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Abstract

Background

A-to-I RNA editing is a co-/post-transcriptional modification catalyzed by ADAR enzymes, that
deaminates Adenosines (A) into Inosines (I). Most of known editing events are located within
inverted ALU repeats, but they also occur in coding sequences and may alter the function of
encoded proteins. RNA editing contributes to generate transcriptomic diversity and it is found
altered in cancer, autoimmune and neurological disorders. Emerging evidences indicate that editing
process could be influenced by genetic variations, biological and environmental variables.

Results

We analyzed RNA editing levels in human blood using RNA-seq data from 459 healthy individuals
and identified 2,079 sites consistently edited in this tissue. As expected, analysis of gene expression
revealed that ADAR is the major contributor to editing on these sites, explaining ~13% of observed
variability. After removing ADAR effect, we found significant associations for 1,122 genes, mainly
involved in RNA processing. These genes were significantly enriched in genes encoding proteins
interacting with ADARs, including 276 potential ADARs interactors and 9 ADARs direct partners.
In addition, our analysis revealed several factors potentially influencing RNA editing in blood,
including cell composition, age, Body Mass Index, smoke and alcohol consumption. Finally, we
identified genetic loci associated with editing levels, including known ADAR eQTLs and a small
region on chromosome 7, containing LOC730338, a lincRNA gene that appears to modulate
ADARs mRNA expression.

Conclusions

Our data provides a detailed picture of the most relevant RNA editing events and their variability in
human blood, giving interesting insights on potential mechanisms behind this post-transcriptional

modification and its regulation in this tissue.
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Background

RNA editing is a co-/post-transcriptional process based on the enzymatic deamination of specific
adenosines (A) into inosines (I). Since inosine has similar base-pairing properties to guanosine, it is
read as guanosine by both splicing and translation machineries, thus generating different RNA
molecules from those coded by DNA [1]. RNA editing contributes to the diversification of the
information that is encoded in the genome of an organism, thereby providing a greater degree of
complexity. Currently, the conversion of A to I is thought to be the most common RNA editing
process in higher eukaryotic cells [2].

RNA editing is catalyzed by adenosine deaminase enzymes (ADARSs) [3, 4]. In mammals, three
members of the ADAR family have been characterized so far. ADAR1 (gene name: ADAR) and
ADAR?2 (gene name: ADARBI) are active enzymes expressed in many tissues, while ADAR3 (gene
name: ADARB?2) is expressed specifically in the Central Nervous System (CNS). To date, no
functional RNA editing activity has been attributed to this enzyme. The critical role of ADAR
enzymes is shown by phenotypes of knockout mice that resulted in embryonic lethality or death
shortly after birth [5-7], clearly indicating that A-I RNA editing is essential for normal life and
development. In addition, dysregulated RNA editing levels at specific re-coding sites have been
linked with a variety of diseases, including neurological or psychiatric disorders and cancer [2, 8,
9]. Interestingly, ADARs mRINA and protein expression levels do not always reflect RNA editing
levels [10]. It has been shown that the subcellular distribution of ADAR enzymes [11] and their
interaction with inhibitors [12, 13] and activators [14, 15] influence ADARSs activities.

Originally, A-to-I RNA editing in mammalian cells was described for a low number of mRNAs and
it was responsible for deep changes of protein functions. These editing sites were discovered
serendipitously by directly comparing DNA and cDNA sequences [16, 17]. The number of

identified RNA editing sites has largely increased with the widespread adoption of RNA sequencing
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(RNA-seq), reaching over two million sites. The majority of RNA editing sites is located within
intragenic non-coding sequences: 5’UTRs, 3’UTRs and intronic retrotransposon elements, such as
ALU inverted repeats [18, 19]. With lowering cost of NGS, many RNA-Seq datasets from human
tissues, healthy and pathological conditions, have been deposited in sequence databases, available
to the scientific community. In parallel, the development of computational pipelines to search for
RNA editing sites on RNA-Seq data, allowed a global analysis of the editing reaction, shedding
light on its evolutionary conservation [20], tissues specificity [21, 22], cellular specificity [23] and
its role in diseases such cancer [24] or neurological disorders [9, 25].

About 2.5 million editing sites have been identified so far and are listed in RNA editing databases
[26, 27], but only recently the dynamic and regulation of RNA editing has been systematically
investigated in human tissues [22]. However, little is known about how editing process could be
influenced by genetic variations [28, 29], biological and environmental variables [30]. Here, we
want to go further in characterizing and understanding the complexity of RNA editing. Focusing on
the most likely biologically relevant sites, we sought to unveil possible correlations with gene
expression and genetic variations. To this aim, we investigated consistently edited sites from
existing RNA seq dataset of whole blood from 459 healthy subjects [31], correlating editing levels
with blood cellular composition, with a collection of 28 biological and pharmacological variables,

as well as with genes expression and genotyping data.
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Results

RNA editing sites consistently edited in human blood samples

Of the ~ 2M editing sites reported in RADAR database, 709,184 sites have an adequate coverage (>
10 reads) in our dataset of 459 RNA-seq, covering > 75% of the total sites reported for genes
expressed in blood according to GTEx data (Additional file 1: Figure S1). Most of these sites are
edited only in a small fraction of samples and 691,304 (97.5%) have no detectable editing levels in
our cohort (Additional file 1: Figure S2). To provide a picture of the most biologically relevant
editing sites in human blood we focused our attention on 2,079 consistently editing sites (CES),
namely those with at least 5% of editing level in at least 20% of individuals. These sites are
distributed across 421 genes and mainly localized in ALU regions (1,805; 86.5%) and 3’'UTR
regions (1,234; 59.4%). Overall, we detected 1,266 sites in exons of protein coding genes, including
10 recoding sites (resulting in a missense substitution) and 12 synonymous sites. We also detected
53 sites annotated on ncRNAs (Figure 1a, b). Detailed statistics of the 2,079 trusted sites are
reported in Additional file 2, while recoding sites are reported in Table 1.

Considering mean values for each site, detected editing levels range from 0.05 to 1, with most sites
showing moderate editing levels between 0.05 and 0.30 (Figure 1c). We also detected 33 sites
highly edited (mean value > 0.9), located mainly in intronic regions (Figure 1d). Highly edited sites
are reported in Additional file 1: Table S1. To further assess reliability of detected sites, we
compared the CES editing levels with those reported in the REDIportal database [26], a well-
established resource containing multi-tissue estimations of RNA editing levels. When considering
the REDIportal blood tissue data, the comparison revealed high concordance (concordance
correlation coefficient 0.84, Additional file 1: Figure S3) for 2,003 overlapping sites, with 20 out of
33 highly edited sites (60 %) showing similar editing levels. When we excluded sites measured only

in a single subject in REDIportal, we found that 16 out of 18 sites (89 %) have high level of editing
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in both datasets, suggesting that our highly edited sites are probably true editing events rather than
systematic sequencing errors. However, the occurrence of sequencing artifact could not be
completely excluded. For the sites included in this study, the editing levels from REDIportal are
reported in Additional file 2.

We found 495 CES located within known miRNA binding sites from TargetScan v.7.2. Among
these, 466 (94%) are located in 3’ UTR (representing 37.7% of the total 3’UTR sites); however only
4 CES sites overlap with conserved binding sites for broadly conserved miRNAs (Additional file 1:
Figure S4). Broadly conserved miRNAs are defined as conserved across most vertebrates, usually
to zebrafish, while binding site conservation is defined by conserved branch length, with each site
type having a different threshold for conservation. The overlap with miRNA binding sites is
reported for each editing site in Additional file 2.

We used Spearman correlation test to analyze correlation in editing level changes across the 2,079
CES to find sites with co-regulated RNA editing. We found 270 significant relationships (FDR <
0.05) involving 361 sites. Correlations were generally low with only 58 sites with relationships
above 0.5 rho value. Correlations become stronger for close sites, especially below 50 bp distance,
with 30 out of 33 (91%) high rho (> 0.5) relationships located in this range. Considering the 100
middle level correlations (rho between 0.3 and 0.5), 95 are observed between sites within about 1
kb distance and 83 between sites in the 50 bp range. Interestingly, we also observed 5 relationships
between sites on different chromosomes. No strong negative correlations (rho < -0.5) were observed

(Additional file 1: Figure S5). Full results of correlation analysis are report in Additional file 3.

Genes influencing the total editing rate of CES

We performed regression analysis to identify genes whose expression is associated to the CES total
editing rate, calculated for each subject as the total sum of G-containing reads divided by the total

number of reads observed at all the 2,079 CES. To avoid biases due to the influence of different
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blood cell type compositions, we used normalized gene expression values provided in [31], where
the effect of cell type composition was regressed out from read counts using ridge regression. The
analysis revealed 4,719 genes associated with the CES total editing rate (FDR < 0.05). Enrichment
analysis on Gene Ontology biological processes (GO-BP) revealed a strong enrichment for genes
involved in immune system and interferon signaling (FDR < 1e-6, Figure 2a). Among significant
genes, ADAR emerged as the top influencing factor, explaining about 13% of the observed
variability, while ADARB1 showed no significant effect (Figure 2b). The influence of ADAR was
similar on ALU (~10%) and non-ALU (~13%) sites, while ADARBI remains not associated when
considering the two groups separately (Additional file 1: Figure S6). ADARB2 gene was not
detectable in our gene expression data. When the same analysis was repeated removing ADAR
effect, we obtained 1,122 genes associated with CES total editing rate (FDR < 0.05), including 376
with a strong association at FDR < 0.01 (Additional file 4). Enrichment analysis on GO-BP and
REACTOME pathways revealed that these genes mainly impact ribonucleoprotein complex
biogenesis and RNA metabolism / processing (Figure 2c).

To assess possible interactions between ADAR enzymes and genes whose expression is associated
with CES total editing rate, we performed network analysis using data on protein-protein
interactions from STRING v.10, BioPlex and BIOGRID databases. Among the proteins encoded by
the 376 genes significantly associated with CES total editing rate (FDR < 0.01), 285 (76 %) were
connected to ADAR1 or ADAR2, directly or through a first-level interactor. The resulting network
includes a total of 415 proteins: 285 encoded by genes significantly associated with CES, 2 ADARs
proteins and 128 added partners (first-level interactors which connect significant proteins to
ADARs, but are not encoded by significant genes) (Figure 3a). The observed fraction of ADARs-
connected proteins (285 out of 376) represents a significant enrichment compared to random groups
(empirical p-value < 1e-06, Figure 3b) and these proteins are strongly enriched for RNA binding

proteins (Figure 3c). Among the 285 genes significantly associated to CES total editing rate, we
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identified 9 genes encoding proteins with direct interactions with ADARs (Table 2). We estimated
the role of each node in this network looking at degree and betweenness values. Degree value
accounts for the number of interactions (edges) involving a single node in the network, while
betweenness is a measure of centrality based on shortest paths. Nodes with high values of
betweenness centrality would have a more relevant role in the network since an increased
proportion of the connections between distant nodes passes through them. Among ADARs proteins,
ADARI1 has considerably more network interactions (0.077 betweenness centrality, 72 degree
values) compared to ADAR2 (0.018 betweenness centrality, 29 degree). Among genes associated
with CES total editing rate, those encoding for proteins with a direct interaction with ADARs,
ELAVLI1, RPA1 and IFI16 act as relevant hub nodes, with betweenness centrality values of 0.137,
0.028, 0.020, respectively (Figure 3d). Detailed network-based statistics are reported in Additional
file 5, together with adjusted p values for association with CES total editing rate. Since a direct
interaction of ADARI1 with IFI16 and RPA70 (encoded by RPA1) proteins has never been reported,
we decided to experimentally verify these results by co-immunoprecipitation experiments in
Epstein-Barr Virus (EBV)-immortalized human B cell lines (B-EBV) (Figure 3e). The results
confirmed that IFI16 protein is an interactor of ADARI, at least at low level, as indicated by the
clear band of interaction. Considering RPA70, the protein appeared in ADARI1 precipitate, but a
faint band with a similar molecular weight is also present in IgG precipitate, suggesting that these

results may need further investigation.

Influence of cell composition on the total editing rate of CES

To assess how changes in cell composition of whole blood can affect the observed editing levels, we
correlated the proportions of different blood cell types (as provided in [31]) with the total editing
rate of CES. Among the 7 cell types considered, 4 showed a significant correlation with total editing

rate, namely T helper (Th), monocytes, dendritic cells (DC) and neutrophils (Figure 4). We also
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found 4 cell types associated with ADAR expression (neutrophils, Th, Natural Killer and B) and 4
with ADARBI expression (neutrophils, monocytes, Th and B). Intriguingly, the associations of
ADAR and ADARBI with cell types are always in opposite directions. See Additional File 1: Table
S2 for complete results. Overall, cell composition variables explain 19% and 53% of ADAR and

ADARBI expression variability, respectively (Additional file 1: Figure S7)

Biological factors possibly influencing editing levels

In order to identify possible biological factors influencing editing levels, we studied the correlation
of the 28 biological / pharmacological variables described in Additional file 1: Table S3 with CES
total editing rate and with the ADAR expression level. Overall, 5 variables revealed a significant
correlation with CES total editing rate and 3 of them remained associated even after correction for
cell type composition, namely blood pressure medications, age and current Body Mass Index (BMI)
(Figure 5). We also found 5 variables significantly correlated with the expression level of either
ADAR (blood pressure medications, current and max BMI, age and sex) or ADARBI (sex, time of
draw, thyroid medications, ate before and proton-pump inhibitors), even if the effect was generally

small after correction for cell composition (Additional File 1: Table S4 and Figure S7).

Principal component analysis

To better investigate the effect of cell type composition, biological / pharmacological variables and
ADAR expression and identify correlations between these variables and specific groups of CES, we
performed principal component (PC) analysis of CES editing levels. The cell composition was the
major factor influencing the observed editing levels, with all the 7 cell types significantly associated
with the first 5 PCs. Even if the variance explained by single components is generally low (PC1 ~

0.025), our data also revealed 11 biological and pharmacological factors with a significant
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correlation (p-value < 0.05) with one of the first 5 PCs after correction for cell type composition
(Figure 6 and Additional file 1: Table S5).

Age and BMI, together with blood pressure medications, smoke and alcohol, seem to be major
contributors to editing variability being associated with PC1. Also the time of blood draw seems to
have a small, but consistent effect on different PCs. Few variables related to drugs assumption,
eating or exercise also emerged with significant association to lower PCs, even if drug intake may
be influenced by sex biased distribution (Additional file 1: Table S6). ADAR expression level is
strongly associated with the first PC, confirming its pivotal role in shaping editing levels variability.
Instead, the second PC was associated to expression level for ADARBI, but not ADAR, suggesting a
selective action on a specific group of sites (Figure 6 and Additional file 1: Table S7). Correlation of

editing levels for single sites with the first 5 PCs are reported in Additional file 6.

Identification of genetic variants influencing CES total editing rate

We performed genome wide association analysis between genotyping data of 734,251 SNPs and
CES total editing rate to identify SNPs associated with editing levels in human blood (Figure 7a).

After variant clumping, our analysis identified a single significant locus on chromosome 7
(rs856554: p-value 3.89e-8), containing the lincRNA gene LOC730338 (ENSG00000233539)
(Figure 7b and Table 3). This locus remains significantly associated with total editing rate after
correction for blood cell composition, even if at lower level (Table 3). The SNP rs856554 showed a
significant effect on CES total editing rate, while its influence on ADAR or ADARBI expression was
not significant (Figure 7c). Association results for single SNPs with nominal p-value < 0.05 and for
loci after variants clumping are reported in Additional file 7. Among genotyped SNPs, there were
also 36 known ADAR eQTLs, these SNPs explained 5.5% of CES total editing rate variability (p

value 3.46e-4). Results of association with CES total editing rate for the known ADAR eQTLs are
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reported in Additional file 1: Table S8. The effect of the top associated ADAR eQTL (rs6699825) on
ADAR expression and CES total editing rate is represented in Additional file 1: Figure S8.

Since the function of LOC730338 is unknown, we investigated its possible role in RNA editing, by
testing its expression in blood and the effects of its over-expression on ADARs levels in B-EBV
cells (Figure 7d). LOC730338 resulted to be express in blood (data not shown) and its over-
expression was associated with a significant down-regulation of ADARBI mRNA (Not Transfected
cells: 1.00+0.09; LOC730338 transfected cells: 0.65 + 0.09; p < 0.05). As concerns ADAR, its
expression level was lower in transfected cells (0.85 + 0.08) than in not transfected (1.00 + 0.07),
but the difference was not statistically significant (p = 0.18).

This result indicates that LOC730338 might have a limited but noteworthy effect on ADAR
enzymes, and it suggests that SNPs inside LOC730338 could actually affect CES total editing rate

by differentially modulating ADAR level.
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Discussion

The process of A-to-I RNA editing has gained increasing attention in recent years, being implicated
in multiple aspects of human physiology and, when dysregulated, in human diseases, such as
neurological disorders and cancer [2, 9, 24]. Thanks to advances in next-generation sequencing
technology, the prevalence and dynamics of “RNA editome” have been recently characterized
across many tissues and developmental stages [18, 19, 21, 22]. Overall, more than 2 million editing
sites have been described so far, but most of them occur at very low levels in inverted repeat ALU
sequences and likely represent random editing with low impact on biological functions [32]. To
focus only on those sites that are most likely biologically relevant in human blood, we first selected
consistently edited sites (CES) across our dataset of about 450 RNA-Seq samples, resulting in a
group of 2,079 sites with at least 5 % editing in at least 100 individuals.

As expected, the majority of these sites is located in inverted repeat ALU sequences [18, 19] that
facilitate the formation of a RNA double stranded secondary structure with high affinity for ADAR
editing enzymes. Interestingly, nearly 60% of detectable editing sites are located in the 3’UTRs and
37.7% of them fall within a known miRNA binding site. This suggests a potential extensive role of
editing process in modulating the miRNA mediated regulation of gene expression in blood [33-35].
Especially, we identified four CES located in conserved miRNA binding sites recognized by
conserved miRNAs. Interestingly, three of them regulate the gene CNPY3, that might need further
investigation.

We identified 22 editing sites located in coding sequences: 12 resulting in synonymous
modifications and 10 inducing non-synonymous amino acid changes (re-coding sites). Among the
latter, there were well studied re-coding sites, such as the S/G site of AZIN1 [8], the G/R site of
BLCAP [36], and the L/R site of NEIL1 [37]. Their editing levels range from high (75% of NEIL1I)
to medium-low (14% and 16% for BLCAP and AZIN1, respectively), indicating that both edited and

unedited isoforms are needed for the proper function of the tissues. Interestingly, among the re-
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coding sites, we also detected sites with a high editing level, such as two sites edited at 70% on the
small subunit processome component gene (UTP14C). It is worthwhile notice that in blood cells 33
editing sites in 3’UTR and intronic regions reach an editing level of more than 90%. Even if we
adopted stringent filtering criteria and we observed good concordance in editing levels between our
data and REDIportal, we can not completely exclude that extremely high editing levels could results
from systematic analysis artifacts. These results prompt for further investigations to understand the
actual functional effect of these fully edited sites. Finally, it is of notice that nearby editing sites
might correlate in their editing level changes. Correlation is generally strong only for sites closer
than 50 nt, but we also detected 5 significant correlations (rho value 0.3 - 0.5) between editing sites
on different chromosomes, indicating the possibility of co-regulation mechanisms. Overall, RNA
editing process in human blood seems more pervasive than previously reported, prompting for
further analyses to understand its biological effects also in healthy subjects.

Further, we investigated the association of genes expression with total editing rate of CES. ADAR
(encoding ADAR1 enzyme) resulted as the top associated gene and its expression explained about
13% of observed variability, while ADARBI (encoding ADAR2 enzyme) was not associated with
global editing level even when ALU and non-ALU sites were considered separately. ADARB2
(encoding ADARS3 protein) is not expressed in blood cells, excluding the possibility that it could
have a major negative effect on the editing levels in blood as observed for brain tissues [22]. Thus,
ADAR1 emerges as the major contributor to editing process in blood, as already reported for human
B cells and other tissues [22, 38], while other ADAR enzymes seem to have only a limited effect.
Overall, association analysis revealed 4,719 genes that might have a potential effect on the editing
process, strongly enriched for genes involved in the immune system and interferon signaling. This
supports the association between genes involved in the inflammatory processes and A-to-I editing in
blood cells. Indeed, ADAR1 is present in two main isoforms, a constitutive p110 and an interferon

inducible p150 form that is active under an inflammatory response [39]. Moreover, RNA editing,
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especially ADART1 activity, is important to modulate innate immunity [40—42]. Modification in the
global editing level has been reported after inflammation in mouse and in vitro studies using several
inflammatory mediators [43].

When the effect of ADAR expression is removed from our analysis, new genes associated with
global editing level emerged. These genes are mainly involved in RNA metabolism and
ribonucleoprotein complex processing, confirming what has recently been found from a global
analysis of GTEx data [22] and strengthening the role of RNA editing complex in RNA processing
[38]. Associated genes after ADAR correction are strongly enriched for genes encoding for potential
ADARs interactors, as revealed by network analysis using data from protein-protein interaction
databases. Moreover, associated genes interacting with ADARs mainly encode for RNA binding
proteins, as revealed by enrichment analysis, suggesting that they could be involved in RNA
recognition or assembly of the editing complex. Network analysis showed that ADART1 is the main
editing enzyme involved in these interactions, confirming its important role in blood samples,
compared to the other editing enzymes. We also identified 9 associated genes whose protein
products have a direct interaction with ADARs. Among them, proteins encoded by ELAVL1, RPA1
and IFI16 emerged as relevant hubs in the network, aggregating most of the interactions directed to
ADARs proteins. The stabilizing RNA-binding protein human antigen R (HuR), encoded by
ELAVLI1, has been recently proposed as an ADARI interactor involved in the regulation of
transcripts stability in human B cells [30, 38]. The observed association between the global editing
level and the ELAVLI expression strengthens a general role of RNA editing in RNA stability
through the modulation of expression of genes involved in RNA metabolism.

Until today, RPA1 and IFI16 have never been directly involved in ADARSs activity. Our results
suggest that they might represent new interesting partners of ADAR1 and that they might help in
understand the function and regulation of this key editing enzyme, but larger studies in different cell

populations are required to fully understand the impact of these interactions. RPA1 gene encodes the
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largest subunit of the heterotrimeric Replication Protein A (RPA) complex, which binds to single-
stranded DNA, forming a nucleoprotein complex that is involved in DNA replication, repair,
recombination, telomere maintenance and response to DNA damage [44]. ADAR1 presents Z-DNA
binding domains, which are not present in the other editing enzymes [45], helping to direct ADAR1
to active transcription sites and to interact with DNA. Thus, the interaction with RPA1 protein
might broaden ADART1 activity also in the field of DNA repair and maintenance. IFI16, interferon
gamma inducible protein 16, encodes a member of the HIN-200 (hematopoietic interferon-inducible
nuclear antigens with 200 amino acid repeats) cytokines family. This protein interacts with p53 and
retinoblastoma-1 and localizes to the nucleoplasm and nucleoli [46], where ADAR enzymes are also
present. Both IFI16 protein and ADAR1 were associated with response to viral DNA and regulation
of immune and interferon signaling responses [46, 47].

RNA editing is known to be a strong tissue-dependent event [22]. Moreover, it has been suggested
that the extent of RNA editing may be different among cell types even in the same tissue [23, 48].
In particular, RNA editing events were showed to distribute differently among different cell types in
the brain [23]. For this reason, it has been proposed that changes in cellular composition might be
responsible for alterations observed in the tissue-wide editing patterns in pathological conditions
[49]. In this study, we investigated the relationship between the proportion of different blood cell
types (predicted from gene expression data) and the total editing rate of CES. Among the seven
different cell types considered, CES total editing rate was positively correlated with the percentage
of neutrophils, monocytes, T helper and dendritic cells. These correlations seem mostly mediated by
the differential expression of the two ADARs enzymes in the cell populations. The positive
correlations observed in neutrophils, monocytes and dendritic cells seem mediated by ADAR, whose
expression is positive correlated with the percentage of these cell types in blood. Whereas in T
helper, editing levels seems mainly mediated by ADARBI, whose expression is strongly correlated

with the percentage of T helper in blood. This result is also corroborated by the PC analysis,
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suggesting that the two enzymes have different targets in blood cells. ADAR expression is mainly
associated with the PC1, supporting its pivotal role in shaping editing levels variability, whereas
ADARBI1 with the PC2. Therefore, we could hypothesize a different role of these enzymes in
specific cell types (i. e.: T Helper and Natural Killer) and on specific groups of genes. In particular,
the specific role of ADARBI in T helper deserve further analysis. Overall, this data indicates that
cellular composition of the sample should be taken into account carefully to avoid biased results
when analyzing editing variations among different groups, such as in case / control studies.
However, in our study the amount of the different cells were inferred from expression data [31] and
not directly assessed and future replications of these results using direct analysis of purified cells
will complete the picture of cell specific editing regulation.

Recently, global editing level has been investigated across tissues and in different species [21,
22] and has also been correlated with the genetic background of human population [30, 50] and
with common disease variants [29]. However, the published studies lack a detailed characterization
of samples that allows assessing the role of biological and environmental factors.

Relying on on the dataset from [31], containing several demographic, biological and
pharmacological variables, we also investigated the potential impact of these external factors on
RNA editing process genome-wide. Five variables showed significant correlations with CES total
editing rate, namely blood pressure medications, sex, age and body mass index (BMI, current and
max). Except for sex, their effect on editing levels seems mainly driven through modulation of
ADAR expression. Given the strong correlation observed between cell composition, total editing
rate and ADARSs expression, it is possible that these variables may exert their effect by modulating
the proportion of different cell types. However, blood pressure medication, age and current BMI
remain correlated also after correction for cellular composition, indicating that they may have a
direct effect on the editing levels. Correlation between age and editing was already reported during

brain development both in rat [51] and in primates [52] and our data strengthens this correlation
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also outside the central nervous system. Finally, and for the first time, our study correlated CES
editing levels with BMI and blood pressure medications, shedding light on new medical areas in
which editing regulation may be involved. A more detailed analysis using principal components of
editing levels revealed eleven biological and pharmacological factors significant correlated with
PCs even after cell type correction. Age and BMI, together with blood pressure medications, smoke
and alcohol, seem to be relevant contributors to editing variability being associated with PC1.

Finally, we analyzed genotyping data to identify SNPs associated with CES total editing rate.
Known ADAR eQTLs were among the SNPs with the best association p-values and, taken together,
they explain about 5% of the observed variation in global editing. This data indicates that the
genetic background affects total editing level by modulating ADAR expression level and it must be
taken into account when investigating editing regulation in disease studies. A significant association
with global editing level in blood was observed for a locus mapping on chromosome 7. This locus
contains LOC730338, a gene encoding for a long intergenic noncoding RNA (lincRNA). lincRNAs
are transcripts longer than 200 nucleotides that have been identified in mammalian genomes mainly
by bioinformatics analysis of transcriptomic data. Although thousands of lincRNAs are now
validated, the exact function remains unknown for most of them. lincRNAs appear to contribute to
the control of gene expression and have a role in cell differentiation and maintenance of cell identity
[53]. In C. elegans, it has been recently reported that IncRNAs are extensively down-regulated in
the absence of ADARs as a result of siRNA generation [54]. The authors suggest that ADARs can
interfere with the generation of siRNAs by endogenous RNAi and promote IncRNA expression.
LOC730338 expression cannot be measured in our dataset since it lacks a poly-A tail; therefore, it
was not possible to assess if the SNPs associated to total RNA editing rate in the locus are eQTLs of
LOC730338. However, to go further in understanding the role of LOC730338 on the editing
reaction, we overexpressed its RNA in a lymphoblastic cell line and we showed that it significantly

down-regulates ADARBI mRNA expression and partially ADAR mRINA. Taken together expression
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results indicate, for the first time, a possible role of LOC730338 in modulating the expression of
ADARs enzymes. Further experimental analysis will be required to identify actual eQTLs for
LOC730338 within the associated genomic locus and understand their possible impact on editing

dynamics.

Conclusion

This study provides a detailed picture of the most consistent RNA editing sites and their variability
in human blood. Our results confirm the pivotal role of ADART1 in the regulation of RNA editing
process in blood and suggest new genes, genetic variants, biological and environmental variables
that are involved in the RNA editing process. Future studies will be required to confirm and clarify

their role and their relationship with the ADAR family enzymes.
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Methods

Description of data

RNA-Seq raw data (aligned reads) was obtained from NIMH repository, NIMH Study 88 / Site 621,
dataset 7 (Levinson RNA Sequencing Data). The original data and samples details are described in
[31]. This dataset includes poly(A)+ RNA sequencing and genotyping data from blood samples of
922 subjects, 463 MDD patients and 459 control subjects. The present study focuses only on the
459 controls. Data are provided as aligned reads on hg19 human genome assembly with transcript
mapped to RefSeq canonical dataset. Samples are sequenced with a median of 65.6 M reads (31.6 -
258.3), resulting in a median of 14,289 (11,660 - 15,137) detectable genes addressed by at least 10
reads (Additional file 1: Figure S9). Only the 14,961 genes covered with at least 10 reads in at least
100 subjects were considered in the present study for association with editing levels.

A detailed phenotypic description including demographic, pharmacological and biological variables
is also included for each subject. Among them, we considered only those relevant in at least 30
subjects and not related to MDD clinical evaluation or socio-economic variables. The 28 variables
considered in this study are reported in Additional file 1: Table S2. Moreover, each experiment is
annotated with a rich set of technical variables, representing quality metrics of RNA sequencing and
characteristics of the blood sample. These also includes 10 cell composition variables, which
represent proportion of 10 different cell types as predicted from gene expression data (see
supplementary methods in the original paper [31]). In this study, we used the normalized gene
expression data provided in [31], determined as residuals of ridge regression of log-transformed
read counts with 35 technical and cell composition variables. In this way our analysis of gene

expression would not be affected by technical or cell composition biases.

Assessment of editing levels and selection of consistently edited sites
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The original aligned reads were de-duplicated using Picard and the editing levels were then
determined genome-wide from BAM files using REDITools v.1.0.4 with the following parameters:
-t25 -m20 -c10 -g25 -O5 -1 -V0.05 -n0.05. Only sites with a minimum coverage of 10 reads were
considered, otherwise their editing level was considered as missing.

To reduce the chance of measuring false-positive editing sites, we selected only sites that met the
following criteria: i) sites reported within RefSeq genes by RADAR database [27] and never seen as
Single Nucleotide Variants in the human population according to 1000G phase3 and ExAC v.0.3.1;
ii) sites occurring in regions were incorrect alignments could have generated artifacts in editing
detection were filtered out: known pseudogenes from GENCODE v25; segmental duplication with
> 99% identity; single exon genes, that are often retrotransposed genes with high similarity to the
corresponding parent gene.

The filtered dataset resulted in 709,184 sites, representing > 75% RADAR editing sites occurring in
blood expressed genes. Finally, to provide a picture of most biologically relevant editing events in
blood, we decided to focus only on sites with detectable editing levels (at least 5%) in at least 100
subjects (~20% of total individuals) for subsequent quantitative analysis, resulting in a final dataset

of 2,079 sites (consistently edited sites, CES).

Comparison with REDIportal dataset and overlap with miRINA binding sites

We compared editing levels detected in CES from blood samples with similar data obtained from
REDIportal [26]. Editing levels were retrieved directly from REDIportal database, containing RNA
editing values calculated from 55 body sites of 150 healthy individuals from GTEx project. Mean
editing levels of our 2,079 CES were compared with corresponding data reported for blood tissue in
REDI portal. To assess concordance between the two datasets, we calculated concordance
correlation coefficient between mean editing values detected in our data and reported in REDIportal

blood tissue for the 2,003 overlapping sites.
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To assess the overlap between identified CES and miRNA binding sites, we computed the
intersection between CES and known miRNA binding sites from TargetScan v.7.2 [55] using
bedtools. The analysis was performed separately for broadly conserved, conserved and non-

conserved miRNAs and miRNA binding sites, as defined by TargetScan.

Correlation between editing levels across sites

Using Spearman correlation test, we analyzed correlation of editing levels across the 2,079 CES.
Each site was analyzed against all other sites for a total of 4,322,241 tests. FDR correction modified
as in [56] was used to account for multiple tests with related variables. Corrplot R package v.0.84

was used to analyze correlation matrices and generate correlation plots.

Association between CES total editing rate and gene expression

To investigate which genes could influence the editing process, we used robust linear regression
(robust v.0.4 R package) to assess the association between gene expression levels and the CES total
editing rate in each subject. CES total editing rate for each subject was calculated as in Equation 1.
m
i=1 Gf

E?lzl Cf

The sum of number of G-containing reads (G;) observed at all CES (m), divided by the sum of total
reads observed (C)) at all CES.

CES total editing rate was determined also for Alu sites and non-Alu sites, separately. As gene
expression levels, we used normalized values provided in [31], where the effect of 35 technical
variables, including cell type composition, were regressed out from read counts using ridge
regression. In this way, the effect of these variables do not influence subsequent analyses. To choose
the set of phenotypic, biological and pharmacological variables to include as covariates in

regression analyses, a stepwise model selection by AIC was performed (using stepAIC from MASS
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R package v.7.3-5). The 6 included variables are indicated in Additional file 1: Table S1. Moreover,
since there was a correlation between the variance observed at each editing site and its sequencing
coverage for sites with coverage below ~ 40 X (Additional file 1: Figure S10), the log2 of reads
count was also included as covariate in the analysis. The strength of the association was determined
by ANOVA test comparing the null (‘background’) model that includes only the set of covariates
with the full model (covariates plus normalized expression levels). FDR was used to correct for
multiple tests. Subsequently, association analyses were repeated including ADAR expression as

additional covariate, to remove the effect of ADAR expression.

Gene set enrichment analysis and gene network analysis

The impact on biological functions and cellular pathways of genes found associated with CES total
editing rate was investigated using hypergeometric test. We tested the over-representation of
pathways among the subset of significant genes at 5% FDR level compared to all expressed genes.
Enrichment analysis was performed separately for the following sets from MSigDB v.6.0: cellular
pathways from REACTOME and the three main Gene Ontology categories (Cellular Components,
GO:CC; Biological Process, GO:BP; Molecular Function, GO:MF). To verify if the proteins
encoded by these genes could interact with ADAR proteins, the major enzymes involved in RNA-
editing, we explored human protein-protein interaction (PPI) data. First, we created a
comprehensive human PPI network combining data from 3 different sources: BioPlex 2.0 [57],
BioGRID 3.4.15 [58] and STRING 10.0 [59]. For the BioGRID dataset, only interactions marked as
physical were taken in to account, whereas for the STRING dataset only interactions with a
combined score above 400 and physical/biochemical evidences were considered. Proteins of the
ubiquitin gene family were removed from the network, resulting in a final PPI dataset with 22,913
proteins (nodes) and 833,686 interactions, containing 108 direct interactors of ADARs (ADARI,

ADAR2 and ADAR3 proteins). Among the 376 genes strongly associated with global editing level

23


https://doi.org/10.1101/254045
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/254045; this version posted December 3, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

(FDR < 0.01), we assessed the number of encoded proteins interacting with ADAR1, ADAR2 or
one of their first neighbors. To test the significance of these overlap, we performed a random test on
the overall set of 14,961 genes addressable in our RNA-Seq data (background genes). We randomly
sampled among background genes 1 million groups of N genes (N = 376) and for each simulated
group, we counted how many elements interact directly with ADARs or one of their neighbors.
Empirical p-value was then calculated as the number of test resulting in an equal or higher number
of interactors. Cytoscape v.3.4.0 [60] was used to visualize the PPI network and calculate network

related statistics.

Cell Culture and Co-immunoprecipitation experiments

Epstein-Barr Virus (EBV)-immortalized human B cell lines (B-EBV) were maintained at 37°C, 5%
CO,, in RPMI 1640 Medium (Thermo Fisher Scientific), 1% Sodium Pyruvate (Thermo Fisher
Scientific), 1% Non-Essential Amino Acid (NEAA, Thermo Fisher Scientific), 15% Fetal Bovine
Serum (FBS, Thermo Fisher Scientific), 2mM Glutamine (Thermo Fisher Scientific), 30 U/ml
penicillin (Sigma-Aldrich). B-EBV were lysed by sonication in immunoprecipitation buffer (Tris-
HCI 50mM pH 7.4, NaCl 300mM, 1% Triton X-100, Protease inhibitors Roche® 1x). The extracts
were added to 25pl of Protein G Dynabeads ™ (10007D Invitrogen ® by Thermo Fisher Scientific)
coupled with 2pg of mouse anti-ADAR1 (Santa Cruz, cod. sc-73408). After 2h of incubation at 4°C
on a rotating wheel, 5 washes with immunoprecipitation buffer were performed. The elution step
was carried out with 40pl of Sample buffer 2x and DTT 10x; then the samples were denatured at
95°C for 10 min for the subsequent Western Blot procedure.

During the immunoblot step the following primary antibodies were used 1h at RT: mouse anti-
ADARI1 (Santa Cruz, cod. sc-73408) 1:300 in 5% non-fat dry milk in TBST 0,1%; mouse anti-

IFI16 (Abcam, cod. Ab55328) 1:500 in 5% non-fat dry milk in TBST 0,1%. The incubation with
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secondary antibody was performed 1h at RT using the Alkaline Phosphatase (AP)-conjugated anti-

mouse secondary antibody 1:10000 in TBST 0,1% (Promega, cod. S372B).

Identification of cell composition variables correlated with editing levels and ADARS expression

To investigate if cell composition variables could influence editing levels in blood, we considered
the 10 cell composition variables described in [31], which represent proportion of 10 different cell
types as predicted from gene expression data. After filtering out variables with less than 5%
observations (less than 20 subjects), we studied associations between CES total editing rate and 7
cell composition variables (see Additional file 1: Table S2). For these variables, we also analyzed
their correlation with ADAR and ADARBI gene expression levels. Pearson’s product-moment

correlation test was used to assess associations.

Identification of biological factors correlated with editing levels and ADARS expression

To investigate which biological and pharmacological variables could influence editing levels in
blood, we studied associations between the 28 biological / pharmacological variables described in
Additional file 1: Table S3 and CES total editing rate across subjects, as well as ADAR and
ADARBI1 expression level. Kruskal-Wallis test, Mann-Whitney-Wilcoxon test and Pearson’s
product-moment correlation test were used to assess association for categorical, binary and
continuous variables, respectively. We also estimated their effect on CES total editing rate after
adjusting for cell composition using the LRT test. This test calculates the impact of a variable of
interest on CES total editing rate by comparing a background model containing only covariates,
with a full model containing also the variable of interest. In the background model we included only
the 4 cell composition variables resulted associated to CES total editing rate (DC, monocytes,
neutrophils and Th; see Additional file 1: Table S2), while the full model included also the

biological variable of interest. For ADAR and ADARBI expression, we also estimated the overall
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effect of the 7 cell composition variables and of biological variables showing an association with
the two genes. For each ADAR and ADARBI, we evaluated the influence of different set of variables
using 2 different linear regression model: one including the 7 cell composition variables and the
other including also the biological variables. The difference between the two models was assessed
using LRT test, to investigate the overall effect of biological variables beyond changes in cell

composition.

Principal component analysis on editing sites

To further investigate the effect of cell composition, biological and pharmacological variables on
editing levels in blood, we studied their correlation with the Principal Components of editing levels
(PCs). To compute PCs, the missing values of the sites were first imputed using a nonparametric
imputation method based on random forest (missForest R package v.1.4 [61]). The PCs were then
determined on the complete data using the prcomp R package. To identify the number of PCs to
account for, we evaluated the percentage of explained variance by the top 30 PCs, and identified the
5" component as the point at which the explained variance plateaus.

Pearson’s product-moment correlation test was used to assess association for cell composition
variables. The association for biological / pharmacological variables was estimated using linear
regression model corrected for the 4 cell composition variables resulted associated to CES total
editing rate (DC, monocytes, neutrophils and Th; see Additional file 1: Table S2). To identify which
editing sites were most correlated with each PC, we analyzed the loadings, that could be interpreted
as correlation coefficient between the original variables and components. Moreover, given a high
number of sites and low loading values, to deepen the role of each site in the computation of the
PCs, we performed the Pearson correlation test. We considered a “moderate” correlation when its

absolute value was between 0.3 and 0.5 and the test passed the Bonferroni threshold, while a
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“weak” correlation was considered when the correlation absolute values ranged between 0 and 0.3

and the respective p-values were significant for Bonferroni correction.

Association study for SNPs and global editing levels

To identify SNPs associated to global editing level, we analyzed genotyping data and global editing
levels in the 459 human blood samples. Starting from genotypes provided in the original dataset
[31], we performed quality check removing samples with more than 1% missing genotypes,
excessive heterozigosity and PI_HAT > 0.18. Then we removed SNPs with more than 5% missing
genotypes, SNPs strongly deviating from Hardy-Weinberg equilibrium (fisher test p-value < 1e-6)
and SNPs with a minor allele frequency below 0.01. The final dataset contained 448 individuals and
734,251 SNPs. We used plink v.1.9 linear association analysis with additive model, including as
covariates the same 7 variables used for analysis of gene expression (see above, Additional file 1:
Table S1) and the first five PCs of genotyping. To identify significant loci associated to global
editing level, we performed variant clumping based on the association results, using a 500 kb
window and 0.5 R? threshold. In this way all SNPs in a 500 kb window and with R? > 0.5 are
grouped together around the index SNP, that is the SNP with the lower association p-value. We
repeated association analysis including as covariates also the 4 cell composition variables associated
to CES total editing rate (DC, monocytes, neutrophils and Th). After association analysis, we used
GCTA [62] to evaluate the impact of ADAR known eQTLs on observed global editing levels, using
the same set of covariates included for the plink association analysis. This analysis was performed

including the 36 known ADAR eQTLs present in our genotyping data.

Transient transfection of LOC730338 and ADAR enzymes expression analysis

pTwist-CMV vector containing LOC30338 sequence between Notl and BamHI restriction enzymes,

was acquired from Twist Bioscience and used for transient expression of LOC30338 in B-EBV
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cells, using lipofectamine 2000 (Thermo Fischer). B-EBV cells were seeded at 100.000 cell/cm?
density in a 6-wells plate. The transfection was performed in Opti-MEM (ThermoFisher Scientific)
with a DNA:lipofectamine 1:3 ratio, following manufacturing instructions. Transfected cells were
incubated at 37°C for about 24h. After transfection, proteins and RNA were extracted from the cells
for further analyses. RNA expression pattern of ADARI and ADAR2 was analyzed by means of an
Applied Biosystems 7500 Real-time PCR system (Applied Biosystems, Foster City, CA, USA).
PCR was carried out using TagMan Universal PCR Master Mix (Applied Biosystems). 25 ng of
sample were used in each real-time PCR reaction (TagMan Gene Expression Assay id probes:
ADAR (Hs01017596_m1); ADARBI (Hs00953724_m1) Applied Biosystems). The expression ratio
of target genes in treated sample groups, compared to control group, was calculated using the AACt
method, using HPRT (Hs99999909_m1) and GAPDH (Hs99999905_m1) geometric means as

reference.

List of abbreviations
CES: Consistently edited site(s); GO:MF: Gene Ontology Molecular Function; GO:BP: Gene
Ontology Biological Processes; GO:CC: Gene Ontology Cellular Component: eQTL: expression

Quantitative Trait Locus.

28


https://doi.org/10.1101/254045
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/254045; this version posted December 3, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Availability of data and material

RNA-Seq raw data and description of subjects are available from NIMH repository, Study 88, but
restrictions apply to the availability of these data, which were used under license for the current
study, and so are not publicly available.

The datasets supporting the conclusions of this article are included within the article (and its
additional files). Editing levels calculated from RNA-Seq are available in the GitHub repository,
https://github.com/gedoardo83/RNA_editing blood.

RADAR database: http://rnaedit.com/

GTEx database: https://www.GTExportal.org/home/

Competing interests

The authors declare that they have no competing interests

Funding

This work was supported by research grants from the Italian Ministry of University (PRIN projects
n. 2006058401 to AB), from Fondazione Cariplo (grant: 2017-0620) and from the University of
Brescia (Project “Refract” to MG). EG has been supported by Fondazione Cariplo and Regione

Lombardia (Grant Emblematici Maggiori 2015-1080).

29


https://github.com/gedoardo83/RNA_editing_blood
https://doi.org/10.1101/254045
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/254045; this version posted December 3, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Authors' contributions

EG, AB conceived and designed the analysis. EG, CS performed bioinformatics and statistical
analysis. MG acquired the data. MG and CM provided intellectual input and conceptual advice and
revised the paper. AF, JM performed immuno-precipitation, transfection and expression

experiments. EG, AB, CS wrote the paper. All authors read and approved the final manuscript.

Acknowledgements

Analyzed data come from NIMH Study 88 — Data and biomaterials were provided by Dr. Douglas
F. Levinson. This project was supported by National Institutes of Health/National Institute of
Mental Health grants SRC2MH089916 (PI: Douglas F. Levinson, M.D.; Co-investigators: Myrna
M. Weissman, Ph.D., James B. Potash, M.D., MPH, Daphne Koller, Ph.D., and Alexander E. Urban,

Ph.D.) and 3RO1MH090941 (Co-investigator: Daphne Koller, Ph.D.).

30


https://doi.org/10.1101/254045
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/254045; this version posted December 3, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

References

1. Nishikura K. Functions and regulation of RNA editing by ADAR deaminases. Annu Rev
Biochem. 2010;79:321-49.

2. Behm M, Ohman M. RNA Editing: A Contributor to Neuronal Dynamics in the Mammalian
Brain. Trends Genet. 2016;32:165-75.

3. Bass BL. RNA editing by adenosine deaminases that act on RNA. Annu Rev Biochem.
2002;71:817-46.

4. Orlandi C, Barbon A, Barlati S. Activity regulation of adenosine deaminases acting on RNA
(ADARSs). Mol Neurobiol. 2012;45:61-75.

5. Hartner JC, Schmittwolf C, Kispert A, Miiller AM, Higuchi M, Seeburg PH. Liver disintegration
in the mouse embryo caused by deficiency in the RNA-editing enzyme ADAR1. J Biol Chem.
2004;279:4894-902.

6. Higuchi M, Maas S, Single FN, Hartner J, Rozov A, Burnashev N, et al. Point mutation in an
AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR?2.
Nature. 2000;406:78-81.

7. Wang Q, Khillan J, Gadue P, Nishikura K. Requirement of the RNA editing deaminase ADAR1
gene for embryonic erythropoiesis. Science. 2000;290:1765-8.

8. Chen L, LiY, Lin CH, Chan THM, Chow RKK, Song Y, et al. Recoding RNA editing of AZIN1
predisposes to hepatocellular carcinoma. Nat Med. 2013;19:209-16.

9. Khermesh K, D’Erchia AM, Barak M, Annese A, Wachtel C, Levanon EY, et al. Reduced levels
of protein recoding by A-to-I RNA editing in Alzheimer’s disease. RNA. 2016;22:290-302.

10. Wahlstedt H, Daniel C, Enster6 M, Ohman M. Large-scale mRNA sequencing determines global
regulation of RNA editing during brain development. Genome Res. 2009;19:978-86.

11. Sansam CL, Wells KS, Emeson RB. Modulation of RNA editing by functional nucleolar
sequestration of ADAR2. Proc Natl Acad Sci U S A. 2003;100:14018-23.

12. Filippini A, Bonini D, Lacoux C, Pacini L, Zingariello M, Sancillo L, et al. Absence of the
Fragile X Mental Retardation Protein results in defects of RNA editing of neuronal mRNAs in
mouse. RNA Biol. 2017;14:1580-91.

13. Tariq A, Garncarz W, Handl C, Balik A, Pusch O, Jantsch MF. RNA-interacting proteins act as
site-specific repressors of ADAR2-mediated RNA editing and fluctuate upon neuronal stimulation.
Nucleic Acids Res. 2013;41:2581-93.

14. Garncarz W, Tariq A, Handl C, Pusch O, Jantsch MF. A high-throughput screen to identify
enhancers of ADAR-mediated RNA-editing. RNA Biol. 2013;10:192-204.

15. Marcucci R, Brindle J, Paro S, Casadio A, Hempel S, Morrice N, et al. Pin1 and WWP2 regulate
GluR2 Q/R site RNA editing by ADAR?2 with opposing effects. EMBO J. 2011;30:4211-22.

31


https://doi.org/10.1101/254045
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/254045; this version posted December 3, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

16. Sommer B, Kohler M, Sprengel R, Seeburg PH. RNA editing in brain controls a determinant of
ion flow in glutamate-gated channels. Cell. 1991;67:11-9.

17. Burns CM, Chu H, Rueter SM, Hutchinson LK, Canton H, Sanders-Bush E, et al. Regulation of
serotonin-2C receptor G-protein coupling by RNA editing. Nature. 1997;387:303-8.

18. Levanon EY, Eisenberg E, Yelin R, Nemzer S, Hallegger M, Shemesh R, et al. Systematic
identification of abundant A-to-I editing sites in the human transcriptome. Nat Biotechnol.
2004;22:1001-5.

19. Li JB, Levanon EY, Yoon J-K, Aach J, Xie B, Leproust E, et al. Genome-wide identification of
human RNA editing sites by parallel DNA capturing and sequencing. Science. 2009;324:1210-3.

20. Bazak L, Haviv A, Barak M, Jacob-Hirsch J, Deng P, Zhang R, et al. A-to-I RNA editing occurs
at over a hundred million genomic sites, located in a majority of human genes. Genome Res.
2014;24:365-76.

21. Picardi E, Manzari C, Mastropasqua F, Aiello I, Erchia AMD, Pesole G. Profiling RNA editing
in human tissues: towards the inosinome Atlas. Nat Publ Gr. 2015;:1-16.

22. Tan MH, Li Q, Shanmugam R, Piskol R, Kohler J, Young AN, et al. Dynamic landscape and
regulation of RNA editing in mammals. Nature. 2017;550:249-54.

23. Picardi E, Horner DS, Pesole G. Single-cell transcriptomics reveals specific RNA editing
signatures in the human brain. RNA. 2017;23:860-5.

24, Fritzell K, Xu L-D, Lagergren J, Ohman M. ADARs and editing: The role of A-to-I RNA
modification in cancer progression. Semin Cell Dev Biol. 2017.

25. Filippini A, Bonini D, La Via L, Barbon A. The Good and the Bad of Glutamate Receptor RNA
Editing. Mol Neurobiol. 2016.

26. Picardi E, D’Erchia AM, Lo Giudice C, Pesole G. REDIportal: a comprehensive database of A-
to-I RNA editing events in humans. Nucleic Acids Res. 2017;45:D750-7.

27. Ramaswami G, Li JB. RADAR: a rigorously annotated database of A-to-I RNA editing. Nucleic
Acids Res. 2014;42 Database issue:D109-13.

28. Gu T, Gatti DM, Srivastava A, Snyder EM, Raghupathy N, Simecek P, et al. Genetic
Architectures of Quantitative Variation in RNA Editing Pathways. Genetics. 2016;202:787-98.

29. Franzén O, Ermel R, Sukhavasi K, Jain R, Jain A, Betsholtz C, et al. Global analysis of A-to-I
RNA editing reveals association with common disease variants. PeerJ. 2018;6:e4466.

30. Stellos K, Gatsiou A, Stamatelopoulos K, Perisic Matic L, John D, Lunella FF, et al. Adenosine-
to-inosine RN A editing controls cathepsin S expression in atherosclerosis by enabling HuR-
mediated post-transcriptional regulation. Nat Med. 2016;22:1140-50.

31. Mostafavi S, Battle A, Zhu X, Potash JB, Weissman MM, Shi J, et al. Type I interferon signaling
genes in recurrent major depression: Increased expression detected by whole-blood RNA
sequencing. Mol Psychiatry. 2014;19:1267-74.

32


https://doi.org/10.1101/254045
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/254045; this version posted December 3, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

32. Ulbricht RJ, Emeson RB. One hundred million adenosine-to-inosine RNA editing sites: hearing
through the noise. Bioessays. 2014;36:730-5.

33. Briimmer A, Yang Y, Chan TW, Xiao X. Structure-mediated modulation of mRNA abundance
by A-to-I editing. Nat Commun. 2017;8:1255.

34. Borchert GM, Gilmore BL, Spengler RM, Xing Y, Lanier W, Bhattacharya D, et al. Adenosine
deamination in human transcripts generates novel microRNA binding sites. Hum Mol Genet.
2009;18:4801-7.

35. Soundararajan R, Stearns TM, Griswold AL, Mehta A, Czachor A, Fukumoto J, et al. Detection
of canonical A-to-G editing events at 3’ UTRs and microRINA target sites in human lungs using
next-generation sequencing. Oncotarget. 2015;6:35726-36.

36. Levanon EY, Hallegger M, Kinar Y, Shemesh R, Djinovic-Carugo K, Rechavi G, et al.
Evolutionarily conserved human targets of adenosine to inosine RNA editing. Nucleic Acids Res.
2005;33:1162-8.

37.Yeo J, Goodman RA, Schirle NT, David SS, Beal PA. RNA editing changes the lesion
specificity for the DNA repair enzyme NEIL1. Proc Natl Acad Sci U S A. 2010;107:20715-9.

38. Wang IX, So E, Devlin JL, Zhao Y, Wu M, Cheung VG. ADAR regulates RNA editing,
transcript stability, and gene expression. Cell Rep. 2013;5:849-60.

39. George CX, John L, Samuel CE. An RNA editor, adenosine deaminase acting on double-
stranded RNA (ADAR1). J Interferon Cytokine Res. 2014;34:437-46.

40. Mannion NM, Greenwood SM, Young R, Cox S, Brindle J, Read D, et al. The RNA-editing
enzyme ADARI controls innate immune responses to RNA. Cell Rep. 2014;9:1482-94.

41. Song C, Sakurai M, Shiromoto Y, Nishikura K. Functions of the RNA Editing Enzyme ADAR1
and Their Relevance to Human Diseases. Genes (Basel). 2016;7:129.

42. Chung H, Calis JJA, Wu X, Sun T, Yu Y, Sarbanes SL, et al. Human ADARI1 Prevents
Endogenous RNA from Triggering Translational Shutdown. Cell. 2018;172:811-824.e14.

43. Yang J-H, Luo X, Nie Y, Su 'Y, Zhao Q, Kabir K, et al. Widespread inosine-containing mRNA in
lymphocytes regulated by ADART1 in response to inflammation. Immunology. 2003;109:15-23.

44. Liu T, Huang J. Replication protein A and more: single-stranded DNA-binding proteins in
eukaryotic cells. Acta Biochim Biophys Sin (Shanghai). 2016;48:665-70.

45. Barraud P, Allain FH-T. ADAR proteins: double-stranded RNA and Z-DNA binding domains.
Curr Top Microbiol Immunol. 2012;353:35-60.

46. Choubey D, Panchanathan R. IF116, an amplifier of DNA-damage response: Role in cellular
senescence and aging-associated inflammatory diseases. Ageing Res Rev. 2016;28:27-36.

47. Samuel CE. Adenosine deaminases acting on RNA (ADARs) are both antiviral and proviral.
Virology. 2011;411:180-93.

33


https://doi.org/10.1101/254045
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/254045; this version posted December 3, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

48. Leong W-M, Ripen AM, Mirsafian H, Mohamad S Bin, Merican AF. Transcriptogenomics
identification and characterization of RNA editing sites in human primary monocytes using high-
depth next generation sequencing data. Genomics. 2018.

49. Gal-Mark N, Shallev L, Sweetat S, Barak M, Billy Li J, Levanon EY, et al. Abnormalities in A-
to-I RNA editing patterns in CNS injuries correlate with dynamic changes in cell type composition.
Sci Rep. 2017;7:43421.

50. Ouyang Z, Ren C, Liu F, An G, Bo X, Shu W. The landscape of the A-to-I RNA editome from
462 human genomes. Sci Rep. 2018;8:120609.

51. Zaidan H, Ramaswami G, Golumbic YN, Sher N, Malik A, Barak M, et al. A-to-I RNA editing
in the rat brain is age-dependent, region-specific and sensitive to environmental stress across
generations. BMC Genomics. 2018;19:28.

52. Li Z, Bammann H, Li M, Liang H, Yan Z, Phoebe Chen Y-P, et al. Evolutionary and ontogenetic
changes in RNA editing in human, chimpanzee, and macaque brains. RNA. 2013;19:1693-702.

53. Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, et al. Integrative annotation
of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes
Dev. 2011;25:1915-27.

54. Goldstein B, Agranat-Tamir L, Light D, Ben-Naim Zgayer O, Fishman A, Lamm AT. A-to-I
RNA editing promotes developmental stage-specific gene and IncRNA expression. Genome Res.
2017;27:462-70.

55. Agarwal V, Bell GW, Nam J-W, Bartel DP. Predicting effective microRNA target sites in
mammalian mRNAs. Elife. 2015;4.

56. Benjamini Y, Yekutieli D. The Control of the False Discovery Rate in Multiple Testing under
Dependency. The Annals of Statistics. 29:1165-88.

57. Huttlin EL, Bruckner RJ, Paulo JA, Cannon JR, Ting L, Baltier K, et al. Architecture of the
human interactome defines protein communities and disease networks. Nature. 2017;545:505-9.

58. Chatr-Aryamontri A, Oughtred R, Boucher L, Rust J, Chang C, Kolas NK, et al. The BioGRID
interaction database: 2017 update. Nucleic Acids Res. 2017;45:D369-79.

59. Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, et al. The STRING
database in 2017: quality-controlled protein-protein association networks, made broadly accessible.
Nucleic Acids Res. 2017;45:D362-8.

60. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software
environment for integrated models of biomolecular interaction networks. Genome Res.
2003;13:2498-504.

61. Stekhoven DJ, Biithlmann P. MissForest--non-parametric missing value imputation for mixed-
type data. Bioinformatics. 2012;28:112-8.

34


https://doi.org/10.1101/254045
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/254045; this version posted December 3, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

62. Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait
analysis. Am J Hum Genet. 2011;88:76-82.

35


https://doi.org/10.1101/254045
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/254045; this version posted December 3, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Tables

Table 1. Editing levels detected for the 10 recoding sites identified in human blood

et | e [ svama [ o [ aw | it T [ b
chr3_49398423 RHOA - Lys->Arg | yes 0.19 0.33 0.64
chr4_2835556 SH3BP2 + Arg->Gly no 0.05 0.08 0.16
chr4_2940026 NOP14 - Asn->Ser yes 0.1 0.23 0.56
chrd_77979680 CCNI - Arg->Gly no 0.05 0.08 0.19
chr8_103841636 AZIN1 - Ser->Gly no 0.07 0.16 0.45
chr13_52604264 UTP14C + Ser->Gly no 0.24 0.64 1
chr13_52604880 UTP14C + GIn->Arg no 0.45 0.85 1
chr15_75646086 NEIL1 + Lys->Arg no 0.27 0.73 1
chr16_3292200 MEFV - Stp->Trp yes 0.05 0.16 0.36
chr20_36147563 BLCAP - GIn->Arg no 0.05 0.14 0.33

Table 2. Network based statistics for the 9 ADARs direct partners significantly associated to global

editing levels (adjusted p < 0.05)

Gene Betweenpess Degree Ass.ociation Associated genes
centrality adjusted p rank

ELAVL1 0.137 168 0.0312 840
RPA1 0.028 96 0.0140 496
IFI16 0.020 66 0.0055 246
HNRNPULI1 0.007 39 0.0004 10
SUZ12 0.007 52 0.0022 110
SDADI 0.002 19 0.0253 713
THOC1 0.002 17 0.0184 587
USP39 0.002 20 0.0190 596
HDLBP 0.001 15 0.0400 986
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Association adjusted p are calculated as FDR corrected p values from robust regression of global

editing level and gene expression. Associated genes rank: the rank position among top associated

genes is also reported.

Table 3. Top 4 SNPs associated to CES total editing rate define a locus on chromosome 7

SNP Chr | Position | Al1| Beta p value r’* | Gene (distance)
(cell corrected p)
3.90 x 10 LOC730338]
* -
rs856554 7 46,760,129 | G | 0.00377 (3.29 x 10 (23.4 kb)
rs856589 7 46,734,307 | A | 0.00345 8.37x10 " 0.73 [LOC730338]
T ) (4.38 x 10®) )
1.34 x 10 LOC730338]
rs6463347 7 46,780,614 | C | 0.00350 (8.09 x 10°%) 0.76 (43.9 kb)
2.53x 10" [LOC730338
rs856565 7 46,721,854 | A | 0.00347 (2.58 x 10™) 0.88 (5.6 kb)

For each SNP, the table reports distance from LOC730338 gene. Gene name within square brackets

indicate SNPs located within the gene, while single bracket indicates 3’ distance. Index SNP is

marked with *, r* with the index SNP is reported for other SNPs in the locus. Genomic coordinates

refer to hg19 genome assembly.
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Figure legends

Figure 1. Distribution of 2,079 consistently edited sites (CES) analyzed in the study
(a) Distribution of the 2,079 CES within ALU regions and (b) based on functional classification. (c)
Density plot representing overall distribution of editing levels. (d) Density plots of editing levels for

different editing site categories and ALU/non-ALU sites.

Figure 2. Association between gene expression and CES total editing rate

We analyzed association between CES total editing rate and gene expression for 14,961 human
genes. (a) Gene set enrichment analysis by hypergeometric test on GO-BP categories and
REACTOME pathways revealed that associated genes are mainly involved in immune system
response mediated by interferon I and alpha / beta. (b) When we analyze distribution of CES total
editing rate and ADAR gene expression, ADAR expression levels explains ~ 13% of observed
variability. No significant effect is observed for ADARBI expression. ADAR and ADARBI1
expression levels are reported as residuals of ridge regression with technical covariates (see
description of data in methods section). The graphs report adjusted p-value and R2 value from
robust regression analysis. (c) The 1,122 genes associated to CES total editing rate after removing
ADAR expression effect were enriched for genes mainly involved in ribonucleoprotein and RNA

processing.

Figure 3. Genes associated with CES total editing rate are enriched for ADAR interactors

(a) Reconstructed PPI network including ADARs and proteins encoded by best genes significantly
associated with global editing levels (FDR < 0.01). Among these proteins, we observed 285
potential ADARs interactors, including 9 direct partners of ADARSs proteins. (b) Boxplot of number

of ADARs interacting genes observed in 1M random simulations. The observed number of
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interactions (285) resulted in empirical p-value < 1e-6. (c) ADARs interactors are strongly enriched
for RNA binding proteins in GO-MF categories. (d) Distribution of degree and betweenness
centrality values among network nodes are represented by violin plots. ADAR1 protein has a major
role (higher values) among ADAR proteins. Among ADARs direct partners, ELAVL1, RPA1 and
IF116 showed high values of degree and betweenness centrality, suggesting a central role in the
network. (e) ADARI1 interaction with RPA70 (coded by RPA1) and IFI16 determined by co-
immunoprecipitation. After immunoprecipitation with ADAR1 antibody, western blot for IFI16 and

RPA70 are reported. For a better discrimination two times of exposure are reported in the figure.

Figure 4. Impact of cell composition on CES total editing rate and ADAR / ADARBI expression
Our analysis revealed strong associations with CES total editing rate for 4 cell type variables (a),
representing proportion of neutrophils, monocytes, dendritic cells (DC) and T helper (Th). Specific
cell variables resulted significantly associated also to ADAR (b) and ADARBI (c) expression.
Significance level (p) and correlation coefficient (r) are reported in each plot based on Pearson’s

product-moment. Only non-zero observations are plotted.

Figure 5. Impact of biological / pharmacological factors on CES total editing rate and ADAR /
ADARBI expression

Our analysis revealed significant associations with CES total editing rate for blood pressure
medication, BMI current, Age and Sex (a). Specific biological variables resulted significantly
associated also to ADAR (b) and ADARBI (c) expression. Significance level of association after
correction for cell composition is reported (p (cell)) is reported in each plot based on Mann-
Whitney-Wilcoxon or Pearson’s product-moment correlation test for binary and continuous
variables, respectively. For continuous variables the Pearson correlation coefficient (r) is also

reported.
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Figure 6. Impact of cell composition, biological and pharmacological factors on PCs of editing
levels

The heathmap represents strength of association between the first 5 principal components of CESs
(PCs) and ADAR / ADARBI expression (upper panel), 7 cell composition variables (middle panel)
and 11 biological / pharmacological variables (lower panel). Only factors showing significant
association with at least one of the first 5 PCs are represented. Significant p values (< 0.05) are
colored in yellow-red scale, while p value > 0.05 are represented in grey scale. Age, BMI, blood
pressure medications, smoke and alcohol all associate with PC1. Also time of blood draw seems to
have a small, but consistent effect, on different PCs. For each PC, variance explained is represented

by the bar plot in the upper side.

Figure 7. Association study for SNPs and CES total editing rate

(a) Manhattan plot representing the association between 573,801 SNPs and CES total editing rate,
where black line represents threshold for the top 100 SNPs (p value ~ 10e-4). (b) Detailed view of
genotyped SNPs located in the region at chromosome 7 that showed significant association with
CES total editing rate. Known GWAS associations for human phenotypes from GRASP database
are reported in the lower panel. (c) The top associated SNP (rs856554) showed a significant effect
on global editing level, while no significant correlation was observed with ADAR and ADARBI1
expression. (d) Real-time expression analysis of ADAR and ADARBI mRNA after B-EBV
transfection of LOC730338. Not transfected cells were used as control samples. Data are reported as
244 (expression level of control sample is equal to 1) and represent mean values and standard
errors obtained from at least 3 independent evaluations. Unpaired t test was used for statistical

analysis (*p< 0.05).
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Additional materials
Additional file 1 (pdf). Supplementary tables and figures

Supplementary tables S1-S8. Supplementary Figures S1-S8

Additional file 2 (xlIs). Detailed statistics for the 2,079 editing sites considered in the study and

overlap with miRNA binding sites

Additional file 3 (xls). Complete results of correlation analysis for the 2,079 CES.

Additional file 4 (xls). Complete results of robust regression between CES total editing rate and

gene expression levels where the effect of ADAR expression was removed.

Additional file 5 (xIs). Node properties in the protein-protein interaction network including proteins

encoded by genes associated to CES total editing rate (FDR<0.01) and interacting with ADARSs or

one of their first neighbors.

Additional file 6 (xls). Association of editing sites with principal components of editing.

Additional file 7 (xIs). Results of genome-wide association study for CES total editing rate.

Association results for single SNPs with nominal p-value < 0.05 and loci identified after variant

clumping are reported.
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