
Genome-wide analysis of consistently RNA edited sites in human blood reveals interactions 

with mRNA processing genes and suggests correlations with cell types and biological 

variables.

Edoardo Giacopuzzi1, Massimo Gennarelli1,2, Chiara Sacco1,2, Alice Filippini2, Jessica Mingardi2, 

Chiara Magri2, Alessandro Barbon2

 

1Genetics Unit, IRCCS Centro S. Giovanni di Dio, Fatebenefratelli, 25123 Brescia, Italy

2Department of Molecular and Translational Medicine, Biology and Genetic Unit, University of 

Brescia, 25123 Brescia, ITALY.

edoardo.giacopuzzi@unibs.it

massimo.gennarelli@unibs.it

chiara.sacco@unibs.it

alice.filippini@unibs.it

j.mingardi001@unibs.it

chiara.magri@unibs.it

alessandro.barbon@unibs.it

Corresponding Author:

Prof. Alessandro Barbon: Department of Molecular and Translational Medicine, Biology and 

Genetic Unit, University of Brescia, 25123 Brescia, ITALY.

alessandro.barbon@unibs.it

1

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 3, 2018. ; https://doi.org/10.1101/254045doi: bioRxiv preprint 

https://doi.org/10.1101/254045
http://creativecommons.org/licenses/by-nc/4.0/


Abstract

Background

A-to-I RNA editing is a co-/post-transcriptional modification catalyzed by ADAR enzymes, that

deaminates  Adenosines  (A) into  Inosines  (I).  Most  of  known editing events  are  located  within

inverted  ALU repeats,  but  they  also  occur  in  coding sequences  and may alter  the  function  of

encoded  proteins.  RNA editing  contributes  to  generate  transcriptomic  diversity  and it  is  found

altered in cancer, autoimmune and neurological disorders. Emerging evidences indicate that editing

process could be influenced by genetic variations, biological and environmental variables.

Results

We analyzed RNA editing levels in human blood using RNA-seq data from 459 healthy individuals

and identified 2,079 sites consistently edited in this tissue. As expected, analysis of gene expression

revealed that ADAR is the major contributor to editing on these sites, explaining ~13% of observed

variability. After removing ADAR effect, we found significant associations for 1,122 genes, mainly

involved in RNA processing. These genes were significantly enriched in genes encoding proteins

interacting with ADARs, including 276 potential ADARs interactors and 9 ADARs direct partners.

In addition,  our  analysis  revealed several  factors  potentially  influencing RNA editing in  blood,

including cell composition, age, Body Mass Index, smoke and alcohol consumption. Finally, we

identified genetic loci associated with editing levels, including known ADAR eQTLs and a small

region  on  chromosome  7,  containing  LOC730338,  a  lincRNA gene  that  appears  to  modulate

ADARs mRNA expression.

Conclusions

Our data provides a detailed picture of the most relevant RNA editing events and their variability in

human blood, giving interesting insights on potential mechanisms behind this post-transcriptional

modification and its regulation in this tissue.
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Background

 

RNA editing is a co-/post-transcriptional process based on the enzymatic deamination of specific

adenosines (A) into inosines (I). Since inosine has similar base-pairing properties to guanosine, it is

read as  guanosine  by both splicing  and translation  machineries,  thus  generating  different  RNA

molecules from those coded by DNA  [1]. RNA editing contributes to the diversification of the

information that is encoded in the genome of an organism, thereby providing a greater degree of

complexity. Currently, the conversion of A to I is thought to be the most common RNA editing

process in higher eukaryotic cells [2].

RNA editing is catalyzed by adenosine deaminase enzymes (ADARs)  [3, 4]. In mammals, three

members of the ADAR family have been characterized so far. ADAR1 (gene name:  ADAR) and

ADAR2 (gene name: ADARB1) are active enzymes expressed in many tissues, while ADAR3 (gene

name:  ADARB2)  is  expressed  specifically  in  the  Central  Nervous  System (CNS).  To  date,  no

functional RNA editing activity  has been attributed to this  enzyme.  The critical  role of ADAR

enzymes is shown by phenotypes of knockout mice that resulted in embryonic lethality or death

shortly after birth  [5–7], clearly indicating that A-I RNA editing is essential for normal life and

development. In addition, dysregulated RNA editing levels at specific re-coding sites have been

linked with a variety of diseases, including neurological or psychiatric disorders and cancer [2, 8,

9]. Interestingly, ADARs mRNA and protein expression levels do not always reflect RNA editing

levels  [10]. It has been shown that the subcellular distribution of ADAR enzymes  [11] and their

interaction with inhibitors [12, 13] and activators [14, 15] influence ADARs activities.

Originally, A-to-I RNA editing in mammalian cells was described for a low number of mRNAs and

it  was  responsible  for  deep  changes  of  protein  functions.  These  editing  sites  were  discovered

serendipitously  by  directly  comparing  DNA and  cDNA sequences  [16,  17].  The  number  of

identified RNA editing sites has largely increased with the widespread adoption of RNA sequencing
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(RNA-seq), reaching over two million sites. The majority of RNA editing sites is located within

intragenic non-coding sequences: 5’UTRs, 3’UTRs and intronic retrotransposon elements, such as

ALU inverted repeats [18, 19]. With lowering cost of NGS, many RNA-Seq datasets from human

tissues, healthy and pathological conditions, have been deposited in sequence databases, available

to the scientific community. In parallel, the development of computational pipelines to search for

RNA editing sites on RNA-Seq data, allowed a global analysis of the editing reaction, shedding

light on its evolutionary conservation [20], tissues specificity [21, 22], cellular specificity [23] and

its role in diseases such cancer [24] or neurological disorders [9, 25].

About 2.5 million editing sites have been identified so far and are listed in RNA editing databases

[26, 27], but only recently the dynamic and regulation of RNA editing has been systematically

investigated in human tissues  [22]. However, little is known about how editing process could be

influenced by genetic variations  [28, 29], biological and environmental variables  [30]. Here, we

want to go further in characterizing and understanding the complexity of RNA editing. Focusing on

the most  likely  biologically  relevant  sites,  we sought  to  unveil  possible  correlations  with gene

expression  and  genetic  variations.  To  this  aim,  we  investigated  consistently  edited  sites  from

existing RNA seq dataset of whole blood from 459 healthy subjects [31], correlating editing levels

with blood cellular composition, with a collection of 28 biological and pharmacological variables,

as well as with genes expression and genotyping data.
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Results

RNA editing sites consistently edited in human blood samples

Of the ~ 2M editing sites reported in RADAR database, 709,184 sites have an adequate coverage (>

10 reads) in our dataset of 459 RNA-seq, covering > 75% of the total sites reported for genes

expressed in blood according to GTEx data (Additional file 1: Figure S1). Most of these sites are

edited only in a small fraction of samples and 691,304 (97.5%) have no detectable editing levels in

our cohort (Additional file 1: Figure S2). To provide a picture of the most biologically relevant

editing sites in human blood we focused our attention on 2,079 consistently editing sites (CES),

namely  those  with  at  least  5% of  editing  level  in  at  least  20% of  individuals.  These  sites  are

distributed  across  421 genes  and mainly  localized  in  ALU regions  (1,805;  86.5%) and 3’UTR

regions (1,234; 59.4%). Overall, we detected 1,266 sites in exons of protein coding genes, including

10 recoding sites (resulting in a missense substitution) and 12 synonymous sites. We also detected

53 sites  annotated  on ncRNAs (Figure  1a,  b).  Detailed  statistics  of  the  2,079 trusted  sites  are

reported in Additional file 2, while recoding sites are reported in Table 1.

Considering mean values for each site, detected editing levels range from 0.05 to 1, with most sites

showing moderate  editing levels between 0.05 and 0.30 (Figure 1c).  We also detected 33 sites

highly edited (mean value ≥ 0.9), located mainly in intronic regions (Figure 1d). Highly edited sites

are  reported  in  Additional  file  1:  Table  S1.  To  further  assess  reliability  of  detected  sites,  we

compared the CES editing  levels  with those reported in  the  REDIportal  database  [26],  a  well-

established resource containing multi-tissue estimations of RNA editing levels. When considering

the  REDIportal  blood  tissue  data,  the  comparison  revealed  high  concordance  (concordance

correlation coefficient 0.84, Additional file 1: Figure S3) for 2,003 overlapping sites, with 20 out of

33 highly edited sites (60 %) showing similar editing levels. When we excluded sites measured only

in a single subject in REDIportal, we found that 16 out of 18 sites (89 %) have high level of editing
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in both datasets, suggesting that our highly edited sites are probably true editing events rather than

systematic  sequencing  errors.  However,  the  occurrence  of  sequencing  artifact  could  not  be

completely excluded. For the sites included in this study, the editing levels from REDIportal are

reported in Additional file 2.

We found 495 CES located within known miRNA binding sites from TargetScan v.7.2. Among

these, 466 (94%) are located in 3’ UTR (representing 37.7% of the total 3’UTR sites); however only

4 CES sites overlap with conserved binding sites for broadly conserved miRNAs (Additional file 1:

Figure S4). Broadly conserved miRNAs are defined as conserved across most vertebrates, usually

to zebrafish, while binding site conservation is defined by conserved branch length, with each site

type  having  a  different  threshold  for  conservation.  The  overlap  with  miRNA binding  sites  is

reported for each editing site in Additional file 2.

We used Spearman correlation test to analyze correlation in editing level changes across the 2,079

CES to find sites with co-regulated RNA editing. We found 270 significant relationships (FDR <

0.05) involving 361 sites. Correlations were generally low with only 58 sites with relationships

above 0.5 rho value. Correlations become stronger for close sites, especially below 50 bp distance,

with 30 out of 33 (91%) high rho (≥ 0.5) relationships located in this range. Considering the 100

middle level correlations (rho between 0.3 and 0.5), 95 are observed between sites within about 1

kb distance and 83 between sites in the 50 bp range. Interestingly, we also observed 5 relationships

between sites on different chromosomes. No strong negative correlations (rho < -0.5) were observed

(Additional file 1: Figure S5). Full results of correlation analysis are report in Additional file 3.

Genes influencing the total editing rate of CES

We performed regression analysis to identify genes whose expression is associated to the CES total

editing rate, calculated for each subject as the total sum of G-containing reads divided by the total

number of reads observed at all the 2,079 CES. To avoid biases due to the influence of different
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blood cell type compositions, we used normalized gene expression values provided in [31], where

the effect of cell type composition was regressed out from read counts using ridge regression. The

analysis revealed 4,719 genes associated with the CES total editing rate (FDR < 0.05). Enrichment

analysis on Gene Ontology biological processes (GO-BP) revealed a strong enrichment for genes

involved in immune system and interferon signaling (FDR < 1e-6, Figure 2a). Among significant

genes,  ADAR emerged  as  the  top  influencing  factor,  explaining  about  13%  of  the  observed

variability, while  ADARB1 showed no significant effect (Figure 2b). The influence of  ADAR was

similar on ALU (~10%) and non-ALU (~13%) sites, while ADARB1 remains not associated when

considering  the  two  groups  separately  (Additional  file  1:  Figure  S6).  ADARB2 gene  was  not

detectable in our gene expression data.  When the same analysis  was repeated removing  ADAR

effect, we obtained 1,122 genes associated with CES total editing rate (FDR < 0.05), including 376

with a strong association at FDR < 0.01 (Additional file 4). Enrichment analysis on GO-BP and

REACTOME  pathways  revealed  that  these  genes  mainly  impact  ribonucleoprotein  complex

biogenesis and RNA metabolism / processing (Figure 2c).

To assess possible interactions between ADAR enzymes and genes whose expression is associated

with  CES  total  editing  rate,  we  performed  network  analysis  using  data  on  protein-protein

interactions from STRING v.10, BioPlex and BIOGRID databases. Among the proteins encoded by

the 376 genes significantly associated with CES total editing rate (FDR < 0.01), 285 (76 %) were

connected to ADAR1 or ADAR2, directly or through a first-level interactor. The resulting network

includes a total of 415 proteins: 285 encoded by genes significantly associated with CES, 2 ADARs

proteins  and  128  added  partners  (first-level  interactors  which  connect  significant  proteins  to

ADARs, but are not encoded by significant genes) (Figure 3a). The observed fraction of ADARs-

connected proteins (285 out of 376) represents a significant enrichment compared to random groups

(empirical p-value < 1e-06, Figure 3b) and these proteins are strongly enriched for RNA binding

proteins (Figure 3c). Among the 285 genes significantly associated to CES total editing rate, we
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identified 9 genes encoding proteins with direct interactions with ADARs (Table 2). We estimated

the role of each node in this  network looking at  degree and betweenness values.  Degree value

accounts  for  the  number  of  interactions  (edges)  involving a  single  node in  the  network,  while

betweenness  is  a  measure  of  centrality  based  on  shortest  paths.  Nodes  with  high  values  of

betweenness  centrality  would  have  a  more  relevant  role  in  the  network  since  an  increased

proportion of the connections between distant nodes passes through them. Among ADARs proteins,

ADAR1 has  considerably  more  network  interactions  (0.077  betweenness  centrality,  72  degree

values) compared to ADAR2 (0.018 betweenness centrality, 29 degree). Among genes associated

with CES total  editing rate,  those encoding for proteins with a direct  interaction with ADARs,

ELAVL1,  RPA1 and IFI16 act as relevant hub nodes, with betweenness centrality values of 0.137,

0.028, 0.020, respectively (Figure 3d). Detailed network-based statistics are reported in Additional

file 5, together with adjusted p values for association with CES total editing rate. Since a direct

interaction of ADAR1 with IFI16 and RPA70 (encoded by RPA1) proteins has never been reported,

we  decided  to  experimentally  verify  these  results  by  co-immunoprecipitation  experiments  in

Epstein-Barr  Virus  (EBV)-immortalized  human B cell  lines  (B-EBV) (Figure  3e).   The  results

confirmed that IFI16 protein is an interactor of ADAR1, at least at low level, as indicated by the

clear band of interaction. Considering RPA70, the protein appeared in ADAR1 precipitate, but a

faint band with a similar molecular weight is also present in IgG precipitate, suggesting that these

results may need further investigation.

Influence of cell composition on the total editing rate of CES

To assess how changes in cell composition of whole blood can affect the observed editing levels, we

correlated the proportions of different blood cell types (as provided in [31]) with the total editing

rate of CES. Among the 7 cell types considered, 4 showed a significant correlation with total editing

rate, namely T helper (Th), monocytes, dendritic cells (DC) and neutrophils (Figure 4). We also
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found 4 cell types associated with ADAR expression (neutrophils, Th, Natural Killer and B) and 4

with  ADARB1 expression  (neutrophils,  monocytes,  Th and  B).  Intriguingly,  the  associations  of

ADAR and ADARB1 with cell types are always in opposite directions. See Additional File 1: Table

S2 for complete results. Overall, cell composition variables explain 19% and 53% of  ADAR and

ADARB1 expression variability, respectively (Additional file 1: Figure S7)

Biological factors possibly influencing editing levels

In order to identify possible biological factors influencing editing levels, we studied the correlation

of the 28 biological / pharmacological variables described in Additional file 1: Table S3 with CES

total editing rate and with the  ADAR expression level. Overall, 5 variables revealed a significant

correlation with CES total editing rate and 3 of them remained associated even after correction for

cell type composition, namely blood pressure medications, age and current Body Mass Index (BMI)

(Figure 5). We also found 5 variables significantly correlated with the expression level of either

ADAR (blood pressure medications, current and max BMI, age and sex) or ADARB1 (sex, time of

draw, thyroid medications, ate before and proton-pump inhibitors), even if the effect was generally

small after correction for cell composition (Additional File 1: Table S4 and Figure S7).

Principal component analysis

To better investigate the effect of cell type composition, biological / pharmacological variables and

ADAR expression and identify correlations between these variables and specific groups of CES, we

performed principal component (PC) analysis of CES editing levels. The cell composition was the

major factor influencing the observed editing levels, with all the 7 cell types significantly associated

with the first 5 PCs. Even if the variance explained by single components is generally low (PC1 ~

0.025),  our  data  also  revealed  11  biological  and  pharmacological  factors  with  a  significant
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correlation (p-value < 0.05) with one of the first 5 PCs after correction for cell type composition

(Figure 6 and Additional file 1: Table S5).

Age and BMI, together with blood pressure medications, smoke and alcohol, seem to be major

contributors to editing variability being associated with PC1. Also the time of blood draw seems to

have a small,  but consistent effect on different PCs. Few variables related to drugs assumption,

eating or exercise also emerged with significant association to lower PCs, even if drug intake may

be influenced by sex biased distribution (Additional file 1: Table S6).  ADAR expression level is

strongly associated with the first PC, confirming its pivotal role in shaping editing levels variability.

Instead, the second PC was associated to expression level for ADARB1, but not ADAR, suggesting a

selective action on a specific group of sites (Figure 6 and Additional file 1: Table S7). Correlation of

editing levels for single sites with the first 5 PCs are reported in Additional file 6.

Identification of genetic variants influencing CES total editing rate

We performed genome wide association analysis between genotyping data of 734,251 SNPs and

CES total editing rate to identify SNPs associated with editing levels in human blood (Figure 7a).  

After  variant  clumping,  our  analysis  identified  a  single  significant  locus  on  chromosome  7

(rs856554:  p-value  3.89e-8),  containing  the  lincRNA gene  LOC730338 (ENSG00000233539)

(Figure 7b and Table 3). This locus remains significantly associated with total editing rate after

correction for blood cell composition, even if at lower level (Table 3). The SNP rs856554 showed a

significant effect on CES total editing rate, while its influence on ADAR or ADARB1 expression was

not significant (Figure 7c). Association results for single SNPs with nominal p-value < 0.05 and for

loci after variants clumping are reported in Additional file 7. Among genotyped SNPs, there were

also 36 known ADAR eQTLs, these SNPs explained 5.5% of CES total editing rate variability (p

value 3.46e-4). Results of association with CES total editing rate for the known ADAR eQTLs are
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reported in Additional file 1: Table S8. The effect of the top associated ADAR eQTL (rs6699825) on

ADAR expression and CES total editing rate is represented in Additional file 1: Figure S8.

Since the function of LOC730338 is unknown, we investigated its possible role in RNA editing, by

testing its expression in blood and the effects of its over-expression on ADARs levels in B-EBV

cells  (Figure  7d).   LOC730338 resulted  to  be express  in  blood (data  not  shown) and its  over-

expression was associated with a significant down-regulation of ADARB1 mRNA (Not Transfected

cells:  1.00±0.09;  LOC730338  transfected cells:  0.65  ± 0.09; p < 0.05). As concerns ADAR, its

expression level was lower in transfected cells (0.85 ± 0.08) than in not transfected (1.00 ± 0.07),

but the difference was not statistically significant (p = 0.18).

This  result  indicates  that  LOC730338  might  have  a  limited  but  noteworthy  effect  on  ADAR

enzymes, and it suggests that SNPs inside LOC730338 could actually affect CES total editing rate

by differentially modulating ADAR level.
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Discussion

The process of A-to-I RNA editing has gained increasing attention in recent years, being implicated

in  multiple  aspects  of  human  physiology  and,  when  dysregulated,  in  human  diseases,  such  as

neurological disorders and cancer  [2,  9,  24].  Thanks to advances in next-generation sequencing

technology,  the  prevalence  and  dynamics  of  “RNA editome”  have  been  recently  characterized

across many tissues and developmental stages [18, 19, 21, 22]. Overall, more than 2 million editing

sites have been described so far, but most of them occur at very low levels in inverted repeat ALU

sequences and likely represent random editing with low impact on biological functions  [32]. To

focus only on those sites that are most likely biologically relevant in human blood, we first selected

consistently edited sites (CES) across our dataset of about 450 RNA-Seq samples, resulting in a

group of 2,079 sites with at least 5 % editing in at least 100 individuals.

As expected, the majority of these sites is located in inverted repeat ALU sequences [18, 19] that

facilitate the formation of a RNA double stranded secondary structure with high affinity for ADAR

editing enzymes. Interestingly, nearly 60% of detectable editing sites are located in the 3’UTRs and

37.7% of them fall within a known miRNA binding site. This suggests a potential extensive role of

editing process in modulating the miRNA mediated regulation of gene expression in blood [33–35].

Especially,  we  identified  four  CES  located  in  conserved  miRNA binding  sites  recognized  by

conserved miRNAs. Interestingly, three of them regulate the gene CNPY3, that might need further

investigation.

We  identified  22  editing  sites  located  in  coding  sequences:  12  resulting  in  synonymous

modifications and 10 inducing non-synonymous amino acid changes (re-coding sites). Among the

latter, there were well studied re-coding sites, such as the S/G site of  AZIN1 [8], the G/R site of

BLCAP [36], and the L/R site of NEIL1 [37]. Their editing levels range from high (75% of NEIL1)

to medium-low (14% and 16% for BLCAP and AZIN1, respectively), indicating that both edited and

unedited isoforms are needed for the proper function of the tissues. Interestingly, among the re-
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coding sites, we also detected sites with a high editing level, such as two sites edited at 70% on the

small subunit processome component gene (UTP14C). It is worthwhile notice that in blood cells 33

editing sites in 3’UTR and intronic regions reach an editing level of more than 90%. Even if we

adopted stringent filtering criteria and we observed good concordance in editing levels between our

data and REDIportal, we can not completely exclude that extremely high editing levels could results

from systematic analysis artifacts. These results prompt for further investigations to understand the

actual functional effect of these fully edited sites. Finally, it is of notice that nearby editing sites

might correlate in their editing level changes. Correlation is generally strong only for sites closer

than 50 nt, but we also detected 5 significant correlations (rho value 0.3 - 0.5) between editing sites

on different chromosomes, indicating the possibility of co-regulation mechanisms. Overall, RNA

editing process  in  human blood seems more  pervasive  than previously  reported,  prompting  for

further analyses to understand its biological effects also in healthy subjects.

Further, we investigated the association of genes expression with total editing rate of CES. ADAR

(encoding ADAR1 enzyme) resulted as the top associated gene and its expression explained about

13% of observed variability, while  ADARB1 (encoding ADAR2 enzyme) was not associated with

global  editing  level  even when ALU and non-ALU sites  were considered  separately.  ADARB2

(encoding ADAR3 protein) is not expressed in blood cells, excluding the possibility that it could

have a major negative effect on the editing levels in blood as observed for brain tissues [22]. Thus,

ADAR1 emerges as the major contributor to editing process in blood, as already reported for human

B cells and other tissues [22, 38], while other ADAR enzymes seem to have only a limited effect.

Overall, association analysis revealed 4,719 genes that might have a potential effect on the editing

process, strongly enriched for genes involved in the immune system and interferon signaling. This

supports the association between genes involved in the inflammatory processes and A-to-I editing in

blood cells. Indeed, ADAR1 is present in two main isoforms, a constitutive p110 and an interferon

inducible p150 form that is active under an inflammatory response [39]. Moreover, RNA editing,
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especially ADAR1 activity, is important to modulate innate immunity [40–42]. Modification in the

global editing level has been reported after inflammation in mouse and in vitro studies using several

inflammatory mediators [43].

When the effect of  ADAR expression is removed from our analysis,  new genes associated with

global  editing  level  emerged.  These  genes  are  mainly  involved  in  RNA  metabolism  and

ribonucleoprotein  complex processing,  confirming what  has  recently been found from a global

analysis of GTEx data [22] and strengthening the role of RNA editing complex in RNA processing

[38]. Associated genes after ADAR correction are strongly enriched for genes encoding for potential

ADARs interactors, as revealed by network analysis using data from protein-protein interaction

databases. Moreover, associated genes interacting with ADARs mainly encode for RNA binding

proteins,  as  revealed  by  enrichment  analysis,  suggesting  that  they  could  be  involved  in  RNA

recognition or assembly of the editing complex. Network analysis showed that ADAR1 is the main

editing  enzyme involved in  these  interactions,  confirming  its  important  role  in  blood  samples,

compared  to  the  other  editing  enzymes.  We  also  identified  9  associated  genes  whose  protein

products have a direct interaction with ADARs. Among them, proteins encoded by ELAVL1, RPA1

and IFI16 emerged as relevant hubs in the network, aggregating most of the interactions directed to

ADARs  proteins.  The  stabilizing  RNA-binding  protein  human  antigen  R  (HuR),  encoded  by

ELAVL1,  has  been  recently  proposed  as  an  ADAR1  interactor  involved  in  the  regulation  of

transcripts stability in human B cells [30, 38]. The observed association between the global editing

level  and  the  ELAVL1  expression  strengthens  a  general  role  of  RNA editing  in  RNA stability

through the modulation of expression of genes involved in RNA metabolism. 

Until today,  RPA1 and  IFI16 have never been directly involved in ADARs activity. Our results

suggest that they might represent new interesting partners of ADAR1 and that they might help in

understand the function and regulation of this key editing enzyme, but larger studies in different cell

populations are required to fully understand the impact of these interactions. RPA1 gene encodes the
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largest subunit of the heterotrimeric Replication Protein A (RPA) complex, which binds to single-

stranded  DNA,  forming  a  nucleoprotein  complex  that  is  involved  in  DNA replication,  repair,

recombination, telomere maintenance and response to DNA damage [44]. ADAR1 presents Z-DNA

binding domains, which are not present in the other editing enzymes [45], helping to direct ADAR1

to active transcription sites and to interact with DNA. Thus,  the interaction with RPA1 protein

might broaden ADAR1 activity also in the field of DNA repair and maintenance. IFI16, interferon

gamma inducible protein 16, encodes a member of the HIN-200 (hematopoietic interferon-inducible

nuclear antigens with 200 amino acid repeats) cytokines family. This protein interacts with p53 and

retinoblastoma-1 and localizes to the nucleoplasm and nucleoli [46], where ADAR enzymes are also

present. Both IFI16 protein and ADAR1 were associated with response to viral DNA and regulation

of immune and interferon signaling responses [46, 47].

RNA editing is known to be a strong tissue-dependent event [22]. Moreover, it has been suggested

that the extent of RNA editing may be different among cell types even in the same tissue [23, 48].

In particular, RNA editing events were showed to distribute differently among different cell types in

the brain [23]. For this reason, it has been proposed that changes in cellular composition might be

responsible for alterations observed in the tissue-wide editing patterns in pathological conditions

[49]. In this study, we investigated the relationship between the proportion of different blood cell

types (predicted from gene expression data) and the total editing rate of CES. Among the seven

different cell types considered, CES total editing rate was positively correlated with the percentage

of neutrophils, monocytes, T helper and dendritic cells. These correlations seem mostly mediated by

the  differential  expression  of  the  two  ADARs  enzymes  in  the  cell  populations.  The  positive

correlations observed in neutrophils, monocytes and dendritic cells seem mediated by ADAR, whose

expression is positive correlated with the percentage of these cell types in blood. Whereas in T

helper, editing levels seems mainly mediated by ADARB1, whose expression is strongly correlated

with  the  percentage  of  T helper  in  blood.  This  result  is  also corroborated  by the  PC analysis,
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suggesting that the two enzymes have different targets in blood cells.  ADAR expression is mainly

associated with the PC1, supporting its pivotal role in shaping editing levels variability, whereas

ADARB1 with  the  PC2.  Therefore,  we could  hypothesize  a  different  role  of  these  enzymes  in

specific cell types (i. e.: T Helper and Natural Killer) and on specific groups of genes. In particular,

the specific role of  ADARB1 in T helper deserve further analysis. Overall, this data indicates that

cellular composition of the sample should be taken into account carefully to avoid biased results

when  analyzing  editing  variations  among  different  groups,  such  as  in  case  /  control  studies.

However, in our study the amount of the different cells were inferred from expression data [31] and

not directly assessed and future replications of these results using direct analysis of purified cells

will complete the picture of cell specific editing regulation.

Recently,  global  editing  level  has  been investigated  across  tissues  and in  different  species  [21,

22] and has also been correlated with the genetic background of human population  [30, 50] and

with common disease variants [29]. However, the published studies lack a detailed characterization

of samples that allows assessing the role of biological and environmental factors.

Relying  on  on  the  dataset  from  [31],  containing  several  demographic,  biological  and

pharmacological variables, we also investigated the potential impact of these external factors on

RNA editing process genome-wide. Five variables showed significant correlations with CES total

editing rate, namely blood pressure medications, sex, age and body mass index (BMI, current and

max). Except for sex, their effect on editing levels seems mainly driven through modulation of

ADAR expression. Given the strong correlation observed between cell composition, total editing

rate and ADARs expression, it is possible that these variables may exert their effect by modulating

the proportion of different cell types. However, blood pressure medication, age and current BMI

remain correlated also after correction for cellular composition, indicating that they may have a

direct effect on the editing levels. Correlation between age and editing was already reported during

brain development both in rat  [51] and in primates  [52] and our data strengthens this correlation
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also outside the central nervous system. Finally, and for the first time, our study correlated CES

editing levels with BMI and blood pressure medications, shedding light on new medical areas in

which editing regulation may be involved. A more detailed analysis using principal components of

editing levels revealed eleven biological and pharmacological factors significant correlated with

PCs even after cell type correction. Age and BMI, together with blood pressure medications, smoke

and alcohol, seem to be relevant contributors to editing variability being associated with PC1. 

Finally,  we analyzed genotyping  data  to  identify  SNPs  associated  with  CES total  editing  rate.

Known ADAR eQTLs were among the SNPs with the best association p-values and, taken together,

they explain about  5% of  the observed variation in  global  editing.  This  data  indicates that  the

genetic background affects total editing level by modulating ADAR expression level and it must be

taken into account when investigating editing regulation in disease studies. A significant association

with global editing level in blood was observed for a locus mapping on chromosome 7. This locus

contains LOC730338, a gene encoding for a long intergenic noncoding RNA (lincRNA). lincRNAs

are transcripts longer than 200 nucleotides that have been identified in mammalian genomes mainly

by  bioinformatics  analysis  of  transcriptomic  data.  Although  thousands  of  lincRNAs  are  now

validated, the exact function  remains unknown for most of them. lincRNAs appear to contribute to

the control of gene expression and have a role in cell differentiation and maintenance of cell identity

[53]. In C. elegans, it has been recently reported that lncRNAs are extensively down-regulated in

the absence of ADARs as a result of siRNA generation [54]. The authors suggest that ADARs can

interfere with the generation of siRNAs by endogenous RNAi and promote lncRNA expression.

LOC730338 expression cannot be measured in our dataset since it lacks a poly-A tail; therefore, it

was not possible to assess if the SNPs associated to total RNA editing rate in the locus are eQTLs of

LOC730338.  However,  to  go  further  in  understanding  the  role  of  LOC730338  on  the  editing

reaction, we overexpressed its RNA in a lymphoblastic cell line and we showed that it significantly

down-regulates ADARB1 mRNA expression and partially ADAR mRNA. Taken together expression

18

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 3, 2018. ; https://doi.org/10.1101/254045doi: bioRxiv preprint 

https://doi.org/10.1101/254045
http://creativecommons.org/licenses/by-nc/4.0/


results indicate, for the first time, a possible role of  LOC730338 in modulating the expression of

ADARs  enzymes.  Further  experimental  analysis  will  be  required  to  identify  actual  eQTLs for

LOC730338 within the associated genomic locus and understand their possible impact on editing

dynamics.

Conclusion

This study provides a detailed picture of the most consistent RNA editing sites and their variability

in human blood. Our results confirm the pivotal role of ADAR1 in the regulation of RNA editing

process in blood and suggest new genes, genetic variants, biological and environmental variables

that are involved in the RNA editing process. Future studies will be required to confirm and clarify

their role and their relationship with the ADAR family enzymes.
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Methods

Description of data

RNA-Seq raw data (aligned reads) was obtained from NIMH repository, NIMH Study 88 / Site 621,

dataset 7 (Levinson RNA Sequencing Data). The original data and samples details are described in

[31]. This dataset includes poly(A)+ RNA sequencing and genotyping data from blood samples of

922 subjects, 463 MDD patients and 459 control subjects. The present study focuses only on the

459 controls. Data are provided as aligned reads on hg19 human genome assembly with transcript

mapped to RefSeq canonical dataset. Samples are sequenced with a median of 65.6 M reads (31.6 -

258.3), resulting in a median of 14,289 (11,660 - 15,137) detectable genes addressed by at least 10

reads (Additional file 1: Figure S9). Only the 14,961 genes covered with at least 10 reads in at least

100 subjects were considered in the present study for association with editing levels.

A detailed phenotypic description including demographic, pharmacological and biological variables

is also included for each subject. Among them, we considered only those relevant in at least 30

subjects and not related to MDD clinical evaluation or socio-economic variables. The 28 variables

considered in this study are reported in Additional file 1: Table S2. Moreover, each experiment is

annotated with a rich set of technical variables, representing quality metrics of RNA sequencing and

characteristics  of  the  blood  sample.  These  also  includes  10  cell  composition  variables,  which

represent  proportion  of  10  different  cell  types  as  predicted  from  gene  expression  data  (see

supplementary methods in the original  paper  [31]).  In this  study, we used the normalized gene

expression data provided in  [31], determined as residuals of ridge regression of log-transformed

read counts  with 35 technical  and cell  composition variables.  In this  way our analysis  of gene

expression would not be affected by technical or cell composition biases.

Assessment of editing levels and selection of consistently edited sites

20

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 3, 2018. ; https://doi.org/10.1101/254045doi: bioRxiv preprint 

https://doi.org/10.1101/254045
http://creativecommons.org/licenses/by-nc/4.0/


The  original  aligned  reads  were  de-duplicated  using  Picard  and  the  editing  levels  were  then

determined genome-wide from BAM files using REDITools v.1.0.4  with the following parameters:

-t25 -m20 -c10 -q25 -O5 -l -V0.05 -n0.05. Only sites with a minimum coverage of 10 reads were

considered, otherwise their editing level was considered as missing.

To reduce the chance of measuring false-positive editing sites, we selected only sites that met the

following criteria: i) sites reported within RefSeq genes by RADAR database [27] and never seen as

Single Nucleotide Variants in the human population according to 1000G phase3 and ExAC v.0.3.1;

ii) sites occurring in regions were incorrect alignments could have generated artifacts in editing

detection were filtered out: known pseudogenes from GENCODE v25; segmental duplication with

≥ 99% identity; single exon genes, that are often retrotransposed genes with high similarity to the

corresponding parent gene.

The filtered dataset resulted in 709,184 sites, representing > 75% RADAR editing sites occurring in

blood expressed genes. Finally, to provide a picture of most biologically relevant editing events in

blood, we decided to focus only on sites with detectable editing levels (at least 5%) in at least 100

subjects (~20% of total individuals) for subsequent quantitative analysis, resulting in a final dataset

of 2,079 sites (consistently edited sites, CES).

Comparison with REDIportal dataset and overlap with miRNA binding sites

We compared editing levels detected in CES from blood samples with similar data obtained from

REDIportal [26]. Editing levels were retrieved directly from REDIportal database, containing RNA

editing values calculated from 55 body sites of 150 healthy individuals from GTEx project. Mean

editing levels of our 2,079 CES were compared with corresponding data reported for blood tissue in

REDI  portal.  To  assess  concordance  between  the  two  datasets,  we  calculated  concordance

correlation coefficient between mean editing values detected in our data and reported in REDIportal

blood tissue for the 2,003 overlapping sites.
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To  assess  the  overlap  between  identified  CES  and  miRNA binding  sites,  we  computed  the

intersection  between  CES  and  known  miRNA binding  sites  from TargetScan  v.7.2  [55] using

bedtools.  The  analysis  was  performed  separately  for  broadly  conserved,  conserved  and  non-

conserved  miRNAs and miRNA binding sites, as defined by TargetScan.

Correlation between editing levels across sites

Using Spearman correlation test, we analyzed correlation of editing levels across the 2,079 CES.

Each site was analyzed against all other sites for a total of 4,322,241 tests. FDR correction modified

as in [56] was used to account for multiple tests with related variables. Corrplot R package v.0.84

was used to analyze correlation matrices and generate correlation plots.

Association between CES total editing rate and gene expression

To investigate which genes could influence the editing process, we used robust linear regression

(robust v.0.4 R package) to assess the association between gene expression levels and the CES total

editing rate in each subject. CES total editing rate for each subject was calculated as in Equation 1.

The sum of number of G-containing reads (Gi) observed at all CES (m), divided by the sum of total

reads observed (Ci) at all CES.

CES total editing rate was determined also for Alu sites and non-Alu sites, separately. As gene

expression levels, we used normalized values provided in  [31], where the effect of 35 technical

variables,  including  cell  type  composition,  were  regressed  out  from  read  counts  using  ridge

regression. In this way, the effect of these variables do not influence subsequent analyses. To choose

the  set  of  phenotypic,  biological  and  pharmacological  variables  to  include  as  covariates  in

regression analyses, a stepwise model selection by AIC was performed (using stepAIC from MASS
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R package v.7.3-5). The 6 included variables are indicated in Additional file 1: Table S1. Moreover,

since there was a correlation between the variance observed at each editing site and its sequencing

coverage for sites with coverage below ~ 40 X (Additional file 1: Figure S10), the log2 of reads

count was also included as covariate in the analysis. The strength of the association was determined

by ANOVA test comparing the null (‘background’) model that includes only the set of covariates

with the full model (covariates plus normalized expression levels). FDR was used to correct for

multiple  tests.  Subsequently,  association  analyses  were repeated  including  ADAR expression  as

additional covariate, to remove the effect of ADAR expression.

Gene set enrichment analysis and gene network analysis

The impact on biological functions and cellular pathways of genes found associated with CES total

editing  rate  was  investigated  using  hypergeometric  test.  We  tested  the  over-representation  of

pathways among the subset of significant genes at 5% FDR level compared to all expressed genes.

Enrichment analysis was performed separately for the following sets from MSigDB v.6.0: cellular

pathways from REACTOME and the three main Gene Ontology categories (Cellular Components,

GO:CC;  Biological  Process,  GO:BP;  Molecular  Function,  GO:MF).  To  verify  if  the  proteins

encoded by these genes could interact with ADAR proteins, the major enzymes involved in RNA-

editing,  we  explored  human  protein-protein  interaction  (PPI)  data.  First,  we  created  a

comprehensive human PPI network combining data from 3 different sources: BioPlex 2.0  [57],

BioGRID 3.4.15 [58] and STRING 10.0 [59]. For the BioGRID dataset, only interactions marked as

physical  were  taken  in  to  account,  whereas  for  the  STRING  dataset  only  interactions  with  a

combined score above 400 and physical/biochemical evidences were considered. Proteins of the

ubiquitin gene family were removed from the network, resulting in a final PPI dataset with 22,913

proteins (nodes) and 833,686 interactions, containing 108 direct interactors of ADARs (ADAR1,

ADAR2 and ADAR3 proteins). Among the 376 genes strongly associated with global editing level
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(FDR < 0.01), we assessed the number of encoded proteins interacting with ADAR1, ADAR2 or

one of their first neighbors. To test the significance of these overlap, we performed a random test on

the overall set of 14,961 genes addressable in our RNA-Seq data (background genes). We randomly

sampled among background genes 1 million groups of N genes (N = 376) and for each simulated

group, we counted how many elements interact directly with ADARs or one of their neighbors.

Empirical p-value was then calculated as the number of test resulting in an equal or higher number

of interactors. Cytoscape v.3.4.0 [60] was used to visualize the PPI network and calculate network

related statistics.

Cell Culture and Co-immunoprecipitation experiments

Epstein-Barr Virus (EBV)-immortalized human B cell lines (B-EBV) were maintained at 37°C, 5%

CO2,  in  RPMI 1640 Medium (Thermo Fisher  Scientific),  1% Sodium Pyruvate (Thermo Fisher

Scientific), 1% Non-Essential Amino Acid (NEAA, Thermo Fisher Scientific), 15% Fetal Bovine

Serum (FBS,  Thermo Fisher  Scientific),  2mM Glutamine  (Thermo Fisher  Scientific),  30  U/ml

penicillin (Sigma-Aldrich). B-EBV were lysed by sonication in immunoprecipitation buffer (Tris-

HCl 50mM pH 7.4, NaCl 300mM, 1% Triton X-100, Protease inhibitors Roche® 1x). The extracts

were added to 25µl of Protein G Dynabeads ™ (10007D Invitrogen ® by Thermo Fisher Scientific)

coupled with 2µg of mouse anti-ADAR1 (Santa Cruz, cod. sc-73408). After 2h of incubation at 4°C

on a rotating wheel, 5 washes with immunoprecipitation buffer were performed. The elution step

was carried out with 40µl of Sample buffer 2x and DTT 10x; then the samples were denatured at

95°C for 10 min for the subsequent Western Blot procedure.

During the immunoblot step the following primary antibodies were used 1h at RT: mouse anti-

ADAR1 (Santa Cruz, cod. sc-73408) 1:300 in 5% non-fat dry milk in TBST 0,1%; mouse anti-

IFI16 (Abcam, cod. Ab55328) 1:500 in 5% non-fat dry milk in TBST 0,1%. The incubation with

24

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 3, 2018. ; https://doi.org/10.1101/254045doi: bioRxiv preprint 

https://doi.org/10.1101/254045
http://creativecommons.org/licenses/by-nc/4.0/


secondary antibody was performed 1h at RT using the Alkaline Phosphatase (AP)-conjugated anti-

mouse secondary antibody 1:10000 in TBST 0,1% (Promega, cod. S372B).  

Identification of cell composition variables correlated with editing levels and ADARs expression

To investigate if cell composition variables could influence editing levels in blood, we considered

the 10 cell composition variables described in [31], which represent proportion of 10 different cell

types  as  predicted  from gene  expression  data.  After  filtering  out  variables  with  less  than  5%

observations (less than 20 subjects), we studied associations between CES total editing rate and 7

cell composition variables (see Additional file 1: Table S2). For these variables, we also analyzed

their  correlation  with  ADAR and  ADARB1 gene  expression  levels.  Pearson’s  product-moment

correlation test was used to assess associations. 

Identification of biological factors correlated with editing levels and ADARs expression

To investigate which biological  and pharmacological variables could influence editing levels  in

blood, we studied associations between the 28 biological / pharmacological variables described in

Additional  file  1:  Table  S3  and  CES total  editing  rate  across  subjects,  as  well  as  ADAR and

ADARB1 expression  level.  Kruskal-Wallis  test,  Mann-Whitney-Wilcoxon  test  and  Pearson’s

product-moment  correlation  test  were  used  to  assess  association  for  categorical,  binary  and

continuous variables, respectively. We also estimated their effect on CES total editing rate after

adjusting for cell composition using the LRT test. This test calculates the impact of a variable of

interest on CES total editing rate by comparing a background model containing only covariates,

with a full model containing also the variable of interest. In the background model we included only

the 4 cell  composition variables  resulted associated  to  CES total  editing  rate  (DC, monocytes,

neutrophils  and  Th;  see  Additional  file  1:  Table  S2),  while  the  full  model  included  also  the

biological variable of interest. For  ADAR and  ADARB1 expression, we also estimated the overall
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effect of the 7 cell composition variables and of biological variables showing an association with

the two genes. For each ADAR and ADARB1, we evaluated the influence of different set of variables

using 2 different linear regression model: one including the 7 cell composition variables and the

other including also the biological variables. The difference between the two models was assessed

using LRT test,  to  investigate  the overall  effect  of  biological  variables  beyond changes  in  cell

composition.

Principal component analysis on editing sites

To further investigate the effect of cell composition, biological and pharmacological variables on

editing levels in blood, we studied their correlation with the Principal Components of editing levels

(PCs). To compute PCs, the missing values of the sites were first imputed using a nonparametric

imputation method based on random forest (missForest R package v.1.4 [61]). The PCs were then

determined on the complete data using the prcomp R package. To identify the number of PCs to

account for, we evaluated the percentage of explained variance by the top 30 PCs, and identified the

5th component as the point at which the explained variance plateaus.

Pearson’s  product-moment  correlation  test  was  used  to  assess  association  for  cell  composition

variables.  The association for biological /  pharmacological variables was estimated using linear

regression model corrected for the 4 cell composition variables resulted associated to CES total

editing rate (DC, monocytes, neutrophils and Th; see Additional file 1: Table S2). To identify which

editing sites were most correlated with each PC, we analyzed the loadings, that could be interpreted

as correlation coefficient between the original variables and components. Moreover, given a high

number of sites and low loading values, to deepen the role of each site in the computation of the

PCs, we performed the Pearson correlation test. We considered a “moderate” correlation when its

absolute  value  was between 0.3 and 0.5 and the  test  passed the Bonferroni  threshold,  while  a
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“weak” correlation was considered when the correlation absolute values ranged between 0 and 0.3

and the respective p-values were significant for Bonferroni correction.

Association study for SNPs and global editing levels

To identify SNPs associated to global editing level, we analyzed genotyping data and global editing

levels in the 459 human blood samples. Starting from genotypes provided in the original dataset

[31],  we  performed  quality  check  removing  samples  with  more  than  1%  missing  genotypes,

excessive heterozigosity and PI_HAT > 0.18. Then we removed SNPs with more than 5% missing

genotypes, SNPs strongly deviating from Hardy-Weinberg equilibrium (fisher test p-value < 1e-6)

and SNPs with a minor allele frequency below 0.01. The final dataset contained 448 individuals and

734,251 SNPs. We used plink v.1.9 linear association analysis with additive model, including as

covariates the same 7 variables used for analysis of gene expression (see above, Additional file 1:

Table S1) and the first five PCs of genotyping. To identify significant loci associated to global

editing level,  we performed variant  clumping based on the association  results,  using a  500 kb

window and 0.5 R2 threshold. In this way all SNPs in a 500 kb window and with R2 ≥ 0.5 are

grouped together around the index SNP, that is the SNP with the lower association p-value. We

repeated association analysis including as covariates also the 4 cell composition variables associated

to CES total editing rate (DC, monocytes, neutrophils and Th). After association analysis, we used

GCTA [62] to evaluate the impact of ADAR known eQTLs on observed global editing levels, using

the same set of covariates included for the plink association analysis. This analysis was performed

including the 36 known ADAR eQTLs present in our genotyping data.

Transient transfection of   LOC730338   and ADAR enzymes expression analysis  

pTwist-CMV vector containing LOC30338 sequence between NotI and BamHI restriction enzymes,

was acquired from Twist Bioscience and used for transient expression of  LOC30338 in B-EBV
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cells, using lipofectamine 2000 (Thermo Fischer). B-EBV cells were seeded at 100.000 cell/cm2

density in a 6-wells plate. The transfection was performed in Opti-MEM (ThermoFisher Scientific)

with a DNA:lipofectamine 1:3 ratio, following manufacturing instructions. Transfected cells were

incubated at 37°C for about 24h. After transfection, proteins and RNA were extracted from the cells

for further analyses. RNA expression pattern of ADAR1 and ADAR2 was analyzed by means of an

Applied Biosystems 7500 Real-time PCR system (Applied Biosystems, Foster City,  CA, USA).

PCR was carried out using TaqMan Universal PCR Master Mix (Applied Biosystems). 25 ng of

sample  were used  in  each real-time PCR reaction  (TaqMan Gene Expression  Assay id  probes:

ADAR (Hs01017596_m1); ADARB1 (Hs00953724_m1) Applied Biosystems). The expression ratio

of target genes in treated sample groups, compared to control group, was calculated using the Ct

method,  using  HPRT (Hs99999909_m1)  and  GAPDH (Hs99999905_m1)  geometric  means  as

reference.

List of abbreviations

CES:  Consistently  edited  site(s);  GO:MF:  Gene  Ontology  Molecular  Function;  GO:BP:  Gene

Ontology Biological Processes; GO:CC: Gene Ontology Cellular Component: eQTL: expression

Quantitative Trait Locus.
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Tables

Table 1. Editing levels detected for the 10 recoding sites identified in human blood

Site id
(hg19)

Gene Strand
Aa

change
Alu

Editing
Minimum

Editing
Mean

Editing
Maximum

chr3_49398423 RHOA - Lys->Arg yes 0.19 0.33 0.64

chr4_2835556 SH3BP2 + Arg->Gly no 0.05 0.08 0.16

chr4_2940026 NOP14 - Asn->Ser yes 0.1 0.23 0.56

chr4_77979680 CCNI - Arg->Gly no 0.05 0.08 0.19

chr8_103841636 AZIN1 - Ser->Gly no 0.07 0.16 0.45

chr13_52604264 UTP14C + Ser->Gly no 0.24 0.64 1

chr13_52604880 UTP14C + Gln->Arg no 0.45 0.85 1

chr15_75646086 NEIL1 + Lys->Arg no 0.27 0.73 1

chr16_3292200 MEFV - Stp->Trp yes 0.05 0.16 0.36

chr20_36147563 BLCAP - Gln->Arg no 0.05 0.14 0.33

Table 2. Network based statistics for the 9 ADARs direct partners significantly associated to global 

editing levels (adjusted p < 0.05)

Gene
Betweenness

centrality
Degree

Association
adjusted p

Associated genes
rank

ELAVL1 0.137 168 0.0312 840

RPA1 0.028 96 0.0140 496

IFI16 0.020 66 0.0055 246

HNRNPUL1 0.007 39 0.0004 10

SUZ12 0.007 52 0.0022 110

SDAD1 0.002 19 0.0253 713

THOC1 0.002 17 0.0184 587

USP39 0.002 20 0.0190 596

HDLBP 0.001 15 0.0400 986
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Association adjusted p are calculated as FDR corrected p values from robust regression of global 

editing level and gene expression. Associated genes rank: the rank position among top associated 

genes is also reported.

Table 3. Top 4 SNPs associated to CES total editing rate define a locus on chromosome 7

SNP Chr Position A1 Beta
p value

(cell corrected p)
r2 Gene (distance)

rs856554* 7 46,760,129 G 0.00377
3.90 x 10-08

(3.29 x 10-05)
-

LOC730338]
(23.4 kb)

rs856589 7 46,734,307 A 0.00345
8.37 x 10 -08

(4.38 x 10-05)
0.73 [LOC730338]

rs6463347 7 46,780,614 C 0.00350
1.34 x 10-07

(8.09 x 10-05)
0.76

LOC730338]
(43.9 kb)

rs856565 7 46,721,854 A 0.00347
2.53 x 10-07

(2.58 x 10-04)
0.88

[LOC730338
(5.6 kb)

For each SNP, the table reports distance from LOC730338 gene. Gene name within square brackets 

indicate SNPs located within the gene, while single bracket indicates 3’ distance. Index SNP is 

marked with *. r2 with the index SNP is reported for other SNPs in the locus. Genomic coordinates 

refer to hg19 genome assembly.
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Figure legends

Figure 1. Distribution of 2,079 consistently edited sites (CES) analyzed in the study

(a) Distribution of the 2,079 CES within ALU regions and (b) based on functional classification. (c)

Density plot representing overall distribution of editing levels. (d) Density plots of editing levels for

different editing site categories and ALU/non-ALU sites.

Figure 2. Association between gene expression and CES total editing rate

We analyzed association between CES total editing rate and gene expression for 14,961 human 

genes. (a) Gene set enrichment analysis by hypergeometric test on GO-BP categories and 

REACTOME pathways revealed that associated genes are mainly involved in immune system 

response mediated by interferon I and alpha / beta. (b) When we analyze distribution of CES total 

editing rate and ADAR gene expression, ADAR expression levels explains ~ 13% of observed 

variability. No significant effect is observed for ADARB1 expression. ADAR and ADARB1 

expression levels are reported as residuals of ridge regression with technical covariates (see 

description of data in methods section). The graphs report adjusted p-value and R2 value from 

robust regression analysis. (c) The 1,122 genes associated to CES total editing rate after removing 

ADAR expression effect were enriched for genes mainly involved in ribonucleoprotein and RNA 

processing.

Figure 3. Genes associated with CES total editing rate are enriched for ADAR interactors

(a) Reconstructed PPI network including ADARs and proteins encoded by best genes significantly

associated  with  global  editing  levels  (FDR  <  0.01).  Among  these  proteins,  we  observed  285

potential ADARs interactors, including 9 direct partners of ADARs proteins. (b) Boxplot of number

of  ADARs  interacting  genes  observed  in  1M  random  simulations.  The  observed  number  of
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interactions (285) resulted in empirical p-value < 1e-6. (c) ADARs interactors are strongly enriched

for  RNA binding  proteins  in  GO-MF  categories.  (d)  Distribution  of  degree  and  betweenness

centrality values among network nodes are represented by violin plots. ADAR1 protein has a major

role (higher values) among ADAR proteins. Among ADARs direct partners,  ELAVL1,  RPA1 and

IFI16 showed high values of degree and betweenness centrality, suggesting a central role in the

network.  (e)  ADAR1 interaction  with  RPA70  (coded  by  RPA1)  and  IFI16  determined  by  co-

immunoprecipitation. After immunoprecipitation with ADAR1 antibody, western blot for IFI16 and

RPA70 are reported. For a better discrimination two times of exposure are reported in the figure.  

Figure 4. Impact of cell composition on CES total editing rate and ADAR / ADARB1 expression

Our analysis revealed strong associations with CES total editing rate for 4 cell type variables (a), 

representing proportion of neutrophils, monocytes, dendritic cells (DC) and T helper (Th). Specific 

cell variables resulted significantly associated also to ADAR (b) and ADARB1 (c) expression.

Significance level (p) and correlation coefficient (r) are reported in each plot based on Pearson’s 

product-moment. Only non-zero observations are plotted.

Figure 5. Impact of biological / pharmacological factors on CES total editing rate and ADAR / 

ADARB1 expression

Our analysis revealed significant associations with CES total editing rate for blood pressure 

medication, BMI current, Age and Sex (a). Specific biological variables resulted significantly 

associated also to ADAR (b) and ADARB1 (c) expression. Significance level of association after 

correction for cell composition is reported (p (cell)) is reported in each plot based on Mann-

Whitney-Wilcoxon or Pearson’s product-moment correlation test for binary and continuous 

variables, respectively. For continuous variables the Pearson correlation coefficient (r) is also 

reported.
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Figure 6. Impact of cell composition, biological and pharmacological factors on PCs of editing 

levels

The heathmap represents strength of association between the first 5 principal components of CESs 

(PCs) and ADAR / ADARB1 expression (upper panel), 7 cell composition variables (middle panel) 

and 11 biological / pharmacological variables (lower panel). Only factors showing significant 

association with at least one of the first 5 PCs are represented. Significant p values (< 0.05) are 

colored in yellow-red scale, while p value > 0.05 are represented in grey scale.  Age, BMI, blood 

pressure medications, smoke and alcohol all associate with PC1. Also time of blood draw seems to 

have a small, but consistent effect, on different PCs. For each PC, variance explained is represented 

by the bar plot in the upper side.

Figure 7. Association study for SNPs and CES total editing rate

(a) Manhattan plot representing the association between 573,801 SNPs and CES total editing rate, 

where black line represents threshold for the top 100 SNPs (p value ~ 10e-4). (b) Detailed view of 

genotyped SNPs located in the region at chromosome 7 that showed significant association with 

CES total editing rate. Known GWAS associations for human phenotypes from GRASP database 

are reported in the lower panel. (c) The top associated SNP (rs856554) showed a significant effect 

on global editing level, while no significant correlation was observed with ADAR and ADARB1 

expression. (d) Real-time expression analysis of ADAR and ADARB1 mRNA after B-EBV 

transfection of LOC730338. Not transfected cells were used as control samples. Data are reported as

2-ct (expression level of control sample is equal to 1) and represent mean values and standard 

errors obtained from at least 3 independent evaluations. Unpaired t test was used for statistical 

analysis (*p< 0.05). 
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Additional materials

Additional file 1 (pdf). Supplementary tables and figures

Supplementary tables S1-S8. Supplementary Figures S1-S8

Additional file 2 (xls). Detailed statistics for the 2,079 editing sites considered in the study and

overlap with miRNA binding sites

Additional file 3 (xls). Complete results of correlation analysis for the 2,079 CES.

Additional file 4 (xls). Complete results of robust regression between CES total editing rate and

gene expression levels where the effect of ADAR expression was removed.

Additional file 5 (xls). Node properties in the protein-protein interaction network including proteins

encoded by genes associated to CES total editing rate (FDR<0.01) and interacting with ADARs or

one of their first neighbors.

Additional file 6 (xls). Association of editing sites with principal components of editing.

Additional file 7 (xls). Results of genome-wide association study for CES total editing rate.

Association results for single SNPs with nominal p-value < 0.05 and loci identified after variant

clumping are reported.
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