every species tree from the posterior distribution (post
361 analysis) using the average clock rate of the respective MCMC step. We applied the
362 STACEY-specific BirthDeathCollapse model as a species tree prior, choosing a value of
363 1e-5 for the collapseHeight parameter. Other settings were: bdcGrowthRate = log normal
364 (M=4.6, S=1.5); collapseWeight = beta (alpha=2, beta=2); popPriorScale = log normal
365 (M=-7, S=2); relativeDeathRate = beta (alpha=1.0, beta=1.0). For the IUPAC consensus
366 data, we enabled the processing of ambiguous sites by adding useAmbiguities="true" to
367 the gene tree likelihood priors for all loci in the STACEY XML file. All analyses were run
368 for 1,000,000,000 MCMC generations or until convergence (ESS values >200), logging every
369 20,000 generations. Convergence was assessed using Tracer v1.6 (Rambaut et al. 2013). We

370 then summarized the posterior tree distribution into one Maximum Clade Credibility tree
371 (i.e. tree in the posterior sample that has the maximum product of posterior clade
372 probabilities) with TreeAnnotator v2.4.4, discarding the first 10% of trees as burn-in.

373 For the simulated data, we analyzed the posterior species tree distributions of each
374 analysis with the program SpeciesDelimitationAnalyser (part of the STACEY
375 distribution). This program produces a similarity matrix that contains the posterior
376 probabilities of belonging to the same cluster for each pair of sequences. This analysis was
377 run with a collapseHeight value of 1e-5 (identical to the collapseHeight used in the
378 STACEY analysis), while discarding the first 10% of trees as burn-in.

379 *SNP-based tree estimation.*— To estimate the species tree phylogeny from the extracted
380 SNP data, we analyzed the empirical and simulated SNP data in SNAPP. We did not
381 apply prior clade assignments to the samples in the SNP alignment (each sample was
382 assigned as its own taxon). We set coalescent rate and mutation rates to be estimated
383 based on the input data, and we chose a Yule species tree model with default settings ($\lambda =$
384 0.00765). We ran the analysis for 10,000,000 generations, sampling trees and other
385 parameters from the posterior every 1,000 generations. Unlike STACEY, SNAPP assumes
386 correct assignments of all sequences to coalescent species. Using the simulated SNP data,
387 we therefore tested how our approach of assigning every individual as its own coalescent
388 species affects the resulting phylogenetic inference. We did so by running a separate
389 analysis for both simulated SNP datasets (complete and reduced) with correct species
390 assignments (assignments as in Figure 4g).

391 *Additional Analyses*

392 We ran additional analyses of the contig and the phased allele MSAs for both the empirical
393 and simulated data using a summary coalescent approach as implemented in MP-EST (Yu

³⁹⁴ et al. 2007), which can be found in online Appendix 3 (Supplemental Material) and
³⁹⁵ Supplementary Figures S1-S3.

³⁹⁶ **RESULTS**

³⁹⁷ *UCE Summary Statistics*

³⁹⁸ *Alignment statistics.*— In the following we use the term “polymorphic sites” for those
³⁹⁹ positions within a MSA alignment of a given locus where we find at least two different
⁴⁰⁰ states at a particular position among the sequences for all samples. This does not require a
⁴⁰¹ particular individual being heterozygous for the given position, since we do not search for
⁴⁰² SNPs on a per sample basis but rather for SNPs within the genus *Topaza*. In this manner,
⁴⁰³ we found that the empirical UCE contig sequence alignments had an average of 2.8
⁴⁰⁴ polymorphic sites per locus and an average alignment length of 870 bp. In contrast,
⁴⁰⁵ phasing the empirical UCE data to create allele alignments led to 4.5 polymorphic sites per
⁴⁰⁶ locus and an average alignment length of 848 bp, representing a 60% increase in
⁴⁰⁷ polymorphic sites per locus. This increase of polymorphic sites was attributable to the fact
⁴⁰⁸ that many variants get lost during contig assembly, because ABYSS and other tested
⁴⁰⁹ contig assemblers, namely Trinity and Velvet, often eliminate one of the two variants at
⁴¹⁰ heterozygous positions (see below). The reduced length of the allele alignments in
⁴¹¹ comparison to the contig alignments was due to conservative alignment clipping thresholds
⁴¹² implemented in PHYLUCE, which clips alignment ends if less than 50% of sequences are
⁴¹³ present. Because the allele phasing algorithm divides the FASTQ reads into two allele bins
⁴¹⁴ and because a nucleotide is only called if it is supported by at least three high-quality
⁴¹⁵ FASTQ reads, we lost some of the nucleotide calls at areas of low read coverage (mostly at

416 the ends of a locus) when comparing the allele sequences to the contig sequences. More
417 information about the distribution of lengths and variable sites within the empirical UCE
418 data can be found in the Supplementary Figures S4 and S5. The simulated contig MSAs
419 had an average of 3.2 polymorphic sites per locus, after excluding the outgroup (average
420 calculated across all 10 simulation replicates). The simulated allele MSAs, on the other
421 hand, contained an average of 5.4 polymorphic sites (69% increase) across 10 independent
422 simulation replicates. An overview of parsimony informative sites, variable sites and length
423 of each alignment (simulated and empirical data) can be found in Supplementary Table S2.

424 *MSC Results of Empirical UCE Data*

425 The MSC species tree results for all tested processing schemes of the empirical UCE data
426 (contig sequences, allele sequences, IUPAC consensus sequences, chimeric allele sequences
427 and SNPs) strongly support the monophyly of both *T. pyra* and *T. pella* with 100%
428 Bayesian posterior probability (PP) (Fig. 3 and Supplementary Fig. S6). In all MSC
429 analyses, we also see strongly supported genetic structure within *T. pella* ($\geq 97\%$ PP),
430 separating the northern samples (5 and 6, sampled north of the Amazon River) from the
431 southern ones (7, 8 and 9, sampled south of the Amazon River). Additionally, within the
432 shallow southern *T. pella* clade, all datasets, with exception of the IUPAC consensus data
433 (Fig. 3c), strongly support a genetic distinction ($\geq 99\%$ PP) between sample 7 from the
434 Amazon River delta and the other southern *T. pella* samples (8 and 9). Further, the
435 analysis of the phased allele MSAs returns a phylogenetic signal, possibly also tracking a
436 genetic divergence between a northern and a southern clade within *T. pyra*, but their
437 monophyly is not very strongly supported (Fig. 3b). This pattern is further supported by
438 the mitochondrial phylogeny, which shows the same divergence within *T. pyra*, dated at
439 0.68 million years ago (Fig. 2 and online Appendix 1).

440

MSC Results of Simulated Data

441 *Species tree topology.*— We analyzed six different datasets under the MSC model for each
442 of the ten simulation replicates: contig sequence MSAs (n=150, STACEY), allele sequence
443 MSAs (n=150, STACEY), IUPAC consensus MSAs (n=150, STACEY), chimeric allele
444 MSAs (n=150, STACEY), reduced SNP data (n=150, SNAPP), and the complete SNP
445 dataset (n=820, SNAPP). All resulting species trees (Fig. 4a-f) correctly return the
446 topology of the species tree that was used to simulate the data (Fig. 4g) across all ten
447 simulation replicates (Supplementary Fig. S7). All central nodes in the species trees are
448 supported by $\geq 90\%$ PP in all analyses, with the exception of the species tree resulting
449 from the reduced SNP dataset, which shows very weak support for two nodes and has a
450 large uncertainty interval around the root-height (Fig. 4e). However, these shortcomings
451 disappeared when we added more (unlinked) SNPs to the dataset (Fig. 4f). The full SNP
452 dataset (n=820) produced the correct species tree topology with high node support
453 consistently throughout all ten independently simulated datasets (Supplementary Fig. S8).
454 The SNAPP species tree topology appeared to be unaffected by the chosen clade
455 assignment model; while we allowed every sequence to be its own taxon in Figure 4e and f,
456 we also applied the correct species assignment (as in Fig. 4g) in two additional analyses for
457 one of the simulation replicates (reduced and complete SNP data) that returned the same
458 tree topology (Supplementary Figs. S9 and S10).

459 *Species delimitation.*— Although the inferred species tree topology was consistent among
460 all four sequence-based MSC analyses (Fig. 4a-d), the inferred node heights varied
461 considerably between the species trees resulting from the different data processing schemes.
462 For the contig sequence data (Fig. 4a) and the chimeric allele data (Fig. 4d), the node
463 heights within the five simulated species (D,E,X,Y,Z) were too high, which led to an
464 overestimation of the number of coalescent species in the dataset (see similarity matrices).

465 Conversely, the phased allele data (Fig. 4b) and the IUPAC consensus data (Fig. 4c)
466 correctly delimited the five coalescent species from the simulation input tree (Fig. 4g). The
467 STACEY results showed the same pattern in all ten simulation replicates (Fig. S7).

468 *Accuracy of divergence time estimation.*— For all four sequence-based analyses (Fig. 4a-d)
469 the average substitution rate across all loci was set to '1'. Under these settings, we
470 expected the absolute values of the sequence-based analyses to return the node height
471 values of the simulation input tree, which used substitution rates scaled in the same
472 manner. The phased allele MSAs produced the most accurate estimation of divergence
473 times out of all tested datasets (see proximity of estimates to simulation input value,
474 represented by green line in Figure 5). This was the case for all nodes in the species tree,
475 namely (D,E), (Y,Z), (X,(Y,Z)), and ((D,E)(X,(Y,Z))). The divergence time estimates
476 resulting from the phased allele data accurately recovered the true values and did not show
477 any bias throughout ten simulation replicates (Supplementary Fig. S11). This contrasts
478 with the contig MSAs and the chimeric allele MSAs that consistently overestimated the
479 height of all nodes and the IUPAC consensus MSAs which consistently underestimated the
480 height of all nodes (Figs. 5 and S11).

481 DISCUSSION

482 *Phased Allele Sequences Return The Most Accurate Phylogeny*

483 We tested whether phylogenetic inference improves by phasing sequence capture
484 data into allele sequences, in comparison to the standard workflow of analyzing contig
485 sequences (Faircloth et al. 2012; McCormack et al. 2012; Smith et al. 2014; Faircloth 2015).
486 The answer is yes. We find that phased allele data outperform contig sequences in terms of

487 species delimitation (Fig. 4) and divergence time estimation (Fig. 5). Contig sequence
488 MSAs on the other hand lead to a consistent overestimation of divergence times (Fig. 5),
489 which in turn lead to an overestimation of the number of coalescent species in our
490 simulated data (Fig. 4a). These results support earlier work by Lischer et al. (2014), who
491 concluded that consensus sequences introduce a bias towards older node heights. Because
492 both our empirical and simulated data represent rather shallow phylogenetic relationships,
493 future research is required to determine if these findings also apply to datasets representing
494 divergence events occurring in deeper time.

495 Besides these practical advantages of using phased allele sequences for phylogenetic
496 analyses, there are further theoretical arguments for compiling and analyzing allele
497 sequence MSAs from sequence capture datasets.

498 First, allele sequences represent the smallest evolutionary unit on which selection
499 and other evolutionary processes act. Therefore, the coalescent models that underlie our
500 phylogenetic methods, including the MSC model Degnan and Rosenberg (2009), have been
501 developed for allele sequences. Contig sequences, on the other hand, represent an artificial
502 and possibly chimeric sequence construct that arises from merging all read variation at a
503 given locus into a single sequence. This process masks information by eliminating one of
504 the two variants at a heterozygous site (online Appendix 2). This shortcoming of the most
505 common assemblers (e.g. ABYSS, Trinity and Velvet) is due to the fact that they were
506 designed to assemble sequences of haploid genomes and they are not optimized for
507 heterozygous sequences or genomes (Bodily et al. 2015).

508 Second, not only are allele sequences the more appropriate data type, but phasing
509 sequence capture data also leads to a doubling of the effective sample size, since two
510 sequences are compiled for a diploid individual, in contrast to the single sequence per
511 individual that is recovered when taking the contig approach. Here, we demonstrate how
512 these sequences can be properly applied as independent samples from a population by

513 using the assignment-free BirthDeathCollapse model as implemented in STACEY. Because
514 STACEY requires no *a priori* assignment of sequences to taxa, it avoids a violation of the
515 MSC that would occur when analyzing allele sequences as separate taxa in *BEAST, since
516 *BEAST assumes each taxon constitutes a separate coalescent species.

517 Third, sequence capture datasets such as UCEs are optimal for allele phasing
518 because they contain high read coverage collected across short genomic intervals that are
519 optimal for read-connectivity based phasing. The workflow developed in this study is now
520 fully integrated into the PHYLUCE pipeline, making allele phasing for sequence capture
521 data easily available to a broad user group.

522 *Phasing of Heterozygous Sites Matters*

523 Several studies have accounted for heterozygosity by inserting IUPAC ambiguity codes into
524 their sequences at variable positions (Potts et al. 2014; Schrempf et al. 2016), rather than
525 phasing SNPs to produce separate allele sequences. Here, we directly compared these two
526 approaches, and found that the IUPAC consensus sequences performed equally well to the
527 phased allele sequences for estimating the species tree topology (Fig. 4). However, IUPAC
528 consensus sequence data led to a consistent underestimation of the divergence times of all
529 nodes in the species tree (Fig. 5). Our results contrast with those of (Lischer et al. 2014),
530 who reported an overestimation of divergence times for alignments containing IUPAC
531 ambiguity codes. The differences between our results may simply be caused by the different
532 tree inference programs used. Lischer et al. (2014) applied a Neighbour Joining (NJ) tree
533 algorithm as implemented in the software PHYLIP (Felsenstein 2005) that treats two
534 sequences containing the same ambiguity codes as identical. In effect, the approach used by
535 Lischer et al. (2014) did not directly investigate the effect of IUPAC ambiguity codes on
536 phylogenetic estimates but rather the effect of removing heterozygous sites. Our approach
537 of analyzing IUPAC consensus sequences under the MSC in STACEY, on the other hand,

538 properly integrates these IUPAC ambiguity codes into the calculation of the gene tree
539 likelihoods. Thus, we conclude that IUPAC ambiguity codes introduce a bias towards
540 younger divergence times, even when properly integrated into the phylogenetic model. The
541 underlying cause of this discrepancy should be further investigated in future studies.

542 We also tested whether the improved performance of phased allele sequences in
543 comparison to contig or IUPAC consensus sequence data may merely be an effect of
544 doubling the number of sequences in the MSAs, by analyzing a dataset of chimeric allele
545 sequences with randomly shuffled SNPs. As with the contig data, the chimeric allele data
546 led to an overestimation of the number of coalescent species (Fig. 4d) and to a biased
547 estimation towards older divergence times (Fig. 5). The fact that contig sequences and
548 chimeric allele sequences produce very similar results in our analyses is not surprising,
549 because contigs, themselves, represent chimeric consensus sequences of the variation found
550 at a locus within an individual. The similarity of the results between contig MSAs and
551 chimeric allele MSAs also shows that the number of sequences being analyzed does not
552 affect the estimated topology, species delimitation or divergence time estimates (Figs. 4
553 and 5).

554 Based on the findings discussed above, we conclude that proper phasing of
555 heterozygous positions is preferable to the alternative of coding heterozygous sites as
556 IUPAC ambiguity codes, particularly when the estimation of divergence times is of interest.
557 Further, allele sequences are theoretically more appropriate input for coalescent models and
558 should be the preferred data type input to these models. The scalability of this approach
559 to larger sample sizes and the applicability of our results to studies of older divergences are
560 questions that should be investigated in future studies.

561 One additional issue that we do not address in this study are the effects of
562 sequencing errors. While sequencing errors can potentially be a serious issue particularly for
563 datasets affected by low read coverage, we do not expect sequencing errors to be assembled

564 into our final allele sequences, due to our relatively high read coverage per exported variant
565 (>three reads each). The effects of sequencing errors and incorrectly inferred read
566 variability on downstream analyses are subjects that need to be explored in future studies.

567 *Practicality of Using Phased Allele Data in Multilocus Phylogenetics*

568 In this study, we analyze MSAs resulting from the different processing schemes in a MSC
569 framework using the STACEY BirthDeathCollapse tree model. However, due to the size
570 (number of samples and loci) of many sequence capture datasets, it is often unfeasible to
571 analyze all MSAs jointly in one MSC analysis because of computational limitations (Smith
572 et al. 2014; Manthey et al. 2016). This problem is exacerbated when working with allele
573 MSAs compared to the contig or IUPAC consensus approach, because each alignment
574 contains twice the number of sequences, leading to a doubling of tips in all estimated gene
575 trees. Here we outline three different strategies of addressing this problem:

576 1. One reasonable approach to data reduction is to use a subset of the allele MSAs
577 for phylogeny estimation. We chose this approach here and reduced the UCE dataset from
578 820 MSAs to 150 MSAs in order to reach convergence of the MCMC (BirthDeathCollapse
579 without taxon-assignments) within a reasonable time frame (three to four days, single core
580 on a Mac Pro, Late 2013, 3.5 GHz 6-Core Intel Xeon E5 processor). This approach has the
581 advantage that we can fully integrate the allelic sequence information and avoid *a priori*
582 assignments of allele sequences to taxa. However this approach discards the majority of the
583 multilocus information by excluding most MSAs from the analysis.

584 2. An alternative approach to data reduction, while keeping the multilocus
585 information of all loci, is to analyze only a single polymorphic position (SNP) per MSA
586 using SNAPP (Bryant et al. 2012). We find that phased allele MSAs provide an excellent
587 template for SNP extraction; since all polymorphisms present in the allele sequences have
588 already undergone quality and coverage filters, it is very straightforward to extract SNPs

589 directly from the allele MSAs. We provide an open-source script for this purpose which
590 also converts the extracted SNPs into a SNAPP compatible format. In our study, this
591 approach produced the correct species tree topology and also estimated the relative
592 node-heights correctly (Fig. 4f). However, SNAPP can only estimate relative and not
593 absolute values for divergence times (Bryant et al. 2012), in contrast to sequence-based
594 analyses (Fig. 4a-d) that deliver absolute divergence time estimates. A more thorough
595 discussion about extracting SNPs from sequence capture data can be found in online
596 Appendix 4 (Supplemental Material).

597 3. Another common approach is to abdicate the more appropriate but
598 computationally heavy co-estimation of gene trees and species trees of the MCMC-based
599 MSC methods and chose species tree methods that separate gene tree and species tree
600 estimation into two consecutive steps. This family of methods is often referred to as
601 summary coalescent methods. In this approach gene trees are estimated separately for each
602 MSA. In a subsequent step, the estimated gene trees are used to infer the most likely
603 species tree. The advantage of this approach is that the number of independent loci being
604 analyzed does not constitute a serious computational limitation, because every gene tree is
605 estimated independently, which allows for efficient computational parallelization. On the
606 other hand, summary coalescent methods are sensitive to the number of informative sites
607 per individual locus (Gatesy and Springer 2014; Springer and Gatesy 2014). Given that
608 our phased allele MSAs contained on average 60% more polymorphic sites than the contig
609 MSAs (69% for the simulated data), we argue that phased allele MSAs may lead to more
610 precise phylogenetic estimates under the summary coalescent approach in comparison to
611 contig MSAs. In our case, the summary coalescent approach was not very suitable, due to
612 rather conserved alignments with limited number of informative sites for individual gene
613 tree inference, which obscured the inference of branch lengths in the species tree (online
614 Appendix 3). However, in the case of our simulated data, we observed a more precise

615 estimate of the species tree topology based on phased allele MSAs when compared to those
616 based on contig MSAs (online Appendix 3). In conclusion the summary coalescent
617 approach can be suitable if the individual alignments contain a sufficient number of
618 parsimony informative sites for gene tree inference, and for this reason it is likely that
619 phased allele MSAs might return more precise phylogenetic estimates than contig MSAs.
620 However, further simulation studies are required to properly test this hypothesis.

621 *Phylogenetic relationships in Topaza*

622 *One or two species?.*— Our results show a separation of two lineages within the genus
623 *Topaza* that is dated at ca. 2.4 Ma in the mitochondrial tree (Fig. 2 and online Appendix
624 1). These lineages are consistent with the previously described morphospecies *T. pyra*
625 (Gould, 1846) and *T. pella* (Linnaeus, 1758) that are generally accepted in the
626 ornithological community (Hu et al. 2000; del Hoyo et al. 2016a). However, the species
627 status of *T. pyra* has been challenged by some authors (Ornés-Schmitz and Schuchmann
628 2011; Schuchmann 1999). These authors concluded that *Topaza* is a monotypic genus with
629 *T. pyra* being a subspecies of *T. pella*, which they refer to as *T. pella pyra*. Our results
630 consistently support *T. pyra* as a separate lineage across all analyses, lending no support
631 for the conspecificity of these two taxa (Fig. 3).

632 *Genetic divergence within morphospecies.*— One aim of this study was to evaluate the
633 genetic structure within the two morphospecies, *T. pyra* and *T. pella*. The mitochondrial
634 tree shows two divergent clades within *T. pyra* (Fig. 2 and online Appendix 1), but these
635 clades are not strongly supported by the UCE data (Fig. 3), even though the allele
636 sequence data are picking up a signal that possibly indicates two clades are in the process
637 of diversifying (Fig. 3b). For *T. pella*, on the other hand, we consistently find the same
638 clades throughout all multilocus MSC analyses (Fig. 3), leading us to distinguish between

639 the following populations that are congruent with previous morphological subspecies
640 descriptions: a northern *T. pella* population (*T. pella pella*), a southern *T. pella*
641 population (*T. pella microrhyncha*) and a separate population occupying the estuary
642 region of Amazon River (*T. pella smaragdula*). We discuss these phylogenetic conclusions
643 in more detail in online Appendix 5 (Supplemental Material).

644 *Summarizing biogeographic remarks.*— The presence of genetically similar individuals
645 sampled at great geographic distances (e.g. samples 5 and 6) suggests that *Topaza*
646 hummingbirds maintain high levels of gene flow across vast distances of rainforest habitat.
647 At the same time, we find indicators of phylogenetic structure within species,
648 distinguishing samples that are separated by only a small geographic distance (see e.g.
649 samples 6 and 8). These samples are however separated by the Amazon River, which has
650 been found to constitute a dispersal barrier for various species of birds and many other
651 animals (Remsen and Parker 1983; Clair 2003; Hayes and Sewlal 2004; Moore et al. 2008;
652 Fernandes et al. 2012; Ribas et al. 2012; Thom and Aleixo 2015). Even though some
653 hummingbird species are known to disperse across large distances (Wyman et al. 2004;
654 Russell et al. 1994), the Amazon River and its associated habitats (such as seasonally
655 flooded forests) may be part of a complex network of factors that inhibit gene flow among
656 populations of *Topaza* hummingbirds.

657 CONCLUSIONS

658 This study provides evidence that the assembly of phased allele sequence MSAs improves
659 phylogenetic inference under the MSC model. We find that contig sequences, on the other
660 hand, which are commonly used for phylogenetic inference, lead to biases in the estimation
661 of divergence times. Additionally, phased allele sequence MSAs provide a useful template
662 for the extraction of SNP data, and SNP data can be applied as an alternative dataset for

663 phylogenetic inference, circumventing some computational limitations when analyzing
664 multilocus full-sequence data with MCMC-based MSC methods. Our empirical results
665 suggest the separation of two species within the genus *Topaza*, and we further find genetic
666 structure within one of these species, justifying the definition of separate subspecies. Based
667 on our empirical and simulated results, we conclude that allele phasing should be
668 considered as one “best practice” for processing sequence capture data, although the
669 sample-size, phylogenetic scale, and analytical limitations of this approach have not yet
670 been well-established.

671 SUPPLEMENTARY MATERIAL

672 Supplementary material, including Supplemental Figs. S1-S11, Supplemental Tables S1
673 and S2, online Appendices 1-5 as well as data files, can be found in the Dryad data
674 repository at <https://doi.org/10.5061/dryad.hq3vq>.

675 AVAILABILITY

676 The documentation for the allele phasing workflow, which we included into the PHYLUCE
677 pipeline, can be found here:

678 <http://phyluce.readthedocs.io/en/latest/tutorial-two.html>. The script for
679 extracting SNPs from MSAs is available here:

680 https://github.com/tobiashofmann88/snp_extraction_from_alignments. All
681 processing and analyses steps executed on the data are stored in bash-scripts on our
682 project GitHub page at https://github.com/tobiashofmann88/topaza_uce. The raw
683 sequencing reads are stored in the NCBI Short Read Archive (SRA) at
684 <https://www.ncbi.nlm.nih.gov/sra/SRP135707>.

685

ACKNOWLEDGMENTS

686 We wish to thank all those ornithologists who have dedicated their time to collecting
687 samples in Amazonia; museum curators for providing us with samples for this study;
688 Brazilian authorities for issuing the permits needed for this work; our lab engineer Anna
689 Ansebo for laboratory assistance; Alexander Zizka for assistance in creating the range
690 maps; HBW Alive for providing the *Topaza* illustrations; and colleagues at our labs for
691 discussions and feedback. We further thank Susanne Renner, Adam Leache and 4
692 anonymous reviewers for their feedback on earlier versions of this manuscript.

693 Computational analyses were performed on the bioinformatics computer cluster Albiorix at
694 the Department of Biological and Environmental Sciences, University of Gothenburg.

695

FUNDING

696 This work was funded by the Swedish Research Council to A. Antonelli (B0569601) and B.
697 Oxelman (2012-3917); the CNPq (grants 310593/2009-3; 'INCT em Biodiversidade e Uso
698 da Terra da Amazônia' 574008/2008-0; 563236/2010-8; and 471342/2011-4), FAPESPA
699 (ICAAF 023/2011), and NSF-FAPESP (grant 1241066 - Dimensions US-BIOTA-São Paulo:
700 Assembly and evolution of the Amazonian biota and its environment: an integrated
701 approach) to A. Aleixo; the European Research Council under the European Union's
702 Seventh Framework Programme (FP/2007-2013, ERC Grant Agreement n. 331024); the
703 Swedish Foundation for Strategic Research; the Faculty of Sciences at the University of
704 Gothenburg; the Wenner-Gren Foundations; the David Rockefeller Center for Latin
705 American Studies at Harvard University and a Wallenberg Academy Fellowship to A.
706 Antonelli.

707

*

708 References

709 Bodily, P. M., M. Fujimoto, C. Ortega, N. Okuda, J. C. Price, M. J. Clement, and Q. Snell.
710 2015. Heterozygous genome assembly via binary classification of homologous sequence.
711 BMC Bioinformatics 16:S5.

712 Bolger, A. M., M. Lohse, and B. Usadel. 2014. Trimmomatic: a flexible trimmer for
713 Illumina sequence data. Bioinformatics 30:2114–20.

714 Bouckaert, R., J. Heled, D. Kühnert, T. Vaughan, C.-H. Wu, D. Xie, M. A. Suchard,
715 A. Rambaut, and A. J. Drummond. 2014. BEAST 2: a software platform for Bayesian
716 evolutionary analysis. PLoS Computational Biology 10:e1003537.

717 Bryant, D., R. Bouckaert, J. Felsenstein, N. A. Rosenberg, and A. RoyChoudhury. 2012.
718 Inferring species trees directly from biallelic genetic markers: bypassing gene trees in a
719 full coalescent analysis. Molecular Biology and Evolution 29:1917–32.

720 Clair, C. C. S. 2003. Comparative permeability of roads, rivers, and meadows to songbirds
721 in Banff national park. Conservation Biology 17:1151–1160.

722 Degnan, J. H. and N. a. Rosenberg. 2009. Gene tree discordance, phylogenetic inference
723 and the multispecies coalescent. Trends in Ecology and Evolution 24:332–340.

724 del Hoyo, J., N. Collar, G. Kirwan, and P. Boesman. 2016a. Fiery Topaz (*Topaza pyra*). in
725 Handbook of the Birds of the World Alive (J. del Hoyo, A. Elliott, J. Sargatal,
726 D. Christie, and E. de Juana, eds.). Lynx Edicions, Barcelona, Spain.

727 del Hoyo, J., A. Elliott, J. Sargatal, D. Christie, and E. de Juana. 2016b. Handbook of the
728 Birds of the World Alive. Lynx Edicions, Barcelona, Spain.

729 Drummond, A. J., M. A. Suchard, D. Xie, and A. Rambaut. 2012. Bayesian phylogenetics
730 with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29:1969–73.

731 Edwards, S. V., L. Liu, and D. K. Pearl. 2007. High-resolution species trees without
732 concatenation. *Proceedings of the National Academy of Sciences* 104:5936–5941.

733 Eriksson, J. S., J. L. Blanco-Pastor, F. Sousa, Y. J. Bertrand, and B. E. Pfeil. 2017. A
734 cryptic species produced by autoploidy and subsequent introgression involving
735 *Medicago prostrata* (Fabaceae). *Molecular Phylogenetics and Evolution* 107:367–381.

736 Faircloth, B. C. 2015. PHYLUCE is a software package for the analysis of conserved
737 genomic loci. *Bioinformatics* 32:786–788.

738 Faircloth, B. C., J. E. McCormack, N. G. Crawford, M. G. Harvey, R. T. Brumfield, and
739 T. C. Glenn. 2012. Ultraconserved elements anchor thousands of genetic markers
740 spanning multiple evolutionary timescales. *Systematic Biology* 61:717–26.

741 Faircloth, B. C., L. Sorenson, F. Santini, and M. E. Alfaro. 2013. A phylogenomic
742 perspective on the radiation of ray-finned fishes based upon targeted sequencing of
743 ultraconserved elements (UCEs). *PLoS ONE* 8:e65923.

744 Felsenstein, J. 2005. Phylip (phylogeny inference package) version 3.6. distributed by the
745 author. dep genome sci univ washington, seattle.

746 Fernandes, A. M., M. Wink, and A. Aleixo. 2012. Phylogeography of the chestnut-tailed
747 antbird (*Myrmeciza hemimelaena*) clarifies the role of rivers in Amazonian biogeography.
748 *Journal of Biogeography* 39:1524–1535.

749 Garrick, R. C., P. Sunnucks, and R. J. Dyer. 2010. Nuclear gene phylogeography using
750 PHASE: dealing with unresolved genotypes, lost alleles, and systematic bias in
751 parameter estimation. *BMC Evolutionary Biology* 10:118.

752 Gatesy, J. and M. S. Springer. 2014. Phylogenetic analysis at deep timescales: unreliable

753 gene trees, bypassed hidden support, and the coalescence/concatalescence conundrum.

754 Molecular Phylogenetics and Evolution 80:231–266.

755 Giarla, T. C. and J. A. Esselstyn. 2015. The challenges of resolving a rapid, recent
756 radiation: empirical and simulated phylogenomics of philippine shrews. Systematic
757 Biology 64:727–740.

758 Gnirke, A., A. Melnikov, J. Maguire, P. Rogov, E. M. LeProust, W. Brockman, T. Fennell,
759 G. Giannoukos, S. Fisher, C. Russ, S. Gabriel, D. B. Jaffe, E. S. Lander, and
760 C. Nusbaum. 2009. Solution hybrid selection with ultra-long oligonucleotides for
761 massively parallel targeted sequencing. Nature Biotechnology 27:182–189.

762 Harvey, M. G., B. T. Smith, T. C. Glenn, B. C. Faircloth, and R. T. Brumfield. 2016.
763 Sequence capture versus restriction site associated DNA sequencing for shallow
764 systematics. Systematic Biology Advance Access syw036.

765 Hayes, F. E. and J. A. N. Sewlal. 2004. The Amazon River as a dispersal barrier to
766 passerine birds: effects of river width, habitat and taxonomy. Journal of Biogeography
767 31:1809–1818.

768 He, D., A. Choi, K. Pipatsrisawat, A. Darwiche, and E. Eskin. 2010. Optimal algorithms
769 for haplotype assembly from whole-genome sequence data. Bioinformatics 26:i183–i190.

770 Hu, D.-S., L. Joseph, and D. J. Agro. 2000. Distribution, variation, and taxonomy of
771 *Topaza* Hummingbirds (Aves: Trochilidae). Ornithologia Neotropical 11:123–142.

772 Iqbal, Z., M. Caccamo, I. Turner, P. Flicek, and G. McVean. 2012. De novo assembly and
773 genotyping of variants using colored de Bruijn graphs. Nature Genetics 44:226–232.

774 Jones, G. 2017. Algorithmic improvements to species delimitation and phylogeny estimation
775 under the multispecies coalescent. Journal of Mathematical Biology 74:447–467.

776 Jones, G., Z. Aydin, and B. Oxelman. 2014. DISSECT: an assignment-free Bayesian
777 discovery method for species delimitation under the multispecies coalescent.
778 *Bioinformatics* 31:991–998.

779 Katoh, K., G. Asimenos, and H. Toh. 2009. Multiple alignment of DNA sequences with
780 MAFFT. *Methods in Molecular Biology* 537:39–64.

781 Kolaczkowski, B. and J. W. Thornton. 2004. Performance of maximum parsimony and
782 likelihood phylogenetics when evolution is heterogeneous. *Nature* 431:980–984.

783 Kubatko, L. S. and J. H. Degnan. 2007. Inconsistency of Phylogenetic Estimates from
784 Concatenated Data under Coalescence. *Systematic Biology* 56:17–24.

785 Leaché, A. D., B. L. Banbury, J. Felsenstein, A. N. M. De Oca, and A. Stamatakis. 2015.
786 Short tree, long tree, right tree, wrong tree: New acquisition bias corrections for inferring
787 SNP phylogenies. *Systematic Biology* 64:1032–1047.

788 Leaché, A. D. and J. R. Oaks. 2017. The Utility of Single Nucleotide Polymorphism (SNP)
789 Data in Phylogenetics. *Annual Review of Ecology, Evolution, and Systematics* 48:69–84.

790 Lerner, H. R., M. Meyer, H. F. James, M. Hofreiter, and R. C. Fleischer. 2011. Multilocus
791 resolution of phylogeny and timescale in the extant adaptive radiation of Hawaiian
792 honeycreepers. *Current Biology* 21:1838–1844.

793 Li, H. and R. Durbin. 2010. Fast and accurate long-read alignment with Burrows-Wheeler
794 transform. *Bioinformatics* 26:589–595.

795 Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis,
796 and R. Durbin. 2009. The Sequence Alignment/Map format and SAMtools.
797 *Bioinformatics* 25:2078–9.

798 Lischer, H. E., L. Excoffier, and G. Heckel. 2014. Ignoring heterozygous sites biases
799 phylogenomic estimates of divergence times: Implications for the evolutionary history of
800 *microtus* voles. *Molecular Biology and Evolution* 31:817–831.

801 Manthey, J. D., L. C. Campillo, K. J. Burns, and R. G. Moyle. 2016. Comparison of
802 target-capture and restriction-site associated DNA sequencing for phylogenomics: a test
803 in cardinalid tanagers (Aves, Genus: *Piranga*). *Systematic Biology Advance Access*
804 syw005.

805 McCormack, J. E., B. C. Faircloth, N. G. Crawford, P. A. Gowaty, R. T. Brumfield, and
806 T. C. Glenn. 2012. Ultraconserved elements are novel phylogenomic markers that resolve
807 placental mammal phylogeny when combined with species-tree analysis. *Genome*
808 *Research* 22:746–754.

809 McGuire, J., C. C. Witt, J. V. Remsen, A. Corl, D. L. Rabosky, D. L. Altshuler, and
810 R. Dudley. 2014. Molecular phylogenetics and the diversification of hummingbirds.
811 *Current Biology* 24:910–916.

812 McKenna, A., M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernytsky,
813 K. Garimella, D. Altshuler, S. Gabriel, M. Daly, and M. A. DePristo. 2010. The Genome
814 Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA
815 sequencing data. *Genome research* 20:1297–303.

816 Meiklejohn, K. A., B. C. Faircloth, T. C. Glenn, R. T. Kimball, and E. L. Braun. 2016.
817 Analysis of a rapid evolutionary radiation using ultraconserved elements (UCEs):
818 Evidence for a bias in some multispecies coalescent methods. *Systematic Biology*
819 *Advance Access* syw014.

820 Milne, I., G. Stephen, M. Bayer, P. J. A. Cock, L. Pritchard, L. Cardle, P. D. Shaw, and

821 D. Marshall. 2013. Using Tablet for visual exploration of second-generation sequencing
822 data. *Briefings in Bioinformatics* 14:193–202.

823 Mirarab, S., R. Reaz, M. S. Bayzid, T. Zimmermann, M. S. Swenson, and T. Warnow.
824 2014. ASTRAL: genome-scale coalescent-based species tree estimation. *Bioinformatics*
825 30:541–548.

826 Moore, R. P., W. D. Robinson, I. J. Lovette, and T. R. Robinson. 2008. Experimental
827 evidence for extreme dispersal limitation in tropical forest birds. *Ecology Letters*
828 11:960–968.

829 Mossel, E. and E. Vigoda. 2005. Phylogenetic MCMC algorithms are misleading on
830 mixtures of trees. *Science* 309:2207–9.

831 Ornés-Schmitz, A. and K. L. Schuchmann. 2011. Taxonomic review and phylogeny of the
832 hummingbird genus *Topaza* (Gray, 1840) using plumage color spectral information.
833 *Ornitología Neotropical* Pages 25–38.

834 Peters, J. L. 1945. Check-list of birds of the world. Volume 5 ed. Harvard Univ. Press,
835 Cambridge, Massachusetts.

836 Potts, A. J., T. A. Hedderson, and G. W. Grimm. 2014. Constructing Phylogenies in the
837 Presence Of Intra-Individual Site Polymorphisms (2ISPs) with a Focus on the Nuclear
838 Ribosomal Cistron. *Systematic Biology* 63:1–16.

839 Rambaut, A., M. A. Suchard, W. Xie, and A. Drummond. 2013. Tracer v1.6.

840 Rannala, B. and Z. Yang. 2003. Bayes estimation of species divergence times and ancestral
841 population sizes using DNA sequences from multiple loci. *Genetics* 164:1645–1656.

842 Remsen, J. V. and T. A. Parker. 1983. Contribution of river-created habitats to bird
843 species richness in Amazonia. *Biotropica* 15:223–231.

844 Ribas, C. C., a. Aleixo, a. C. R. Nogueira, C. Y. Miyaki, and J. Cracraft. 2012. A
845 palaeobiogeographic model for biotic diversification within Amazonia over the past three
846 million years. *Proceedings of the Royal Society B: Biological Sciences* 279:681–689.

847 Russell, R. W., F. L. Carpenter, M. A. Hixon, and D. C. Paton. 1994. The impact of
848 variation in stopover habitat quality on migrant rufous hummingbirds. *Conservation
849 Biology* 8:483–490.

850 Schrempf, D., B. Q. Minh, N. De Maio, A. von Haeseler, and C. Kosiol. 2016. Reversible
851 polymorphism-aware phylogenetic models and their application to tree inference. *Journal
852 of Theoretical Biology* 407:362–370.

853 Schuchmann, K., G. Kirwan, and P. Boesman. 2016. Crimson Topaz (*Topaza pella*). *in*
854 *Handbook of the Birds of the World Alive* (J. del Hoyo, A. Elliott, J. Sargatal,
855 D. Christie, and E. de Juana, eds.). Lynx Edicions, Barcelona, Spain.

856 Schuchmann, K. L. 1999. Family Trochilidae (hummingbirds). Pages 468–680 *in* *Handbook
857 of the Birds of the World Alive* (J. del Hoyo, A. Elliott, and J. Sargatal, eds.) volume 5
858 ed. Lynx Edicions, Barcelona, Spain.

859 Simpson, J. T., K. Wong, S. D. Jackman, J. E. Schein, S. J. M. Jones, and I. Birol. 2009.
860 ABYSS: a parallel assembler for short read sequence data. *Genome Research* 19:1117–23.

861 Smith, B. T., M. G. Harvey, B. C. Faircloth, T. C. Glenn, and R. T. Brumfield. 2014.
862 Target capture and massively parallel sequencing of ultraconserved elements for
863 comparative studies at shallow evolutionary time scales. *Systematic Biology* 63:83–95.

864 Springer, M. S. and J. Gatesy. 2014. Land plant origins and coalescence confusion. *Trends
865 in Plant Science* 19:267–9.

866 Sullivan, B. L., C. L. Wood, M. J. Iliff, R. E. Bonney, D. Fink, and S. Kelling. 2009. eBird:
867 A citizen-based bird observation network in the biological sciences. *Biological
868 Conservation* 142:2282–2292.

869 Thom, G. and A. Aleixo. 2015. Cryptic speciation in the white-shouldered antshrike
870 (*Thamnophilus aethiops*, Aves - Thamnophilidae): The tale of a transcontinental
871 radiation across rivers in lowland Amazonia and the northeastern Atlantic Forest.
872 *Molecular Phylogenetics and Evolution* 82:95–110.

873 Wyman, S. K., R. K. Jansen, and J. L. Boore. 2004. Automatic annotation of organellar
874 genomes with DOGMA. *Bioinformatics* 20:3252–5.

875 Yang, Z. 2015. The BPP program for species tree estimation and species delimitation.
876 *Current Zoology* 61:854–865.

877 Yu, L., Y.-W. Li, O. a. Ryder, and Y.-P. Zhang. 2007. Analysis of complete mitochondrial
878 genome sequences increases phylogenetic resolution of bears (Ursidae), a mammalian
879 family that experienced rapid speciation. *BMC Evolutionary Biology* 7:198.

Table 1: Sequenced specimens and coordinates of their sampling locations, subspecies identifications based on morphological characters, abbreviation for sample providers: INPA = Instituto Nacional de Pesquisas da Amazônia, MPEG = Museum Paraense Emílio Goeldi, USNM = NMNH, Smithsonian Institution, Washington DC, USA.

ID	Taxon	Subspecies	Voucher number	Latitude	Longitude
1	<i>Topaza pyra</i>	<i>amaruni</i>	INPA A1106	-0.044167	-66.94944
2	<i>T. pyra</i>	<i>pyra</i>	MPEG 62475	-1.559444	-65.88006
3	<i>T. pyra</i>	<i>pyra</i>	MPEG 62474	-4.083889	-60.66050
4	<i>T. pyra</i>	<i>pyra</i>	MPEG 52721	-7.350000	-73.66667
5	<i>T. pella</i>	NA	USNM 586322	7.220000	-60.29000
6	<i>T. pella</i>	<i>pella</i>	INPA A3319	-1.927900	-59.41600
7	<i>T. pella</i>	<i>smaragdula</i>	MPEG 61688	-1.950000	-51.60000
8	<i>T. pella</i>	<i>microrhyncha</i>	MPEG 65603	-5.352417	-57.47500
9	<i>T. pella</i>	NA	INPA A6233	-9.028550	-64.24231
10	<i>Florisuga fusca</i>	NA	MPEG 70697	-15.15972	-39.04500

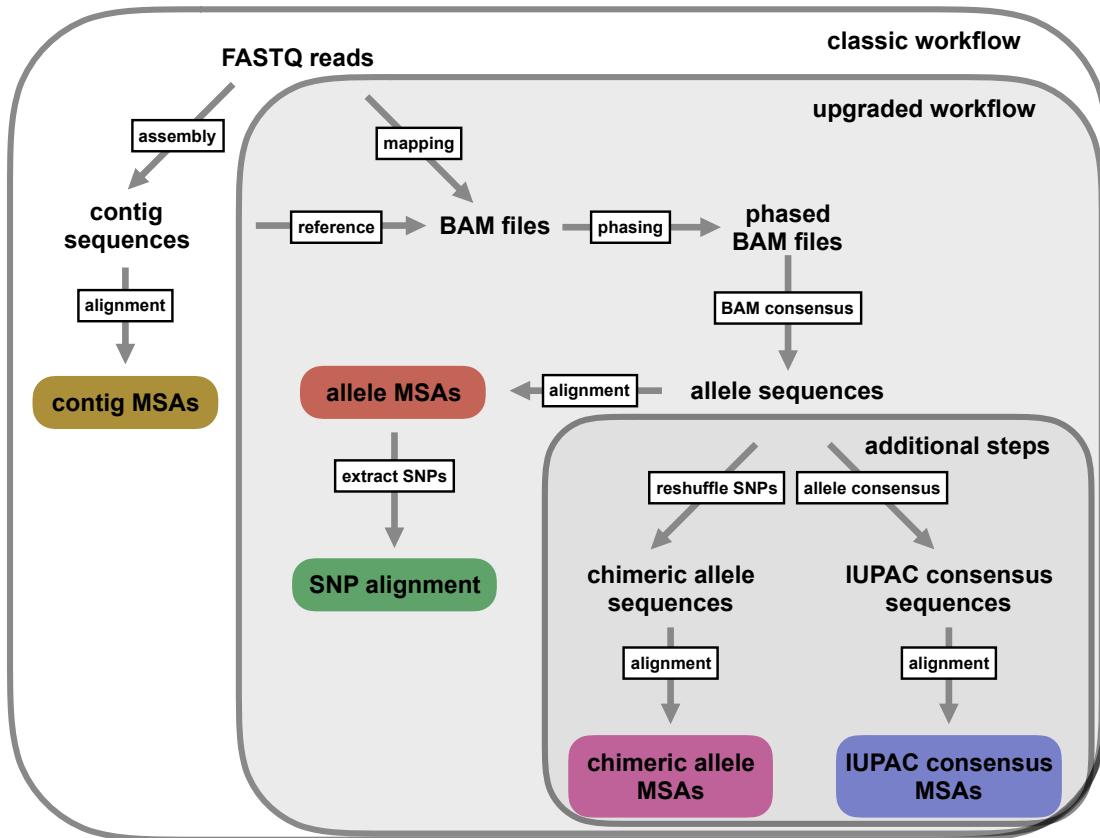


Figure 1: Depiction of the workflow used in this manuscript. Colored boxes represent different types of multiple sequence alignments (MSAs) used for phylogenetic inference in this study. In addition to the standard UCE workflow (boxlabel: classic workflow) of generating contig MSAs (Faircloth et al. 2012; Smith et al. 2014; Faircloth 2015), we extended the bioinformatic processing in order to generate UCE allele MSAs, and to extract single nucleotide polymorphism (SNPs) from these allele MSAs (boxlabel: upgraded workflow). We added these new functions to the PHYLUCE pipeline (Faircloth 2015). Additional data processing steps (boxlabel: additional steps) were executed in this study in order to test different codings of heterozygous positions.

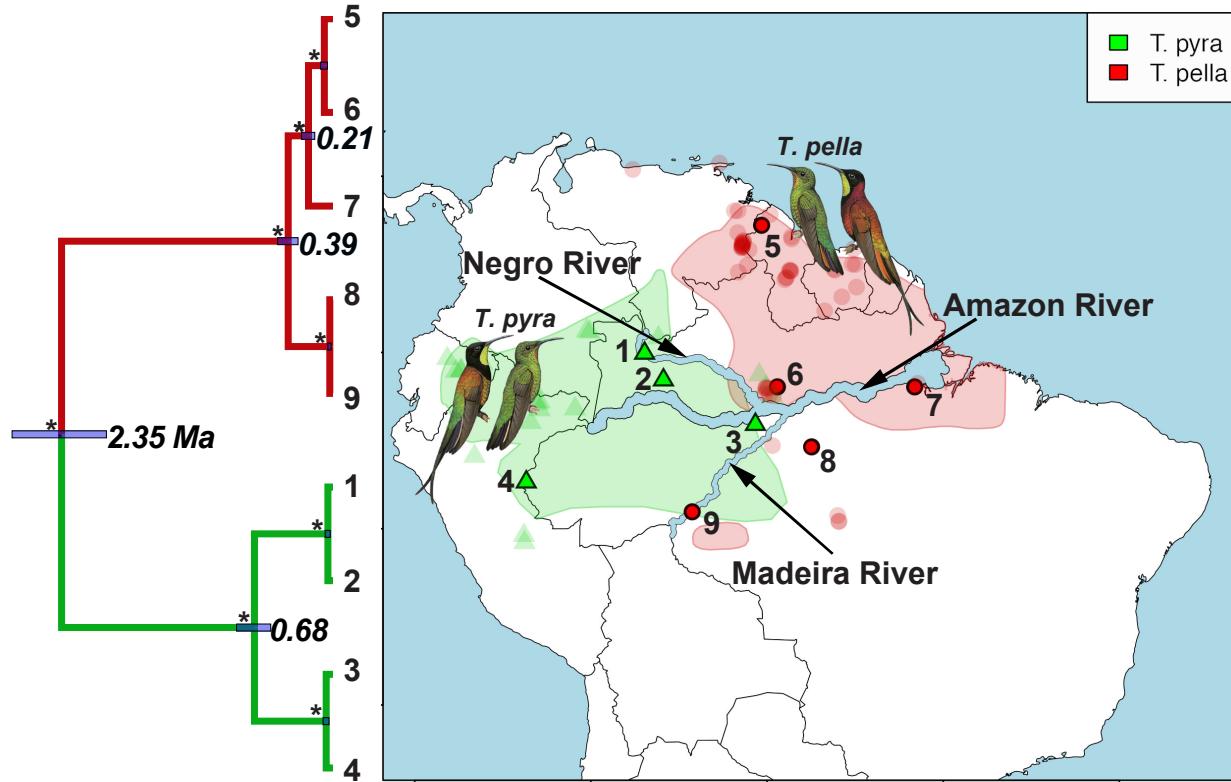


Figure 2: Distribution ranges and mitochondrial phylogeny of the South American hummingbird genus *Topaza*. Tip labels of phylogeny and numbers on map represent sample IDs (Table 1) of sequenced *Topaza* specimens. Node labels in phylogeny show mean divergence time estimates for mitochondrial lineages, with node bars representing the surrounding uncertainty (95% highest posterior density (HPD)). All nodes are supported with 100% posterior probability (PP), as indicated by asterisks. Polygons on map represent distribution ranges of the two morphospecies (*T. pyra* and *T. pella*) as estimated by BirdLife International (<http://www.birdlife.org>). Transparent symbols (triangles and circles) represent *Topaza* sightings, which were downloaded from the eBird database (Sullivan et al. 2009). The major river systems in the Amazon drainage basin are labeled and emphasized in size for better visibility. *Topaza* illustrations were provided by del Hoyo et al. (2016b).

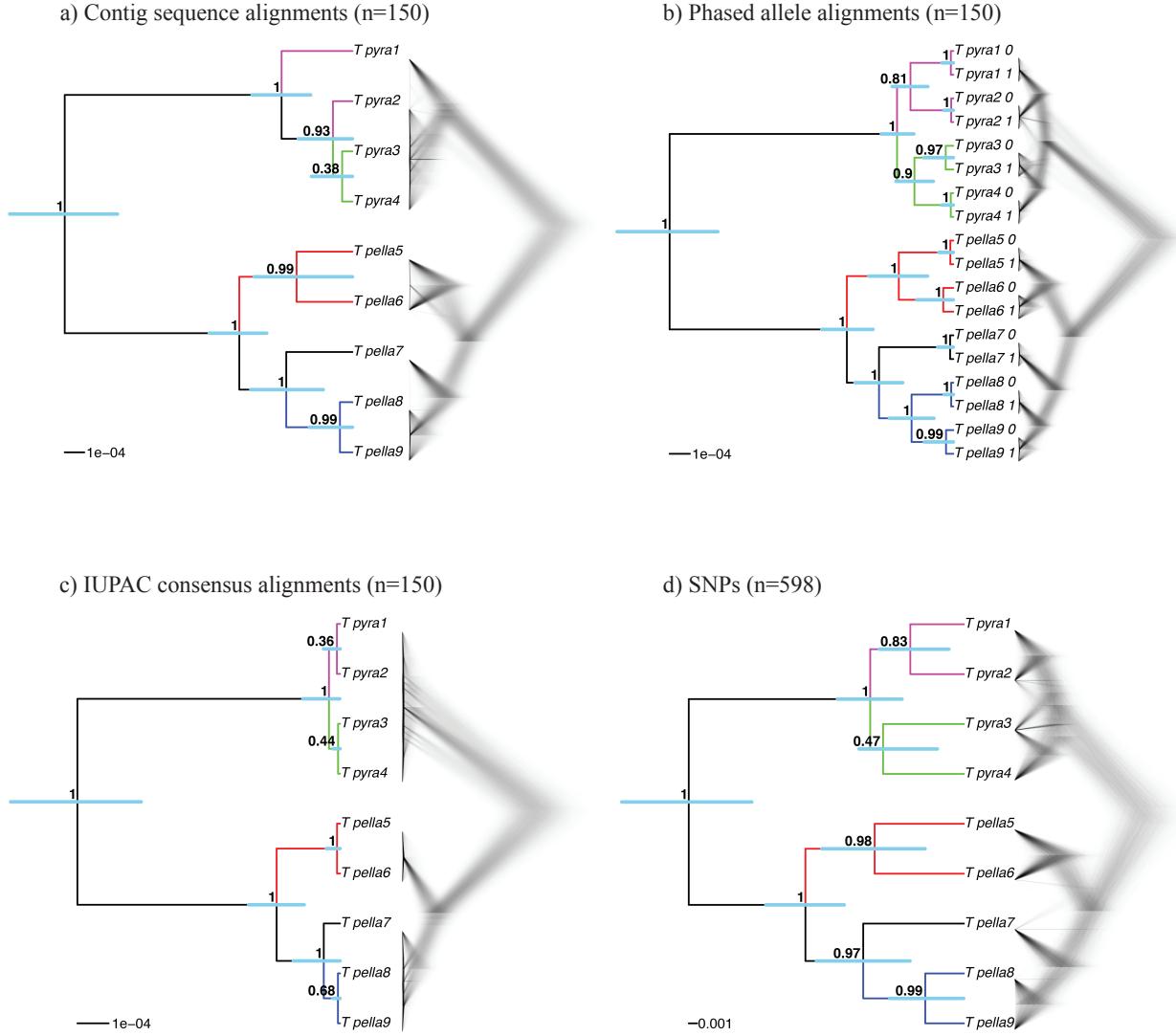


Figure 3: Multispecies Coalescent (MSC) species trees for the empirical *Topaza* data, based on four different data types used in this study: contig sequence MSAs, phased allele sequence MSAs, IUPAC consensus sequence MSAs and SNP data. a) STACEY species tree from UCE contig alignments (n=150), b) STACEY species tree from UCE allele alignments (n=150), c) STACEY species tree from UCE IUPAC consensus alignments (n=150) and d) SNAPP species tree from UCE SNP data (1 SNP per locus if present, n=598). Shown are the Maximum Clade Credibility trees (node values = PP, error-bars = 95% HPD of divergence times) and a plot of the complete posterior species tree distribution (excluding burn-in).

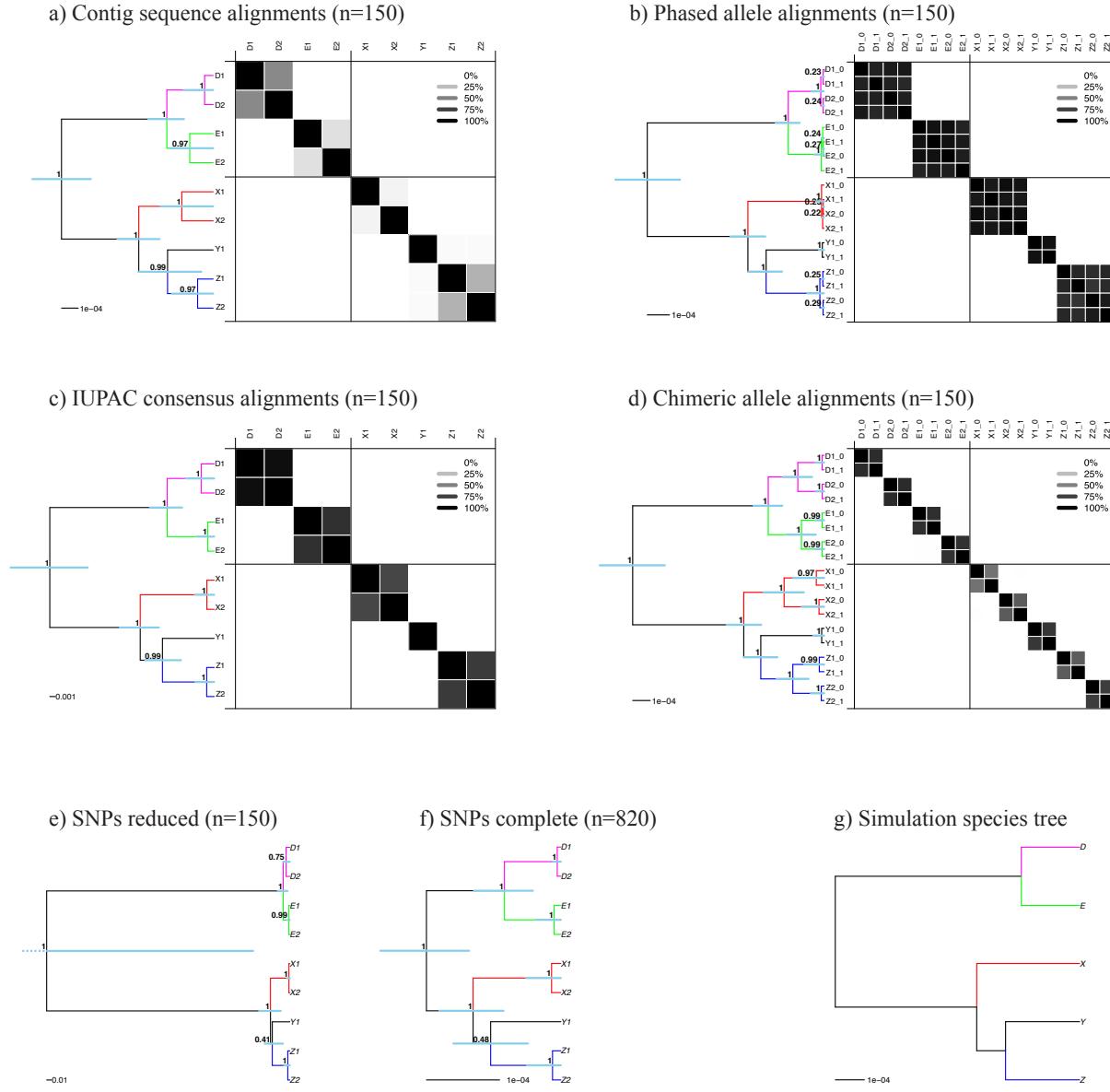


Figure 4: MSC species tree results for different data processing schemes of simulated data. a) to d) show the STACEY results of the four different types of MSAs analyzed in this study. Displayed in these panels are the Maximum Clade Credibility trees and the similarity matrices depicting the posterior probability of two samples belonging to the same clade, as calculated with SpeciesDelimitationAnalyser. Dark panels depict a high pairwise similarity, whereas light panels depict low similarity scores (see legend). e) and f) show the Maximum Clade Credibility trees resulting from SNAPP for our two SNP datasets, (reduced and complete). g) shows the species tree under which the sequence data were simulated in this study. Node support values in PP, blue bars representing 95% HPD confidence intervals.

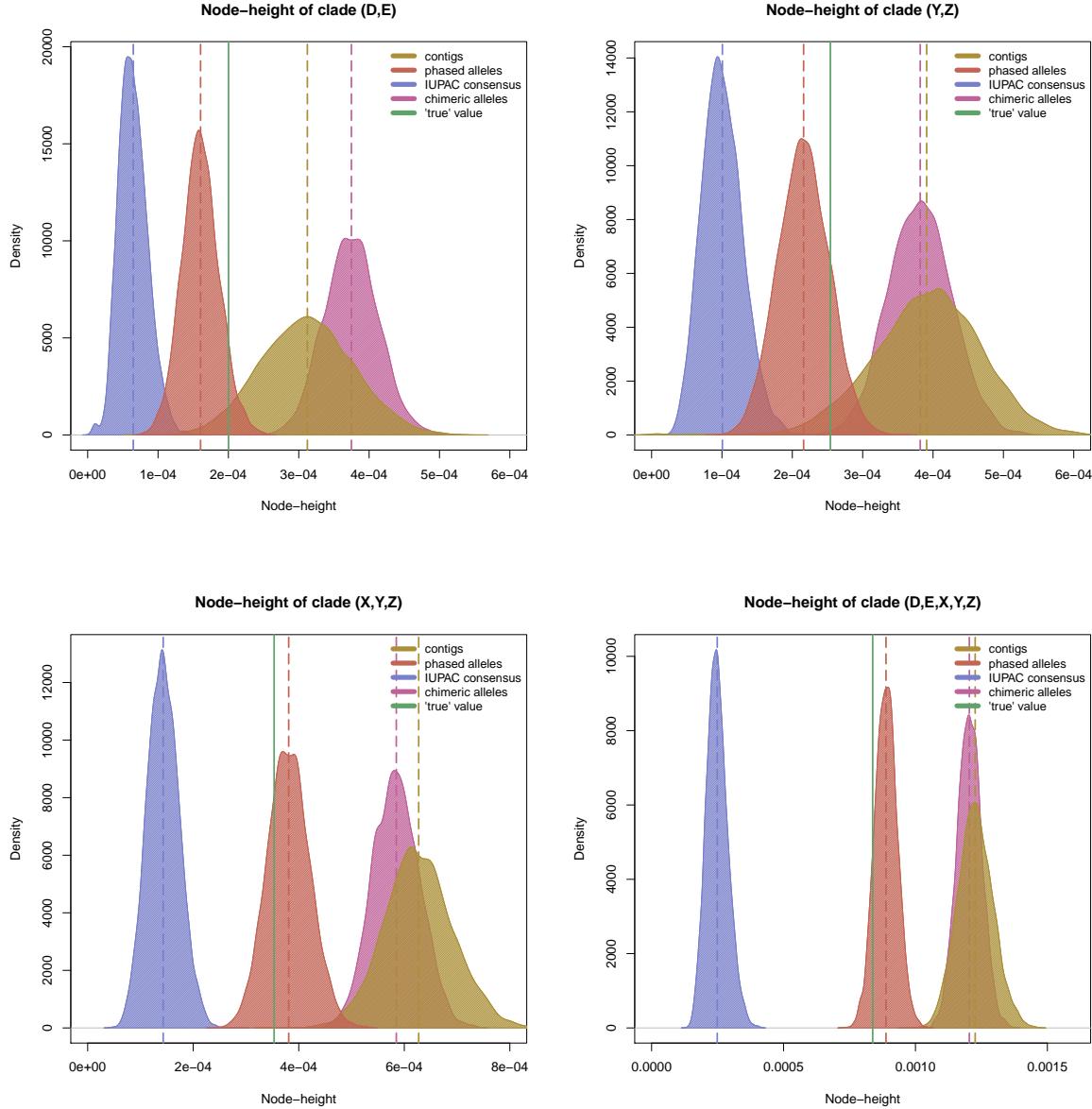


Figure 5: Posterior distributions of divergence times, estimated with STACEY. Each panel represents a different node in the STACEY species tree (see panel titles) and shows density plots of the posterior node-height distribution (excl. 10% burnin) for each of the 4 sequence-based processing schemes: contig sequences, phased allele sequences, IUPAC consensus sequences and chimeric allele sequences (see legend for color-codes). The dotted vertical lines show the means of these posterior distributions. The solid vertical line shows the true node height value, which is the node height for the respective clade in the input species tree, under which the sequence alignments were simulated.