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Abstract 

Understanding heterogeneity in neural phenotypes is an important goal on the path to precision 

medicine for autism spectrum disorders (ASD). Age is a critically important variable in normal 

structural brain development and examining structural features with respect to age-related 

norms could help to explain ASD heterogeneity in neural phenotypes. Here we examined how 

cortical thickness (CT) in ASD can be parameterized as an individualized metric of deviance 

relative to typically-developing (TD) age-related norms. Across a large sample (n=870 per 

group) and wide age range (5-40 years), we applied a normative modelling approach that 

provides individualized whole-brain maps of age-related CT deviance in ASD. This approach 

isolates a subgroup of ASD individuals with highly age-deviant CT. The median prevalence of 

this ASD subgroup across all brain regions is 7.6%, and can reach as high as 10% for some 

brain regions. This work showcases an individualized approach for understanding ASD 

heterogeneity that could potentially further prioritize work on a subset of individuals with 

significant cortical pathophysiology represented in age-related CT deviance. Rather than cortical 

thickness pathology being a widespread characteristic of most ASD patients, only a small 

subset of ASD individuals are actually highly deviant relative to age-norms. These individuals 

drive small on-average effects from case-control comparisons. Rather than sticking to the 

diagnostic label of autism, future research should pivot to focus on isolating subsets of autism 

patients with highly deviant phenotypes and better understand the underlying mechanisms that 

drive those phenotypes. 
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Introduction 

Autism spectrum disorder (ASD) is a clinical behavioural consensus label we give to a diverse 

collection of patients with social-communication difficulties and pronounced repetitive, restricted, 

and stereotyped behaviours (Lai et al., 2014). Beyond the single label of ASD, patients are in 

fact widely heterogeneous in phenotype, but also with regard to the diversity of different 

aetiologies (Lombardo et al., 2019). Even within mesoscopic levels of analysis such as 

examining brain endophenotypes, heterogeneity is the rule rather than the exception (Ecker, 

2017). At the level of structural brain variation, neuroimaging studies have identified various 

neuroanatomical features that might help identify individuals with autism or reveal elements of a 

common underlying biology (Ecker, 2017). However, the vast neuroimaging literature is also 

considerably inconsistent, with reports of hypo- or hyper-connectivity, cortical thinning versus 

increased grey or white matter, brain overgrowth, arrested growth, etc., leaving stunted 

progress towards understanding mechanisms driving cortical pathophysiology in ASD.  

 

Multiple explanations could be behind this inconsistency across the literature. Methodology 

widely differs across studies (e.g., low statistical power, different ways of estimating morphology 

or volume) and is likely a very important contributing factor (Haar et al., 2016; Vissers et al., 

2012). Initiatives such as the Autism Brain Imaging Data Exchange (ABIDE; (Di Martino et al., 

2017)) have made it possible to significantly boost sample size by pooling together data from 

several different studies. However, within-group heterogeneity in the autism population also 

immediately stands out as another factor obscuring consistency in the literature, particularly 

when the dominant approach of case-control models largely ignores heterogeneity within the 

ASD population. In particular, some autism-related heterogeneity reported in literature might be 

explained by factors such as age (Georgiades et al., 2017; Lord et al., 2015). Indeed, with 

regards to structural brain features of interest for study in ASD (e.g., volume, cortical thickness, 

surface area), these features change markedly over development (Mills et al., 2016; Raznahan 

et al., 2011a, 2011b; Smith et al., 2016). However, typical approaches towards dealing with age 

revolve around group statistical modelling of age as the variable of interest or removing age as 

a covariate and then parametrically modelling on-average differences between cases versus 

controls. While these are common approaches in the literature, they do not provide any 

individualized estimates of age-related deviance. In contrast, normative models of age-related 

variation may likely be an important alternative to these approaches and may mesh better with 

some conceptual views of deviance in ASD as being an extreme of typical population norms  

(Marquand et al., 2019, 2016). In contrast to the canonical case-control model, normative age 

modelling allows for computation of individualized metrics that can hone in on the precision 

information we are interested in – that is, deviance expressed in specific ASD individuals 
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relative to non-ASD norms. Such an approach may be a fruitful way forward in isolating 

individuals whom are ‘statistical outliers’. The reasons behind why these individuals are outliers 

relative to non-ASD norms may be of potential clinical and/or mechanistic importance. Indeed, if 

we are to move forward towards stratified psychiatry and precision medicine for ASD (Kapur et 

al., 2012), we must go beyond case-control approaches and employ dimensional approaches 

that can tell us information about which individuals are atypical and how or why they express 

such atypicality. Thus, this approach aims to provide more than a mere statistical advance, it 

aims to better conceptualize and capture personalized inferences that may ultimately result in 

more meaningful and targeted clinical inference. 

 

In the present study, we employ normative modelling on age-related variability as a means to 

individualize our approach to isolate specific subsets of patients with very different neural 

features. Here we focus specifically on a neural feature of cortical morphology known as cortical 

thickness (CT). CT is a well-studied neuroanatomical feature thought to be differentially affected 

in autism and has received increasing attention in recent years (Jiao et al., 2011; Khundrakpam 

et al., 2017; Moradi et al., 2017; Smith et al., 2016; van Rooij et al., 2018; Zielinski et al., 2014). 

Recent work from our group also identified a genetic correlate for autism specific CT variation 

despite considerable heterogeneity in group specific CT in children with autism (Romero-Garcia 

et al., 2018). A study examining ABIDE I cohort data discovered case-control differences in CT, 

albeit very small in effect size (Haar et al., 2016). Similarly, the most recent and largest study to 

date, a mega-analysis combining data from ABIDE and the ENIGMA consortium, also indicated 

very small on-average case-control differences in cortical thickness restricted predominantly to 

areas of frontal and temporal cortices, indicating very subtle age-related between-group 

differences and substantial within-group age-related variability (van Rooij et al., 2018). Overall, 

these studies emphasize two general points of importance. First, age or developmental 

trajectory is extremely important (Courchesne et al., 2011, 2007; Georgiades et al., 2017; 

Schumann et al., 2010). Second, given the considerable within-group age-related variability and 

the presence of a large majority of null and/or very small between-group effects, rather than 

attempting to find on-average differences between all cases versus all controls, we should shift 

our focus to capitalize on this dimension of large age-related variability and isolate autism cases 

that are at the extremes of this dimension of normative variability. 

 

Given our approach of age-related normative CT modelling, we first compare the utility of age-

related normative modelling directly against more traditional case-control models. We then 

describe the prevalence of ASD cases that show significant age-related deviance in CT (i.e. > 2 

SD from age-related norms) and show how a metric of continuous variability in age-related 

deviance in CT is expressed across the cortex in autism. Finally, we identify age-deviant CT-
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behaviour associations and assess whether such dimensional analyses associated with 

behaviour identify similar or different regions than typical case-control analyses. To show 

applicability of this approach we also applied the same method to other measures of 

neuroanatomy; gyrification, volume and surface area. Results and analyses of these metrics 

can be found in the supplementary materials and all code and data used are available on 

GitHub (Bethlehem et al., 2018). 

Methods 

Participants 
In this study, we sought to leverage large neuroimaging datasets to yield greater statistical 

power for identifying subtle effects. To achieve this, we utilized the ABIDE datasets (ABIDE I 

and II; (Di Martino et al., 2017)) (see Supplementary Table S1 and S2 for full list of sites used in 

the current analyses). Given that the normalized modelling approach gives us individual level 

measures we chose to also include sites with limited numbers of subjects. Groups were 

subsequently matched on age using the non-parametric nearest neighbour matching procedure 

implemented in the Matchit package in R (https://cran.r-

project.org/web/packages/MatchIt/index.html) (Ho et al., 2011). After matching case and control 

groups and excluding scans of poorer quality (see supplementary materials) we were left with a 

sample size N=870 per group (Table 1 and 2). Because of power limitations in past work with 

small samples, we conducted an a priori statistical power analysis indicating that a minimum 

case-control effect size of d = 0.1752 could be detected at this sample size with 80% power at a 

conservative alpha set to 0.005 (Benjamin et al., 2018). For correlational analyses looking at 

brain-behaviour associations, we examined a subset of patients with the data from the SRS 

(Nautism_male = 421) and ADOS total scores (Nautism_male = 505). With same power and alpha levels 

the minimum effect for SRS is r = 0.1765 and r = 0.1651 for the ADOS. 

Table 1: Sample characteristics of Age 

Dx Sex Mean SD N Median Min Max 

Autism Male 16.32 9.09 754 13.75 5.13 64 

Autism Female 15.06 8.43 116 12.57 5.22 54 

NT Male 16.64 8.98 660 13.69 5.89 64 

NT Female 13.25 5.33 210 11.09 5.91 32 
 

 

Table 2: Sample characteristics 

Measure Dx Sex Mean SD N Median 

IQ Autism Male 106.13 16.51 754 107 
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Autism Female 105.88 16.21 116 106.5 

NT Male 111.28 12.13 660 111 

NT Female 112.07 13.21 210 112 

       

ADOS 

Autism Male 11.15 3.86 505 11 

Autism Female 11.41 3.9 63 11 

Control Male 1.55 1.58 38 1 

Control Female 3 1.05 10 3 
       

SRS 

Autism Male 80.42 21.41 421 77 

Autism Female 85.95 22.07 61 88 

Control Male 38.43 15.25 337 41 

Control Female 39.93 12.13 120 42 
 

Imaging processing and quantification 

Cortical surface reconstruction was performed using the MPRAGE (T1) image of each 

participant with FreeSurfer (http://surfer.nmr.mgh.harvard.edu/) version (v5.3.0, to ensure 

comparability with previous ABIDE publications). The reconstruction pipeline performed by 

FreeSurfer “recon-all” involved intensity normalization, registration to Talairach space, skull 

stripping, WM segmentation, tessellation of the WM boundary, and automatic correction of 

topological defects. Briefly, non-uniformity intensity correction algorithms were applied before 

skull stripping (Ségonne et al., 2004), resulting in resampled isotropic images of 1mm. An initial 

segmentation of the white matter tissue was performed to generate a tessellated representation 

of the WM/GM boundary. The resulting surface was deformed outwards to the volume that 

maximize the intensity contrast between GM and cerebrospinal fluid, generating the pial surface 

(Dale et al., 1999). Resulting surfaces were constrained to a spherical topology and corrected 

for geometrical and topological abnormalities. Cortical thickness of each vertex was defined as 

the shortest distance between vertices of the GM/WM boundary and the pial surface (Fischl and 

Dale, 2000). We chose to not conduct manual segmentations and excluded failed subjects from 

any subsequent analysis (and these subjects were removed prior to the matching and QC 

procedures). To assess quality of Freesurfer reconstructions we computed the Euler index 

(Rosen et al., 2018). The Euler number is a quantitative proxy index of segmentation quality and 

has shown high overlap with manual quality control labelling (Rosen et al., 2018). The index 

counts the number of times the freesurfer has had to interpolate surface gaps during the 

reconstruction to ensure a continuous outcome surface. As such the index is effectively a 

measure for the reliability of the surface reconstruction and the resulting CT estimates. In the full 

sample we found a small but significant difference in both hemispheres (Figure S2) with the 
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autism group having overall slightly worse scan quality (d = 0.176 and d = 0.187 for left and right 

hemisphere respectively). Therefore, we chose to exclude subjects with an extreme Euler index 

of 300 or higher in either hemisphere (corresponding to approximately the top 10%) and 

included the index itself as a confound variable in all models to account for potential differences 

in the reliability of the freesurfer reconstruction across groups and sites. 

 

Across both ABIDE I and ABIDE II cortical thickness was extracted for each subject using two 

different parcellations schemes: an approximately equally-sized parcellation of 308 regions 

(~500mm2 each parcel) (Romero-garcia et al., 2012) and a parcellation of 360 regions derived 

from multi-modal features extracted from the Human Connectome Project (HCP) dataset 

(Glasser et al., 2016). The 308-region parcellation was constructed in the FreeSurfer fsaverage 

template by subdividing the 68 regions defined in the Desikan-Killiany atlas (Desikan et al., 

2006). Thus, each of the 68 regions was sequentially sub-parcellated by a backtracking 

algorithm into regions of ~500mm2, resulting in a high resolution parcellation that preserved the 

original anatomical boundaries defined in the original atlas (Romero-garcia et al., 2012). Surface 

reconstructions of each individual were co-registered to the fsaverage subject. The inverse 

transformation was used to map both parcellation schemes into the native space of each 

participant.     

Statistical analyses 

There are likely many variables that contribute to variability in CT between individuals and 

across the brain. In order to visually assess the contribution of some prominent sources of 

variance we adopted a visualization framework derived from gene expression analysis 

(http://bioconductor.org/packages/variancePartition) (Hoffman and Schadt, 2016) and included 

the most commonly available covariates in the ABIDE dataset: Age, Sex, Diagnosis, Scanner 

Site, Full-scale IQ, Verbal IQ, Handedness and SRS. Given that ABIDE was not designed as an 

integrated dataset from the outset, it seems plausible that scanner site might be related to 

autism or autism-related variables (e.g., some sites might have different case-control ratios or 

only recruited specific subgroups). Figure 1 shows the ranked contribution of those covariates. 

Perhaps unsurprisingly, scanner site and age proved to be the most dominant sources of 

variance (each explaining on average around 15% of the total variance). Our initial conventional 

analysis was aimed to delineate potential broad case-control differences, as has been done in 

previous studies (Haar et al., 2016; van Rooij et al., 2018). We used a linear mixed effects 

model with scanner site as random effect. Given the potentially strong contribution of age we 

chose to include this as fixed effects covariates in the model. Multiple comparison correction 

was implemented with Benjamini-Hochberg FDR at q<0.05 (Benjamini and Hochberg, 1995). 
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Figure 1: Explained variance in cortical thickness for each covariate. (Age: Age at the time of scanning; FIQ: 
Functional Intelligent Quotient; VIQ: Verbal Intelligent Quotient ; SRS: total score of the Social Responsive Scale ; 
Diagnosis : diagnostic group, i.e. ASD or NT). 

Age-related normative modelling 

Normative modelling of age-related CT effects was done utilizing data from the typically-

developing group (TD) (see Figure 2 for a schematic overview). We used a local polynomial 

regression fitting procedure (LOESS) (Cleveland et al., 1988; Lefebvre et al., 2018), where the 

local width or smoothing kernel of the regression was determined by the model that provided the 

overall smallest sum of squared errors. Though we also assessed consistency of our output 

using centiles scoring (see Supplementary Materials). To align the TD and ASD groups, both 

were binned into one year age bins. For each age bin and every brain region we computed a 

normative mean and standard deviation from the TD group. This was done separately for each 

sex, given known sex differential developmental trajectories. These statistical norms were then 

used to compute a w-score (analogous to a z-score) for every individual with autism. The w-

score for an individual reflects how far away their CT is from TD norms in units of standard 

deviation. Because w-scores are computed for every brain region, we get a w-score map for 

each ASD participant showing how each brain region for that individual is atypical relative to TD 

norms. Age bins that contained fewer than 2 data-points in the TD group were excluded from 

subsequent analysis as the standard deviations for these bins would essentially be zero (and 

thus the w-score could not be computed). The characteristics of the final autism sample are 

listed in table 3. 
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Table 3: Sample characteristics of autism group after normative modelling selection 

Dx Mean SD N Median Min Max 

Autism 14.93 6.03 714 13.37 5.53 39.2 

NT 15.43 6.46 636 13.37 5.89 39.4 
 

 

To assess the reliability of this w-score we bootstrapped the normative sample (1000 

bootstraps, with replacement) and computed 1000 bootstrapped w-scores for each individual 

and each brain region. To subsequently quantify the reliability of the w-score we computed an 

FDR corrected analogous p-value for each subject by computing the absolute position of the 

real w-score in the distribution of bootstrapped w-scores. The rationale being that if a real w-

score would be in the top 5% of the bootstrapped distribution it would likely not be a reliable 

score (e.g. the score would be influenced by only a small subset of the normative data). The 

median number of brain regions per subject with a significant p-value was 1 (out of 308), 

indicating that the w-score provides a robust measure of atypicality. More details on the 

bootstrapping procedure are provided in the supplementary material (SI: boostrapping and SI 

figure S3). 

 

Because w-score maps are computed for each individual, we ran hypothesis tests at each brain 

region to identify regions that show on-average non-zero w-scores stratified by sex (FDR 

corrected at q<0.05). To assess the effect of age-related individual outliers on the global case-

control differences we re-ran the hypotheses tests on w-scores after removing region-wise 

individual outliers (based on a 2SD cut-off). Unfortunately, despite a significant female sub-

group, the age-wise binning greatly reduced the number of bins with enough data-points in the 

female group. Given the reduced sample size in the female group and the known interaction 

between autism and biological sex (Lai et al., 2015a, 2015b), we conducted normative 

modelling on the male group only. 

 

To assess the distribution in the normative group we also conducted one-sample linear mixed 

effects modelling in the normative group only to determine if any of all brain regions would show 

outlier consistency. There were no brain regions for which the w-score showed a deviation 

significant from zero in the normative group (even without correcting for multiple comparisons 

across all brain regions). 
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Figure 2: Schematic overview of normative modelling. In first instance LOESS regression is used to estimate the 
developmental trajectory on CT for every individual brain region to obtain an age specific mean and standard 
deviation. Then we computed median for each one-year age-bin for these mean and median neurotypical estimates 
to align them with the ASD group. Next, for each individual with autism and each brain region the normative mean 
and standard deviation are used to compute a w-score relative to their neurotypical age-bin. Contrary to conventional 
boxplots, the second panel shows mean, 1sd and 2sd for the neurotypical group (in yellow) and individuals with an 
autism diagnosis in purple.  
 

To isolate subsets of individuals with significant age-related CT deviance, we used a cut-off 

score of 2 standard deviations (i.e. w >= 2 or w<=2). This cut-off allows us to isolate specific 

ASD patients with markedly abnormal CT relative to age-norms for each individual brain region. 

We then calculated sample prevalence (percentage of all ASD patients with atypical w-scores), 

in order to describe how frequent such individuals are in the ASD population and for each brain 

region individually. A sample prevalence map can then be computed to show the frequency of 

these patients across each brain region. We also wanted to assess how many patients have 
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markedly atypical w-scores (beyond 2SD) across a majority of brain regions. This was achieved

by computing an individual global w-score ratio as follows: 

 

 

 

We also computed global w-score ratios for positive and negative w regions separately. 

Behavioural analyses 

In addition to assessing the effect of normative outlier on conventional case-control analyses we

also conducted some exploratory analysis on the normative w-scores. First, to explore whether

the w-scores reflect a potentially meaningful phenotypic feature we also computed Spearman

correlations for each brain region between the most commonly shared phenotypic features in

ABIDE: ADOS, SRS, SCQ, AQ, FIQ and Age. Resulting p-values matrices were corrected for

multiple comparisons using Benjamini-Hochberg FDR correction and only regions surviving and

FDR corrected p-value of p < 0.05 are reported.  

 

Finally, we explored whether the raw CT values could be used in a multivariate fashion to

separate groups by diagnosis or illuminate stratification within ASD into subgroups. Here we

used k-medoid clustering on t-Distributed Stochastic Neighbour Embedding (tSNE) (van der

Maaten, 2014). Barnes-Hut tSNE was used to construct a 2-dimensional embedding for all

parcels in order to be able to run k-medoid clustering in a 2D representation and in order to

visually assess the most likely scenario within the framework suggested by Marquand and

colleagues (Marquand et al., 2016). Next, we performed partitioning around medoids (PAM),

estimating the optimum number of clusters using the optimum average silhouette width (Hennig

and Liao, 2013). Details of this exploratory analysis are reported in the supplementary materials.

Data and code availability 
Data and code are available on GitHub (Bethlehem et al., 2018), Cohen’s d were computed

using: https://github.com/mvlombardo/utils/blob/master/cohens_d.R and the centiles cross-

validation code can be found on https://github.com/deep-introspection/PyNM.  
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Results 

Case-control differences versus age-related normative modelling 

Our first analysis examined conventional case-control differences. As expected from prior 

papers utilizing large-scale datasets for case-control analysis (e.g., (Haar et al., 2016; van Rooij 

et al., 2018)), a small subset of regions (12%, 38/308 regions) pass FDR correction. Of these 

regions, most are of small effect size, with 34 of the detected 38 regions showing an effect less 

than 0.2 standard deviations of difference (Figure 3A). We suspected that such small effects 

could be largely driven by a few ASD patients (Byrge et al., 2015) with highly age-deviant CT. 

Because we also had computed w-scores from our normative age-modelling approach, we 

identified specific ‘statistical outlier’ patients for each individual region with w-scores > 2 

standard deviations from typical norms and excluded them from the case-control analysis. This 

analysis guards against the influence of these extreme outliers, and if there are true on-average 

differences in ASD, the removal of these outlier patient*regions should have little effect on our 

ability to detect case-control differences. However, removal of outlier patients now revealed only 

16 regions passing FDR correction instead of 38 regions with small case-control differences - a 

2.3-fold decrease in the number of regions detected. Indeed, the majority of case-control 

differences identifying small on-average effects were primarily driven by this small subset of 

highly-deviant patients (Figure 3B). These remaining 16 regions with small on-average effects 

were restricted to areas near posterior cingulate cortex, temporo-parietal cortex and areas of 

visual cortex. 
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Figure 3: Case control difference analysis with linear mixed effect model. Panel A shows effect sizes for regions
passing FDR correction for linear mixed effect modelling of conventional case control difference analysis. Cohen’s d
values represent ASD – Control, thus blue denotes ASD<Control and red denotes ASD>Control. Panel B shows
effect sizes for regions passing FDR correction after outlier removal for the same linear mixed effect modelling of
conventional case control difference analysis.  
 

 

In contrast to a canonical case-control model, we computed normative models of age which

resulted in individualized w-scores that indicate how deviant CT is for an individual compared to

typical norms for that age. This modelling approach allows for computation of w-scores for every

region and in every patient, thus resulting in a w-score map that can then itself be tested for

differences from a null hypothesis of w-score = 0, indicating no significant on-average ASD

deviance in age-normed CT. These hypothesis tests on normative w-score maps revealed no

regions surviving FDR correction.  

 

Isolating ASD individuals with significant age-related CT deviance 

While the normative modelling approach can be sensitive to different pathology than traditional

case-control models, another strength of the approach is the ability to isolate individuals

expressing highly significant CT-deviance. We operationalized ‘significant’ deviance in statistical

terms as w-scores greater than 2SD away from TD norms. By applying this cut-off, we can then

describe what proportion of the ASD population falls into this CT subgroup category for each

individual brain region. Over all brain regions the median prevalence of these patients is around

7.6% (Figure 4). This prevalence estimation is much higher than the expected 4.55%
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prevalence one would expect by chance for greater than 2 standard deviations of difference.

The distribution of prevalence across brain regions also has a positive tail indicating that for a

small number of brain regions the prevalence can jump up to more than 10%. Expressed back

into sample size numbers, if 10% of the ASD population had significant CT abnormalities, with a

sample size of n=754, this means that n=75 patients possess such significant issues.

Underscoring the prevalence of these significant cases is important since as shown earlier, it is

likely that primarily these ‘statistical outlier’ patients drive most of the tiny case-control

differences observed.  

 

 
Figure 4: Region specific prevalence of atypical w-scores. Panel A shows the by region prevalence of individuals
with a w-score of greater than +/-2SD. For visualization purposes these images are thresholded at the median
prevalence of 0.076. Panel B shows the overall distribution of prevalence across all brain regions. 
 

There are other interesting attributes about this subset of brain regions. With regard to age,

these patients were almost always in the age range of 6-20, and were much less prevalent

beyond age 20 (S5). The median age of outliers across brain regions ranged from [10.6 – 20.2]

years old, with an overall skewed distribution towards the younger end of the spectrum

(supplementary Figure S6), showing that CT deviance potentially normalizes with increasing

age in ASD, though it should be noted that this may partially be explained by the overall skewed

age distribution in the dataset.   

 

Patients with significant CT deviance were also largely those that expressed such deviance

within specific brain regions and were not primarily subjects with globally deviant CT. To show

this we computed a w-score ratio across brain regions that helps us isolate patients that show
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globally atypical CT deviance across most brain regions. The small number of patients with a 

ratio indicating a global difference (ratio > 0.5, n=14) were those that had globally thinner 

cortices. This small subset of individuals was much smaller than the number of region-wise 

ourtiers as shown in Figure 4. Upon visual inspection of the raw data for these participants, it is 

clear that the global thinning effect is not likely a true biological difference but rather one driven 

by the quality of the raw images, even though the Euler index did not indicate failure in 

reconstruction. Unfortunately, we did not have enough complete phenotypic data on these 

subjects to warrant further in-depth phenotypic analysis. 

Exploratory analysis of brain-behaviour relationships 

An additional advantage of the use of normative modelling over the traditional case-control 

modelling is that we can use the individualized deviation as a novel metric for finding 

associations with phenotypic features. Here we used w-scores to compute Spearman 

correlations for the most commonly shared phenotypic features in the ABIDE dataset: ADOS, 

SRS, SCQ, AQ, FIQ and Age. After correcting for multiple comparisons across phenotype and 

region (6 phenotypic measures * 308 regions = 1848 tests) we identified a number of brain 

regions that survive multiple comparison corrections for the SRS and ADOS scores (figure 5). 

SRS is associated with w-scores primarily in areas of lateral frontal and parietal cortex, while 

ADOS is associated with w-scores primarily in lateral and inferior temporal cortex. Notably, 

these regions are largely different from regions that appear to show on-average differentiation in 

case-control and w-score analyses. 
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Figure 5: Phenotype – W-Score correlations 
Spearman correlations between ADOS and w-score in the top panel. The lower panel shows the same for the SRS. 

Discussion 

In the present study, we find that with a highly-powered dataset, conventional case-control 

analyses reveal small differences in cortical thickness in autism and are restricted to a small 

subset of regions. In general, this idea about subtle effect sizes for case-control comparisons is 

compatible with other recent papers utilizing partially overlapping data — Haar and colleagues 

utilized only ABIDE I data (Haar et al., 2016), while van Rooji and colleagues (van Rooij et al., 

2018) utilized both ABIDE I and II dataset combined with further data from the ENIGMA 

consortium. While these statements about small effect sizes are not novel, our findings suggest 

that even these small effect sizes may be misleading and over-optimistic. Utilizing normative 

modelling as a way of identifying and removing CT-deviant outlier patients, we find that most 

small case-control differences are driven by a small subgroup of patients with high CT-deviance 

for their age. In contrast, we further showed that analysis of CT-normed scores (i.e. w-scores) 

themselves reveals a completely different set of regions that are on-average atypical in ASD. 

The directionality of such differences also reverses in some cases. For instance, Haar and 

colleagues discovered that areas of visual cortex are thicker in ASD compared to TD in ABIDE I 

(Haar et al., 2016). Our case-control analyses here largely mirror that finding. However, re-

analysis after w-score outlier removal totally removes the effects previously reported in visual 

cortex. Thus, here is a clear case whereby our normative age modelling approach identifies 

effects that are likely driven by only a small subset of individuals.  

 

The revelation of new insights via normative age modelling, alongside cleaning up 

interpretations behind case-control models, both highlight the significant utility of such approach. 

The presence of small region-dependent outlier effects in ASD misleadingly drives on-average 

inferences from case-control models. Thus, it is important for the field to better understand how 

prevalent these outlier individuals are for a given brain region (i.e. our analyses did not reveal a 

consistent brain region or group of individuals with spatially overlapping patterns of extreme w-

scores). With our normative modelling approach, we were able to quantify the overall 

prevalence of this CT outlier ‘subgroup’ at a median prevalence of 7.6%. This means that 

across the brain, a median level of 7.6% of individuals have an extreme w-score. This estimate 

much larger than the expected 4.55% for standard deviations greater than 2. However, 

considerable heterogeneity exists across brain regions, as a small proportion of brain regions 

are even more enriched for the CT outlier ‘subgroup’ and can contain greater than 10% 

prevalence.  
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We also noted that this CT outlier subgroup was predominantly restricted to the childhood to 

early adult age range. In later adult ages, the prevalence of this subgroup drops off. This could 

be a potential indicator that highly atypical CT is more prevalent and detectable at earlier ages. 

However, it should be noted that this observation may partially be explained by the overall 

skewed age distribution in the overall dataset. It will be important to assess even earlier age 

ranges such as the first years of life (Courchesne et al., 2011), as well as later adult years when 

significant aging processes begin to take effect (Happé and Charlton, 2012). Future studies with 

either more balanced developmental sample or samples that cover the entire lifespan will be 

better positioned to confirm this age-related skewed profile in ‘atypical’ brain regions.  

 

In addition, we also identify a very small group of individuals that have atypical patterns in over 

50% of brain regions. Unfortunately, not much behavioural or phenotypic information was 

available for this sub-group. We hope that future studies will obtain more detailed phenotypic 

information in order to delineate more precisely what the clinical and or more broad behavioural 

implications might be of this atypicality. Furthermore, it is clear from the present work that this 

subgroup only covers a very small subset in the autism population and thus future studies will 

require large sample sizes to be able to identify this subgroup. However, mirroring work in 

autism genetics, whereby discoveries are continually being made regarding very small 

proportions of the ASD population being explained by highly penetrant genetic mechanisms 

(Geschwind and State, 2015), it also may be the case that such individuals with highly age-

deviant CT are individuals with specific highly penetrant biological mechanisms underlying 

them, and possibly related to neurogenesis and other factors that are implicated in CT changes 

(Romero-Garcia et al., 2018). With animal models of highly penetrant genetic mechanisms 

linked to autism, it is notable that such mechanisms have heterogeneous effects on brain 

volume (Ellegood et al., 2014). Thus, the fact that this is only a small subset need not be an 

obstacle for the discovery of core biological mechanisms. Ideally, future studies will also collect 

detailed genetic and/or other biological information in order to probe the core biological 

aetiology underlying the pattern of broad atypical cortical thickness. 

 

We also conducted exploratory analyses to relate the w-scores back to phenotypic information 

more broadly, in so far as this was available in ABIDE. Here, we find collections of areas that 

are largely different from regions normally detected with on-average case-control or on-average 

non-zero w-score differences. Interestingly, the associations with ADOS and SRS show 

somewhat differential spatial topography which may suggest that the overall scores are related 

to different underlying neurobiological mechanisms. Overall, these results could suggest that the 

normative model also picks up signal related to behavioural variability. However, it should be 

emphasized that ADOS and SRS scores are not available for the full dataset and the reported 
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effects were small and should thus be considered exploratory. Based on present results 

however we expect future studies, with more comprehensive phenotypic information such as 

EU-AIMS2-trials (https://www.aims-2-trials.eu), to be able to confirm this brain-behaviour 

relationship. It will be interesting to see whether in a larger more comprehensive sample the 

same topological dissociation becomes apparent as well. 

 

The current results can be contrasted with a recent study on the EU-AIMS LEAP cohort (Zabihi 

et al., 2019). This study differs from the current work in being based on a completely 

independent dataset (EU-AIMS LEAP vs ABIDE). The studies also differ in how normative 

models are estimated - LOESS and centiles vs Gaussian process regression. This study applied 

normative modeling only to males to reduce sex-related heterogeneity whereas Zahibi et al., 

utilized both males and females and used sex as a factor in the model. The current study also 

utilizes a larger sample size (autism n=754, NT n=660; autism n=321, NT n=206 in (Zabihi et 

al., 2019)). Despite these differences, some important consistencies emerge. In particular, our 

map of prevalence of the CT outlier group (Figure 4) is somewhat consistent with the spatial 

topology Zahibi and colleagues report for negative deviations from the normative model (e.g., 

Figure 4 of (Zabihi et al., 2019)).  Furthermore, while our analyses of brain-behavioral 

relationships is limited, there is some consistency across this study and Zahibi et al., with the 

correlation between ADOS total scores and left inferior frontal gyrus. Thus, despite the 

methodological differences, the overall consistency suggests that many of the inferences from 

these works generalize to the autism population. 

 

There are a number of caveats to consider in the present study. First and foremost, the present 

data are cross-sectional and the normative age modelling approach cannot make claims about 

trajectories at an individual level. With longitudinal data, this normative modelling approach 

could be extended. However, at the moment the classifications of highly age-deviant CT 

individuals are limited to static normative statistics within discrete age-bins rather than based on 

statistics from robust normative trajectories. The dataset also represents ASD within an age 

range that misses very early developmental and also very late adulthood periods. The dataset 

also presents a post-hoc collection of sites accumulated through the ABIDE initiative, whereby 

scanners, imaging acquisition sequences and parameters, sample ascertainment, etc, are 

highly heterogeneous. As a result, we observed that site had a large effect on explaining 

variance in CT and this is compatible with observations made by other studies (Haar et al., 

2016). Furthermore, it is likely that there may be systematic interactions between scanner site 

and some variables of interest such as age (e.g. different scanning sites will likely have 

recruited specific age cohorts). Finally, there are a number of different approaches to normative 

modelling that all have pros and cons (see (Marquand et al., 2019) for an excellent review). We 
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chose to use LOESS estimation as its computationally efficient and the resulting w-scores are 

easily interpretable. However, since its based on estimation of standard deviation from a 

normative sample it is potentially sensitive to small samples in a given age-bin (e.g. if there are 

only 4 data-points for a given age-bin there is likely to be a less reliable sd). Hence in situations 

where data is spare the LOESS approach may allow for less reliable normative scores. In order 

to assess the sensitivity of our approach in the present data we implemented the 

aforementioned bootstrapping procedure to identify robustness of outlier detection. In addition, 

we also conducted a centiles estimation that is relatively standard in for example epidemiology 

(Visser et al., 2009), similar to quantile rank maps (Chen et al., 2015) and arguably less 

sensitive to small sample uncertainty. Both approaches showed high significant correlation in 

determining whole-brain w-score ratios (r=0.87, p=4e-119 and r=0.66, p=5.7e-39 for ABIDE I 

and ABIDE II respectively; see supplementary materials).  

 

In conclusion, the present study shows how normative age modelling approach in ASD 

questions our interpretation of conventional case-control modelling by shedding significant new 

insight into heterogeneity in ASD. We show that results from case-control analyses, even within 

large datasets, can be highly susceptible to the influence of ‘outlier’ subjects. Removing these 

outlier subjects from analyses can considerably clean up the inferences being made about on-

average differences that apply to a majority of the ASD population. Rather than only being 

nuisances for standard group-level analyses, these outlier patients are significant in their own 

light, and can be identified with our normative age modelling approach. Normative models may 

provide an alternative to case-control models that test hypotheses at a group-level, by allowing 

additional insight to be made at more individualized levels, and thus help further progress 

towards precision medicine for ASD. Furthermore, the current approach is in line with the 

original normative modelling approach advocated by Marquand and colleagues (Marquand et 

al., 2016) which suggested the development of methods to move away from the traditional case-

vs-control analyses. Normative modelling was originally proposed as one solution among others 

like stratification. Here, a clear path forward would be to combine both, for instance by using 

output of normative model as features used in the participant stratification, thus avoiding trivial 

clustering caused by confounding factors. In the present work we show that normative modelling 

is more than a purely statistical advancement to improve robustness. It allows us to identify a 

small subgroup that we expect to have strong relevance for the discovery of core biological or 

phenotypic clinical targets. It allowed us to explore brain-behaviour relationships that reveal 

differential spatial topology for ADOS and SRS scores. More importantly however, it moves us 

conceptually closer to making personalized inferences that can go beyond group determined 

diagnostic labels.  
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