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46 Abstract

47  Learning the statistical structure of the environment is crucial for adaptive behavior.
48 Humans and non-human decision-makers seem to track such structure through a
49 process of probabilistic inference, which enables predictions about behaviorally
50 relevant events. Deviations from such predictions cause surprise, which in turn helps
51 improve inference. Surprise about the timing of behaviorally relevant sensory events
52  drives phasic responses of neuromodulatory brainstem systems, which project to the
53 cerebral cortex. Here, we developed a computational model-based
54  magnetoencephalography (MEG) approach for mapping the resulting cortical
55 transients across space, time, and frequency, in the human brain (N=28, 17 female).
56 We used a Bayesian ideal observer model to learn the statistics of the timing of
57  changes in a simple visual detection task. This model yielded quantitative trial-by-trial
58 estimates of temporal surprise. The model-based surprise variable predicted trial-by-
59 trial variations in reaction time more strongly than the externally observable interval
60 timings alone. Trial-by-trial variations in surprise were negatively correlated with the
61 power of cortical population activity measured with MEG. This surprise-related power
62  suppression occurred transiently around the behavioral response, specifically in the
63 beta frequency band. It peaked in parietal and prefrontal cortices, remote from the
64  motor cortical suppression of beta power related to overt report (button press) of
65 change detection. Our results indicate that surprise about sensory event timing
66 transiently suppresses ongoing beta-band oscillations in association cortex. This
67 transient suppression of frontal beta-band oscillations might reflect an active reset
68 triggered by surprise, and is in line with the idea that beta-oscillations help maintain
69  cognitive sets.

70

71

72 Significance statement

73  The brain continuously tracks the statistical structure of the environment to anticipate
74  behaviorally relevant events. Deviations from such predictions cause surprise, which
75 in turn drives neural activity in subcortical brain regions that project to the cerebral
76  cortex. We used magnetoencephalography in humans to map out surprise-related
77  modulations of cortical population activity across space, time, and frequency.
78  Surprise was elicited by variable timing of visual stimulus changes requiring a
79  behavioral response. Surprise was quantified by means of an ideal observer model.
80  Surprise predicted behavior as well as a transient suppression of beta frequency-
81 band oscillations in frontal cortical regions. Our results are in line with conceptual
82  accounts that have linked neural oscillations in the beta-band to the maintenance of
83  cognitive sets.
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84 Introduction
85 Humans and other organisms continuously adapt their behavior to the statistical
86  structure of their environment. This suggests that the brain is equipped with neural
87  machinery for statistical learning, which can interact with the processes driving goal-
88 directed behavior. Of particular importance here is surprise (Dayan and Yu, 2006;
89 O'Reilly et al., 2013), a violation of one’s expectation about the next event, which
90 might indicate a sudden change in the environmental structure, and can transiently
91 boost central arousal state, increasing the organism’s sensitivity and learning rate
92  (Yu and Dayan, 2005; Nassar et al., 2012).
93 Expectation, uncertainty, and surprise are intricately related. The precision of
94 expectations scales with uncertainty, that is, the width of the distribution of observed
95 events: high uncertainty precludes forming precise expectations. Violations of
96 expectations cause surprise, the level of which depends on the difference between
97 the expected and actually observed event (often termed prediction error). These
98 intuitions can be formalized within the framework of Bayesian statistics and used to
99 search for neurophysiological correlates (see Materials and Methods: Bayesian ideal
100 observer model: General approach and rationale).
101 One important dimension of the environment is the timing of relevant sensory
102 events (Gibbon et al., 1997; Nobre et al., 2007). Two lines of work have studied the
103 neural basis of temporal expectation effects. One has shown that environments with
104  rhythmic (i.e., precise) temporal structure entrain neural oscillations in the cerebral
105 cortex, the phase of which then modulates sensory cortical responses, perception,
106 and cognition (Lakatos et al., 2008; Schroeder and Lakatos, 2009; Rohenkohl and
107 Nobre, 2011; Rohenkohl et al., 2012; Riecke et al., 2015; van Ede et al., 2017). In
108 these rhythmic changes of the environment, surprise is minimized (once the structure
109 s learned expectations match observations). Consequently, this first line of work has
110 identified neural correlates of temporal expectation, rather than of surprise.
111 The second line of work has studied neural responses of subcortical,
112  neuromodulatory centers, specifically, dopaminergic centers of the midbrain, to
113  sensory events entailing reward. Because event timing here varied non-periodically
114  from trial to trial as in many natural environments, this work could link phasic
115  neuromodulatory responses to temporal surprise (Hollerman and Schultz, 1998;
116  Fiorillo et al., 2008). Surprise-driven phasic responses might also occur in other
117  neuromodulatory brainstem systems, such the noradrenergic system (Dayan and Yu,
118 2006). Because brainstem neuromodulatory systems have widespread projections to
119  the cortical networks underlying goal-directed behavior, one would expect changes in
120 cortical population activity elicited by surprise (Bouret and Sara, 2005). However, this
121 second line of work on temporal expectation has focused on surprise-related activity
122  in subcortical systems.
123 Here, we studied responses to surprise about the timing of sensory events in
124  human cortex. A computational model-based magnetoencephalography (MEG)
125  approach enabled us to map surprise-related cortical transients across space, time,
126  and frequency. We used a Bayesian model that accumulated previously experienced
127  durations of the interval between visual changes into posterior beliefs about the next
128 interval duration. This ideal observer model provided trial-to-trial measures of
129 temporal surprise, which predicted modulations of prefrontal and parietal cortical
130 beta-band dynamics.
131
132 Materials & Methods
133  This paper reports a re-analysis of an MEG data set that has previously been used
134  for a study into decision-related feedback signals in visual cortex (Meindertsma et al.,
135 2017). Here, we focus on those aspects of the experimental design that are most
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136 relevant for the issue addressed in the current paper: uncertainty and surprise about
137 the timing of the experimental events specified below. We refer to our previous paper
138 (Meindertsma et al., 2017) for a more detailed description of the visual stimulus and
139  the behavioral task.

140

141 Participants

142  Thirty-one volunteers participated in the experiment. Two participants were excluded
143  due to incomplete data and one participant did not complete the experiment due to
144  poor quality of simultaneously acquired pupil data. Thus, 28 participants (17 female,
145 age range 20 - 54 years, mean age 28.3, SD 9.2) were included in the analysis. All
146  participants had normal or corrected-to-normal vision and no known history of
147  neurological disorders. The experiment was conducted in accordance with the
148 Declaration of Helsinki and approved by the local ethics committee of the Hamburg
149  Medical Association. Each participant gave written informed consent.

150

151  Stimulus

152 MEG was measured while subjects viewed the intermittent presentation of a target
153  (full contrast Gabor patch; diameter: 2°) and reported the on- and offset of the target
154  (Figure 1A). Gabor targets flickered at 10 Hz (counter-phase) through alternation of
155  two out-of phase Gabors every 50 ms. This caused steady-state evoked responses
156  over visual cortex at 10 and 20 Hz (data not shown), distinct in terms of spectral
157  profile, topography and functional characteristics from the surprise-related
158 modulations we focused on here. The target was located in either the lower left or
159 lower right visual field quadrant (eccentricity: 5°, counterbalanced between subjects),
160 surrounded by a rotating mask (17°x17° grid of black crosses), and superimposed on
161 a gray background. The mask rotated at a speed of 160°/s. The target was separated
162 from the mask by a gray “protection zone” subtending about 2° around the target
163  (Bonneh et al., 2001). Subjects fixated on a fixation mark (red outline, white inside,
164  0.8° width and length) centered on the mask in the middle of the screen. Stimuli were
165 presented using the Presentation Software (NeuroBehavioral Systems, Albany, CA,
166 USA, RRID:SCR_002521). Stimuli were back-projected on a transparent screen
167 using a Sanyo PLC-XP51 projector with a resolution of 1024x768 pixels at 60 Hz.
168 Subjects were seated 58 centimeters from the screen in a whole-head
169 magnetoencephalography (MEG) scanner setup in a dimly lit room.
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172 Figure 1: Behavioral task. A. Schematlc deplctlon of the stimulus and task. A salient, flickering
173 target (Gabor patch) temporarily appeared and disappeared on a rotating background. Subjects fixated
174 on the red fixation mark and reported stimulus changes either by direct button press or silently counting
175 the disappearances and reporting the total number at the end of the run. B. The interval duration
176 between stimulus changes was randomly drawn from one of three distributions that corresponded to
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177 three hazard rates (left), resulting in distinct distributions of intervals (right, average histogram over
178 subjects). C. Example time courses of target presence (1 = present, 0 = absent) drawn from these
179  distributions.

180

181  Behavioral task and experimental design

182  The subjects’ task was to maintain stable fixation and detect the physical offsets and
183 onsets of the target, the predictability of which fluctuated from trial to trial, and the
184 mean predictability of which varied systematically across blocks. To this end, the
185 interval durations between stimulus changes were sampled from three different
186  distributions in the different blocks. These distributions were computed so as to
187 produce three predetermined so-called hazard functions, which describe the
188 probability that an event will occur at a particular time, given that it has not occurred
189 yet. The hazard function formalizes the expectation of a change and affects human
190 reaction times in simple detection tasks (Luce, 1986). The hazard function can be
191  computed as follows:

192

193 1= 2 Eq. 1
-t

194

195 where A; is the value of the hazard function at time point t, f; is the value of
196 distribution f on time point t, and F; is the area under the curve of distribution f from
197  —ocototime t.

198 We used the following procedure to construct three ‘environments’, referred to
199 as ‘Short’, ‘Long’, and ‘Flat’ below. We first selected three hazard functions that
200 systematically differed in their level of predictability (Figure 1B, C). We then
201  computed the actual distributions of intervals by re-arranging Eq. 1 as follows:

202

203 fi=d x(1=F), Eq. 2
204

205 The interval durations were then randomly selected from f. Specifically, the temporal
206  environments were defined as follows:

207 Short: The hazard function was a narrow Gaussian distribution with a mean of
208 2 s and a standard deviation of 0.2 s. This resulted in nearly periodic and, thus,
209 largely predictable intervals between events.

210 Long: This condition used the same hazard function as the previous
211  condition, but with a larger mean and standard deviation (6 s and 0.6 s, respectively)
212  thus rendering event timings less predictable (Fiorillo et al., 2008).

213 Flat: The hazard function was flat with a mean of 6s, yielding the least
214  predictable interval durations. The resulting distribution of interval durations, fi
215 therefore, approximated an exponential distribution; characterizing a memory-less
216  process (i.e. the timing of the next event could not be predicted from previously
217  encountered intervals, Feller, 1959).

218 Computational analysis with a Bayesian model (Fig. 2) described below
219  confirmed that the sampled intervals from these three environments gave rise to
220 different mean levels of uncertainty and surprise (Fig. 2G,H). The three environments
221  were presented in separate three-minute blocks.

222 Within each of the above temporal environments, there were two behavioral
223 tasks. Both tasks required subjects to monitor the changes of the small visual target.
224  In one task (called Detection-button), they were asked to report those changes
225 immediately. Specifically, subjects reported target offsets or onsets by pressing a
226  button with the right index or middle finger, respectively. In the other task (Detection-
227  count), they were asked to count and report the changes at the end of the block.
228  Subjects silently counted the number of target offsets and reported the total in
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229 response to a 4-AFC question at the end to the block. The two tasks were randomly
230 selected before each block under the constraint that both would occur equally often.
231 We here analyzed both task conditions, but only found robust effect for Detection-
232  button.

233 All subjects completed a total of 6 blocks of the Short environment, and 16
234  blocks of the other Long and Flat environments, resulting in about the same number
235 of trials per environment. Additionally, subjects performed a motion-induced
236 Dblindness task and a functional localizer task, which were not relevant for the current
237  study, but are reported in our previous paper (Meindertsma et al., 2017). All blocks
238  within an environment were completed in succession; the order of environments was
239 counter-balanced across subjects.

240

241  Bayesian ideal observer model: General approach and rationale

242  We developed an ideal observer model to quantify surprise and uncertainty about the
243 timing of sensory events (i.e., the target on- and offsets). The model tracked the
244  evolving predictive distribution of upcoming interval durations; more specifically, it
245  computes the posterior predictive of unobserved interval durations, conditional on the
246  observed data, throughout each block of the experiment. We assumed that subjects
247  tracked the temporal statistics of the task in a similar way, and we used the posterior
248  predictive distribution as a proxy of the subjects’ belief states (i.e., their prediction of
249  the timing of the next stimulus change).

250 While we used an ideal observer model that prescribed the optimal inference
251 for our task, we are agnostic to the precise inference process that was used by our
252  subjects and we do not claim that subjects used the exact computations used by the
253 model. Our central assumption was that subjects accumulated observations
254  throughout each block (i.e., over more than just one or two previous intervals). This
255  assumption was derived from a substantial body of work on other forms of learning
256  and evidence accumulation (Sutton and Barto, 1998; Gold and Shadlen, 2007; Glaze
257 et al., 2015), and it was supported by the findings described in Results. Our model
258 implemented the normative accumulation strategy by perfectly integrating across the
259  entire history of the observations (here: of interval durations) and updating internal
260 representations accordingly. A practical benefit of this approach was that it did not
261 require fitting of model parameters, for which our current data did not provide
262  sufficiently strong constraints.

263 The only free parameter in the model was the level of temporal estimation
264  noise, which we allowed to scale with the magnitude of the interval duration
265 according to Weber’s law (Gibbon et al., 1997). To this end, we transformed the
266 discrete values of the observed intervals into Gaussian distributions that were used
267  to update the model (see next section). The mean of these distributions was equal to
268 the observed interval t and their standard deviation was equal to the observed
269 interval t times a Weber’s fraction (coefficient of variation, Gibbon et al., 1997). We
270 simulated the model with 34 Weber’s fraction values ranging from 0.001 to 0.5
271 (0.001, 0.05:0.01:0.35, 0.4, 0.5). We then computed the correlation between the
272  measured single-trial reaction times (pooled across all subjects) and surprise (see
273  Bayesian ideal observer model: Implementation), separately for each Weber fraction,
274  and selected the Weber fraction that maximized this correlation. To this end, we fitted
275 a second order polynomial to the correlation coefficients as a function of Weber’s
276 fraction and extracted the maximum of the polynomial. This yielded a Weber’s
277  fraction of 0.17 (Figure 2F), which was used for all analyses reported in this paper.
278 Using model-based surprise from a noise-free version of the model vyielded
279 qualitatively identical results (data now shown).

280
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281  Bayesian ideal observer model: Implementation

282  We assumed that the subjects used a model in which the observed intervals have
283 been generated from a gamma distribution with parameters alpha (shape) and beta
284  (scale). These parameters were given uninformative prior distributions (Lee and
285  Wagenmakers, 2013), which were updated by the data to posterior distributions.

286 Using the interval duration distributions as the observations, we could obtain
287  the expectations about to-be-observed intervals by generating posterior predictives
288 (i.e., drawing an alpha-beta pair from the joint posterior distribution and then drawing
289 a predicted interval from the associated gamma distribution; repeating this process
290 many times yields a posterior predictive distribution for the to-be-observed interval).
291  We assumed that the subjects updated their belief state after each observation of a
292 new interval duration. Likewise, the model was updated after every interval t by
293 computing a new posterior predictive distribution, based on the durations of intervals
294  1:tand the prior.

295 We generated a posterior predictive distribution over the to-be-observed
296 intervals using Gibbs sampling (a Markov chain Monte Carlo, or MCMC, algorithm;
297  Andrieu et al., 2003) in the software JAGS (Plummer, 2003) and Matlab (version
298 R2013a, RRID:SCR_001622). We used two Markov chains with different starting
299 points comprised of 2500 samples per chain with 500 samples burn-in, for a
300 combined total of 4000 samples. The posterior predictive MCMC samples Y. 4000 for
301 the next interval, t+1, were then summarized by a gamma distribution using the
302 functions ‘gamfit’ and ‘gampdf’ in Matlab (Figure 2A,B):

303

304 Y1(t:(1)2)0 ~ Gamma(Kt+1' 9t+1) = ft+1’ Eq 3
305

306 where Y™, 00 are the MCMC samples, and k;,; and 6;,; are the parameters of the
307 gamma distribution f;,;; hence, f.,; is the continuous posterior predictive distribution
308 for the upcoming interval after having observed the preceding intervals 1...t.

309 To be able to relate trial-to-trial uncertainty and surprise to behavior and the
310 MEG data, we extracted two information theoretic metrics from the time-evolving
311 posterior predictive distribution £, (i.e., belief).

312 Uncertainty: We quantified trial-to-trial uncertainty about the timing of the
313 upcoming interval t+1 as the entropy of the posterior predictive distribution f.,4 (i.e.,
314  the posterior predictive based on intervals 7...1):

315

316 Heyy = — fooo(ftﬂ(x) *log fr41(x)) dx, Eq. 4
317

318 where Hy; is the entropy after intervals 7...t, and the integral is over all possible
319  values x for the upcoming interval. Entropy depended on the width of f.;, and thus
320 uncertainty was higher when predictions of interval durations were less precise
321 (Figure 2A,C,D). For clarity, in what follows we will use the term entropy when
322  referring to this uncertainty.

323 Surprise: For every upcoming interval t+71, we computed the surprise about
324  the corresponding interval duration in terms of the Shannon information conveyed by
325  the interval duration x:,s, given the posterior predictive distribution f;.,:

326

327 Ityr = —log fre1(Xe41), Eq. 5
328

329 where s is the information gained by interval t+1, given f.,. Thus, surprise was
330 defined as the negative log-probability of the upcoming interval t+1, given the
331 intervals that had been presented so far.
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332 We added one further transformation in the computation of surprise. The
333  surprise measure defined in Eq. 5 quantified the surprise about the upcoming event
334 timing based on the posterior predictive distribution f.;, but disregarding the time
335 elapsed in the current interval. It is unlikely that exactly this distribution translated into
336  subjects’ level of surprise: as time passed and no event occurred in a given interval,
337 all interval durations shorter than the elapsed time become impossible. Subjects
338 likely discounted these impossible intervals in their expectation of the timing of the
339 upcoming event, which should have also affected their level of surprise. In other
340 words, their internal representation of the posterior predictive distribution changed
341  dynamically throughout each trial, as a function of elapsed time. We constructed a
342 time-varying version of the posterior predictive distribution f,;, which was also
343 conditioned on the elapsed time on interval t. This version was equal to f.; for
344  elapsed time equal to 0 and then increasingly deviated from f;,; as elapsed time grew.
345 We approximated this time-varying distribution, denoted as f% in the following, by
346  setting all probabilities in f;,; up to the current time point to zero and renormalizing the
347  remaining distribution to integrate to 1 (Figure 2B). We then computed surprise
348 based on this new distribution f%,; using Eq. 5. The time-variant prior f%,; converged
349 to 1 as time passed, and thus surprise approached zero for longer intervals.

350

351 Regressing computational variables against behavior

352 We used reaction time (RT) during Detection-button as behavioral readout of the
353 impact of uncertainty and surprise. Accuracy approached ceiling for all subjects, due
354 to the high saliency of the target. We computed and compared mean RTs per
355  environment and stimulus event (target off- and onset).

356 We also correlated RT to our trial-to-trial estimates of surprise and entropy.
357  RT was log-transformed so as to normalize the skewed RT distributions. To test if the
358 model-based surprise fitted the behavioral (RT) data better than a linear combination
359  of just the two previous interval durations (i.e., a leaky accumulation with strong
360 leak), we used multiple linear regressions to compare the following two nested
361 models:

362

363 M1: log(RT) ~ Interval,"Env*Event + Interval,.;*Env*Event

364 M2: log(RT) ~ Interval,"Env*Event + Interval.;*Env*Event + Surprise*Con*Event,
365

366 where Interval; and Interval.; corresponded to the durations of the two intervals
367  preceding the visual change (i.e., interval on trial t and t-1), and Surprise was the
368 computational model-derived metric. Predictors were multiplied by categorical
369 variables envrionment (Env, the three different temporal environments) and Event
370 (target offset or onset). Both variables strongly affected RT (Figure 3A). We fitted
371  both M1 and M2 and compared the fits per subject using adjusted R

372

373  MEG data collection

374  Magnetoencephalography (MEG) data were acquired on a CTF 275 MEG system
375 (VSM/CTF Systems, Port Coquitlam, British Columbia, Canada) with a sample rate of
376 1200 Hz. The location of the subjects’ head was measured in real-time using three
377  fiducial markers placed in the both ears and on the nasal bridge to control for
378  excessive movement. Furthermore, electrooculogram (EOG) and electrocardiogram
379 (ECG) were recorded to aid artifact rejection. All data were recorded in sets of four
380 blocks of three minutes duration (or two blocks at the end of an environment set).

381

382

383
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384  MEG data analysis

385  Preprocessing. The data were analyzed in Matlab (version R2013a, The Mathworks,
386  Natick, MA, USA, RRID:SCR_001622) using the Fieldtrip (Oostenveld et al., 2011,
387 RRID:SCR_004849) toolbox and custom-made software.

388 Trial extraction. In blocks involving subjects’ reports, we extracted trials of
389 variable duration, centered on subjects’ button presses, from the 3 min blocks of
390 continuous stimulation. We call this method for trial extraction “response-locked”. The
391 following constraints were used to avoid mixing data segments from different
392 percepts when averaging across trials: (i) The maximum trial duration ranged from
393 -1.5sto 1.5 s relative to report; (ii) when another report occurred within this interval,
394  the trial was terminated 0.5 s from this report; (iii) when two reports succeeded one
395 another within 0.5 s, no trial was defined; (iv) for the analysis of Detection-button
396 blocks, we included only those reports that were preceded by a physical change of
397  the target stimulus within 0.2 to 1 s, thus discarding reports not related to stimulus
398 changes. We used this method for the analyses related to surprise. In an alternative
399 analysis of all Detection blocks, trials were defined in the same way as described
400 above, but now aligned to physical target on- and offsets (“stimulus-locked”). In the
401 Detection-count task, no button responses were given during the block, so stimulus-
402 locked trial extraction was the only option. We used this method for the analysis
403 related to entropy (see Kloosterman et al., 2015b & Meindertsma et al., 2017 for a
404  similar procedure).

405 Artifact rejection. All epochs that contained artifacts caused by environmental
406 noise, eye-blinks, muscle activity or squid jumps were excluded from further analysis
407  using standard automatic methods included in the Fieldtrip toolbox. Epochs that were
408 marked as containing an artifact were discarded after every artifact detection step.
409 For all artifact detection steps the artifact thresholds were set individually for all
410 subjects. Both of these choices aimed at optimization of artifact exclusion. Line-noise
411  was filtered out by subtracting the 50, 100, 150 and 200 Hz frequency components
412  from the signal.

413 Time-frequency decomposition. We used a sliding window Fourier transform
414  to compute the time-frequency representation for each sensor and each trial of the
415 MEG data. The sliding window had a length of 200 ms and a time step size of 50 ms,
416  with one Hanning taper (frequency range 5-35 Hz, frequency resolution 5 Hz and
417  frequency step size 1 Hz). The data was baseline corrected for every frequency bin
418 and MEG sensor separately. The baseline was computed by averaging single-trial
419  power over a baseline time window. The baseline time windows ranged from —1.25 to
420 -0.75 s for response-locked and -1 to -0.5 s for stimulus-locked analyses,
421  respectively. The time course of every frequency bin and sensor combination was
422  baseline corrected by subtracting the single-trial baseline power at that frequency
423 and dividing by the mean baseline power across trials within an experimental
424  environment. We used the single-trial baseline power for subtraction to eliminate the
425  effect of slow power fluctuations, because any surprise-related power modulations
426  could only have occurred after the sensory event that elicited surprise. We used the
427  mean baseline for division in order to minimize noise in the single-trial estimates of
428  the single-trial power modulation values. This division was used to compensate for
429 the common decay of power with frequency, which hinder identification of effects at
430 higher frequencies, and to normalize the single-trial modulation values (Siegel and
431  Donner, 2010). It did not systematically alter the association of power modulation
432  values with other variables.

433 Source reconstruction. We used an adaptive linear spatial filtering method
434  called linear beamforming (Van Veen et al., 1997; Gross et al., 2001) to estimate
435  single-trial modulations of MEG power at the source level. We computed a common
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436 filter for a baseline time window (1 to 0.5 s before response), a ‘transient’ time
437  window, and a frequency band of interest (0 to 0.5 s after response, 20 Hz +/- 4 Hz
438 spectral smoothing, see dashed box in Figure 4A). The transient time window and
439 frequency band of interest were selected based on cluster-based statistics at the
440 sensor level (see next section). We used the measured head positions and individual
441  single-shell volume conductor models, based on individual images from T1-weighted
442  structural MRI. We computed the power values, in both baseline and transient time
443  windows, for each trial and source grid point (i.e., voxel) as follows. First, we
444  projected the sensor-level MEG power values from the time window of interest as
445  well as from a baseline time window through the common spatial filter. Second, we
446  converted the estimated power values during the time window of interest into units of
447  power modulation, again by subtracting and dividing by the corresponding baseline
448  power values.

449

450  Correlating single-trial computational variables to MEG power

451  We correlated the MEG power modulation to our measures of entropy and surprise,
452  as derived using our model (see Bayesian ideal observer model: Implementation)
453 across trials. Although intricately related (see Introduction), uncertainty and surprise
454  entailed different computations (see above). A key difference was when during the
455  course of a trial these two quantities where computed. So, we reasoned that neural
456 correlates of these computational quantities should also differ in their dynamics:
457  uncertainty about event timing should be reflected in the neural baseline state before
458 occurrence of the sensory event, whereas surprise should be reflected in a transient
459  response elicited by that event. Thus, we used different components of the single-
460 trial MEG power estimates for the analyses of entropy and surprise.

461 Entropy: We correlated entropy to the MEG power modulation separately in
462 every MEG sensor and frequency bin. This was done within subject and separately
463 for the three environments. There are structural differences in entropy and surprise
464  between these environments (Figure 2G,H), thus pooling over these conditions might
465 result in inflated correlations that reflect session differences instead of the true
466 correlation between entropy and MEG power. We reasoned that entropy should
467  affect baseline or tonic arousal, where high entropy should cause higher arousal. As
468 our task was continuous, we considered the time window right before the stimulus
469 change the best reflection of a baseline state. For this reason we averaged the MEG
470  power over the time period right before a stimulus change (-0.5 to -0.25s with respect
471  to the target offset or onset) before correlating to entropy.

472 The results were then averaged over the three environments and transformed
473  with the Fisher z transformation (Fisher, 1915):

474

475 z=05"In () Eq. 6
476

477 We used two-tailed permutation tests with a cluster-based correction for

478 multiple corrections to test the correlation coefficients against zero (Efron and
479  Tibshirani, 1998; Maris and Oostenveld, 2007).

480 Surprise: Correlations between surprise and MEG power modulation were
481  performed using the same method, with the following exceptions. First, we attuned
482 the analysis in two ways to account for the correlation between surprise and RT
483  (Figure 2F, 3). Because of this correlation, any post-stimulus correlations between
484  surprise and MEG power modulation might reflect differences in the timing of the
485  button press. We performed this analysis response-locked, because these RT
486  differences are difficult to disentangle from genuine effects of surprise when the
487  power modulations are time-locked to the stimulus change. Additionally, to account
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488 for confounding effects of RT and the duration of the previous interval, we also
489 performed a partial correlation analysis between surprise and MEG power
490 modulation with the interval duration preceding the stimulus change or RT as
491 covariate. Second, for the correlation between surprise and MEG power modulation
492  we did not average over a specific time window, but instead performed correlations
493 separately for every time point, resulting in a 3-dimensional matrix of correlations
494  (sensor * frequency bin * time point). Consequently, we also performed cluster-based
495  permutation statistics over these three dimensions. The correlations that survived
496 cluster correction were visualized by integrating (i.e. computing the area under the
497  curve) over sensors and frequency bins (for the time course), sensors and time
498 points (for the frequency spectrum), frequency bins and time points (for the
499  topography) or just over sensors for the time frequency representation (see Hipp et
500 al.,, 2012 for a similar approach).

501 To assess the robustness of the emerging clusters we performed a cross-
502 validation analysis using a leave-one-out procedure. To this end, we repeated the
503 cluster-based permutation statistics on all possible iterations of N-1 subjects, each
504 time using the resulting cluster as a mask to calculate the average correlation in the
505 left-out subject, separately for target offset and onset trials. These values were tested
506 against zero and against each other across subjects using permutation tests (10.000
507  permutations).

508 We also computed the correlation between trial-to-trial power modulation
509 averaged over the whole cluster and log(RT). The resulting correlations were tested
510 against zero across subjects using a permutation test (10.000 permutations).

511 The transient modulations of MEG power estimated for each voxel in the
512  source grid, derived by means of source reconstruction (see MEG data analysis:
513 Source reconstruction), were correlated to the trial-to-trial measure of surprise. This
514  was done separately within each subject and the resulting correlations averaged over
515 subjects after Fischer’s z-transformation (Eq. 6). For comparison, we also computed
516 the average modulations of MEG power in the same time window and frequency
517 band. The resulting maps of correlation or average power modulation were
518 nonlinearly aligned to a template brain (Montreal Neurological Institute) using the
519 individual images from structural MRI. To test the similarity of the spatial topography
520 of the correlation to the average modulation of power, we correlated the two
521 corresponding source maps per subject and tested the correlation coefficients again
522  zero on the group level by means of a permutation test (10.000 permutations).

523

524 Results

525  Subjects (N=28) performed a simple visual detection task reporting on- and offsets of
526 a small, but salient target stimulus (Figure 1A). In different blocks, target events were
527  administered using three different temporal environments (Figure 1B,C) translating
528 into different overall levels of uncertainty and surprise about the timing of target
529 events (Figure 2G,H). In order to quantify these two computational variables not only
530 across conditions, but also across individual trials, we developed a Bayesian belief-
531 updating model. The model incorporated the evolving beliefs (i.e. the posterior
532 predictive distributions) of an ideal observer about the temporal intervals between the
533 sensory events. Beliefs were dynamically updated across trials and even within trials
534  (for surprise, see Materials and Methods). From these time-evolving probability
535 distributions, we extracted trial-by-trial measures of information-theoretic entropy
536  (quantifying uncertainty) and surprise, which we related to the behavior and neural
537  dynamics of our participants.

538
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541 estimated the posterior predictive distribution over timings of stimulus changes for each upcoming
542  interval t+1. This distribution is denoted as f.,;. The gray histogram shows the distribution of MCMC-
543 samples (Y‘”) from the posterior predictive distribution for interval t+1. f; was estimated by fitting a
544 gamma probability density function (red line) to Y*" it was then used to extract two different information-
545 theoretic computational variables for each trial: entropy and surprise. A. Entropy, a measure of the
546 uncertainty about the timing of the interval duration of the current interval, computed from the complete
547 distribution f;,; using Eq. 4 (see main text). The wider the distribution, the higher entropy. B. Surprise, a
548 measure of information provided by each new interval duration, was also computed from the posterior
549 predictive distribution, but with one extra step (see main text): the part of the distribution up to the
550 current interval duration was truncated, and the remainder of the distribution re-normalized to integrate
551 to 1 (f1+, black line). Surprise was defined based on this truncated function using Eq. 5 (see main text).
552 C. Example sequence of interval durations (white line, from the long Gaussian condition) with posterior
553 predictive distribution f (color coded). D. Entropy corresponding to interval durations in panel C (left);
554 relationship between interval duration and entropy (right). E. Surprise, analogous to panel D. Red dot:
555  example of exceptionally long interval (see duration in panel C). Surprise on this trial was low (panel E)
556 because time dependent surprise decreased over time. After observing this interval entropy increased
557 (panel D) because the observed interval was longer than the expected duration, given previous
558 intervals. F. Correlation between log(RT) and surprise as a function of different Weber fractions (black
559 line, see Materials and Methods). Second-order polynomial fit over these correlations used to select the
560 Weber fraction yielding peak correlation. (red line; red dot depicts peak = 0.17). G. Regression of
561 surprise on entropy. Thin colored lines, regression lines of single subjects; black lines, group average
562 regression. H. Trial-averaged surprise and entropy for the three experimental environments defined in
563 Figure 1. Bars, group average; black dots, single subjects. *** p = 0 for all tests, permutation tests
564  across subjects.

565

566 Estimates of entropy and surprise fluctuated across trials, especially in the
567 early part of each block (Figure 2C-E). The trial averages of both measures within
568 each block also varied lawfully between the different experimental conditions, scaling
569 with the predictability of the stimulus changes (Figure 2G,H). Estimates were
570 smallest for the Short condition, intermediate for the Long condition, and largest for
571 the Flat condition. As expected, variations in entropy and surprise were weakly
572  correlated across trials (r=0.13 for Short and Flat, r=0.19 for Long condition, Figure
573 2G), since both measures were computed from the same probability distribution
574  (Materials and Methods). Even so, these two variables entailed distinct computations,
575  possibly by distinct neural circuits. Critically, both computational variables could be
576  computed at different times during a trial, thus possibly leading to different dynamical
577  modulations cortical population activity.

578

579

580
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581  Surprise predicts reaction time

582 The model-derived computational variable surprise predicted subjects’ reaction time
583 (RT) in the detection task. Mean RT scaled with the different temporal environments
584 in the same way as surprise and entropy, with the fastest RTs for Short and slowest
585 RTs for the Flat condition (Figure 3A, compare with Figure 2E). RT correlated with
586  surprise also at the single trial level (Figure 3B). We did not find robust correlations to
587  RT for entropy.

588 We also tested whether model-derived surprise (entailing accumulation of
589 intervals across the entire experimental block) predicted RT over and above a linear
590 combination of only the two previous intervals (entailing, e.g. a leaky accumulation
591 with strong leak). To this end, we used a nested regression model, which quantified
592 the predictive power of a combination of surprise and the previous two intervals in
593 accounting for the influence of temporal environments and target on- or offset, on RT
594  (Materials and Methods). We compared this against a simpler model with only the
595 two previous intervals. Because model-based surprise depended on all previous
596 intervals, the comparison between the above two nested models assessed the
597 impact on reaction time of intervals beyond the second one. We used adjusted R? for
598 comparison, which penalized model complexity. This comparison yielded higher
599 adjusted R? values for the model including surprise in 22 of 28 subjects (Figure 3C),
600 indicating that surprise predicted RT over and above the duration of the previous two
601 intervals.

602 Taken together, these results indicate that subjects tracked the temporal
603  structure of the task by accumulating interval distributions at least over more than two
604 intervals, akin to what was prescribed by the ideal observer model. We next
605 searched the whole-brain MEG data for a dynamical neurophysiological signature of
606 this process. To this end, we focused on the trial-to-trial fluctuations of surprise within
607 each of the environments (Short, Long, Flat), which were more pronounced than the
608 differences in mean surprise between environments.
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611 Figure 3: Link between computational variables and behavior. A. Average reaction time (RT)
612 per interval distribution, separate for reports of target offsets and onsets. Bars show average over
613 subjects; black dots depict average per subject. *** p<0.001, *™ p<0.01, permutation tests across
614 subjects, 10.000 permutations (differences between target off- and onsets, p-values were p=0, p=0 and
615 p=0.003, for Short, Long and Flat, respectively; between conditions, p=0, p=0 and p= 0.001, for Short-

616 Long, Short-Flat and Long-flat, respectively). B. Correlation between trial-to-trial fluctuations in Entropy
617 (left)/Surprise (right) and log-transformed RT. Mean correlation coefficient Entropy: mean r=0.03
618  (5.d.=0.02), p=0.17 and r=-0.04 (s.d.=0.03), p=0.07 for off- and onset, respectively, difference off-on
619  p=0.47; Surprise: mean r=0.09 (s.d.=0.02), p=0.007 and r=0.15 (s.d.=0.03), p=0 for off and onset,
620  respectively, difference off-on p=0.48. C. Model comparisons between partial (including only 2 previous
621 intervals) and full regression models (further including surprise; see main text). Difference in adjusted
622 R®. Positive values indicate support for full model. Dots depict individual subjects; bars depict the mean,
623  error bars depict SEM.
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624  Widespread cortical beta-band transient driven by surprise

625 We mapped out the cortical responses to trial-to-trial fluctuations in surprise by
626 correlating the model-based surprise measures to modulations of MEG power,
627 around the time of subjects’ behavioral responses to sensory events. We did this in
628 an exhaustive fashion across every time and frequency bin and MEG sensor and
629 tested for clusters of significant correlations across these three dimensions, while
630 applying cluster-based multiple comparison correction (Materials and Methods). This
631 approach revealed negative correlations in the beta (~20 Hz) frequency range, as
632 well as in the lowest frequency bin resolved (5 Hz), indicating that higher surprise
633 was associated with lower power in these frequency ranges. The peak in this
634 negative correlation cluster started about 0.2 s before and reached its maximum
635 about 0.25 s after subjects’ report of the stimulus change. This cluster exhibited
636 several peaks over central, left frontal, and to a lesser extent left parietal cortex
637  (Figure 4A,C).

638 For all analyses shown in Figures 4 and 5, we used partial correlations,
639 controlling for reaction time, and we focused on the Detection-button task that
640 entailed immediate behavioral report of the change of the visual target (Materials and
641  Methods). We controlled for reaction time because (i) the data showed that the latter
642 was affected by surprise (Figure 3), and (ii) motor responses are known to modulate
643 beta-power around the time of response (Donner et al., 2009). Thus, button-presses
644 could have potentially influenced the modulation by surprise. We focused on
645  Detection-button because (i) we could only establish links between surprise and
646  behavior for this task and (ii) it allowed us to lock neural dynamics more closely to the
647  conscious registration of the visual change. When performing the correlation analysis
648 for the Detection-count task (then locked to the physical stimulus change), we did not
649 obtain any in significant correlation clusters. In two control analyses, we confirmed
650 that the above results were robust to (i) using the ‘raw’ correlation between surprise
651 and MEG power and (ii) controlling for the preceding interval duration. Both analyses
652 resulted in highly similar clusters of negative correlations (data not shown).

653 The surprise-related cluster was robust and not driven by outliers, and the
654 effect was not specific to the type of stimulus event (target on- or offset). We used a
655 leave-one-out cross-validation procedure to test the robustness of the correlations on
656 both target on- and offsets (Materials and Methods). We found robust negative
657  correlations in the left-out subjects (Figure 4D). Furthermore, the correlation was
658 found for both target offsets and onsets (Figure 4D, mean -0.036, -0.025, SEM 0.010,
659 0.006, p = 0.006, 0.002, for target offsets and onsets, respectively; difference:
660 p=0.26, permutation tests, 10.000 permutations).

661 As expected from previous work on modulations of MEG power around motor
662 responses (Donner et al., 2009), the overall modulation of MEG power in the time-
663 frequency window of the surprise-correlation cluster (16-24 Hz, 0-0.5 s from
664 response, normalized by the baseline 1-0.5 s before response) peaked in bilateral
665 motor cortex (Figure 4B). But the component of beta-power modulations that
666 correlated with trial-by-trial surprise showed a different cortical distribution, with
667 negative correlations that peaked in the central sulcus, extending from motor- to
668 more frontal cortex, and in left frontal and parietal cortex (compare Figure 4B and
669 4C). Indeed, there was no similarity between the individual topographies of the
670  surprise-linked and the overall power modulations (mean correlation across subjects:
671 r=-0.02, p=0.42). These observations indicate that the report-locked modulation
672 linked to surprise and of overall power were located in distinct cortical networks.

673
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675 Figure 4: Widespread cortical beta-band transient driven by surprise. A. Exhaustive partial
676 correlation (controlling for RT) between trial-to-trial measures of surprise and MEG power modulation in
677 all sensors, time and frequency bins results in one cluster (cluster-based correction for multiple
678 comparison, p = 0.001, two-sided) of negative correlation. Different panels show different dimensions of
679 the cluster by integrating over the other dimensions; top left: time course, top right: spatial topography,
680 bottom left: time-frequency representation; bottom right: frequency spectrum. B. Source reconstruction
681  of the power modulation in the time window in which surprise-MEG correlation was strongest (dashed
682 box in panel A). C. Source-reconstructed illustration of the correlation between transient modulation and
683 trial-to-trial surprise depicted in panel B. These source maps are not statistically thresholded, but instead
684 serve for comparing the correlation’s spatial distribution with the transient power modulation in panel B
685 (average correlation between surprise and power modulation across subjects = 0.02, p=0.42). D.
686 Leave-one-out cross-validation of the cluster found in panel A, separately for target offsets and onsets.
687 Cluster-based permutation was performed on N-1 subjects and the average correlation in the resulting
688 cluster was computed for the remaining subject (black dots); bars show averages over subjects.
689 Correlation values were tested against 0 (permutation test; ** p<0.01; p=0.005 and p=0.002 for target
690 offsets and onsets, respectively, p=0.19 for offsets-onsets difference). E. Correlation between MEG
691 power in the cluster and log(RT) for separate distributions and average RT; permutation tests. All *** p

692  <0.001, all offset-onset differences p>0.05 (lowest was p=0.21).
693

694 The surprise-related cluster for target offsets and onsets both exhibited a
695 bimodal in the frequency domain, similar to the pooled analysis (Figure 5; compare to
696  Figure 4A): next to the peak around 20 Hz just after response, an additional peak
697 was evident in the lowest frequency bin resolved (5 Hz). For offsets, the effect was
698 quite sustained in time (-0.25 to 0.5s around response); the topography showed
699 peaks over parietal and occipital cortex and over left frontal cortex (Figure 5A). By
700 contrast, the cluster for target onsets was more confined in time (with a sharp peak
701  ~0.1s after report) and a different topography that peaked over central parietal cortex
702  (Figure 5B). Taken together, our results suggest that perceptual surprise about both
703 target on- and offsets elicited cortical transients in the beta-band. We consider them
704  general dynamical correlates of temporal surprise monitoring. In addition, stimulus
705 changes seem to have recruited additional processes expressed in the very low (<=
706 5 Hz) frequency range.

707 Finally, we asked whether the trial-to-trial fluctuations in beta-power
708 modulations also predicted trial-to-trial variations in subjects’ (log-transformed) RTs.
709 Here, we used the Pearson correlation values (i.e., without regressing out RT;
710  Materials and Methods). Just as surprise, beta-power in the cluster also robustly
711 predicted RT (Figure 4E). These correlations were negative, as expected based on
712  the negative correlation between surprise and MEG-power (Figure 4A). We also
713 compared the strength of this correlation between MEG-power and RT to the
714  strength of the correlation between surprise and RT across, this correlation between
715  correlations was positive, but not significant (r=0.19, p=0.33).
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716  No robust correlations between MEG baseline power and entropy

717  We did not find any evidence for a correlation of the raw baseline (-0.5 to 0 s with
718  respect to stimulus change) MEG power with uncertainty, as measured in entropy.
719  Correlations between entropy and MEG power spectra in the time window before
720  stimulus change did not result in any significant (sensor-frequency) clusters that
721  survived multiple-comparison correction (data not shown). It is likely that this lack of
722  robust correlation reflected the continuous reduction in trial-to-trial variations of
723  entropy over the course of each block (Figure 2C).
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726 Figure 5: Separate correlations for offsets and onsets. Correlation analysis and cluster-based
727 statistics performed separately for target offsets (A) and target onsets (B); p=0.001 for both analyses.

728

729 Discussion

730 In this study, we comprehensively mapped cortical transients elicited by surprise
731 about the timing of sensory events. We used a Bayesian updating model to estimate
732  trial-to-trial variations of surprise and correlated these to subjects’ behavior as well as
733 to neural dynamics, across the cortical surface. The model-derived surprise
734  estimates predicted across-trial and environment variations in RT. The surprise
735 estimates also predicted transient suppressions of low-frequency and beta-band
736 power in a widespread network comprising motor-, prefrontal and parietal cortical
737  regions, predominantly in the left hemisphere. The model-derived surprise estimates
738  were more closely related to both behavior and cortical dynamics than the mere trial-
739  to-trial variations in externally observable interval timings.

740 The signatures of surprise we uncovered in the beta frequency band were
741  quite similar around target on- and offset (Figure 5). This stands in sharp contrast to
742 the opposite beta-band modulation during (illusory or veridical) target
743 disappearances and reappearances, proposed to reflect a decision-related feedback
744  signal to in visual cortex (Meindertsma et al., 2017). The beta-band transients
745  identified here likely reflected a distinct process that did not encode the content of the
746  perceptual change, but rather the level of surprise about it.

747 One possibility is that surprise is computed in those fronto-parietal cortical
748 networks exhibiting the surprise-related modulation of beta-oscillations observed
749  here. Another possibility is that the surprise-related modulations are inherited from
750  other regions projecting to those fronto-parietal networks. Indeed, neuromodulatory
751 brainstem systems are a prominent candidate source. In particular the dopaminergic
752  and noradrenergic systems are driven by temporal expectation and surprise (Aston-
753 Jones and Cohen, 2005; Dayan and Yu, 2006; Fiorillo et al., 2008). Further, there is
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754  mounting evidence for a link between neuromodulation and beta-band power in
755  visual cortex (Belitski et al., 2008; Donner and Siegel, 2011; Safaai et al., 2015;
756  Zaldivar et al., 2018).

757 Specifically, phasic responses in dopaminergic nuclei, encode not only
758 reward, but also the expected timing of reward arrival. The strength of these phasic
759  neuronal responses inversely scales with predictability of the timing of reward, in line
760 with encoding surprise about reward arrival, and it also predicted behavioral
761 anticipation of reward (i.e. licking behavior) in monkeys (Fiorillo et al., 2008). Our
762  current study complements this previous work, by unraveling the cortex-wide
763 dynamics elicited by surprising events. Our design did not involve rewards but rather
764  neutral, yet behaviorally relevant sensory events.

765 In a previous report based on the same data set as the current one
766  (Kloosterman et al., 2015a), we showed that mean pupil dilation responses during
767  the perceptual changes scaled in amplitude across the three environments in line
768  with mean surprise as shown in the current Figure 2H. Pupil dilation is closely linked
769 to phasic responses in neuromodulatory brain systems, in particular the
770 noradrenergic locus coeruleus (Joshi et al., 2016; Reimer et al., 2016; de Gee et al.,
771  2017). Thus, if the surprise-related modulations of cortical activity observed here
772 were driven by phasic neuromodulation, one would expect to find correlations
773  between single-trial pupil responses and surprise (Preuschoff et al., 2011; Nassar et
774  al., 2012). Due to the sluggish dynamics of the peripheral pupil apparatus (Hoeks
775 and Levelt, 1993; De Gee et al., 2014), testing for trial-by-trial correlations between
776  pupil dilations and surprise (or, likewise, between baseline pupil diameter and
777  uncertainty) in our experiment requires dedicated analysis approaches that tease
778 apart fluctuating baseline levels and responses evoked by individual events. Using a
779  general linear model (Hoeks and Levelt, 1993; De Gee et al., 2014), we failed to
780  obtain reliable single-trial pupil responses and correlations to single-trial surprise
781 (data not shown). This failure was likely, at least in part, due to the rapid nature of the
782  current experimental design. Future work should use more widely spaced intervals to
783  test whether pupil dilations reflect trial-to-trial variations of surprise.

784 Our current study provides a comprehensive picture of the cortical transients
785 elicited by surprise, by systematically mapping these transients across the cortical
786  surface and time-frequency plane. Previous work in humans has also studied neural
787  correlates of model-derived measures of surprise, although this entailed surprise
788 about stimulus identity, and not timing. Electrophysiological work found surprise
789  about cue identity to modulate the P3 component of the EEG event-related potential
790 as well as motor cortical excitability (Bestmann et al., 2008; Mars et al., 2008).
791 Functional magnetic resonance imaging work linked surprise about the spatial
792  location of stimuli to transients in posterior parietal cortex (O’Reilly et al., 2013). An
793 EEG study dissociated oscillatory neural signatures of surprise and evidence
794  accumulation (Gould et al., 2012). This latter study also found surprise-related
795  modulation of beta-band power primarily at frontal and parieto-occipital electrodes,
796  but the underlying cortical distribution was not estimated. Future studies of surprise in
797  other domains (e.g. about cue identity) should use a similar approach to assess if
798  surprise-related cortical transients are domain-general or -specific. Further,
799  simultaneous EEG and MEG recordings (Schurger et al., 2015) are necessary to
800 unravel the relationship between surprise-linked modulations of fronto-parietal beta-
801 band oscillations and of the P3-component.

802 Another line of work has investigated the functional role of externally
803 entrained low-frequency oscillations in temporal expectation. For fixed intervals,
804 alpha phase in sensory cortices was found to be predictive of expected time of target
805 arrival and lowered the threshold for sensory detection (Lakatos et al., 2008; Cravo et
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806 al.,, 2011, 2013; Rohenkohl and Nobre, 2011). Alpha oscillations might reflect
807 rhythmic fluctuations in cortical excitability, entrained by rhythmic sensory input,
808  which aids stimulus processing and perceptual performance (Schroeder and Lakatos,
809 2009). The high variability in interval durations (see Figure 1B,C inset) might explain
810 the lack of alpha-band effects in our study. First, the range of possible durations was
811 too broad to form predictions that fall within a specific phase of an alpha cycle.
812  Second, even when oscillatory phase was modulated by temporal expectation in our
813 task, the trial-to-trial variability would make it difficult to align trials and make these
814  modulations visible.

815 It is tempting to relate our results to conceptual accounts of the functional role
816  of beta-band oscillations in the brain (Engel and Fries, 2010; Spitzer and Haegens,
817 2017). One account (Engel and Fries, 2010) holds that beta-band oscillations help
818 maintain the current sensorimotor or cognitive state (termed the ‘status quo’).
819  Another account (Spitzer and Haegens, 2017) holds that beta-band oscillations help
820 activate the currently relevant task sets. In both frameworks, the need for maintaining
821 the current status quo, or task set, is low when surprise (the violation of expectation,
822  or probability of change in the environment) is high, in line with our observation of a
823  suppression of beta-band oscillations under high surprise.

824 While our current work presents an important first step towards unraveling the
825 modulation of cortical dynamics by surprise, it is limited in that we only studied
826 environments with constant statistical structure within each block. Once a posterior
827  distribution has been learned, there remains no unexpected uncertainty, only
828  expected uncertainty (Yu and Dayan, 2005). By contrast, the statistical structure of
829 natural environments is often volatile. Richer experimental designs, that are volatile
830 and include unmarked changes, allow for probing into richer, presumably hierarchical
831 dynamics (Sugrue et al., 2004; Nassar et al., 2012; Meyniel et al., 2015). A more
832 volatile task-environment would also lead to an increase in trial-to-trial variability of
833  our entropy measure, providing a better-suited context to study the effects of this
834 type of uncertainty on cortical processing. Our ongoing work aims to push beyond
835 these limits by using richer environmental statistics that require more complex
836 inference processes.

837 To conclude, we here uncovered a novel signature of temporal surprise that
838 affected an elementary perceptual decision (target detection) and was characterized
839 by a temporally focal, but spatially widespread, modulation of cortical population
840 activity. This modulation might be instrumental in translating inferences about the
841 behaviorally-relevant temporal structure into its consequences for action.
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