
Title  1 

High-throughput automatic training system for odor-based cognitive behaviors 2 

in head-fixed mice 3 

 4 

Authors:  5 

Zhe Han
1,2

, Xiaoxing Zhang
1
, Jia Zhu

1,2
, Yulei Chen

1
, and Chengyu T. Li

1*
   6 

 7 
1

 Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of 8 

Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence 9 

Technology, Chinese Academy of Sciences, Shanghai 200031, China. 10 

2
 University of Chinese Academy of Sciences, Beijing 100049, China. 11 

 12 
*
 Corresponding author: tonylicy@ion.ac.cn.  13 

  
14 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 30, 2018. ; https://doi.org/10.1101/255653doi: bioRxiv preprint 

https://doi.org/10.1101/255653
http://creativecommons.org/licenses/by-nc/4.0/


Abstract 1 

Understanding neuronal mechanisms of cognitive behaviors requires efficient 2 

behavioral assays. We designed a high-throughput automatic training system (HATS) 3 

for olfactory behaviors in head-fixed mice. The hardware and software were 4 

constructed to enable automatic training with minimal human intervention. The 5 

integrated system was composed of customized 3D-printing supporting components, 6 

an odor-delivery unit with fast response, Arduino based hardware-controlling and 7 

data-acquisition unit. Furthermore, the customized software was designed to enable 8 

automatic training in all training phases, including lick-teaching, shaping, and 9 

learning. Using HATS, we trained mice to perform delayed non-match to sample 10 

(DNMS), delayed paired association (DPA), Go/No-go (GNG), and GNG reversal 11 

tasks. These tasks probed cognitive functions including sensory discrimination, 12 

working memory, decision making, and cognitive flexibility. Mice reached stable 13 

levels of performance within several days in the tasks. HATS enabled an experimenter 14 

to train eight mice simultaneously, therefore greatly enhanced the experimental 15 

efficiency. Combined with causal perturbation and activity recording techniques, 16 

HATS can greatly facilitate our understanding of the neural-circuitry mechanisms 17 

underlying cognitive behaviors. 18 

 19 

Introduction 20 

Behavioral design and analysis are critical for understanding neural mechanism 21 

of cognition (Gomez-Marin et al., 2014), including working memory (Fuster, 1997; 22 

Baddeley, 2012), decision making (Gold and Shadlen, 2007; Lee et al., 2012), and 23 

reversal of learnt rules (Bunge and Wallis, 2008). Combined with novel 24 

neural-circuitry technologies, such as optogenetics (Fenno et al., 2011), 25 

chemogenetics (Armbruster et al., 2007), and imaging methods (Deisseroth and 26 

Schnitzer, 2013), well-disigned behavioral paradigms can greatly facilitate the ciruitry 27 

level understanding of behaivor. Reliable behavioral paradigms are also useful in 28 

pre-clinic studies such as target identification and mechanistic studies for brain 29 

diseases (Fernando and Robbins, 2011, Gotz and Ittner, 2008, Nestler and Hyman, 30 

2010).  31 

 32 

Optimally, behavioral training systems should be automatic, ready to scale up, 33 

blind in design, and flexible in changing paradigms. Automatic training systems 34 

(Schaefer and Claridge-Chang, 2012) met well with these criteria. There was a long 35 

history of designing automatic behavior-training systems, for example in studies of 36 

operant conditioning (e.g., Davidson et al., 1971). Automatic training systems are 37 

composed of monitoring and feedback controlling of behavior. In free-moving mice, 38 

automatic measurement has been implemented in characterizing visual performance 39 

(Benkner et al., 2013, de Visser et al., 2005, Kretschmer et al., 2013), evaluation of 40 

pain sensitivity(Kazdoba et al., 2007, Roughan et al., 2009), freezing behavior during 41 

fear conditioning(Anagnostaras et al., 2010, Kopec et al., 2007), home-cage 42 
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phenotyping(Balci et al., 2013, Hubener et al., 2012, Jhuang et al., 2010), 1 

anxiety(Aarts et al., 2015), diurnal rhythms(Adamah-Biassi et al., 2013), and social 2 

behavior(Hong et al., 2015, Ohayon et al., 2013, Weissbrod et al., 2013). With 3 

feedback controlling components, automatic training systems have been successfully 4 

implemented in multiple behavioral domains, including memory assessment (Reiss et 5 

al., 2014), operant learning (Remmelink et al., 2015), and training limb function 6 

(Becker et al., 2016). Automatic training systems with multiple cognitive behaviors 7 

requiring memory, attention, and decision making have been developed previously in 8 

free-moving rats (Erlich et al., 2011, Poddar et al., 2013) and mice (Gallistel et al., 9 

2014, Romberg et al., 2013). Moreover, such systems were successful in dissecting 10 

neural-circuitry mechanisms underlying cognitive behaviors (e.g., Brunton et al., 2013, 11 

Erlich et al., 2011, Hanks et al., 2015). Head-fixed mice (Dombeck et al., 2007; Guo 12 

et al., 2014) renders great flexibility in recording (Harvey et al., 2009; Boyd et al., 13 

2012; Fukunaga et al., 2012; Kollo et al., 2014) and imaging (Boyd et al., 2015; Chu 14 

et al., 2016, Dombeck et al., 2007, Komiyama et al., 2010; Yamada et al., 2017) 15 

technologies. Moreover, free-moving and head-restrianted mice exhibit similar ability 16 

of olfactory discrimination (Abraham et al., 2012). However, automatic training 17 

systems in head-fixed mice were not developed previously. 18 

 19 

Olfaction is an important sensory modality for cognitive behavior (Doty, 1986; 20 

Ache and Young, 2005). Previous studies have demonstrated that rodents are very 21 

good at olfactory discrimination, memory, and decision (Abraham et al., 2004, Barnes 22 

et al., 2008, Cleland et al., 2002, Haddad et al., 2013, Hubener and Laska, 2001, 23 

Kepecs et al., 2007, Komiyama et al., 2010; Liu et al., 2014, Lu et al., 1993, Mihalick 24 

et al., 2000, Passe and Walker, 1985, Petrulis and Eichenbaum, 2003, Rinberg et al., 25 

2006, Slotnick et al., 1991, Uchida and Mainen, 2003). Automatic behavioral systems 26 

have been developed for studying innate olfactory behaviors (Qiu et al., 2014). 27 

Olfactory behavioral testing has been developed in head-fixed rodents and greatly 28 

facilitates the understanding of neural circuits underlying olfaction (Verhagen et al., 29 

2007; Wesson et al., 2008; Shusterman et al., 2011; Kato et al., 2013; Boyd et al., 30 

2015) and odor-based cognition (Komiyama et al., 2010; Liu et al., 2014; Gadziola et 31 

al., 2015). However, fully automatic training systems for odor-based cognitive 32 

behaviors were not available for head-fixed mice. 33 

 34 

We therefore designed a high-throughput automatic training system (HATS) for 35 

olfactory behaviors in head-fixed mice. Using the automatic step-by-step training 36 

procedures, we trained mice to perform olfactory delayed non-match to sample 37 

(DNMS), delayed paired association (DPA), Go/No-go (GNG), and GNG reversal 38 

tasks. Mice reached stable levels of performance within several days in the tasks. 39 

HATS can be an important tool in our understanding of the neural-circuitry 40 

mechanisms underlying odor-based cognitive behaviors. 41 

 42 
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Material and Methods  1 

Animals 2 

Male adult C57BL/6 mice (SLAC, as wild-type) were used for the current study 3 

(8-40 weeks of age, weighted between 20 to 30 g). Wild-type mice were provided by 4 

the Shanghai Laboratory Animal Center (SLAC), CAS, Shanghai, China. Mice were 5 

group-housed (4-6/cage) under a 12-h light-dark cycle (light on from 5 a.m. to 5 p.m.). 6 

Before behavioral training, mice were housed in stable conditions with food and water 7 

ad libitum. After the start of behavioral training, the water supply was restricted. Mice 8 

could drink water only during and immediately after training. Care was taken to keep 9 

mice body weight above 80% of a normal level. The behavioral results reported here 10 

were collected from a total of 25 wild-type mice. All animal studies and experimental 11 

procedures were approved by the Animal Care and Use Committee of the Institute of 12 

Neuroscience, Chinese Academy of Sciences, Shanghai, China. 13 

 14 

Animal surgery 15 

Mice were anesthetized with analgesics (Sodium pentobarbital, 10mg/mL, 80 16 

mg/kg body weight) before surgery. All surgery tools, materials, and 17 

experimenter-coats were sterilized by autoclaving. Surgery area and materials that 18 

cannot undergo autoclaving were sterilized by ultraviolet radiation for more than 20 19 

minutes. Aseptic procedures were applied during surgery. Anesthetized mice were 20 

kept on a heat mat to maintain normal body temperature. Scalp, periosteum, and other 21 

associated soft tissue over skull were removed. Skull was cleaned by filtered artificial 22 

cerebrospinal fluid (ACSF) with cotton applicators. After skull was dried out, a layer 23 

of tissue adhesive was applied on the surface of the skull. A steel plate was placed on 24 

the skull and then fixed by dental Cement.  25 

 26 

Behavior setups 27 

HATS was composed of a mouse containing, head-fix, odor delivery and reward 28 

delivery, Arduino based control, and data acquisition units (diagram in Figure 1A, 29 

photo in Figure 1B). All valves and motors were controlled by Arduino based 30 

processors and customized software. The 3d printing files, a step by step instruction 31 

for hardware assembling, the source code for behavior training and the data 32 

acquisition source code were publically available 33 

(https://github.com/wwweagle/serialj ; https://github.com/jerryhanson/frontiers)/ 34 

 35 

Three-dimensional printing technique was used to generate the small 36 

components in the system (Figure 1C). The training tube was used to maintain the 37 

relative position of mouse body to the water- and odor-delivery ports. The motor slot 38 

held a direct-current motor to move the water port forward or backward. The water 39 
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tube slot held a metal needle with a blunt tip, from which mice obtained water as a 1 

reward. The odor-tube slot connected the odor tube from the odor-delivery unit.  2 

 3 

A movable water port was connected to a peristaltic pump, which was controlled 4 

by an Arduino board. The volume of water reward was controlled by changing the 5 

duration of the output signal to peristaltic pump from the Arduino board. Peristaltic 6 

pumps of different setups were calibrated for the stable volume of water delivery in 7 

each trial (5 ± 0.5 L).  8 

 9 

Water- and odor-delivery units were both controlled by an Arduino board. During 10 

behavior training, detailed timing information of events was sent back to the computer 11 

via the USB-simulated serial-port interface and stored by a customized Java program. 12 

The stored events included an odorant valve on/off, peristaltic pump on/off, and 13 

licking start/end. Licking event was detected by a capacity detector. Infrared 14 

LED-based licking detectors were used for electrophysiological recording if required. 15 

An infrared camera was placed under the water port to monitor behavioral states of 16 

mice. 17 

 18 

Olfactometer 19 

The olfactometer was designed to efficiently and reliably mix and deliver odor. 20 

Air source was a pump that provided air flow with the flow rate of ~120 L/min. The 21 

filter was applied to eliminate moisture and dust. Eight training setups shared one set 22 

of pump and filter. For each setup, pure air with the flow rate of 2 L/min is constantly 23 

delivered to mice during the entire process. The air input to each air route could be 24 

turned on and off by a manual valve (labeled as “M” in Figure 2A and 2B). The flow 25 

rate was adjusted by a needle valve (labeled as “V” in Figure 2A and 2B). As shown 26 

in the Figure 2B, one type of odorant in liquid state was stored in one airtight bottle. 27 

The air-in tube was placed right above the surface of the liquid odorant. Two-way 28 

solenoid valves were used to switch the odor to either mouse or flow mater. In the 29 

standby state (no odor was delivered, Figure 2A), the valve to odorant bottle (labeled 30 

as “O”) was closed, and that to the flow meter (labeled as “F”) was opened. Therefore, 31 

no odor will be mixed with pure air and delivered to the mouse. In the working state 32 

that odor was delivered (Figure 2B), “O” was open and “F” was closed. Therefore 33 

odor was mixed with constant air and delivered to the mouse. Four kinds of odorants 34 

were used in the behavior tasks, 1-Butanol, Methyl butyrate, Hexanoic acid, and 35 

Octane. The relative volume ratios of these odorants in the pure air were 10%, 2.5%, 36 

15% and 5%, respectively. The difference was due to the distinct evaporation pressure 37 

of different odorant molecules at room temperature (see Table 1 for detailed 38 

rising/decay and residual time of the odorants). The odor tubes after “O” valves and 39 

before mixture chamber had an inner diameter of 0.5 mm. The odor tube for constant 40 

air before mixture chamber had an inner diameter of 2.5 mm. 41 

 42 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 30, 2018. ; https://doi.org/10.1101/255653doi: bioRxiv preprint 

https://doi.org/10.1101/255653
http://creativecommons.org/licenses/by-nc/4.0/


Behavior training 1 

Water restriction 2 

Mice were allowed at least seven days for recovery after surgery for head-plate 3 

implantation. Before the start of formal training, mice were water restricted for 48~72 4 

hours, in which licking for water was allowed (less than 1.0 ML per day, exact 5 

amount was not monitored). Throughout the training, the daily intake of water was at 6 

least 0.6 ML per day (as in Guo et al., 2014) and typically 1.0 ML per day. Body 7 

weight was closely monitored and a steady increase in body was observed after initial 8 

decrease following 24 hour restriction. 9 

 10 

Habituation phases 11 

The habituation phase started thirty minutes before the start of the training phase 12 

and only occurred once. A training tube was placed into the home cage. Mice could 13 

explore the tube freely to be familiar with it. This step was designed to decrease the 14 

stress level of mice on the first day. 15 

Automatic licking teaching phase 16 

This phase was designed to teach mice to lick freely from the water tube. A 17 

mouse was fixated on the head plate to a holding bar connected to the training tube. 18 

The animals were transferred from homecages to the apparatus and headfixed 19 

manually by experimenters. The total time spent in transition was less than a minute. 20 

Then the training tube was placed into and fixated to sliding sockets in the 21 

sound-attenuated box (the typical decrease from background noise was 15dB). 22 

Initially, the tip of the water port was placed five millimeters away from the mouse 23 

mouth. By using a program-controlled movable water port, the initiation of a teaching 24 

bout was associated with the forward movement of the water port. During each day, 25 

this phase was divided into three bouts to facilitate the association between movement 26 

of the water port and delivery of water. In each bout, water port moved forward firstly 27 

to seduce mouse to lick. After two seconds, water port will be reset back to the 28 

original place. Once mouse licked, one water drop (volume of ~5 L) was delivered 29 

for every three licks. This bout ended when mice did not lick continuously for two 30 

seconds, or rewarded size is larger than 200 L from this bout. The daily reward size 31 

could vary between each mouse (typically 0.6 ML and less than 1.0 ML). This phase 32 

lasted for three days. Mice stayed in training apparatus for 1-2 hours per day in all 33 

training phases. 34 

Automatic shaping phase 35 

This phase was designed to teach mice to lick for water only in the response 36 

window, which was from 0.5 to 1.5 sec after the offset of the second odor delivery. 37 

Only rewarded condition was applied, which were non-matched pairs for DNMS task, 38 
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paired odors for DPA task, or go cue for GNG task, respectively. Mice could lick in 1 

response window to trigger water reward from every trial. During this phase, water 2 

port may or may not move while water was delivered. If mice missed several trials, 3 

lick-teaching would resume, in which the water port was moved forward and water 4 

was delivered during the response window. The reward in lick-teaching was 5 

program-controlled and was not triggered by lick. Two types of trials were defined for 6 

this phase, the self-learning (Figure 5, left) and program-teaching (Figure 5, right) 7 

trials, which switched automatically under the condition introduced below. The water 8 

port was moved forward during the response window in the program-teaching trials, 9 

in which the water delivery was automatic without triggered by licks. In the 10 

self-learning trials, however, reward delivery was licking-triggered, and water port did 11 

not move. The condition for switching from self-learning to program-teaching trials 12 

was that mice missed five times within 30 trials or missed during the last 13 

program-teaching trial. The condition for switching from program-teaching trial to 14 

self-learning trial is that mice licked in response window and obtained a reward from 15 

the last teaching trial. Daily shaping phase ended when mice performed 100 hit trials 16 

in total. This phase lasted for three days.  17 

Full task training phase 18 

DNMS task training 19 

In the DNMS task, a sample odor was delivered at the start of a trial, followed by 20 

a delay period (4-5 seconds) and then a test odor, same to (matched) or different from 21 

(non-matched) the sample (Figure 6). Two kinds of odorants were used in DNMS 22 

task, 1-Butanol, and Methyl butyrate. The relative volume ratios in the pure air were 23 

10% and 2.5%, respectively. Odor-delivery duration was one second. Mice were 24 

trained to lick in the response window in non-match trials. The response window was 25 

from 0.5 to 1.5 sec after the offset of the second odor delivery. Licking events 26 

detected in the response window in the non-match trials were regarded as Hit and will 27 

trigger instantaneous water delivery (a water drop around 5 L). The false choice was 28 

defined as detection of licking events in the response window in the match trials. 29 

Mice were not punished in the False Choice trials. Mice were neither punished nor 30 

rewarded for the Miss (no-lick in a non-match trial) or the Correct rejection (CR, 31 

no-lick in a matching trial) trials. Behavioral results were binned in blocks of 24 trials. 32 

There was a fixed inter-trial interval of 10 seconds between trials. After training ended 33 

each day, mice were supplied with water of at least 300 L and up to 1 mL daily 34 

intake. This phase lasts for four to five days. The well-trained criterion was set to the 35 

existence of three continuous correct-rates larger than 80%, calculated using a sliding 36 

window of 24 trials. The reason to use 24 trials as a block is to maintain the 37 

consistency of different trial types between different tasks, with the need to be 38 

commonly divided by four and eight types of odor sequence for different tasks (4 for 39 

DNMS, 4 for DPA). It was intended to facilitate the compairsion of the performance 40 

in the different tasks in the the current study. It can be easily modified according to 41 

the needs of . 42 
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DPA task training 1 

For the DPA task, a sample and a test odor were delivered, separated by a delay 2 

period (Figure 7). Four kinds of odorants were used, 1-Butanol (S1), Methyl butyrate 3 

(S2), Hexanoic acid (T1) and Octane (T2). The relative volume ratios in pure air were 4 

10%, 2.5%, 15% and 5%, respectively.  Odor delivery duration was one second. 5 

Delay period between two odors in a trial was 8-9 seconds. Response window was set 6 

to 0.5-1 second after the offset of the test odor in a trial. Mice were trained to lick to 7 

obtain water reward only after the paired trials (S1-T1 or S2-T2). Licking events 8 

detected in the response window in paired trials were regarded as Hit and will trigger 9 

instantaneous water delivery. The false choice was defined as detection of licking 10 

events in the response window in non-paired trials (S1-T2 or S2-T1), and mice were 11 

not punished in False Choice trials. Mice were neither punished nor rewarded for 12 

Miss (no-lick in the paired trial) or Correct rejection (CR, no-lick in a non-paired trial) 13 

trials. Behavioral results were binned in blocks of 24 trials. There was a fixed 14 

inter-trial interval of 16 seconds between trials. After training ended each day, mice 15 

were supplied with water of at least 300 L and up to 1 mL daily intake. This phase 16 

lasts for four to five days. The well-trained criterion was set to the existence of three 17 

continuous correct-rates larger than 80%, calculated using a sliding window of 24 18 

trials. 19 

GNG and GNG reversal task training 20 

For the GNG task, mice were trained to lick for water only after the Go cue but 21 

not No-go cue. Hexanoic acid and Octane were used as Go and No-go cues, 22 

respectively. The relative volume ratios in the pure air were 15% and 5%, respectively. 23 

Odor-delivery duration was one second. Response window was 0.5-1.5 second after 24 

the offset of a cue. Licking events detected in the response window in Go trials were 25 

regarded as Hit and triggered instantaneous water delivery. The false choice was 26 

defined as the detection of licking events in the response window in No-go trials. 27 

Mice were not punished in the False Choice trials. Mice were neither punished nor 28 

rewarded for the Miss (no-lick in a Go trial) or the Correct rejection (CR, no-lick in a 29 

No-go trial) trials. Behavioral results were binned in blocks of 24 trials. There was a 30 

fixed inter-trial interval of 5 seconds between trials. After training ended each day, 31 

mice were supplied with water of at least 300 L and up to 1 mL daily intake. This 32 

phase lasts for three days. The well-trained criterion was set to the existence of three 33 

continuous correct-rates larger than 80%, calculated using a sliding window of 24 34 

trials. 35 

 36 

In the third day of training, the GNG reversal task began, in which the 37 

odor-reward relationship was reversed.  38 

 39 
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Data analysis 1 

The performance of the correct rate (referred to as “performance” in labels of 2 

figures) of each bin was defined by: 3 

 4 

Performance correct rate = (num. hit trials + num. correct rejection trials) / total 5 

number of trials 6 

 7 

Hit, False choice, and Correct rejection rates were defined as follows: 8 

 9 

Hit rate = num. hit trials / (num. hit trials + num. miss trials) 10 

False choice rate = num. false choice trials / (num. false choice trials + num. 11 

correct rejection trials) 12 

Correct rejection rate = num. correct rejection trials/ (num. false choice trials + 13 

num. correct rejection trials) 14 

 15 

Mean correct rate (CR rate/ FA rate) was calculated as an averaged correct rate 16 

(CR rate / FA rate) between different mice. 17 

 18 

Error bars from the mean value of the correct rate (CR rate / FA rate) was 19 

calculated by the standard error of the mean. N represents the number of mice. 20 

 21 

The licking rate was calculated as lick numbers within each time bin (bin 22 

size:100 ms). The curve was smoothed by smooth function from Matlab with a span 23 

size of 5 bin. 24 

 25 

Discriminability (d’) was defined by: 26 

 27 

d' = norminv (Hit rate)- norminv (False choice rate). The norminv function was 28 

the inverse of the cumulative normal function. Conversion of Hit or False choice rate 29 

was applied to avoid plus or minus infinity (Macmillan and Creelman, 2005). In 30 

conversion, if Hit or False choice rate was equal to 100%, it was set to [1-1/(2n)]. 31 

Here, n equals to a number of all possible Hit or False choice trials. If Hit or False 32 

choice rate was zero, it was set to 1/(2n). 33 

 34 

Licking efficiency = rewarded licking number / (rewarded licking number + 35 

unrewarded licking number). 36 

 37 

A number of trials to criterion was calculated as the trial numbers before 38 

reaching 80% correct rate for 24 consecutive trials. “NRC” in Figure 6-8 represented 39 

Not Reaching Criterion, which indicated that mice did not reach the above criterion 40 

for that day. 41 

 42 
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Results 1 

Overview of Hardware, Software, and protocol 2 

In our previous study (Liu et al., 2014), mice were manually taught to lick for 3 

water and shaped for a DNMS task. The goal of the current study was to allow fully 4 

automatic training. The only things human operators need to perform were to fixate 5 

mice onto head-fix bars, close doors of training boxes, and run computer software 6 

controlling training protocols. The current study fulfilled the goal by designing HATS 7 

for olfactory and odor-based cognitive behavior in head-fixed mice. HATS was 8 

composed of a mouse containing, head-fix, odor- and water- delivery, Arduino based 9 

control, and data acquisition units (diagram in Figure 1A, photo in Figure 1B, 10 

3D-printed parts in Figure 1C). Optogenetic, chemogenetic, recording, and imaging 11 

methods can be easily integrated into HATS. All valves and motors were controlled by 12 

Arduino based processors and customized software. The daily routine was composed 13 

of system adjustment, head-fixation of mice, choosing a protocol, and training mice a 14 

given behavior (Figure 1D).  15 

Fast odor delivery 16 

In studying olfactory behaviors, it is critical to have fast rise and decay for odor 17 

delivery.  18 

Our olfactometer exhibited fast response and stable performance. The reaction 19 

time constant for the onset of these odors was between 11-71 ms (Table 1), measured 20 

with a photoionization detector (PID). Another key parameter was the time constant 21 

for decay after the offset of the odor-delivery unit, which was especially important in 22 

working memory-related tasks. The current odor-delivery unit exhibited fast decay 23 

(time constant: 20-41 ms, Figure 2C, Table 1). Moreover, odor concentration 24 

remained stable following more than 200 trials of odor delivery (Figure 2F), which 25 

was important for behavioral and recording experiments.  26 

Automatic training protocol 27 

To achieve fully automatic training, we developed a step-by-step training 28 

protocol. The protocol was separated into two preparatory steps (water deprivation 29 

and habituation) and three training phases (lick-teaching, shaping, and learning, 30 

Figure 3A).  31 

 32 

The first step of training was to automatically teach licking freely from water 33 

tube (Figure 4A-B). Moveable water port (Figure 4C-E) was located 5 mm away 34 

from the mouth of a mouse. The flow chart of the lick-teaching protocol was plotted 35 

in Figure 4A. At the start of a teaching bout, water port would deliver 10 L water 36 

and then moved forward until contacting the mouth, thus encouraging the licking. If 37 

mouse licked, 4 L water would be rewarded for every three licks. After no licking 38 

was detected for consecutive 2 sec or water of 200 L was delivered, one bout of 39 
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teaching was completed, and the water port was moved back to the initial position. 1 

The teaching bout was repeated for several times until water of 400 L was rewarded 2 

in total. The volume of water rewarded in each day was plotted in Figure 4B.  3 

 4 

The second step of training was shaping for a specific task. This phase was 5 

designed to allow mice to be familiar with the temporal structure of the tasks and the 6 

involved sensory stimuli, without experiencing the full task. In shaping, only the trials 7 

with water reward were applied. Specifically, for DNMS task, only non-matched odor 8 

pairs were applied to mice (Figure 5A-B). For DPA task, only paired trials were 9 

applied. For GNG task, only Go cue was applied. Two types of trials were designed, 10 

self-learning and teaching trials. In self-learning trials, water delivery was triggered 11 

by licking in the response window (Figure 5C left box). In teaching trials, water port 12 

moved forward and delivered water automatically during response window (Figure 13 

5C right box). These two types of trials were designed to switch automatically. The 14 

condition for switching from learning to teaching trial was that mice missed five trials 15 

in 35 trials. The condition for switching from teaching to learning trial was that mice 16 

licked within the response window in the last teaching trial. Daily shaping phase 17 

ended when mice performed 100 hit trials in total. This phase lasted for three days.  18 

Training the DNMS task 19 

We trained eight head-fixed mice to perform an olfactory DNMS task(Liu et al., 20 

2014) (Figure 6A). In this design mouse needed to temporally maintain information 21 

during the delay period before behavioral choices and motor planning. After the 22 

shaping protocol, we added the non-rewarded matched trials, which induced false 23 

choice and reduced performance to chance level (Figure 6B). Gradually the 24 

performance, correct rejection, and discriminability (d') progressively increased, 25 

whereas the hit rate remained at a ceiling level (Figure 6B-E). After the training of 26 

five days (600 trials), the performance showed significant increase (ANOVA, 27 

p<0.0001, F=775.89). Mice experienced a certain level of relearning each day, with a 28 

decreased number to criteria (defined as a correct rate above 80% in 24 consecutive 29 

trials) each day through learning (Figure 6F). Most of the licking responses were 30 

associated with non-match odor and expectation of water reward (Figure 6G). There 31 

were licks associated with the first odor delivery in the early phase of learning 32 

(Figure 6G black curve), which were declined through learning (Figure 6G blue 33 

curve). Also, the licking efficiency (defined as the ratio of successful licks resulting 34 

water reward) was increased progressively through learning (Figure 6H). 35 

Training the DPA task 36 

The second set of head-fixed mice was trained to perform an olfactory DPA task 37 

(Figure 7A). As in the DNMS task, the performance, correct rejection, and 38 

discriminability (d') progressively increased, whereas the hit rate remained at ceiling 39 

level (Figure 7B-E). After the training of five days (600 trials), the performance 40 

showed significant increase (ANOVA, p<0.0001, F=1139.03). Mice also experienced 41 
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a certain level of relearning each day (Figure 7F). Most of the licking responses were 1 

associated with paired odor and expectation of water reward (Figure 7G). There were 2 

licks associated with the first odor delivery in the early phase of learning (Figure 7G 3 

black curve), which were declined through learning (Figure 7G blue curve). Such 4 

early licks associated with the sample odor were lower than that in the DNMS task. 5 

The licking efficiency also increased progressively through learning (Figure 7H). 6 

Training the GNG and reversal tasks 7 

The third set of head-fixed mice was initially trained to perform an olfactory 8 

GNG task (Figure 8A above), then subsequently sensory-cue reversal task (Figure 9 

8A below). The performance, correct rejection, and discriminability (d') progressively 10 

increased, whereas the hit rate remained at ceiling level (Figure 8B-E). After the 11 

training of two days (200 trials), the performance showed significant increase 12 

(ANOVA, p<0.0001, F=3455.17). Mice also experienced a certain level of relearning 13 

each day (Figure 8F). Most of the licking responses were associated with paired 14 

odor-pair and expectation of water reward (Figure 8G). The licking efficiency also 15 

increased progressively through learning (Figure 8H). After two-days of GNG 16 

training, the odor-reward relationship was reversed (Figure 8A below). The 17 

performance, correct rejection, discriminability (d'), and licking efficiency were 18 

decreased initially, and then progressively increased (Figure 8B-E). The hit rate 19 

remained at ceiling level (Figure 8D) and relearning was evident from the number of 20 

trials to criteria (Figure 8F).  21 

Discussion 22 

Automated, quantitative, and accurate assessment of behaviors is critical for 23 

understanding mechanisms underlying cognition. Here we presented HATS, a new 24 

integrated hardware and software system that combined fast olfactometer, 3D-printed 25 

components, step-by-step automatic training, for automatic training of cognitive 26 

behaviors in head-fixed mice. The robustness of the system was validated in multiple 27 

olfactory and odor-based tasks. The involved tasks require cognitive abilities 28 

including working memory (Fuster, 1997; Baddeley, 2012), decision making (Gold 29 

and Shadlen, 2007; Lee et al., 2012), and reversal of learnt rules (Bunge and Wallis, 30 

2008), all of which are required in more naturalistic environment and vital for 31 

survival.  32 

An obvious limitation is that free-moving mice cannot be trained with HATS. 33 

Another limitation is that HATS only monitor the lick as behavioral readouts, 34 

therefore is more suited for large-scale screening of optogenetic. Although the 35 

head-movement was restrained in the current design, one would like to monitor the 36 

muscles controlling head or chewing movement to further eliminate the potential 37 

artifacts in electrophysiological recording. To obtain deep understanding of neural 38 

circuit underlying these behavior, one would also like to integrate more monitoring 39 

systems for behavioral events, such as sniffing (Kepecs et al., 2007; Verhagen et al., 40 

2007; Wesson et al., 2008; Shusterman et al., 2011; Deschenes et al., 2012; McAfee et 41 
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al., 2016), pupil size (Reimer et al., 2014; McGinley et al., 2015; Vinck et al., 2015; 1 

Bushnell et al., 2016; Reimer et al., 2016), and whisker movement (Orbach et al., 2 

1985; Friedman et al., 2006; Birdwell et al., 2007; O'Connor et al., 2010; Deschenes 3 

et al., 2012; Petreanu et al., 2012; Moore et al., 2013).  4 

In designing HATS, we tried to fasten the training history, therefore aiding the 5 

dissection of neural circuit. However, this fast training in animals would only 6 

sufficiently model fast learning in humans. Indeed, many human behaviors and 7 

human learning are slow in learning and require extensive training, such as fine motor 8 

skill (i.g., driving, playing piano) and sensory discrimination (i.g., wine tasting). Thus, 9 

automations achieved in HATS have limitations to what kinds of behavioral and 10 

neural processes are being effectively modeled. 11 

Nevertheless, HATS allowed for rapid, automated training of cognitive behaviors 12 

across diverse experimental designs. Our approach can also support high-throughput 13 

behavioral screening. In summary, the newly developed HATS is well-suited for 14 

circuitry understanding of odor-based cognitive behavior.  15 
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 34 

Figure and Table Legends 35 

FIGURE 1 | Components and operational processes for HATS.  36 

(A) Schematics showing the components of HATS. (B) Photos of HATS hardware. a, 37 

sound-attenuated box; b-c, odor containers; d, flow meter; e, needle valve; f, training 38 

tube for restraining mouse body; g, camera; h, holder for the odor- and water-delivery 39 

unit and motors; i, capacitance detector for licking; j, 3D-printed odor and water 40 

delivery unit; k, ventilator. (C) 3D-printed components. 1, mouse-body tube; 2, a 41 
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socket for odor-delivery tubes; 3-4, slots for the motor of the moveable water port; 5, 1 

a holder for the odor- and water-delivery unit and motors; 6, a socket for the training 2 

tubes. (D) Schematics of the operational processes for HATS. 3 

FIGURE 2 | Design, implementation, and reaction time of the olfactometer.  4 

(A) Schematic showing the “standby” condition of the olfactometer. Diagram for the 5 

two-odor delivery unit was shown. The flow meter was designed for monitoring 6 

potential system failure. The flow rate was labeled as the numbers with the unit 7 

“L/min.” Arrows indicated for the direction of air flow. (B) Schematic showing the 8 

“working” condition when one odor was delivered (through “r2”). Reduction of the 9 

readout from the flow meter indicated for normal operation. (C) Photo of the 10 

flow-controlling unit for the olfactometer. (D) Photo of the tubing unit and mixing 11 

chamber. Thin tubes were used for fast reaction for odor delivery. Mixing chamber 12 

was designed for a maximal mixture of pure air (from “r1” in B) and the delivered 13 

odor (from “r2” in B). (E) Fast response of the olfactometer. Readout from PID was 14 

plotted in the log scale for main figure and linear scale for inset (Mean ± SEM, 15 

standard error of the 0mean, unless stated otherwise; calculated from odor application 16 

of 200 trials). Rising/decay time constant and time with residual-odor were shown in 17 

Table 1. (F) Odor stability across trials.  18 

FIGURE 3 | Step-by-step automatic training procedure. 19 

(A) Step-by-step automatic training procedure. Duration in a given step was labeled to 20 

the right.  21 

FIGURE 4 | Automatic lick-teaching protocol. 22 

(A) Flow chart for the automatic lick-teaching protocol. (B) Daily consumed water 23 

volume in the lick-teaching phase. (C) Diagram of the moveable water port. (D-E) 24 

Diagram showing relative position between water port and mouse mouth in 25 

self-learning (D) and teaching (E) phases. 26 

FIGURE 5 | Automatic shaping protocol. 27 

(A) Design paradigm and time line for the DNMS shaping. Only non-matched trials 28 

were applied. (B) Licking performance in the shaping phase. (C) Flow chart for the 29 

DNMS shaping. Left: self-learning trials. Right: teaching trials. 30 

FIGURE 6 | Automatic DNMS training protocol and behavioral results. 31 

(A) Design paradigm and time line for the DNMS training. Both non-matched and 32 

matched trials were applied. (B) Performance of mice in the DNMS training phase. 33 

Bin size: 24 trials. (C-E) Correct rejection (CR) rate, hit rate, and d’ in the DNMS 34 

training, respectively. (F) Re-learning in each day of the DNMS training, measured by 35 

the number of trials to criterion (defined as more than 80% performance in 24 36 
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consecutive trials). NRC, not reaching criteria. Mice that were NRC in the 2
nd

 and 3
rd

 1 

days were not included. (G) Licking rates for training day 1 and 5. (H) Licking 2 

efficiency in the DNMS training. Licking efficiency was defined as the ratio of 3 

successful licks resulting water reward. 4 

FIGURE 7 | Automatic DPA training protocol and behavioral results. 5 

(A-H) As in Figure 6 A-H.  6 

FIGURE 8 | Automatic GNG and reversal training protocol and behavioral 7 

results. 8 

(A-H) As in Figure 6 A-H.  9 

 10 

TABLE | 1. Rising and decay properties of odorants. Time was in a millisecond. 11 

 12 

Odorant 

Name 

Relative 

Volume Ratio 

in Air (%) 

Rising Latency 

(95% of peak) 

Decay 

Constant Time 

(1/e of peak) 

1-Butanol 10 18 ± 1 20 ± 1  

Methyl 

butyrate 

2.5 17 ± 1 22 ± 1  

Hexanoic 

acid 

15 31 ± 1 41 ± 1  

Octane 5 71 ± 1 31 ± 1  

(mean ± standard error of the mean) 13 

 14 

 15 
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