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Summary

Ageing is the largest risk factor for a variety of non-communicable diseases. Model
organism studies have shown that genetic and chemical perturbations can extend both
life- and health-span. Ageing is a complex process, with parallel and interacting
mechanisms contributing to its aetiology, posing a challenge for the discovery of new
pharmacological candidates to ameliorate its effects. In this study, instead of a target-
centric approach, we adopt a systems level drug repurposing methodology to discover
drugs that could combat ageing in human brain. Using multiple gene expression
datasets from brain tissue, taken from patients of different ages, we first identified the
expression changes that characterise ageing. Then, we compared these changes in
gene expression with drug perturbed expression profiles in the Connectivity Map. We
thus identified 24 drugs with significantly associated changes. Some of these drugs
may function as anti-ageing drugs by reversing the detrimental changes that occur
during ageing, others by mimicking the cellular defense mechanisms. The drugs that
we identified included significant number of already identified pro-longevity drugs,
indicating that the method can discover de novo drugs that meliorate ageing. The
approach has the advantages that, by using data from human brain ageing data it
focuses on processes relevant in human ageing and that it is unbiased, making it
possible to discover new targets for ageing studies.
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Introduction

Life expectancy has increased steadily in many countries worldwide. Since ageing is
the major risk factor for multiple pathologies, including cardiovascular diseases,
neurodegenerative disorders, and cancer (Niccoli & Partridge, 2012), finding
interventions that can increase health during ageing is of importance. Lifespan of
laboratory model organisms can be greatly extended by genetic and environmental
interventions, which also improve health and function during ageing (Clancy et al.,
2001; Lucanic, Lithgow, & Alavez, 2013; Xiao et al., 2013). Many of these interventions
target components of the nutrient-sensing network, and decrease the activity of
IGF/Insulin and/or TOR signalling (Fontana, Partridge, & Longo, 2010). Moreover,
dietary restriction (DR), decreased food intake without malnutrition, can increase
lifespan, and further supports the importance of nutrient sensing pathways in ageing
(Fontana & Partridge, 2015).

Pharmacological intervention can also extend animal lifespan. The DrugAge database
reports drug-induced lifespan extensions up to 1.5-fold for C. elegans, 1.1-fold for D.
melanogaster, and 31% for M. musculus (Barardo et al., 2017). Some of these
chemicals may mimic the effects of DR (Fontana et al., 2010). For example,
resveratrol, which induces a similar gene expression profile to dietary restriction
(Pearson et al., 2008), can increase lifespan of mice on a high-calorie diet, although
not in mice on a standard diet (Strong et al., 2013). Rapamycin, directly targets the
mTORC1 complex, which plays a central role in nutrient sensing network and has an
important role in lifespan extension by DR (Mair & Dillin, 2008). Rapamycin extends
lifespan by affecting autophagy and the activity of the S6 kinase in flies. However, it
can further extend the fly lifespan beyond the maximum achieved by DR, suggesting
that different mechanisms might be involved (Bjedov et al., 2010). Nevertheless, the
mechanisms of action for most of the drugs are not well known.

Several studies have taken a bioinformatics approach to discover drugs that could
extend lifespan in model organisms. For instance, the Connectivity Map, a database
of drug-induced gene expression profiles, has been used to identify DR mimetics, and
found 11 drugs that induced expression profiles significantly similar to those induced
by DR in rats and rhesus monkeys (Calvert et al., 2016). Another study generated a
combined score reflecting both the ageing relevance of drugs based on the GenAge
database and GO annotations as well as the likely efficacy of the drugs in model
organisms, using structural analyses and other criteria such as solubility (Ziehm et al.,
2017). A machine learning approach has been used to identify pro-longevity drugs
based on the chemical descriptors of the drugs in DrugAge database and GO
annotations of their targets (Barardo et al., 2017). By using DrugAge as a training set,
the results reflect the known pathways in ageing, and thus identified anti-cancer and
anti-inflammatory drugs, compounds related to mitochondrial process and
gonadotropin-releasing hormone antagonists. Another study took a pharmacological
network approach to characterise anti-ageing drugs, first screening a large library of
1280 compounds for lifespan extension in C. elegans. The 60 hits from the screen
were used to construct a pharmacological network, and clustered in certain
pharmacological classes, mainly related to oxidative stress (Ye, Linton, Schork, Buck,
& Petrascheck, 2014).
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While most studies have focussed on model organisms, one study used the known
pro-longevity drugs from the Geroprotectors database (Moskalev et al., 2015) and
asked if these could be functional in humans (Aliper et al., 2016). Using young and old
human stem cell expression profiles, they calculate a geroprotective score based on
the GeroScope algorithm, which scores drugs based on the drug targets and age-
associated expression changes in related pathways (Zhavoronkov, Buzdin, Garazha,
Borisov, & Moskalev, 2014). Testing the top hits in senescent human fibroblast
cultures, they suggest several geroprotectors for humans as well as showing the
potential in using human gene expression data for drug studies.

Here, we extended the approaches to identification of new anti-ageing drugs, by
focusing directly on human ageing. We used a framework that does not require any
prior knowledge and is thus robust to biases in the literature and databases on ageing.
Through a meta-analysis of multiple gene expression datasets, we first compiled a
robust signature that characterises ageing in human brain. We then used drug-induced
RNA expression profiles deposited in the Connectivity Map (CMap) (Lamb, 2006) to
identify a list of potential drug candidates that could influence human brain ageing. We
then assessed the performance of the method in relation to previous knowledge and
identified novel candidate geropotective drugs.
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Results

Analysis of age-related changes in RNA expression in human brains. We
analysed data from seven, published, microarray-based studies of age-related
changes in RNA expression (Barnes et al., 2011; Berchtold et al., 2008; Colantuoni et
al., 2011; Kang et al., 2011; Lu et al., 2004; Maycox et al., 2009; Somel et al., 2010,
2011). The data came from 22 different brain regions, and the ages of the donors
ranged from 20 to 106 years (Figure 1a, Figure S1). The data for each brain region in
each study were analysed separately, resulting in 26 datasets.

To characterise the association between the gene expression and age, we calculated
the Spearman's correlation between the expression level and age, for each gene, in
each dataset separately. We first calculated the number of significant changes (FDR
corrected p<0.05) in each dataset (Figure S2). While there were two datasets with a
large number of significant changes, most of the datasets did not show substantial
significant change. This can be explained by several factors, most importantly i) most
of the datasets had a small sample size, providing insufficient power to detect changes
in most of the cases, and ii) Spearman's correlation test calculates significant
monotonic changes, whereas it is likely that many of the changes are not exclusively
monotonic throughout ageing. Thus, we applied another approach, using the
correlation coefficient to capture significant trends across datasets, instead of within a
dataset (see Methods). While the p-value is affected by the number of the samples
and the strength of the monotonic relationship (Figure 1b), the sign of the correlation
coefficient can be used to capture consistent trends of up- or down-regulation once
coupled with an appropriate testing scheme. This strategy requires the datasets to be
concordant and reflect genuine age-related changes. We first investigated if this
assumption was valid. To assess the concordance among datasets, we used
Spearman's correlation coefficients and calculated the correlation between
expression-age correlations between datasets (Figure 1c). We observed a weak
correlation with a median pairwise correlation coefficient of 0.29. To calculate the
significance of this correlation, we developed a stringent permutation scheme
specifically designed to account for the dependence between genes as well as the
datasets (see Methods for detail). We concluded that a median correlation coefficient
of 0.09 would be expected by chance and that our observation (median rho=0.29), is
statistically significant (p<0.001). Based on these correlations, datasets clustered
according to the data source rather than to the brain region. This observation is in line
with the previous studies suggesting that ageing-related changes are small and
heterogeneous, making them difficult to detect (Somel, Khaitovich, Bahn, Paabo, &
Lachmann, 2006). We therefore tested for significant correlations across datasets from
different studies. When we excluded the correlation coefficients among the datasets
generated by the same studies, we still observed a significant correlation coefficient of
0.22 (permutation test p<0.001, rho=-0.002 would be expected by chance), showing
that we have significant correlations among different data sources as well. Using these
correlations, we proceeded to compile the ageing-signatures, reflecting consistent
trends.

Defining the ageing signature. To construct a robust ageing signature, we identified
the age-related changes that were observed across all datasets, irrespective of the
effect size. We thus focussed on global age-related changes in the brain, rather than
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region-specific changes, and the set of genes that showed gene expression changes
in the same direction across all datasets (Figure 2a). This profile consisted of only 100
up- and 117 down-regulated genes (Table S2, Figure S3-4), 'the ageing signature’.

To establish the robustness of the ageing signature, we calculated the statistical
significance of the number of consistent changes with the same permutation scheme
used to test the correlations among datasets. This methodology randomizes the age
of each individual, making it possible to test the null hypothesis where there is no
association between expression and age while retaining the dependence between
genes and datasets (see Methods for details). The number of consistent expression
changes across brain regions was significant (p<0.001, Figure S6a-b), establishing
that the ageing signature indeed has biological meaning.

To further test the robustness of the ageing signature, we used an independent data
set, consisting of gene expression in human brain generated by the GTEx Consortium
(Ardlie et al., 2015), consisting of data from 99 individuals, 13 brain regions and ages
between 20-79 (Figure S1, Table S1). These data were generated using RNA-Seq,
allowing us to assess the robustness of the ageing signature to different technology
platforms. We used pipeline previously applied to the microarray data to calculated
age-related expression changes for each gene in each brain region separately. The
pairwise correlations between the GTEx datasets were higher than with the other
dataset, and they tended to cluster together (Figure S5). We found 1189 up- and 1352
down-regulated genes that showed the same direction of change across all GTEx brain
regions (Table S2), compared with only 100 and 117 in the microarray ageing
signature. A likely explanation is that samples from different brain regions from the
same individuals were used in GTEX, while the microarray ageing signature combined
seven independent studies and different microarray platforms. The numbers of shared
expression changes based on permutations were 127 and 131.5, for down- and up-
regulated genes, suggesting a higher false positive rate in the GTEx dataset.
Nevertheless, the numbers of consistent up- and down-regulated genes in the GTEXx
dataset were also significant (p=0.001, Figure S6¢c-d). The numbers of common up-
and down-regulated genes across the GTEx and microarray signatures were 50 and
48, respectively, both statistically significant (binomial test p < 2.2e-16 for both),
demonstrating that the ageing signature was reproducible.

Biological processes associated with the ageing signature. We next investigated
the biological processes associated with the microarray ageing signature. Using the
genes that were consistently expressed in all data sources as background, we did
Gene Ontology enrichment tests for consistently up- and down-regulated genes,
separately (Figure 3, Table S3 (up-regulated), Table S4 (down-regulated)). Down-
regulated genes were enriched in synaptic functions and biosynthetic processes (FDR
corrected p<0.05), while differentiation and proliferation-related categories showed
enrichment for the up-regulated genes (FDR corrected p<0.05). These results are
consistent with the findings of earlier brain ageing transcriptome studies (Lu et al.,
2004; Naumova et al., 2012; Xue et al., 2007). Oddly, ossification-related biological
processes also showed significant enrichment for the up-regulated genes. However,
except for one gene, these ossification-related categories shared all genes with the
more generic development-related categories. Thus, this result could be interpreted as
a general up-regulation of the development-related processes rather than ossification-
related categories.
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We repeated the enrichment analysis using the GTEx ageing signature and found 194
and 256 GO BP categories as significantly associated with down- and up-regulated
genes, respectively (TableS7-8). Since the number of genes in the GTEx signature is
higher, we had more power to detect smaller changes and thus had a higher number
of significant associations. However, the effect sizes (odds ratios) for each GO BP
category calculated for microarray and the GTEx ageing signature were correlated
(FigureS7). Correlations between the odds ratios calculated for all of the GO categories
calculated in both methods were 0.46 and 0.37, for the enrichment in the down- and
up-regulated genes, respectively. Correlations increase when we considered only the
GO categories that are significantly associated with at least one of the ageing
signatures; 0.55 and 0.60, for the enrichment in the down- and up-regulated genes,
respectively. This further shows that the ageing signatures are robust. The categories
enriched in down-regulated genes included biological processes related to neuronal
and synaptic functions, autophagy, post-translational modifications, and translation
(see Table S7 for the full list). Processes related to response pathways, immune
response, macromolecule organisation and lipid metabolism showed enrichment in up-
regulated genes (see TableS8 for the full list). Interestingly, categories related to
ossification were also among the GO categories significantly associated with up-
regulation, based on GTEXx data.

Mapping the ageing signature onto drug-perturbed expression profiles. The
Connectivity Map (CMap) is a database of drug perturbed gene expression profiles
(Lamb, 2006). It consists of 6100 gene expression profiles for 1309 drug perturbation
experiments performed on five different cell lines. The CMap algorithm uses a modified
Kolmogorov-Smirnov test statistic to calculate the similarity of a drug-perturbed
expression profile to the gene expression profile used to query the database. A positive
similarity score means that the drug-perturbed expression profile is similar to the query,
whereas a negative score indicates a negative correlation (Figure 2b). Based on the
random permutations, the statistical significance of the similarity score for each drug is
calculated. Thus, the p-value shows the probability of finding the same association
when a random signature is supplied. We queried the CMap database and identified
drugs that showed significant associations in either direction with the ageing
signatures. To determine the robustness of this procedure, we queried the CMap data
using the microarray ageing signature, and the top 500 up- and 500 down-regulated
genes from the GTEx ageing signature (see Methods). The correlation was significant
(r=0.52, p<2.2e-16, Figure S3a) showing that the two ageing signatures produce
reproducible overlaps with the CMap database.

Querying the CMap database, we identified 13 drugs significantly associated (FDR
corrected p<0.05) with the microarray ageing signature (Table1, Figure 4). Four of
these drugs were previously shown to extend lifespan in worms or flies in at least one
experiment (Table S9). The number of pro-longevity drugs re-discovered using this
methodology was statistically significant (p=0.004), and only one drug would be
expected based on 10,000 random permutations of drugs. Repeating the same
analysis with the GTEx ageing signature, we identified 18 drugs, seven of which were
in common with the microarray results, including the four known pro-longevity drugs.
In total, 24 drugs were significantly associated with at least one of the ageing
signatures. The correlation between the drug similarity scores for these 24 drugs
calculated based on the microarray and GTEx data was 0.88 (p<9.44e-09, Figure S3b),
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indicating high concordance. Since the similarity scores show high correlation, the rest
of the results will be presented for the 24 drugs that are associated with at least one of
the ageing signatures.

Overall, the method re-discovered seven known pro-longevity drugs in DrugAge
database (p=0.00023, based on 100,000 random permutations); resveratrol, LY-
294002, wortmannin, sirolimus (also known as rapamycin), trichostatin A,
levothyroxine sodium, and geldanamycin (Table S9).

Targets of the drugs. Next, we investigated the targets of these 24 drugs, using the
ChEMBL, PubChem and DrugBank databases as well as through manual curation of
the literature (Table 1), and whether these targets were previously implicated in ageing,
using GenAge human and model organism databases (Figure 5). Except for four
(rifabutin, securinine, thioridazine, trifluoperazine); all drugs or their target genes had
been previously implicated in ageing. Moreover, the drug-target association network
showed several clusters with multiple drugs sharing the same targets: i) quinostatin
was in the same cluster with two known pro-longevity drugs, wortmannin and LY-
294002, targeting PI3K subunits, ii) tanespimycin and alvespimycin shared the same
target with another DrugAge drug, geldanamycin, targeting HSP9O, iii) vorinostat
shared one of its targets, HDACG, with trichostatin A, another DrugAge drug, iv)
thioridazine and trifluoperazine had dopamine and serotonin receptors as targets and
v) irinotecan and camptothecin shared TOP1 as their target. The fact that drugs
targeting the same proteins / acting through the same mechanism had similar CMap
similarity scores (Figure 4) further shows that our results are biologically relevant and
reflects potential mechanisms to target ageing.

Drugs can act both by reversing ageing effects and mimicking responses. The
general expectation from an ‘omics-based drug repurposing study is the identification
of drugs that can reverse the abnormalities detected in the disease state i.e.
identification of drugs with negative similarity scores (Duran-Frigola, Mateo, & Aloy,
2017). Following the same logic, one might expect drugs with anti-ageing potential to
have negative scores. Interestingly, some of the known pro-longevity drugs had
positive similarity scores to the ageing signatures, meaning that the drug-induced
profile was similar to the ageing signature. A plausible explanation for this observation
is that ageing signatures may partly reflect cellular defense responses, helping to
alleviate the damaging effects of ageing.

Characterising the biological functions associated with pro-longevity drugs.

In order to identify the biological processes associated with the changes that were
reversed or mimicked by the pro-longevity drugs, we used the drugs documented in
DrugAge, that were re-discovered in our analysis. We grouped the microarray ageing
signature into five categories, based on the expression changes in ageing (up or
down), and the pro-longevity drug-induced profile (up, down or inconsistent) (TableS5).
To compile the pro-longevity drug profile, for each probe-set in the microarray ageing
signature, we asked if the seven DrugAge drugs induced similar changes. If the same
direction of change was induced by more than half of these DrugAge drugs, then we
included these changes in the pro-longevity drug profile (see Methods for the details).
We then analysed the biological processes associated with the genes in these
categories. The number of genes is small, with no significant changes after multiple
test correction. We therefore report the associations based on the highest odds ratios
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only. For genes down-regulated in ageing, the changes mimicked by the drugs were
associated with autophagy and metabolic processes (Table S6), while for up-regulated
genes, pro-longevity drugs tended to mimic the changes in protein complex / cellular
complex assembly-related functions and to reverse the changes observed in protein
localisation and immune-related functions (TableS6). These findings are consistent
with the mechanism of action for the most well-known pro-longevity drugs. For
example, sirolimus (rapamycin) is an immunosuppressant approved for human use,
and similar drugs can enhance the response of elderly humans to immunization
against influenza (Mannick et al., 2014).

Similarity among significant drugs based on the expression changes at the
functional level. In order to analyse the similarities among drugs based on expression
level changes, we performed a gene-set enrichment analysis (GSEA) for the drug-
induced expression profiles, including all genes irrespective of whether a given gene
is in the ageing signature (see Methods). To measure the similarity between drugs, we
calculate the Spearman’s rank correlation coefficients between the enrichment scores
and then cluster drugs based on these correlation coefficients. Notably, drugs targeting
the same proteins or pathways, e.g. PI3K inhibitors LY294002, wortmannin and
quinostatin, clustered together. Using this functional level approach, we grouped drugs
into four groups: i) known pro-longevity drugs, ii) drugs clustering together with at least
one pro-longevity drug, iii) drugs which clustered together but did not cluster with any
known pro-longevity drugs, and iv) drugs which did not cluster with any other drugs
(Figure S10).

Ageing signature in other tissues. Since our analysis is based on an ageing
signature compiled using only the brain tissue, we also explored if this signature is
representative of the other tissues. A plausible way to approach this question is
repeating the same analysis using other tissues. However, it is not straightforward
because i) the number of datasets available for the other tissues limits the capacity of
our approach to compile consistent signatures, increasing false positives, and ii) we
find that the ageing-related changes in other tissues are not as consistent as in brain
(Figure S11a). Thus, we choose another approach and asked if the direction of change
for the ageing signature we compiled is similar to the direction of change in other
tissues (Figure S11c). We also tested the significance of the similarity in the direction
of change based on random permutations. As expected, GTEx brain data showed the
highest percent similarity to the array signature. 8/35 datasets showed more
dissimilarity for the down-regulated genes (i.e. percent similarity was lower than 50%),
while only two were statistically significant, namely, liver and atrial appendage.
Similarly, only 6/35 datasets showed more dissimilarity for the up-regulated genes,
while none was significant. We repeated the analysis with the GTEx signature and
observed similar results with only exception that there were five datasets with
significant dissimilarity for the down-regulated genes (Figure S11e). Thus, it is possible
that brain signature includes some brain-specific changes but based on significant
similarity, we can say it is also representative of other tissues.
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Discussion

In this study, using gene expression data, we identified a set of drugs that are likely to
modulate ageing in the human brain. Using a meta-analysis approach, we generated
a reproducible ageing signature that represents multiple brain regions and is
independent of the platform used for the detection of expression. Using the
Connectivity Map, we identified drugs highly associated with this ageing signature.
Based on the DrugAge database, seven of these drugs were previously tested on
model organisms and prolonged lifespan in at least one experiment. The fact that we
successfully re-discovered a statistically significant number of known lifespan
modulators, without using any prior drug ageing information, suggests that the other
drugs that we identified also have a high potential to be modulators of the ageing
process / lifespan. Eleven of these had targets implicated in ageing, based on GenAge
database (Tacutu et al.,, 2017). These targets include extensively studied ageing-
modulators such as PI3K subunits and histone deacetylases. We also identified a
group of novel candidates that are not in ageing databases, which can offer new
targets and mechanisms to modulate ageing. These include drugs targeting serine /
threonine, muscarinic acid, and GABA(A) receptors, protein translation, and BCL6
gene. A literature research presented in Sl provides more information on potential
mechanisms and suggests the list includes drugs that can influence both life- and
health-span in humans.

‘Omics-based drug repurposing studies, such as the CMap, aim to identify drugs
reversing the profile induced by a biological state of interest. Ageing is a time-
dependent, complex phenomenon, which induces subtler changes compared to
development (Donertas et al., 2017), or to a disease state such as Alzheimer’s
(Avramopoulos, Szymanski, Wang, & Bassett, 2011). The ‘omics profile reflects two
potentially distinct contributions: - the detrimental effects which occur with age (e.g.
accumulation of mutations) and the potentially beneficial responses to those changes
(e.g. the immune response). As a result, CMap similarity score is not conclusive on its
own. In order to characterise the potential effects of drugs on ageing (anti- or pro-
ageing drugs), we use three different approaches: i) comparison of the drug-induced
expression profiles with the known pro-longevity drug profile (Figure S9), ii) functional
analysis of the drug-induced gene expression changes (Figure S10), and iii)
compilation of literature on the drugs and targets (Sl). Based on these analyses we
suggest that eight of seventeen drugs (quinostatin, trifluoperazine, thioridazine,
vorinostat, alvespimycin, tanespimycin, rifabutin, and 15-d prostaglandin J2), which
are not in DrugAge, are likely to have positive effects, whereas, topoisomerase
inhibitors (camptothecin, irinotecan, and daunorubicin) can be detrimental and could
act as pro-ageing drugs. Four of the remaining drugs, which are cinchonine,
securinine, emetine and tretinoin, do not cluster closely with any known pro-longevity
drugs in Figure S10. Literature, however, suggests cinchonine and securinine are likely
to have negative effects (see Sl), whereas emetine and tretinoin could act as anti-
ageing drugs. GW-8510 and atropine oxide could not be classified because neither the
clustering results nor literature evidence are conclusive.

It is important to note that none of the cell lines used to generate the CMap data
originates from the brain. The assumption for using the CMap algorithm is that the
effect we see in diverse cell-lines reflects the global profile of the drug perturbation and
thus should be also transferable to the brain. However, it is possible that drugs have

10
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cell or tissue-specific effects. Even if the drugs induce the same expression changes
in brain cells, an important question is: Can they cross the blood-brain barrier to target
the brain? If some of these drugs have side effects on the CNS, it might be an indication
that these drugs can affect the brain and can be re-purposed to target brain ageing.
Only eight of the 24 compounds have reported side effects and all of them has at least
one reported effect on the nervous system, based on MedDRA system organ classes
(Table S10). This implies that these drugs can affect CNS, although we do not have
information on their ability to cross the barrier. The rest may or may not cross the
barrier to influence the expression in the brain, but they may also improve health by
targeting generic changes throughout the body. The ageing signatures from brain
tissue show a modest but significant similarity to expression profiles from non-brain
tissues (Figure S10). Thus, it is possible that we identified not only drugs specifically
targeting ageing in the brain but also drugs targeting ageing in other tissues. It is also
possible that there are drugs which can target brain ageing with more potency, but we
cannot identify them because we do not have drug-induced expression profiles for
brain cells. Another important technical drawback is that the data we used to generate
the ageing signature are bulk RNA expression datasets, where the expression profile
is an average of all the cell types in the human brain. Focusing on the changes that
are observed ubiquitously across all brain regions, we aimed to focus on global
changes which are unlikely to be driven by cell type differences. However, future
datasets generated using single-cell expression profiling can greatly improve the
understanding of both the ageing process itself and how the interventions work.

To summarise, this study provides an unbiased identification of drugs that can target
human brain ageing. We first compiled a set of gene expression changes that can
characterise human brain ageing and asked if there are drugs which alter the
expression of the same genes. We identified 24 drugs, seven of which were among
known pro-longevity drugs. Our analysis suggests that anti-ageing drugs may act by
mimicking the response while it is also possible that they can reverse the detrimental
changes in ageing. Based on the literature research, we concluded that some of the
drugs we identified can directly modulate the lifespan, whereas some are more likely
to function by improving the cognitive functions and promoting the healthy ageing. We
are in the process of experimentally testing a group of the drugs that we have identified.
We hope the information presented in this study will guide research community to
further test and identify chemical modulators of the ageing process in humans.
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Methods

Data pre-processing

Microarray datasets: We used seven microarray-based RNA expression studies with
samples from 22 brain regions, that are not mutually exclusive (Table S1). Data from
different brain regions are processed and analysed separately, resulting in 26 datasets.
The number of individuals in each dataset ranges between 11 and 148. The total
number of individuals is 304, and the total number of samples is 805 (after removing
the outliers). Some studies include samples covering the whole lifespan. However, in
this study, we only considered samples above 20 years of age, which corresponds to
the age at first reproduction in human societies (Walker et al., 2006). Previous human
brain ageing studies using transcriptome data have also suggested gene expression
patterns before and after the age of 20 are discontinuous (Colantuoni et al., 2011;
Donertas et al., 2017). Since we are interested in finding consistent tendencies in terms
of the direction of change, which can characterise ageing, we only included samples
above 20 years of age. As a result, the samples included in the analysis had ages
between 20-106. The microarray data were downloaded from NCBI GEO (Barrett et
al., 2013) using the accession numbers in Table S1. Using “affy” (Gautier, Cope,
Bolstad, & Irizarry, 2004) or “oligo” (Carvalho & Irizarry, 2010) libraries in R, RMA
background correction is applied to the expression data. The data is then log2
transformed, and quantile normalized (using “preprocessCore” library in R). By visual
inspection of the first and second principal components of the probe-set expression
levels, outliers were excluded from the further analysis (Table S1). The age
distributions for the datasets after outlier removal are given in Figure S1. Gene
annotations for the probe-sets are obtained from the Ensembl database using the
‘biomaRt’ library (Durinck, Spellman, Birney, & Huber, 2009) in R. Because the
annotations for the probe-sets used in Kang2011 and Colantuoni2011 are not available
in Ensembl, we used the GPL files deposited in GEO. If Ensembl gene IDs are not
provided in the GPL files, Entrez gene IDs were extracted and converted to Ensembl
Gene IDs using the ‘biomaRt’ package. Probe-set level expression information is then
mapped to gene IDs. In order not to duplicate expression values, we excluded the
probe-sets corresponding to multiple genes. Expression values for the genes with
multiple probe-sets were summarised using the mean expression levels. RNA-seq
dataset: We analysed transcriptome data generated by GTEXx project (v6p)(Ardlie et
al., 2015). Samples are filtered based on the cause of death circumstances (4-point
Hardy Scale). Only the cases with a death circumstance of 1 (violent and fast deaths
due to an accident) and 2 (fast death of natural causes) are used for the downstream
analysis and the samples with illnesses are excluded. Among all tissues, only the ones
having at least 20 samples are considered. We also excluded 'Cells - Transformed
Fibroblasts' category to include only the samples from tissues. As a result, 35
datasets (17 major tissue type) are used for the downstream analysis, 13 of which were
from the brain. The final set that we analysed includes 2152 (623 for the brain) samples
from 120 (99 for the brain) individuals. The genes with median RPKM value of O are
also excluded from data. The RPKM values provided in the GTEx database are log2
transformed and quantile normalized for the downstream analysis. Similar to the
microarray data, we excluded the outliers based on the visual inspection of the first
and second principal components (Table S1). Distribution of the ages after outlier
exclusion is given in Figure S1.

Age-related expression changes and the ageing signature
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The Spearman’s rank correlation coefficients between age and gene expression levels
are used to measure age-related expression changes. In each dataset, we calculated
the Spearman’s correlation for each gene, separately. As a result, each gene had two
measures to assess its age-related expression: 1) a correlation coefficient (rho),
indicating the strength and the direction of change with age and 2) a p-value, showing
the significance of the association. The p-values are corrected for multiple testing using
p.adjust function in R, with method="FDR” argument. As the power to detect significant
changes in each dataset is different and the sample size is small for most of the
datasets, for the downstream analysis we only used the correlation coefficients (rho)
and assessed the significant gene expression change tendencies that are observed in
all datasets. When a gene is up-regulated by age throughout the lifespan, then it would
have a positive Spearman’s correlation coefficient that is close to one. In contrast, a
gene would have negative correlation coefficient if it is down-regulated. When the
association is not strong, the magnitude of the correlation coefficient decreases, but
the sign still reflects the direction of change that is observed in most of the time-points.
We used the sign of correlation coefficient, i.e. the direction of change, to compile the
set of genes that show consistent changes across all datasets. This set of genes are
referred to as the ‘ageing signature’. The ageing signature, thus, does not reflect the
dramatic changes in gene expression but captures consistent trends that are observed
across all datasets. The statistical significance of the ageing signature is calculated
using a permutation scheme, testing the significance of the consistency.

Permutation test

We used a permutation scheme that we developed earlier (Donertas et al., 2017), to
simulate the null hypothesis that there is no association between age and the gene
expression, while retaining the dependence between genes and the datasets.
Particularly, the ages of individuals in each study are permuted (randomised) 1,000
times and if that individual donated multiple samples for different brain regions, each
sample is annotated with the same age. Then, the Spearman’s correlation coefficient
between these randomised ages and the gene expression value for all genes are
calculated. In this way, we retain the dependence between genes (e.g. those regulated
by the same transcription factor) and the samples (e.g. donated by the same
individuals). Permutations are performed using ‘sample’ function in base R.

Using the correlation coefficients calculated through permutations performed as
explained above, we tested i) significance of the correlations among datasets, ii)
significance of the finding the same or a higher number of consistently up- or down-
regulated genes, i.e. the ageing signature. In order to test the significance of the
correlations among datasets, we calculated the correlations between the expression-
age correlation coefficients calculated using the permutations. We constructed the
distribution for the median correlation coefficient among datasets (distribution of the
1,000 values), and calculated how many times the randomized values have higher
correlation than the value we calculate using the real ages. In this way, we calculate
an empirical p-value. The median of the permuted values reflects the value that would
be expected by chance. Similarly, in order to test the significance of the ageing
signature, we compiled permuted ageing signatures, for 1,000 times, and asked how
many times we have the same or higher value than the calculated number of genes in
the microarray or GTEx ageing signatures. In this way, we calculate the empirical p-
value and median of the number of shared tendencies based on permutations,
reflecting what would be expected by chance.
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Gene Ontology Enrichment

Using “topGO” and “org.Hs.eg.db” libraries in R, we performed a functional analysis of
the ageing signature. Using GO categories with more than 10 annotated genes, we
applied an enrichment test for the Gene Ontology (GO) (Ashburner et al., 2000)
Biological Process (BP) categories.

Connectivity Map Analysis

A list of genes showing a consistent change in ageing (the ageing signature) is used
to query the Connectivity Map (Lamb, 2006). Since the Connectivity Map input requires
probe-set ids, the “biomaRt” package in R is used to convert the gene list to the probe-
set ids that are compatible with the CMap data. The probe-sets that are in both up-
and down-regulated probe-set lists are excluded from both lists. The final lists are used
to query CMap database to associate the ageing signature with the drug perturbed
expression profiles in the database. The resulting p-values are FDR corrected to
account for multiple testing and adjusted p<0.05 is used as the significance threshold.

The ageing signature compiled using the GTEx data had more than 500 probe-sets in
both up and down lists. Since the algorithm requires an input with less than 500
entries, we used the ones with the higher magnitude of expression change (median
Spearman’s rank correlation coefficients across 13 brain regions). In order to show
that this does not bias the results, we repeated this step for 1,000 times by randomly
selecting 500 of the probe-sets in the GTEx ageing signature. In order to automatize
this process, we re-implemented CMap algorithm in R and calculated the drug
similarity scores using the ‘rankMatrix.txt’ data provided on the CMap website. Drug
similarity scores generated using the top 500 and randomly selected 500 of the GTEx
ageing signature showed a significant correlation (median rho = 0.81, range =
(0.80,0.82)), suggesting that this approach does not bias the results.

Searching the drug databases for CMap drugs

Entries in the Connectivity Map are composed of the drug names, which are generally
the catalogue names for the drugs from chemical vendors. Similarly, DrugAge drugs
also do not have an ID that is possible to map across different databases. The DrugAge
database was retrieved on 11" May 2017, from the DrugAge website. In order to
compare the drugs in the Connectivity Map and the DrugAge, we first used the
PubChem database (Kim et al., 2016) to make a transition across different sources.
We obtained PubChem compound IDs for each drug in the Connectivity Map and
DrugAge using PubChem API accessed through R programming environment and
‘RCurl’ and ‘jsonlite’ libraries.

Targets of the drugs that are significantly associated with ageing

We compiled the drug-target associations for the drugs significantly associated with
ageing mostly through literature research. For the cases where the database entries
are manually curated and consistent, we used CHEMBL (Bento et al., 2014), DrugBank
(Law et al., 2014), and PubChem (Kim et al., 2016). We downloaded GenAge model
organism and human datasets (Tacutu et al., 2017) on 10" October 2017 using
GenAge website. Using the human orthologues for the model organisms
(genage_models_orthologs_export.tsv) and the human dataset, we asked if any of the
drug targets were previously shown to be implicated in ageing. In order to construct
the drug — target network, we used ‘ggnetwork’ package in R.
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The Pro-Longevity Drug Expression Profile

In order to compile a set of gene expression changes that can be associated with the
known pro-longevity drug profile, we first downloaded the pre-processed data matrix
with the drug-induced expression changes (‘amplitudeMatrix.txt’ from CMap FTP
server ftp://ftp.broadinstitute.org/distribution/cmap). Using this matrix, for the seven
pro-longevity drugs in DrugAge that are among the significant associations according
to our analysis, we generated a pro-longevity drug profile. We first identified the drug-
induced gene expression changes for each of these seven drugs and each of the
probe-sets that are in the microarray ageing signature. For each drug — probe-set pair,
we take the direction of change that is observed in at least 60% of the experiments
(using different doses or different cell lines) as the effect of that drug on the expression
of that probe-set. After deciding on the individual drug effects, we took the type of
change observed in at least four of seven drugs as the pro-longevity drug profile. The
reason why we do not seek a perfect overlap among different drugs is to allow
potentially different mechanism of actions to be included in the pro-longevity drug
profile. As a result, we got five categories: 1) increase in ageing, increased by the
drugs; 2) increase in ageing, decreased by the drugs; 3) decrease in ageing, increased
by the drugs; 4) decrease in ageing, decreased by the drugs; and 5) the ones that are
not affected consistently by the drugs. The full list of genes in the first four categories
is given as TableS5. We also asked if any of the GO Biological Processes is enriched
in any of the first four categories and thus did an enrichment analysis. We calculated
the odds ratio for each GO category by keeping the type of change in ageing the same.
For example, we asked if a GO category is enriched in genes that increase in ageing
and also increased by the drugs, compared to the genes that increase in ageing but
decreased by the drugs. Because the number of genes is small, it is not possible to
detect significant associations after correcting for multiple testing and thus we only
report the odd’s ratios for the categories (Table S6). We also compared the known pro-
longevity drug profile we compiled with the profile induced by the 24 drugs identified in
the study (Figure S9). We calculated the percentage of probe-sets that show the same
type of change as the pro-longevity drug profile. For this, we again only considered
probe-sets that show the same type of change in at least 60% of the experiments per
drug.

Gene-set enrichment analysis for drug-induced changes

Using the ‘amplitudeMatrix.txt’ downloaded from the CMap website, we determined the
expression changes at the gene level for each drug. We first subset the matrix to
include only the experiments for the 24 significant drugs we found. We then mapped
the probe-set ids (total number of probe-sets = 22,283) to Entrez gene ids using the
Ensembl biomaRt package in R. We map 19,222 probe-sets to genes, excluding
examples where the same probe-set id maps to multiple genes (628 multi-gene probe-
set ids in total). The genes with more than one probe-set id are represented by taking
the median expression change induced for the probe-sets (number of genes = 12064).
When the experiments for each drug are treated separately, we noticed that the results
were confounded by cell-line. Thus, we then summarized multiple experiments for
each drug by taking the median of the change they induce. In this way, we trimmed
the cell-line specific effects. Then the expression changes (for 12064 genes) for each
drug (24 drugs) are rank ordered. Using clusterProfiler package and 'gseKEGG’ and
‘gseGO’ functions, we performed GSEA for the gene expression changes induced by
each drug separately. For the KEGG pathway analysis, we only considered the
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pathways with at least 50 genes (188 pathways), and for GO analysis, we only
considered Biological Process categories with at least 50 and maximum of 200 genes
(1589 categories).

Comparing Brain Ageing Signature to Other Tissues:

We calculated the proportion of genes that show a change in the same direction with
the ageing signature compiled using brain data. The proportions are calculated for
ageing signatures compiled using the array and GTEx brain data, separately. We also
analysed up-regulated and down-regulated genes separately to observe any
differential pattern. In order to calculate the significance of similarity or dissimilarity we
performed 10,000 permutations as follows: i) N number of genes, where N is the
number of genes in a particular group (array / GTEx and up- / down-regulated), were
selected randomly from a given GTEXx dataset, ii) the proportion of changes in a given
direction is calculated, and iii) using the distribution of these proportions, we asked
how many times we obtain a value as extreme as the proportion calculated for that
tissue and assign empirical p value.

Side Effects

Using compound PubChem IDs, we subset the Side Effect Resource (SIDER 4.1)
(Kuhn, Letunic, Jensen, & Bork, 2016), a database of adverse drugs reactions for
marketed medicines. The latest version of SIDER code the side effects by using the
Medical Dictionary for Regulatory Activities (MedDRA), an adverse event classification
dictionary. To obtain term at the system level, we mapped the lowest-level MedDRA
terms in SIDER (LLT codes) to MedDRA System Organ Class terms (SOC codes)
using hierarchical files downloadable from the MedDRA web-based browser
(https://tools.meddra.org/wbb/). A total of 8 drugs among the 24 had labelled side
effects.

Acknowledgments
The authors thank the whole Thornton group, especially Dobril lvanov, Jonathan
Tyzack and Daniel Elias Martin Herranz for their support and helpful discussions.

Funding

This work was funded by EMBL (H.M.D., J.M.T.), Comision Nacional de Investigacion
Cientifica y Tecnoldgica - Government of Chile (CONICYT scholarship) (M.F.V.), and
the Wellcome Trust [098565/Z2/12/Z] (L.P., J.M.T).

Author Contributions

H.M.D and J.M.T designed the study. H.M.D analysed the data with the help of M.F.V..
H.M.D., J.M.T., and L.P. interpreted the results and wrote the manuscript. All authors
read, revised and approved the final version of this manuscript.

16


https://doi.org/10.1101/253344
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/253344; this version posted June 4, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

References

Aliper, A., Belikov, A. V., Garazha, A., Jellen, L., Artemov, A., Suntsova, M., ... Zhavoronkov, A. (2016).
In search for geroprotectors: In silico screening and in vitro validation of signalome-level mimetics
of young healthy state. Aging, 8(9), 2127—2152. http://doi.org/10.18632/aging.101047

Ardlie, K. G., Deluca, D. S., Segre, A. V, Sullivan, T. J., Young, T. R., Gelfand, E. T., ... Dermitzakis, E.
T. (2015). The Genotype-Tissue Expression (GTEX) pilot analysis: Multitissue gene regulation in
humans. Science, 348(6235), 648—660. http://doi.org/10.1126/science.1262110

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., ... Sherlock, G. (2000).
Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature
Genetics, 25(1), 25-29. http://doi.org/10.1038/75556

Avramopoulos, D., Szymanski, M., Wang, R., & Bassett, S. (2011). Gene expression reveals overlap
between normal aging and Alzheimer’s disease genes. Neurobiology of Aging, 32(12), 2319.e27-
2319.e34. http://doi.org/10.1016/j.neurobiolaging.2010.04.019

Barardo, D., Thornton, D., Thoppil, H., Walsh, M., Sharifi, S., Ferreira, S., ... de Magalhaes, J. P. (2017).
The DrugAge database of aging-related drugs. Aging Cell, 16(3), 594-597.
http://doi.org/10.1111/acel.12585

Barnes, M. R., Huxley-Jones, J., Maycox, P. R., Lennon, M., Thornber, A., Kelly, F., ... De Belleroche,
J. (2011). Transcription and pathway analysis of the superior temporal cortex and anterior
prefrontal cortex in schizophrenia. Journal of Neuroscience Research, 89(8), 1218-1227.
http://doi.org/10.1002/jnr.22647

Barrett, T., Wilhite, S. E., Ledoux, P., Evangelista, C., Kim, I. F., Tomashevsky, M., ... Soboleva, A.
(2013). NCBI GEO: Archive for functional genomics data sets - Update. Nucleic Acids Research,
41(D1), D991-D995. http://doi.org/10.1093/nar/gks1193

Bento, A. P., Gaulton, A., Hersey, A., Bellis, L. J., Chambers, J., Davies, M., ... Overington, J. P. (2014).
The ChEMBL bioactivity database: An update. Nucleic Acids Research, 42(D1), D1083—-D1090.
http://doi.org/10.1093/nar/gkt1031

Berchtold, N. C., Cribbs, D. H., Coleman, P. D., Rogers, J., Head, E., Kim, R., ... Cotman, C. W. (2008).
Gene expression changes in the course of normal brain aging are sexually dimorphic. Proceedings
of the National Academy of Sciences of the United States of America, 105(40), 15605-15610.
http://doi.org/10.1073/pnas.0806883105

Bjedov, I., Toivonen, J. M., Kerr, F., Slack, C., Jacobson, J., Foley, A., & Partridge, L. (2010).
Mechanisms of Life Span Extension by Rapamycin in the Fruit Fly Drosophila melanogaster. Cell
Metabolism, 11(1), 35—46. http://doi.org/10.1016/j.cmet.2009.11.010

Calvert, S., Tacutu, R., Sharifi, S., Teixeira, R., Ghosh, P., & de Magalhaes, J. P. (2016). A network
pharmacology approach reveals new candidate caloric restriction mimetics in C. elegans. Aging
Cell, 15(2), 256—266. http://doi.org/10.1111/acel.12432

Carvalho, B. S., & Irizarry, R. A. (2010). A framework for oligonucleotide microarray preprocessing.
Bioinformatics (Oxford, England), 26(19), 2363-2367. http://doi.org/10.1093/bioinformatics/btq431

Clancy, D. J., Gems, D., Harshman, L. G., Oldham, S., Stocker, H., Hafen, E., ... Partridge, L. (2001).
Extension of Life-Span by Loss of CHICO, a Drosophila Insulin Receptor Substrate Protein.
Science, 292(5514), 104 LP-106. Retrieved from
http://science.sciencemag.org/content/292/5514/104.abstract

Colantuoni, C., Lipska, B. K., Ye, T., Hyde, T. M., Tao, R., Leek, J. T., ... Kleinman, J. E. (2011).
Temporal dynamics and genetic control of transcription in the human prefrontal cortex. Nature,
478(7370), 519-523. http://doi.org/10.1038/nature 10524

Dénertas, H. M., Izgi, H., Kamacloglu, A., He, Z., Khaitovich, P., & Somel, M. (2017). Gene expression
reversal toward pre-adult levels in the aging human brain and age-related loss of cellular identity.
Scientific Reports, 7(1), 5894. http://doi.org/10.1038/s41598-017-05927-4

Duran-Frigola, M., Mateo, L., & Aloy, P. (2017). Drug repositioning beyond the low-hanging fruits.
Current Opinion in Systems Biology, 3, 95—102. http://doi.org/10.1016/j.coisb.2017.04.010

Durinck, S., Spellman, P. T., Birney, E., & Huber, W. (2009). Mapping identifiers for the integration of
genomic datasets with the R/Bioconductor package biomaRt. Nature Protocols, 4(8), 1184—-1191.
http://doi.org/10.1038/nprot.2009.97

Fontana, L., & Partridge, L. (2015). Promoting health and longevity through diet: From model organisms
to humans. Cell, 161(1), 106—118. http://doi.org/10.1016/j.cell.2015.02.020

Fontana, L., Partridge, L., & Longo, V. D. (2010). Extending healthy life span--from yeast to humans.
Science (New York, N.Y.), 328(5976), 321-326. http://doi.org/10.1126/science.1172539

Gautier, L., Cope, L., Bolstad, B. M., & Irizarry, R. A. (2004). affy--analysis of Affymetrix GeneChip data

17


https://doi.org/10.1101/253344
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/253344; this version posted June 4, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

at the probe level. Bioinformatics (Oxford, England), 20(3), 307-315.
http://doi.org/10.1093/bioinformatics/btg405

Kang, H. J., Kawasawa, Y. |, Cheng, F., Zhu, Y., Xu, X,, Li, M., ... Sestan, N. (2011). Spatio-temporal
transcriptome of the human brain. Nature, 478(7370), 483-489.
http://doi.org/10.1038/nature10523

Kim, S., Thiessen, P. A., Bolton, E. E., Chen, J., Fu, G., Gindulyte, A, ... Bryant, S. H. (2016). PubChem
substance and compound databases. Nucleic Acids Research, 44(D1), D1202-D1213.
http://doi.org/10.1093/nar/gkv951

Kuhn, M., Letunic, 1., Jensen, L. J., & Bork, P. (2016). The SIDER database of drugs and side effects.
Nucleic Acids Research, 44(D1), D1075-D1079. http://doi.org/10.1093/nar/gkv1075

Lamb, J. (2006). The Connectivity Map: Using Gene-Expression Signatures to Connect Small
Molecules, Genes, and Disease. Science, 313(5795), 1929-1935.
http://doi.org/10.1126/science.1132939

Law, V., Knox, C., Djoumbou, Y., Jewison, T., Guo, A. C., Liu, Y., ... Wishart, D. S. (2014). DrugBank
4.0: Shedding new light on drug metabolism. Nucleic Acids Research, 42(D1), D1091-D1097.
http://doi.org/10.1093/nar/gkt1068

Lu, T., Pan, Y., Kao, S.-Y., Li, C., Kohane, I., Chan, J., & Yankner, B. A. (2004). Gene regulation and
DNA damage in the ageing human brain. Nature, 429(6994), 883-891.
http://doi.org/10.1038/nature02661

Lucanic, M., Lithgow, G. J., & Alavez, S. (2013). Pharmacological lifespan extension of invertebrates.
Ageing Research Reviews. http://doi.org/10.1016/j.arr.2012.06.006

Mair, W., & Dillin, A. (2008). Aging and Survival: The Genetics of Life Span Extension by Dietary
Restriction. Annual Review of Biochemistry, 77(1), 727-754.
http://doi.org/10.1146/annurev.biochem.77.061206.171059

Mannick, J. B., Del Giudice, G., Lattanzi, M., Valiante, N. M., Praestgaard, J., Huang, B., ... Klickstein,
L. B. (2014). mTOR inhibition improves immune function in the elderly. Science Translational
Medicine, 6(268), 268ra179. http://doi.org/10.1126/scitranslmed.3009892

Maycox, P. R., Kelly, F., Taylor, A., Bates, S., Reid, J., Logendra, R., ... de Belleroche, J. (2009).
Analysis of gene expression in two large schizophrenia cohorts identifies multiple changes
associated with nerve terminal function. Molecular Psychiatry, 14(12), 1083-1094.
http://doi.org/10.1038/mp.2009.18

Moskalev, A., Chernyagina, E., de Magalhées, J. P., Barardo, D., Thoppil, H., Shaposhnikov, M., ...
Zhavoronkov, A. (2015). Geroprotectors.org: A new, structured and curated database of current
therapeutic interventions in aging and age-related disease. Aging, 7(9), 616-628.
http://doi.org/10.18632/aging.100799

Naumova, O. Y., Palejev, D., Vlasova, N. V, Lee, M., Rychkov, S. Y., Babich, O. N., ... Grigorenko, E.
L. (2012). Age-related changes of gene expression in the neocortex: preliminary data on RNA-Seq
of the transcriptome in three functionally distinct cortical areas. Development and
Psychopathology, 24(4), 1427-1442. http://doi.org/10.1017/S0954579412000818

Niccoli, T., & Partridge, L. (2012). Ageing as a Risk Factor for Disease. Current Biology, 22(17), R741-
R752. http://doi.org/10.1016/j.cub.2012.07.024

Pearson, K. J., Baur, J. A, Lewis, K. N., Peshkin, L., Price, N. L., Labinskyy, N., ... de Cabo, R. (2008).
Resveratrol Delays Age-Related Deterioration and Mimics Transcriptional Aspects of Dietary
Restriction ~ without  Extending Life Span. Cell Metabolism, 8(2), 157-168.
http://doi.org/10.1016/j.cmet.2008.06.011

Somel, M., Guo, S., Fu, N., Yan, Z., Hu, H. Y., Xu, Y., ... Khaitovich, P. (2010). MicroRNA, mRNA, and
protein expression link development and aging in human and macaque brain. Genome Research,
20(9), 1207-1218. http://doi.org/10.1101/gr.106849.110

Somel, M., Khaitovich, P., Bahn, S., Paabo, S., & Lachmann, M. (2006). Gene expression becomes
heterogeneous with age. Current Biology : CB, 16(10), R359--60.
http://doi.org/10.1016/j.cub.2006.04.024

Somel, M., Liu, X., Tang, L., Yan, Z., Hu, H., Guo, S., ... Khaitovich, P. (2011). MicroRNA-driven
developmental remodeling in the brain distinguishes humans from other primates. PLoS Biology,
9(12), e1001214. http://doi.org/10.1371/journal.pbio.1001214

Strong, R., Miller, R. A., Astle, C. M., Baur, J. A., De Cabo, R., Fernandez, E., ... Harrison, D. E. (2013).
Evaluation of resveratrol, green tea extract, curcumin, oxaloacetic acid, and medium-chain
triglyceride oil on life span of genetically heterogeneous mice. Journals of Gerontology - Series A
Biological Sciences and Medical Sciences, 68(1), 6—16. http://doi.org/10.1093/gerona/gls070

Tacutu, R., Thornton, D., Johnson, E., Budovsky, A., Barardo, D., Craig, T., ... de Magalhaes, J. P.
(2017). Human Ageing Genomic Resources: 2018 Update. Doi.Org, 193326.

18


https://doi.org/10.1101/253344
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/253344; this version posted June 4, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

http://doi.org/10.1101/193326

Walker, R., Gurven, M., Hill, K., Migliano, A., Chagnon, N., De Souza, R., ... Yamauchi, T. (2006).
Growth rates and life histories in twenty-two small-scale societies. American Journal of Human
Biology, 18(3), 295-311. http://doi.org/10.1002/ajhb.20510

Xiao, R., Zhang, B., Dong, Y., Gong, J., Xu, T., Liu, J., & Xu, X. Z. Z. S. (2013). A genetic program
promotes C. elegans longevity at cold temperatures via a thermosensitive TRP channel. Cell,
152(4), 806—817. http://doi.org/10.1016/j.cell.2013.01.020

Xue, H., Xian, B., Dong, D., Xia, K., Zhu, S., Zhang, Z., ... Han, J.-D. J. (2007). A modular network
model of aging. Molecular Systems Biology, 3(1), 147. http://doi.org/10.1038/msb4100189

Ye, X,, Linton, J. M., Schork, N. J., Buck, L. B., & Petrascheck, M. (2014). A pharmacological network
for lifespan extension in Caenorhabditis elegans. Aging Cell, 13(2), 206-215.
http://doi.org/10.1111/acel.12163

Zhavoronkov, A., Buzdin, A. A., Garazha, A. V., Borisov, N. M., & Moskalev, A. A. (2014). Signaling
pathway cloud regulation for in silico screening and ranking of the potential geroprotective drugs.
Frontiers in Genetics, 5(MAR). http://doi.org/10.3389/fgene.2014.00049

Ziehm, M., Kaur, S., lvanov, D. K., Ballester, P. J., Marcus, D., Partridge, L., & Thornton, J. M. (2017).
Drug repurposing for aging research using model organisms. Aging Cell, 16(5), 1006—-1015.
http://doi.org/10.1111/acel. 12626

19


https://doi.org/10.1101/253344
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/253344; this version posted June 4, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Supporting Information List
TableS1: Dataset information
TableS2: The list of genes in the ageing signatures

TableS3: The GO Enrichment results for the up-regulated genes in the microarray
ageing signature

TableS4: The GO Enrichment results for the down-regulated genes in the microarray
ageing signature

TableS5: The list of genes in the pro-longevity drug profile
TableS6: The GO Enrichment results for the pro-longevity drug profile

TableS7: The GO Enrichment results for the up-regulated genes in the GTEx ageing
signature

TableS8: The GO Enrichment results for the down-regulated genes in the GTEx ageing
signature

Table S9: Summary of the previous lifespan experiments using drugs that are re-
discovered in this study.

Table S10: The list of side effects reported for the significant drugs we identified.

20


https://doi.org/10.1101/253344
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/253344; this version posted June 4, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Tables

Table 1: The drugs that are significantly associated (FDR corrected p<0.05) with at least one of the
ageing signatures. Drug names in bold shows the drugs in DrugAge database. ‘Score’ is the mean
similarity score given in the CMap output, based on KS test. The similarity scores denoted with (*) show
the significant associations. The list is ordered by the mean of the similarity scores from negative to
positive. Target or mechanism of action is manually curated from literature (the relevant literature is
given in the Sl) or extracted from CHEMBL, DrugBank, and PubChem databases. The targets written in
bold are found in the GenAge model organism or GenAge human databases.

ARRAY | GTEX
DRUG NAME SCORE | SCORE TARGET OR MECHANISM OF ACTION
Securinine -0.65 (*) | -0.50 (*) | GABRA1-5, GABRB1-3
Levothyroxine sodium | -0.41 -0.47 (*) | THRA, THRB
Cinchonine -0.2 -0.65 (*) | CYP2D6
Geldanamycin -0.45 (*) | -0.38 (*) | HSP90AA1
]g-delta prostaglandin 038 () | 042 () | PPARG
Rifabutin -0.16 -0.6 (*) BCL6
Atropine oxide -0.35(%) | -0.17 -
Tanespimycin -0.18 -0.31 (*) | HSP90AA1
Alvespimycin -0.08 -0.33 (*) | HSP90AA1
Vorinostat 0.02 -0.41 (*) | HDAC1, HDAC2, HDAC3, HDAC6
Trichostatin A 0.09 -0.3 (%) HDACG6, HDAC7, HDACS8
Trifluoperazine 0.32 (*) |0.13 DRD2, DRD3, DRD4, HTR2A, HTR2C
Tretinoin 042 () |0.12 RARA, RARB, RARC
LY-294002 0.38 (*) |0.21 (") PIBKCG
Thioridazine 0.35(*) | 0.25 DRD2, DRD3, DRD4, HTR2A, HTR2C
Sirolimus 0.28 (*) |0.33 (") mTOR
Wortmannin 0.29 (") 10.42 () PI3KR1, PI3KCA, PI3KCG
SULT1B1, YARS, LTA4H, TTR, NQO2, PTGS2,
Resveratrol 0.42 0.48 (*) PTGS1, MAT2B, CSNK2A1, CYP3A4, ESR1,
PPARG, SIRT1, SIRT5, CYP1A2, CYP1A1,
CYP1B1, NCOA2, TNNCH1
Emetine 0.52 (*) | 0.41 Protein Synthesis Inhibition
Daunorubicin 0.43 0.52 (*) TOP2A, TOP2B
GW-8510 0.47 0.55 () CDK2, CDK5
Irinotecan 0.39 0.78 (*) TOP1
Camptothecin 0.63 (*) | 0.56 TOP1
Quinostatin 0.86 (*) | 0.76 (") PIBKCA
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Figures

Figure 1: a) Age distribution of the brains from which the datasets used in the study
were derived. The error bars show the standard deviation of the sample frequency for
different brain regions in data sources with multiple brain regions. b) Hypothetical gene
expression plots, demonstrating how Spearman’s correlation coefficient and p-value
behave when the association is weak or non-monotonic. c) Pairwise Spearman’s rank
correlation coefficients across datasets. The intensity of the colours on the heatmap
shows the magnitude of the correlation coefficient.

Figure 2: Method summary for a) compiling the ageing signature and b) the CMap
algorithm

Figure 3: Gene Ontology Biological Process Categories significantly enriched in a)
down- and b) up-regulated genes in the microarray ageing signature. Red circles
represent the genes, diamonds show the significantly associated GO Categories,
where FDR adjusted p<0.05. The size of the diamonds represents the effect size (odds
ratio).

Figure 4: Similarity score table for the drugs having at least one significant association
to the ageing signatures. Each row corresponds to a drug and columns correspond to
two independent ageing signatures — using the microarray and the GTEx datasets. The
size of score labels indicates the significance of the results (FDR corrected p<0.05).
The row labels written in bold indicates the drugs in the DrugAge database.

Figure 5: Schematic representation of the drug-target associations as a network. Blue
and red nodes show drugs and targets, respectively. The drugs with a light blue
background are present in DrugAge database and the targets with a pink background
are in either GenAge model organism or GenAge human databases.
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Figure 1: a) Age distribution of the brains from which the datasets used in the study were derived. The
error bars show the standard deviation of the sample frequency for different brain regions in data
sources with multiple brain regions. b) Hypothetical gene expression plots, demonstrating how
Spearman’s correlation coefficient and p-value behave when the association is weak or non-monotonic.
¢) Pairwise Spearman’s rank correlation coefficients across datasets. The intensity of the colours on the
heatmap shows the magnitude of the correlation coefficient.
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Figure 5: Schematic representation of the drug-target associations as a network. Blue and red nodes
show drugs and targets, respectively. The drugs with a light blue background are present in DrugAge
database and the targets with a pink background are in either GenAge model organism or GenAge

human databases.
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