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Abstract 46 
Learning the statistical structure of the environment is crucial for adaptive behavior. 47 
Humans and non-human decision-makers seem to track such structure through a 48 
process of probabilistic inference, which enables predictions about behaviorally 49 
relevant events. Deviations from such predictions cause surprise, which in turn helps 50 
improve inference. Surprise about the timing of behaviorally relevant sensory events 51 
drives phasic responses of neuromodulatory brainstem systems, which project to the 52 
cerebral cortex. Here, we developed a computational model-based 53 
magnetoencephalography (MEG) approach for mapping the resulting cortical 54 
transients across space, time, and frequency, in the human brain (N=28, 17 female). 55 
We used a Bayesian ideal observer model to learn the statistics of the timing of 56 
changes in a simple visual detection task. This model yielded quantitative trial-by-trial 57 
estimates of temporal surprise. The model-based surprise variable predicted trial-by-58 
trial variations in reaction time more strongly than the externally observable interval 59 
timings alone. Trial-by-trial variations in surprise were negatively correlated with the 60 
power of cortical population activity measured with MEG. This surprise-related power 61 
suppression occurred transiently around the behavioral response, specifically in the 62 
beta frequency band. It peaked in parietal and prefrontal cortices, remote from the 63 
motor cortical suppression of beta power related to overt report (button press) of 64 
change detection. Our results indicate that surprise about sensory event timing 65 
transiently suppresses ongoing beta-band oscillations in association cortex. This 66 
transient suppression of frontal beta-band oscillations might reflect an active reset 67 
triggered by surprise, and is in line with the idea that beta-oscillations help maintain 68 
cognitive sets. 69 
 70 
  71 
Significance statement 72 
The brain continuously tracks the statistical structure of the environment to anticipate 73 
behaviorally relevant events. Deviations from such predictions cause surprise, which 74 
in turn drives neural activity in subcortical brain regions that project to the cerebral 75 
cortex. We used magnetoencephalography in humans to map out surprise-related 76 
modulations of cortical population activity across space, time, and frequency. 77 
Surprise was elicited by variable timing of visual stimulus changes requiring a 78 
behavioral response. Surprise was quantified by means of an ideal observer model. 79 
Surprise predicted behavior as well as a transient suppression of beta frequency-80 
band oscillations in frontal cortical regions. Our results are in line with conceptual 81 
accounts that have linked neural oscillations in the beta-band to the maintenance of 82 
cognitive sets.  83 
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Introduction 84 
Humans and other organisms continuously adapt their behavior to the statistical 85 
structure of their environment. This suggests that the brain is equipped with neural 86 
machinery for statistical learning, which can interact with the processes driving goal-87 
directed behavior. Of particular importance here is surprise (Dayan and Yu, 2006; 88 
O’Reilly et al., 2013), a violation of one’s expectation about the next event, which 89 
might indicate a sudden change in the environmental structure, and can transiently 90 
boost central arousal state, increasing the organism’s sensitivity and learning rate  91 
(Yu and Dayan, 2005; Nassar et al., 2012). 92 

Expectation, uncertainty, and surprise are intricately related. The precision of 93 
expectations scales with uncertainty, that is, the width of the distribution of observed 94 
events: high uncertainty precludes forming precise expectations. Violations of 95 
expectations cause surprise, the level of which depends on the difference between 96 
the expected and actually observed event (often termed prediction error). These 97 
intuitions can be formalized within the framework of Bayesian statistics and used to 98 
search for neurophysiological correlates (see Materials and Methods: Bayesian ideal 99 
observer model: General approach and rationale). 100 

One important dimension of the environment is the timing of relevant sensory 101 
events (Gibbon et al., 1997; Nobre et al., 2007). Two lines of work have studied the 102 
neural basis of temporal expectation effects. One has shown that environments with 103 
rhythmic (i.e., precise) temporal structure entrain neural oscillations in the cerebral 104 
cortex, the phase of which then modulates sensory cortical responses, perception, 105 
and cognition (Lakatos et al., 2008; Schroeder and Lakatos, 2009; Rohenkohl and 106 
Nobre, 2011; Rohenkohl et al., 2012; Riecke et al., 2015; van Ede et al., 2017). In 107 
these rhythmic changes of the environment, surprise is minimized (once the structure 108 
is learned expectations match observations). Consequently, this first line of work has 109 
identified neural correlates of temporal expectation, rather than of surprise.  110 

The second line of work has studied neural responses of subcortical, 111 
neuromodulatory centers, specifically, dopaminergic centers of the midbrain, to 112 
sensory events entailing reward. Because event timing here varied non-periodically 113 
from trial to trial as in many natural environments, this work could link phasic 114 
neuromodulatory responses to temporal surprise (Hollerman and Schultz, 1998; 115 
Fiorillo et al., 2008). Surprise-driven phasic responses might also occur in other 116 
neuromodulatory brainstem systems, such the noradrenergic system (Dayan and Yu, 117 
2006). Because brainstem neuromodulatory systems have widespread projections to 118 
the cortical networks underlying goal-directed behavior, one would expect changes in 119 
cortical population activity elicited by surprise (Bouret and Sara, 2005). However, this 120 
second line of work on temporal expectation has focused on surprise-related activity 121 
in subcortical systems.  122 

Here, we studied responses to surprise about the timing of sensory events in 123 
human cortex. A computational model-based magnetoencephalography (MEG) 124 
approach enabled us to map surprise-related cortical transients across space, time, 125 
and frequency. We used a Bayesian model that accumulated previously experienced 126 
durations of the interval between visual changes into posterior beliefs about the next 127 
interval duration. This ideal observer model provided trial-to-trial measures of 128 
temporal surprise, which predicted modulations of prefrontal and parietal cortical 129 
beta-band dynamics. 130 
 131 
Materials & Methods 132 
This paper reports a re-analysis of an MEG data set that has previously been used 133 
for a study into decision-related feedback signals in visual cortex (Meindertsma et al., 134 
2017). Here, we focus on those aspects of the experimental design that are most 135 
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relevant for the issue addressed in the current paper: uncertainty and surprise about 136 
the timing of the experimental events specified below. We refer to our previous paper 137 
(Meindertsma et al., 2017) for a more detailed description of the visual stimulus and 138 
the behavioral task. 139 
 140 
Participants 141 
Thirty-one volunteers participated in the experiment. Two participants were excluded 142 
due to incomplete data and one participant did not complete the experiment due to 143 
poor quality of simultaneously acquired pupil data. Thus, 28 participants (17 female, 144 
age range 20 - 54 years, mean age 28.3, SD 9.2) were included in the analysis. All 145 
participants had normal or corrected-to-normal vision and no known history of 146 
neurological disorders. The experiment was conducted in accordance with the 147 
Declaration of Helsinki and approved by the local ethics committee of the Hamburg 148 
Medical Association. Each participant gave written informed consent. 149 
 150 
Stimulus 151 
MEG was measured while subjects viewed the intermittent presentation of a target 152 
(full contrast Gabor patch; diameter: 2°) and reported the on- and offset of the target 153 
(Figure 1A). Gabor targets flickered at 10 Hz (counter-phase) through alternation of 154 
two out-of phase Gabors every 50 ms. This caused steady-state evoked responses 155 
over visual cortex at 10 and 20 Hz (data not shown), distinct in terms of spectral 156 
profile, topography and functional characteristics from the surprise-related 157 
modulations we focused on here. The target was located in either the lower left or 158 
lower right visual field quadrant (eccentricity: 5°, counterbalanced between subjects), 159 
surrounded by a rotating mask (17°x17° grid of black crosses), and superimposed on 160 
a gray background. The mask rotated at a speed of 160°/s. The target was separated 161 
from the mask by a gray “protection zone” subtending about 2° around the target 162 
(Bonneh et al., 2001). Subjects fixated on a fixation mark (red outline, white inside, 163 
0.8° width and length) centered on the mask in the middle of the screen. Stimuli were 164 
presented using the Presentation Software (NeuroBehavioral Systems, Albany, CA, 165 
USA, RRID:SCR_002521). Stimuli were back-projected on a transparent screen 166 
using a Sanyo PLC-XP51 projector with a resolution of 1024x768 pixels at 60 Hz. 167 
Subjects were seated 58 centimeters from the screen in a whole-head 168 
magnetoencephalography (MEG) scanner setup in a dimly lit room. 169 
 170 

 171 
Figure 1: Behavioral task. A. Schematic depiction of the stimulus and task. A salient, flickering 172 
target (Gabor patch) temporarily appeared and disappeared on a rotating background. Subjects fixated 173 
on the red fixation mark and reported stimulus changes either by direct button press or silently counting 174 
the disappearances and reporting the total number at the end of the run. B.  The interval duration 175 
between stimulus changes was randomly drawn from one of three distributions that corresponded to 176 

0 2 4 6 8 10 12
Duration (s)

Ha
za

rd
 ra

te

Short Gaussian
hazard rate
Long Gaussian
hazard rate
Flat hazard rate

7,...

10Hz flicker

Time
8,...

9,...

  .....

  .....

  .....

Stimulus Button or Count
Response

20 40 600
Time (s)

0
1

0
1

0
1

A B

C

2 4 6 8 10 12 14
0

20

40

60

Duration (s)

# 
of

 tr
ial

s

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 26, 2018. ; https://doi.org/10.1101/254060doi: bioRxiv preprint 

https://doi.org/10.1101/254060
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

three hazard rates (left), resulting in distinct distributions of intervals (right, average histogram over 177 
subjects). C.  Example time courses of target presence (1 = present, 0 = absent) drawn from these 178 
distributions. 179 
 180 
Behavioral task and experimental design 181 
The subjects’ task was to maintain stable fixation and detect the physical offsets and 182 
onsets of the target, the predictability of which fluctuated from trial to trial, and the 183 
mean predictability of which varied systematically across blocks. To this end, the 184 
interval durations between stimulus changes were sampled from three different 185 
distributions in the different blocks. These distributions were computed so as to 186 
produce three predetermined so-called hazard functions, which describe the 187 
probability that an event will occur at a particular time, given that it has not occurred 188 
yet. The hazard function formalizes the expectation of a change and affects human 189 
reaction times in simple detection tasks (Luce, 1986). The hazard function can be 190 
computed as follows: 191 
 192 

𝜆! =  !!
!!!!

,              Eq. 1 193 
 194 
where λt is the value of the hazard function at time point t, ft is the value of 195 
distribution f on time point t, and Ft is the area under the curve of distribution f from 196 
−∞ to time t.  197 

We used the following procedure to construct three ‘environments’, referred to 198 
as ‘Short’, ‘Long’, and ‘Flat’ below. We first selected three hazard functions that 199 
systematically differed in their level of predictability (Figure 1B, C). We then 200 
computed the actual distributions of intervals by re-arranging Eq. 1 as follows: 201 
 202 
          𝑓! = 𝜆!  ∗ (1 − 𝐹!) ,                  Eq. 2 203 

 204 
The interval durations were then randomly selected from f. Specifically, the temporal 205 
environments were defined as follows:  206 

Short: The hazard function was a narrow Gaussian distribution with a mean of 207 
2 s and a standard deviation of 0.2 s. This resulted in nearly periodic and, thus, 208 
largely predictable intervals between events.  209 

Long: This condition used the same hazard function as the previous 210 
condition, but with a larger mean and standard deviation (6 s and 0.6 s, respectively) 211 
thus rendering event timings less predictable (Fiorillo et al., 2008). 212 

Flat: The hazard function was flat with a mean of 6s, yielding the least 213 
predictable interval durations. The resulting distribution of interval durations, ft, 214 
therefore, approximated an exponential distribution; characterizing a memory-less 215 
process (i.e. the timing of the next event could not be predicted from previously 216 
encountered intervals, Feller, 1959). 217 

Computational analysis with a Bayesian model (Fig. 2) described below 218 
confirmed that the sampled intervals from these three environments gave rise to 219 
different mean levels of uncertainty and surprise (Fig. 2G,H). The three environments 220 
were presented in separate three-minute blocks.  221 

Within each of the above temporal environments, there were two behavioral 222 
tasks. Both tasks required subjects to monitor the changes of the small visual target. 223 
In one task (called Detection-button), they were asked to report those changes 224 
immediately. Specifically, subjects reported target offsets or onsets by pressing a 225 
button with the right index or middle finger, respectively. In the other task (Detection-226 
count), they were asked to count and report the changes at the end of the block. 227 
Subjects silently counted the number of target offsets and reported the total in 228 
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response to a 4-AFC question at the end to the block. The two tasks were randomly 229 
selected before each block under the constraint that both would occur equally often. 230 
We here analyzed both task conditions, but only found robust effect for Detection-231 
button.  232 

All subjects completed a total of 6 blocks of the Short environment, and 16 233 
blocks of the other Long and Flat environments, resulting in about the same number 234 
of trials per environment. Additionally, subjects performed a motion-induced 235 
blindness task and a functional localizer task, which were not relevant for the current 236 
study, but are reported in our previous paper (Meindertsma et al., 2017). All blocks 237 
within an environment were completed in succession; the order of environments was 238 
counter-balanced across subjects. 239 
 240 
Bayesian ideal observer model: General approach and rationale 241 
We developed an ideal observer model to quantify surprise and uncertainty about the 242 
timing of sensory events (i.e., the target on- and offsets). The model tracked the 243 
evolving predictive distribution of upcoming interval durations; more specifically, it 244 
computes the posterior predictive of unobserved interval durations, conditional on the 245 
observed data, throughout each block of the experiment. We assumed that subjects 246 
tracked the temporal statistics of the task in a similar way, and we used the posterior 247 
predictive distribution as a proxy of the subjects’ belief states (i.e., their prediction of 248 
the timing of the next stimulus change). 249 

While we used an ideal observer model that prescribed the optimal inference 250 
for our task, we are agnostic to the precise inference process that was used by our 251 
subjects and we do not claim that subjects used the exact computations used by the 252 
model. Our central assumption was that subjects accumulated observations 253 
throughout each block (i.e., over more than just one or two previous intervals). This 254 
assumption was derived from a substantial body of work on other forms of learning 255 
and evidence accumulation (Sutton and Barto, 1998; Gold and Shadlen, 2007; Glaze 256 
et al., 2015), and it was supported by the findings described in Results. Our model 257 
implemented the normative accumulation strategy by perfectly integrating across the 258 
entire history of the observations (here: of interval durations) and updating internal 259 
representations accordingly. A practical benefit of this approach was that it did not 260 
require fitting of model parameters, for which our current data did not provide 261 
sufficiently strong constraints.  262 

The only free parameter in the model was the level of temporal estimation 263 
noise, which we allowed to scale with the magnitude of the interval duration 264 
according to Weber’s law (Gibbon et al., 1997). To this end, we transformed the 265 
discrete values of the observed intervals into Gaussian distributions that were used 266 
to update the model (see next section). The mean of these distributions was equal to 267 
the observed interval t and their standard deviation was equal to the observed 268 
interval t times a Weber’s fraction (coefficient of variation, Gibbon et al., 1997). We 269 
simulated the model with 34 Weber’s fraction values ranging from 0.001 to 0.5 270 
(0.001, 0.05:0.01:0.35, 0.4, 0.5). We then computed the correlation between the 271 
measured single-trial reaction times (pooled across all subjects) and surprise (see 272 
Bayesian ideal observer model: Implementation), separately for each Weber fraction, 273 
and selected the Weber fraction that maximized this correlation. To this end, we fitted 274 
a second order polynomial to the correlation coefficients as a function of Weber’s 275 
fraction and extracted the maximum of the polynomial. This yielded a Weber’s 276 
fraction of 0.17 (Figure 2F), which was used for all analyses reported in this paper. 277 
Using model-based surprise from a noise-free version of the model yielded 278 
qualitatively identical results (data now shown). 279 

 280 
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Bayesian ideal observer model: Implementation 281 
We assumed that the subjects used a model in which the observed intervals have 282 
been generated from a gamma distribution with parameters alpha (shape) and beta 283 
(scale). These parameters were given uninformative prior distributions (Lee and 284 
Wagenmakers, 2013), which were updated by the data to posterior distributions.  285 

Using the interval duration distributions as the observations, we could obtain 286 
the expectations about to-be-observed intervals by generating posterior predictives 287 
(i.e., drawing an alpha-beta pair from the joint posterior distribution and then drawing 288 
a predicted interval from the associated gamma distribution; repeating this process 289 
many times yields a posterior predictive distribution for the to-be-observed interval). 290 
We assumed that the subjects updated their belief state after each observation of a 291 
new interval duration. Likewise, the model was updated after every interval t by 292 
computing a new posterior predictive distribution, based on the durations of intervals 293 
1:t and the prior.  294 

We generated a posterior predictive distribution over the to-be-observed 295 
intervals using Gibbs sampling (a Markov chain Monte Carlo, or MCMC, algorithm; 296 
Andrieu et al., 2003) in the software JAGS (Plummer, 2003) and Matlab (version 297 
R2013a, RRID:SCR_001622). We used two Markov chains with different starting 298 
points comprised of 2500 samples per chain with 500 samples burn-in, for a 299 
combined total of 4000 samples. The posterior predictive MCMC samples Y1…4000 for 300 
the next interval, t+1, were then summarized by a gamma distribution using the 301 
functions ‘gamfit’ and ‘gampdf’ in Matlab (Figure 2A,B): 302 
 303 
   𝑌!…!"""

(!!!)  ~ 𝐺𝑎𝑚𝑚𝑎 𝜅!!!,𝜃!!! ≡ 𝑓!!!,       Eq. 3 304 
 305 
where Y(t+1)

1…4000 are the MCMC samples, and κt+1 and θt+1 are the parameters of the 306 
gamma distribution ft+1; hence, ft+1 is the continuous posterior predictive distribution 307 
for the upcoming interval after having observed the preceding intervals 1...t. 308 

To be able to relate trial-to-trial uncertainty and surprise to behavior and the 309 
MEG data, we extracted two information theoretic metrics from the time-evolving 310 
posterior predictive distribution ft+1 (i.e., belief).  311 

Uncertainty: We quantified trial-to-trial uncertainty about the timing of the 312 
upcoming interval t+1 as the entropy of the posterior predictive distribution ft+1 (i.e., 313 
the posterior predictive based on intervals 1…t): 314 

 315 
   𝐻!!! =  − 𝑓!!! 𝑥 ∗ log 𝑓!!! 𝑥  𝑑𝑥!

! ,          Eq. 4 316 
 317 

where Ht+1 is the entropy after intervals 1…t, and the integral is over all possible 318 
values x for the upcoming interval. Entropy depended on the width of ft+1, and thus 319 
uncertainty was higher when predictions of interval durations were less precise 320 
(Figure 2A,C,D). For clarity, in what follows we will use the term entropy when 321 
referring to this uncertainty.  322 

Surprise: For every upcoming interval t+1, we computed the surprise about 323 
the corresponding interval duration in terms of the Shannon information conveyed by 324 
the interval duration xt+1, given the posterior predictive distribution ft+1: 325 

 326 
𝐼!!! =  −log 𝑓!!!(𝑥!!!),          Eq. 5 327 

 328 
where It+1 is the information gained by interval t+1, given ft+1. Thus, surprise was 329 
defined as the negative log-probability of the upcoming interval t+1, given the 330 
intervals that had been presented so far. 331 
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We added one further transformation in the computation of surprise. The 332 
surprise measure defined in Eq. 5 quantified the surprise about the upcoming event 333 
timing based on the posterior predictive distribution ft+1, but disregarding the time 334 
elapsed in the current interval. It is unlikely that exactly this distribution translated into 335 
subjects’ level of surprise: as time passed and no event occurred in a given interval, 336 
all interval durations shorter than the elapsed time become impossible. Subjects 337 
likely discounted these impossible intervals in their expectation of the timing of the 338 
upcoming event, which should have also affected their level of surprise. In other 339 
words, their internal representation of the posterior predictive distribution changed 340 
dynamically throughout each trial, as a function of elapsed time. We constructed a 341 
time-varying version of the posterior predictive distribution ft+1, which was also 342 
conditioned on the elapsed time on interval t. This version was equal to ft+1 for 343 
elapsed time equal to 0 and then increasingly deviated from ft+1 as elapsed time grew. 344 
We approximated this time-varying distribution, denoted as f’t+1 in the following, by 345 
setting all probabilities in ft+1 up to the current time point to zero and renormalizing the 346 
remaining distribution to integrate to 1 (Figure 2B). We then computed surprise 347 
based on this new distribution f’t+1 using Eq. 5. The time-variant prior f’t+1 converged 348 
to 1 as time passed, and thus surprise approached zero for longer intervals.  349 
 350 
Regressing computational variables against behavior  351 
We used reaction time (RT) during Detection-button as behavioral readout of the 352 
impact of uncertainty and surprise. Accuracy approached ceiling for all subjects, due 353 
to the high saliency of the target. We computed and compared mean RTs per 354 
environment and stimulus event (target off- and onset).  355 

We also correlated RT to our trial-to-trial estimates of surprise and entropy. 356 
RT was log-transformed so as to normalize the skewed RT distributions. To test if the 357 
model-based surprise fitted the behavioral (RT) data better than a linear combination 358 
of just the two previous interval durations (i.e., a leaky accumulation with strong 359 
leak), we used multiple linear regressions to compare the following two nested 360 
models: 361 
 362 
M1:  log(RT) ~ Intervalt*Env*Event + Intervalt-1*Env*Event 363 
M2:  log(RT) ~ Intervalt*Env*Event + Intervalt-1*Env*Event + Surprise*Con*Event, 364 
 365 
where Intervalt and Intervalt-1 corresponded to the durations of the two intervals 366 
preceding the visual change (i.e., interval on trial t and t-1), and Surprise was the 367 
computational model-derived metric. Predictors were multiplied by categorical 368 
variables envrionment (Env, the three different temporal environments) and Event 369 
(target offset or onset). Both variables strongly affected RT (Figure 3A). We fitted 370 
both M1 and M2 and compared the fits per subject using adjusted R2. 371 
 372 
MEG data collection 373 
Magnetoencephalography (MEG) data were acquired on a CTF 275 MEG system 374 
(VSM/CTF Systems, Port Coquitlam, British Columbia, Canada) with a sample rate of 375 
1200 Hz. The location of the subjects’ head was measured in real-time using three 376 
fiducial markers placed in the both ears and on the nasal bridge to control for 377 
excessive movement. Furthermore, electrooculogram (EOG) and electrocardiogram 378 
(ECG) were recorded to aid artifact rejection. All data were recorded in sets of four 379 
blocks of three minutes duration (or two blocks at the end of an environment set). 380 
 381 
 382 
 383 
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MEG data analysis 384 
Preprocessing. The data were analyzed in Matlab (version R2013a, The Mathworks, 385 
Natick, MA, USA, RRID:SCR_001622) using the Fieldtrip (Oostenveld et al., 2011, 386 
RRID:SCR_004849) toolbox and custom-made software. 387 
 Trial extraction. In blocks involving subjects’ reports, we extracted trials of 388 
variable duration, centered on subjects’ button presses, from the 3 min blocks of 389 
continuous stimulation. We call this method for trial extraction “response-locked”. The 390 
following constraints were used to avoid mixing data segments from different 391 
percepts when averaging across trials: (i) The maximum trial duration ranged from 392 
−1.5 s to 1.5 s relative to report; (ii) when another report occurred within this interval, 393 
the trial was terminated 0.5 s from this report; (iii) when two reports succeeded one 394 
another within 0.5 s, no trial was defined; (iv) for the analysis of Detection-button 395 
blocks, we included only those reports that were preceded by a physical change of 396 
the target stimulus within 0.2 to 1 s, thus discarding reports not related to stimulus 397 
changes. We used this method for the analyses related to surprise. In an alternative 398 
analysis of all Detection blocks, trials were defined in the same way as described 399 
above, but now aligned to physical target on- and offsets (“stimulus-locked”). In the 400 
Detection-count task, no button responses were given during the block, so stimulus-401 
locked trial extraction was the only option. We used this method for the analysis 402 
related to entropy (see Kloosterman et al., 2015b & Meindertsma et al., 2017 for a 403 
similar procedure). 404 
 Artifact rejection. All epochs that contained artifacts caused by environmental 405 
noise, eye-blinks, muscle activity or squid jumps were excluded from further analysis 406 
using standard automatic methods included in the Fieldtrip toolbox. Epochs that were 407 
marked as containing an artifact were discarded after every artifact detection step. 408 
For all artifact detection steps the artifact thresholds were set individually for all 409 
subjects. Both of these choices aimed at optimization of artifact exclusion. Line-noise 410 
was filtered out by subtracting the 50, 100, 150 and 200 Hz frequency components 411 
from the signal.  412 
 Time-frequency decomposition. We used a sliding window Fourier transform 413 
to compute the time-frequency representation for each sensor and each trial of the 414 
MEG data. The sliding window had a length of 200 ms and a time step size of 50 ms, 415 
with one Hanning taper (frequency range 5-35 Hz, frequency resolution 5 Hz and 416 
frequency step size 1 Hz). The data was baseline corrected for every frequency bin 417 
and MEG sensor separately. The baseline was computed by averaging single-trial 418 
power over a baseline time window. The baseline time windows ranged from −1.25 to 419 
−0.75 s for response-locked and −1 to −0.5 s for stimulus-locked analyses, 420 
respectively. The time course of every frequency bin and sensor combination was 421 
baseline corrected by subtracting the single-trial baseline power at that frequency 422 
and dividing by the mean baseline power across trials within an experimental 423 
environment. We used the single-trial baseline power for subtraction to eliminate the 424 
effect of slow power fluctuations, because any surprise-related power modulations 425 
could only have occurred after the sensory event that elicited surprise. We used the 426 
mean baseline for division in order to minimize noise in the single-trial estimates of 427 
the single-trial power modulation values. This division was used to compensate for 428 
the common decay of power with frequency, which hinder identification of effects at 429 
higher frequencies, and to normalize the single-trial modulation values (Siegel and 430 
Donner, 2010). It did not systematically alter the association of power modulation 431 
values with other variables. 432 
 Source reconstruction. We used an adaptive linear spatial filtering method 433 
called linear beamforming (Van Veen et al., 1997; Gross et al., 2001) to estimate 434 
single-trial modulations of MEG power at the source level. We computed a common 435 
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filter for a baseline time window (1 to 0.5 s before response), a ‘transient’ time 436 
window, and a frequency band of interest (0 to 0.5 s after response, 20 Hz +/- 4 Hz 437 
spectral smoothing, see dashed box in Figure 4A). The transient time window and 438 
frequency band of interest were selected based on cluster-based statistics at the 439 
sensor level (see next section). We used the measured head positions and individual 440 
single-shell volume conductor models, based on individual images from T1-weighted 441 
structural MRI. We computed the power values, in both baseline and transient time 442 
windows, for each trial and source grid point (i.e., voxel) as follows. First, we 443 
projected the sensor-level MEG power values from the time window of interest as 444 
well as from a baseline time window through the common spatial filter. Second, we 445 
converted the estimated power values during the time window of interest into units of 446 
power modulation, again by subtracting and dividing by the corresponding baseline 447 
power values. 448 
 449 
Correlating single-trial computational variables to MEG power 450 
We correlated the MEG power modulation to our measures of entropy and surprise, 451 
as derived using our model (see Bayesian ideal observer model: Implementation) 452 
across trials. Although intricately related (see Introduction), uncertainty and surprise 453 
entailed different computations (see above). A key difference was when during the 454 
course of a trial these two quantities where computed. So, we reasoned that neural 455 
correlates of these computational quantities should also differ in their dynamics: 456 
uncertainty about event timing should be reflected in the neural baseline state before 457 
occurrence of the sensory event, whereas surprise should be reflected in a transient 458 
response elicited by that event. Thus, we used different components of the single-459 
trial MEG power estimates for the analyses of entropy and surprise. 460 

Entropy: We correlated entropy to the MEG power modulation separately in 461 
every MEG sensor and frequency bin. This was done within subject and separately 462 
for the three environments. There are structural differences in entropy and surprise 463 
between these environments (Figure 2G,H), thus pooling over these conditions might 464 
result in inflated correlations that reflect session differences instead of the true 465 
correlation between entropy and MEG power. We reasoned that entropy should 466 
affect baseline or tonic arousal, where high entropy should cause higher arousal. As 467 
our task was continuous, we considered the time window right before the stimulus 468 
change the best reflection of a baseline state. For this reason we averaged the MEG 469 
power over the time period right before a stimulus change (-0.5 to -0.25s with respect 470 
to the target offset or onset) before correlating to entropy. 471 

The results were then averaged over the three environments and transformed 472 
with the Fisher z transformation (Fisher, 1915): 473 
 474 

    𝑧 = 0.5 ∙ ln (!!!
!!!

)           Eq. 6 475 
  476 

We used two-tailed permutation tests with a cluster-based correction for 477 
multiple corrections to test the correlation coefficients against zero (Efron and 478 
Tibshirani, 1998; Maris and Oostenveld, 2007).  479 

Surprise: Correlations between surprise and MEG power modulation were 480 
performed using the same method, with the following exceptions. First, we attuned 481 
the analysis in two ways to account for the correlation between surprise and RT 482 
(Figure 2F, 3). Because of this correlation, any post-stimulus correlations between 483 
surprise and MEG power modulation might reflect differences in the timing of the 484 
button press. We performed this analysis response-locked, because these RT 485 
differences are difficult to disentangle from genuine effects of surprise when the 486 
power modulations are time-locked to the stimulus change. Additionally, to account 487 
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for confounding effects of RT and the duration of the previous interval, we also 488 
performed a partial correlation analysis between surprise and MEG power 489 
modulation with the interval duration preceding the stimulus change or RT as 490 
covariate. Second, for the correlation between surprise and MEG power modulation 491 
we did not average over a specific time window, but instead performed correlations 492 
separately for every time point, resulting in a 3-dimensional matrix of correlations 493 
(sensor * frequency bin * time point). Consequently, we also performed cluster-based 494 
permutation statistics over these three dimensions. The correlations that survived 495 
cluster correction were visualized by integrating (i.e. computing the area under the 496 
curve) over sensors and frequency bins (for the time course), sensors and time 497 
points (for the frequency spectrum), frequency bins and time points (for the 498 
topography) or just over sensors for the time frequency representation (see Hipp et 499 
al., 2012 for a similar approach).  500 

To assess the robustness of the emerging clusters we performed a cross-501 
validation analysis using a leave-one-out procedure. To this end, we repeated the 502 
cluster-based permutation statistics on all possible iterations of N-1 subjects, each 503 
time using the resulting cluster as a mask to calculate the average correlation in the 504 
left-out subject, separately for target offset and onset trials. These values were tested 505 
against zero and against each other across subjects using permutation tests (10.000 506 
permutations). 507 

We also computed the correlation between trial-to-trial power modulation 508 
averaged over the whole cluster and log(RT). The resulting correlations were tested 509 
against zero across subjects using a permutation test (10.000 permutations). 510 

The transient modulations of MEG power estimated for each voxel in the 511 
source grid, derived by means of source reconstruction (see MEG data analysis: 512 
Source reconstruction), were correlated to the trial-to-trial measure of surprise. This 513 
was done separately within each subject and the resulting correlations averaged over 514 
subjects after Fischer’s z-transformation (Eq. 6). For comparison, we also computed 515 
the average modulations of MEG power in the same time window and frequency 516 
band. The resulting maps of correlation or average power modulation were 517 
nonlinearly aligned to a template brain (Montreal Neurological Institute) using the 518 
individual images from structural MRI. To test the similarity of the spatial topography 519 
of the correlation to the average modulation of power, we correlated the two 520 
corresponding source maps per subject and tested the correlation coefficients again 521 
zero on the group level by means of a permutation test (10.000 permutations).  522 
 523 
Results 524 
Subjects (N=28) performed a simple visual detection task reporting on- and offsets of 525 
a small, but salient target stimulus (Figure 1A). In different blocks, target events were 526 
administered using three different temporal environments (Figure 1B,C) translating 527 
into different overall levels of uncertainty and surprise about the timing of target 528 
events (Figure 2G,H). In order to quantify these two computational variables not only 529 
across conditions, but also across individual trials, we developed a Bayesian belief-530 
updating model. The model incorporated the evolving beliefs (i.e. the posterior 531 
predictive distributions) of an ideal observer about the temporal intervals between the 532 
sensory events. Beliefs were dynamically updated across trials and even within trials 533 
(for surprise, see Materials and Methods). From these time-evolving probability 534 
distributions, we extracted trial-by-trial measures of information-theoretic entropy 535 
(quantifying uncertainty) and surprise, which we related to the behavior and neural 536 
dynamics of our participants.  537 
 538 
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 539 
Figure 2: Bayesian updating model of belief about temporal structure. A-F. The model 540 
estimated the posterior predictive distribution over timings of stimulus changes for each upcoming 541 
interval t+1. This distribution is denoted as ft+1. The gray histogram shows the distribution of MCMC-542 
samples  (Yt+1) from the posterior predictive distribution for interval t+1. ft was estimated by fitting a 543 
gamma probability density function (red line) to Yt+1; it was then used to extract two different information-544 
theoretic computational variables for each trial: entropy and surprise. A.  Entropy, a measure of the 545 
uncertainty about the timing of the interval duration of the current interval, computed from the complete 546 
distribution ft+1 using Eq. 4 (see main text). The wider the distribution, the higher entropy. B.  Surprise, a 547 
measure of information provided by each new interval duration, was also computed from the posterior 548 
predictive distribution, but with one extra step (see main text): the part of the distribution up to the 549 
current interval duration was truncated, and the remainder of the distribution re-normalized to integrate 550 
to 1 (f’t+1 , black line). Surprise was defined based on this truncated function using Eq. 5 (see main text). 551 
C. Example sequence of interval durations (white line, from the long Gaussian condition) with posterior 552 
predictive distribution f (color coded). D.  Entropy corresponding to interval durations in panel C (left); 553 
relationship between interval duration and entropy (right). E.  Surprise, analogous to panel D. Red dot: 554 
example of exceptionally long interval (see duration in panel C). Surprise on this trial was low (panel E) 555 
because time dependent surprise decreased over time. After observing this interval entropy increased 556 
(panel D) because the observed interval was longer than the expected duration, given previous 557 
intervals.  F.  Correlation between log(RT) and surprise as a function of different Weber fractions (black 558 
line, see Materials and Methods). Second-order polynomial fit over these correlations used to select the 559 
Weber fraction yielding peak correlation. (red line; red dot depicts peak = 0.17). G. Regression of 560 
surprise on entropy. Thin colored lines, regression lines of single subjects; black lines, group average 561 
regression. H.  Trial-averaged surprise and entropy for the three experimental environments defined in 562 
Figure 1. Bars, group average; black dots, single subjects. *** p = 0 for all tests, permutation tests 563 
across subjects. 564 
 565 
 Estimates of entropy and surprise fluctuated across trials, especially in the 566 
early part of each block (Figure 2C-E). The trial averages of both measures within 567 
each block also varied lawfully between the different experimental conditions, scaling 568 
with the predictability of the stimulus changes (Figure 2G,H). Estimates were 569 
smallest for the Short condition, intermediate for the Long condition, and largest for 570 
the Flat condition. As expected, variations in entropy and surprise were weakly 571 
correlated across trials (r=0.13 for Short and Flat, r=0.19 for Long condition, Figure 572 
2G), since both measures were computed from the same probability distribution 573 
(Materials and Methods). Even so, these two variables entailed distinct computations, 574 
possibly by distinct neural circuits. Critically, both computational variables could be 575 
computed at different times during a trial, thus possibly leading to different dynamical 576 
modulations cortical population activity. 577 
 578 
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Surprise predicts reaction time 581 
The model-derived computational variable surprise predicted subjects’ reaction time 582 
(RT) in the detection task. Mean RT scaled with the different temporal environments 583 
in the same way as surprise and entropy, with the fastest RTs for Short and slowest 584 
RTs for the Flat condition (Figure 3A, compare with Figure 2E). RT correlated with 585 
surprise also at the single trial level (Figure 3B). We did not find robust correlations to 586 
RT for entropy.  587 

We also tested whether model-derived surprise (entailing accumulation of 588 
intervals across the entire experimental block) predicted RT over and above a linear 589 
combination of only the two previous intervals (entailing, e.g. a leaky accumulation 590 
with strong leak). To this end, we used a nested regression model, which quantified 591 
the predictive power of a combination of surprise and the previous two intervals in 592 
accounting for the influence of temporal environments and target on- or offset, on RT 593 
(Materials and Methods). We compared this against a simpler model with only the 594 
two previous intervals. Because model-based surprise depended on all previous 595 
intervals, the comparison between the above two nested models assessed the 596 
impact on reaction time of intervals beyond the second one. We used adjusted R2 for 597 
comparison, which penalized model complexity. This comparison yielded higher 598 
adjusted R2 values for the model including surprise in 22 of 28 subjects (Figure 3C), 599 
indicating that surprise predicted RT over and above the duration of the previous two 600 
intervals.  601 

Taken together, these results indicate that subjects tracked the temporal 602 
structure of the task by accumulating interval distributions at least over more than two 603 
intervals, akin to what was prescribed by the ideal observer model. We next 604 
searched the whole-brain MEG data for a dynamical neurophysiological signature of 605 
this process. To this end, we focused on the trial-to-trial fluctuations of surprise within 606 
each of the environments (Short, Long, Flat), which were more pronounced than the 607 
differences in mean surprise between environments. 608 
 609 

 610 
Figure 3: Link between computational variables and behavior. A. Average reaction time (RT) 611 
per interval distribution, separate for reports of target offsets and onsets. Bars show average over 612 
subjects; black dots depict average per subject. *** p<0.001, ** p<0.01, permutation tests across 613 
subjects, 10.000 permutations (differences between target off- and onsets, p-values were p=0, p=0 and 614 
p=0.003, for Short, Long and Flat, respectively; between conditions, p=0, p=0 and p= 0.001, for Short-615 
Long, Short-Flat and Long-flat, respectively). B.  Correlation between trial-to-trial fluctuations in Entropy 616 
(left)/Surprise (right) and log-transformed RT. Mean correlation coefficient Entropy: mean r=0.03 617 
(s.d.=0.02), p=0.17 and r=-0.04 (s.d.=0.03), p=0.07 for off- and onset, respectively, difference off-on 618 
p=0.47; Surprise: mean r=0.09 (s.d.=0.02), p=0.007 and r=0.15 (s.d.=0.03), p=0 for off and onset, 619 
respectively, difference off-on p=0.48. C.  Model comparisons between partial (including only 2 previous 620 
intervals) and full regression models (further including surprise; see main text). Difference in adjusted 621 
R2. Positive values indicate support for full model. Dots depict individual subjects; bars depict the mean, 622 
error bars depict SEM. 623 
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Widespread cortical beta-band transient driven by surprise 624 
We mapped out the cortical responses to trial-to-trial fluctuations in surprise by 625 
correlating the model-based surprise measures to modulations of MEG power, 626 
around the time of subjects’ behavioral responses to sensory events. We did this in 627 
an exhaustive fashion across every time and frequency bin and MEG sensor and 628 
tested for clusters of significant correlations across these three dimensions, while 629 
applying cluster-based multiple comparison correction (Materials and Methods). This 630 
approach revealed negative correlations in the beta (~20 Hz) frequency range, as 631 
well as in the lowest frequency bin resolved (5 Hz), indicating that higher surprise 632 
was associated with lower power in these frequency ranges. The peak in this 633 
negative correlation cluster started about 0.2 s before and reached its maximum 634 
about 0.25 s after subjects’ report of the stimulus change. This cluster exhibited 635 
several peaks over central, left frontal, and to a lesser extent left parietal cortex 636 
(Figure 4A,C).  637 

For all analyses shown in Figures 4 and 5, we used partial correlations, 638 
controlling for reaction time, and we focused on the Detection-button task that 639 
entailed immediate behavioral report of the change of the visual target (Materials and 640 
Methods). We controlled for reaction time because (i) the data showed that the latter 641 
was affected by surprise (Figure 3), and (ii) motor responses are known to modulate 642 
beta-power around the time of response (Donner et al., 2009). Thus, button-presses 643 
could have potentially influenced the modulation by surprise. We focused on 644 
Detection-button because (i) we could only establish links between surprise and 645 
behavior for this task and (ii) it allowed us to lock neural dynamics more closely to the 646 
conscious registration of the visual change. When performing the correlation analysis 647 
for the Detection-count task (then locked to the physical stimulus change), we did not 648 
obtain any in significant correlation clusters. In two control analyses, we confirmed 649 
that the above results were robust to (i) using the ‘raw’ correlation between surprise 650 
and MEG power and (ii) controlling for the preceding interval duration. Both analyses 651 
resulted in highly similar clusters of negative correlations (data not shown). 652 
 The surprise-related cluster was robust and not driven by outliers, and the 653 
effect was not specific to the type of stimulus event (target on- or offset). We used a 654 
leave-one-out cross-validation procedure to test the robustness of the correlations on 655 
both target on- and offsets (Materials and Methods). We found robust negative 656 
correlations in the left-out subjects (Figure 4D). Furthermore, the correlation was 657 
found for both target offsets and onsets (Figure 4D, mean -0.036, -0.025, SEM 0.010, 658 
0.006, p = 0.006, 0.002, for target offsets and onsets, respectively; difference: 659 
p=0.26, permutation tests, 10.000 permutations). 660 

As expected from previous work on modulations of MEG power around motor 661 
responses (Donner et al., 2009), the overall modulation of MEG power in the time-662 
frequency window of the surprise-correlation cluster (16-24 Hz, 0–0.5 s from 663 
response, normalized by the baseline 1-0.5 s before response) peaked in bilateral 664 
motor cortex (Figure 4B). But the component of beta-power modulations that 665 
correlated with trial-by-trial surprise showed a different cortical distribution, with 666 
negative correlations that peaked in the central sulcus, extending from motor- to 667 
more frontal cortex, and in left frontal and parietal cortex (compare Figure 4B and 668 
4C). Indeed, there was no similarity between the individual topographies of the 669 
surprise-linked and the overall power modulations (mean correlation across subjects: 670 
r=-0.02, p=0.42). These observations indicate that the report-locked modulation 671 
linked to surprise and of overall power were located in distinct cortical networks.  672 
 673 
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 674 
Figure 4: Widespread cortical beta-band transient driven by surprise.  A.  Exhaustive partial 675 
correlation (controlling for RT) between trial-to-trial measures of surprise and MEG power modulation in 676 
all sensors, time and frequency bins results in one cluster (cluster-based correction for multiple 677 
comparison, p = 0.001, two-sided) of negative correlation. Different panels show different dimensions of 678 
the cluster by integrating over the other dimensions; top left: time course, top right: spatial topography, 679 
bottom left: time-frequency representation; bottom right: frequency spectrum. B.  Source reconstruction 680 
of the power modulation in the time window in which surprise-MEG correlation was strongest (dashed 681 
box in panel A). C.  Source-reconstructed illustration of the correlation between transient modulation and 682 
trial-to-trial surprise depicted in panel B. These source maps are not statistically thresholded, but instead 683 
serve for comparing the correlation’s spatial distribution with the transient power modulation in panel B 684 
(average correlation between surprise and power modulation across subjects = 0.02, p=0.42). D.  685 
Leave-one-out cross-validation of the cluster found in panel A, separately for target offsets and onsets. 686 
Cluster-based permutation was performed on N-1 subjects and the average correlation in the resulting 687 
cluster was computed for the remaining subject (black dots); bars show averages over subjects. 688 
Correlation values were tested against 0 (permutation test; ** p<0.01; p=0.005 and p=0.002 for target 689 
offsets and onsets, respectively, p=0.19 for offsets-onsets difference). E.  Correlation between MEG 690 
power in the cluster and log(RT) for separate distributions and average RT; permutation tests. All *** p 691 
<0.001, all offset-onset differences p>0.05 (lowest was p=0.21). 692 
 693 

The surprise-related cluster for target offsets and onsets both exhibited a 694 
bimodal in the frequency domain, similar to the pooled analysis (Figure 5; compare to 695 
Figure 4A): next to the peak around 20 Hz just after response, an additional peak 696 
was evident in the lowest frequency bin resolved (5 Hz). For offsets, the effect was 697 
quite sustained in time (-0.25 to 0.5s around response); the topography showed 698 
peaks over parietal and occipital cortex and over left frontal cortex (Figure 5A). By 699 
contrast, the cluster for target onsets was more confined in time (with a sharp peak 700 
~0.1s after report) and a different topography that peaked over central parietal cortex 701 
(Figure 5B). Taken together, our results suggest that perceptual surprise about both 702 
target on- and offsets elicited cortical transients in the beta-band. We consider them 703 
general dynamical correlates of temporal surprise monitoring. In addition, stimulus 704 
changes seem to have recruited additional processes expressed in the very low (<= 705 
5 Hz) frequency range. 706 

Finally, we asked whether the trial-to-trial fluctuations in beta-power 707 
modulations also predicted trial-to-trial variations in subjects’ (log-transformed) RTs. 708 
Here, we used the Pearson correlation values (i.e., without regressing out RT; 709 
Materials and Methods). Just as surprise, beta-power in the cluster also robustly 710 
predicted RT (Figure 4E). These correlations were negative, as expected based on 711 
the negative correlation between surprise and MEG-power (Figure 4A). We also 712 
compared the strength of this correlation between MEG-power and RT to the 713 
strength of the correlation between surprise and RT across, this correlation between 714 
correlations was positive, but not significant (r=0.19, p=0.33). 715 
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No robust correlations between MEG baseline power and entropy 716 
We did not find any evidence for a correlation of the raw baseline (-0.5 to 0 s with 717 
respect to stimulus change) MEG power with uncertainty, as measured in entropy. 718 
Correlations between entropy and MEG power spectra in the time window before 719 
stimulus change did not result in any significant (sensor-frequency) clusters that 720 
survived multiple-comparison correction (data not shown). It is likely that this lack of 721 
robust correlation reflected the continuous reduction in trial-to-trial variations of 722 
entropy over the course of each block (Figure 2C). 723 
 724 

 725 
Figure 5: Separate correlations for offsets and onsets. Correlation analysis and cluster-based 726 
statistics performed separately for target offsets (A) and target onsets (B); p=0.001 for both analyses. 727 
 728 
Discussion 729 
In this study, we comprehensively mapped cortical transients elicited by surprise 730 
about the timing of sensory events. We used a Bayesian updating model to estimate 731 
trial-to-trial variations of surprise and correlated these to subjects’ behavior as well as 732 
to neural dynamics, across the cortical surface. The model-derived surprise 733 
estimates predicted across-trial and environment variations in RT. The surprise 734 
estimates also predicted transient suppressions of low-frequency and beta-band 735 
power in a widespread network comprising motor-, prefrontal and parietal cortical 736 
regions, predominantly in the left hemisphere. The model-derived surprise estimates 737 
were more closely related to both behavior and cortical dynamics than the mere trial-738 
to-trial variations in externally observable interval timings.  739 
 The signatures of surprise we uncovered in the beta frequency band were 740 
quite similar around target on- and offset (Figure 5). This stands in sharp contrast to 741 
the opposite beta-band modulation during (illusory or veridical) target 742 
disappearances and reappearances, proposed to reflect a decision-related feedback 743 
signal to in visual cortex (Meindertsma et al., 2017). The beta-band transients 744 
identified here likely reflected a distinct process that did not encode the content of the 745 
perceptual change, but rather the level of surprise about it.  746 
 One possibility is that surprise is computed in those fronto-parietal cortical 747 
networks exhibiting the surprise-related modulation of beta-oscillations observed 748 
here. Another possibility is that the surprise-related modulations are inherited from 749 
other regions projecting to those fronto-parietal networks. Indeed, neuromodulatory 750 
brainstem systems are a prominent candidate source. In particular the dopaminergic 751 
and noradrenergic systems are driven by temporal expectation and surprise (Aston-752 
Jones and Cohen, 2005; Dayan and Yu, 2006; Fiorillo et al., 2008). Further, there is 753 
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mounting evidence for a link between neuromodulation and beta-band power in 754 
visual cortex (Belitski et al., 2008; Donner and Siegel, 2011; Safaai et al., 2015; 755 
Zaldivar et al., 2018). 756 
 Specifically, phasic responses in dopaminergic nuclei, encode not only 757 
reward, but also the expected timing of reward arrival. The strength of these phasic 758 
neuronal responses inversely scales with predictability of the timing of reward, in line 759 
with encoding surprise about reward arrival, and it also predicted behavioral 760 
anticipation of reward (i.e. licking behavior) in monkeys (Fiorillo et al., 2008). Our 761 
current study complements this previous work, by unraveling the cortex-wide 762 
dynamics elicited by surprising events. Our design did not involve rewards but rather 763 
neutral, yet behaviorally relevant sensory events.   764 

In a previous report based on the same data set as the current one 765 
(Kloosterman et al., 2015a), we showed that mean pupil dilation responses during 766 
the perceptual changes scaled in amplitude across the three environments in line 767 
with mean surprise as shown in the current Figure 2H. Pupil dilation is closely linked 768 
to phasic responses in neuromodulatory brain systems, in particular the 769 
noradrenergic locus coeruleus (Joshi et al., 2016; Reimer et al., 2016; de Gee et al., 770 
2017). Thus, if the surprise-related modulations of cortical activity observed here 771 
were driven by phasic neuromodulation, one would expect to find correlations 772 
between single-trial pupil responses and surprise (Preuschoff et al., 2011; Nassar et 773 
al., 2012). Due to the sluggish dynamics of the peripheral pupil apparatus (Hoeks 774 
and Levelt, 1993; De Gee et al., 2014), testing for trial-by-trial correlations between 775 
pupil dilations and surprise (or, likewise, between baseline pupil diameter and 776 
uncertainty) in our experiment requires dedicated analysis approaches that tease 777 
apart fluctuating baseline levels and responses evoked by individual events. Using a 778 
general linear model (Hoeks and Levelt, 1993; De Gee et al., 2014), we failed to 779 
obtain reliable single-trial pupil responses and correlations to single-trial surprise 780 
(data not shown). This failure was likely, at least in part, due to the rapid nature of the 781 
current experimental design. Future work should use more widely spaced intervals to 782 
test whether pupil dilations reflect trial-to-trial variations of surprise.  783 

Our current study provides a comprehensive picture of the cortical transients 784 
elicited by surprise, by systematically mapping these transients across the cortical 785 
surface and time-frequency plane. Previous work in humans has also studied neural 786 
correlates of model-derived measures of surprise, although this entailed surprise 787 
about stimulus identity, and not timing. Electrophysiological work found surprise 788 
about cue identity to modulate the P3 component of the EEG event-related potential 789 
as well as motor cortical excitability (Bestmann et al., 2008; Mars et al., 2008). 790 
Functional magnetic resonance imaging work linked surprise about the spatial 791 
location of stimuli to transients in posterior parietal cortex (O’Reilly et al., 2013). An 792 
EEG study dissociated oscillatory neural signatures of surprise and evidence 793 
accumulation (Gould et al., 2012). This latter study also found surprise-related 794 
modulation of beta-band power primarily at frontal and parieto-occipital electrodes, 795 
but the underlying cortical distribution was not estimated. Future studies of surprise in 796 
other domains (e.g. about cue identity) should use a similar approach to assess if 797 
surprise-related cortical transients are domain-general or -specific. Further, 798 
simultaneous EEG and MEG recordings (Schurger et al., 2015) are necessary to 799 
unravel the relationship between surprise-linked modulations of fronto-parietal beta-800 
band oscillations and of the P3-component.  801 
 Another line of work has investigated the functional role of externally 802 
entrained low-frequency oscillations in temporal expectation. For fixed intervals, 803 
alpha phase in sensory cortices was found to be predictive of expected time of target 804 
arrival and lowered the threshold for sensory detection (Lakatos et al., 2008; Cravo et 805 
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al., 2011, 2013; Rohenkohl and Nobre, 2011). Alpha oscillations might reflect 806 
rhythmic fluctuations in cortical excitability, entrained by rhythmic sensory input, 807 
which aids stimulus processing and perceptual performance (Schroeder and Lakatos, 808 
2009). The high variability in interval durations (see Figure 1B,C inset) might explain 809 
the lack of alpha-band effects in our study. First, the range of possible durations was 810 
too broad to form predictions that fall within a specific phase of an alpha cycle. 811 
Second, even when oscillatory phase was modulated by temporal expectation in our 812 
task, the trial-to-trial variability would make it difficult to align trials and make these 813 
modulations visible.  814 
 It is tempting to relate our results to conceptual accounts of the functional role 815 
of beta-band oscillations in the brain (Engel and Fries, 2010; Spitzer and Haegens, 816 
2017). One account (Engel and Fries, 2010) holds that beta-band oscillations help 817 
maintain the current sensorimotor or cognitive state (termed the ‘status quo’). 818 
Another account (Spitzer and Haegens, 2017) holds that beta-band oscillations help 819 
activate the currently relevant task sets. In both frameworks, the need for maintaining 820 
the current status quo, or task set, is low when surprise (the violation of expectation, 821 
or probability of change in the environment) is high, in line with our observation of a 822 
suppression of beta-band oscillations under high surprise.  823 
 While our current work presents an important first step towards unraveling the 824 
modulation of cortical dynamics by surprise, it is limited in that we only studied 825 
environments with constant statistical structure within each block. Once a posterior 826 
distribution has been learned, there remains no unexpected uncertainty, only 827 
expected uncertainty (Yu and Dayan, 2005). By contrast, the statistical structure of 828 
natural environments is often volatile. Richer experimental designs, that are volatile 829 
and include unmarked changes, allow for probing into richer, presumably hierarchical 830 
dynamics (Sugrue et al., 2004; Nassar et al., 2012; Meyniel et al., 2015). A more 831 
volatile task-environment would also lead to an increase in trial-to-trial variability of 832 
our entropy measure, providing a better-suited context to study the effects of this 833 
type of uncertainty on cortical processing. Our ongoing work aims to push beyond 834 
these limits by using richer environmental statistics that require more complex 835 
inference processes.  836 
 To conclude, we here uncovered a novel signature of temporal surprise that 837 
affected an elementary perceptual decision (target detection) and was characterized 838 
by a temporally focal, but spatially widespread, modulation of cortical population 839 
activity. This modulation might be instrumental in translating inferences about the 840 
behaviorally-relevant temporal structure into its consequences for action.  841 
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