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Abstract 1

Polygenic scores (PGS) are estimated scores representing the genetic tendency of an individual for a 2

disease or trait and have become an indispensible tool in a variety of analyses. Typically they are linear 3

combination of the genotypes of a large number of SNPs, with the weights calculated from an external 4

source, such as summary statistics from large meta-analyses. Recently cohorts with genetic data have 5

become very large, such that it would be a waste if the raw data were not made use of in constructing 6

PGS. Making use of raw data in calculating PGS, however, presents us with problems of overfitting. 7

Here we discuss the essence of overfitting as applied in PGS calculations and highlight the difference 8

between overfitting due to the overlap between the target and the discovery data (OTD), and overfitting 9

due to the overlap between the target the the validation data (OTV). We propose two methods – cross 10

prediction and split validation – to overcome OTD and OTV respectively. Using these two methods, 11

PGS can be calculated using raw data without overfitting. We show that PGSs thus calculated have 12

better predictive power than those using summary statistics alone for six phenotypes in the UK Biobank 13

data. 14

Introduction 15

Polygenic scores, or polygenic risk scores (PGS), have become an indispensible tool in genetic studies 16

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. Polygenic scores are routinely calculated in small and large 17

cohorts with genotype data, and they represent individual genetic tendencies for particular traits or 18
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diseases. As such they can be used for stratifying individuals into different risk groups based on their 19

genetic makeup [14, 3, 4, 15]. Potentially, different interventions could be given to individuals with 20

different risks, which is part of the vision in personalized medicine [16, 17]. 21

Currently, however, the predictive ability of PGS for complex traits remains considerably lower than 22

the maximum possible given their heritability, although with increasing sample sizes and the number 23

of Genome-wide association studies, the power is set to increase [18, 19, 12]. Nonetheless, even before 24

the objective of personalized medicine can be achieved, PGS can be used for studying the genetic 25

influence of different phenotypes. By examining the correlation between PGS and various phenotypes, 26

researchers can gather evidence for whether the genetic influence on certain traits were pleiotropic or 27

specific [20, 21, 22, 23, 11, 6, 7]. For example, using PGS, Power et al [11] showed that genetic tendency 28

for schizophrenia and bipolar disorder were predictive of creativity, supporting earlier suggestions that 29

creativity and tendency towards major psychotic illnesses may share some common roots. 30

Polygenic scores are calculated as weighted sums of the genotypes, with weights typically derived 31

from large cohorts or meta-analyses. A key requirement in the calculation of PGS is that the same 32

individuals be not used both in the calculation of the weights (in the discovery dataset) and the PGS 33

(in the target dataset). Indeed, in general, samples in the discovery and target dataset should not even 34

be related [24]. Overlap or relatedness between the samples is expected to lead to overfitting, i.e. the 35

inflation in measures of the fit in the target dataset. 36

Recently, cohorts with genotype data have become very large. Examples of such cohorts include 37

the UK Biobank[25] (n ≈ 500,000), the 23andMe cohort [26] (n ≈ 600,000), and the deCode cohort 38

[27] (n ≈ 350,000). In studies to date using the UK Biobank, for example, following the recommended 39

practice, weights for the PGS were calculated from summary statistics and data external to the cohort 40

[13, 28, 27]. Although sensible as a measure to avoid overfitting, the exclusion of the target dataset from 41

the calculation of the summary statistics in these cases can be wasteful, given that such large sample 42

sizes are involved. 43

In this paper, we show that it is possible to calculate PGS using the target dataset while avoiding 44

overfitting, which can lead to higher predictive power than PGS calculated from summary statistics 45

alone. 46

Results 47

As an illustration of the potential gain in power using the target dataset in the calculation of PGS, 48

consider the correlation between the phenotype and the PGS calculated using the method of this paper, 49

which we call cross prediction, compared to using summary statistics only, as presented in Figure 1. 50

The comparison is made using a cohort of 353,465 white British participants in the UK Biobank study 51

[25]. We see that for all 6 phenotypes, using the data available in the UK Biobank alone gives a PGS 52
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Figure 1: Correlation between phenotype and PGS calculated using summary
statistics (ss) only, UKBB data only, and summary statistics plus UKBB data, in
a cohort of 353,465 particpants in the UK Biobank.

with visibly higher correlation with the phenotype than the equivalent PGS calculated using summary 53

statistics. The correlation was even higher when the UKBB data was meta-analysed with the summary 54

statistics. In this section, we introduce the methods used in calculating the PGS in Figure 1. We show 55

how these methods avoid overfitting and thus the improvement seen in Figure 1 is due to genuine increase 56

in power because of the data available in the UK Biobank. We defer the details of the simulations to 57

the Methods section at the end of the article. 58

Three types of overfitting in calculating polygenic scores 59

In their review article, Wray et al [24] pointed out that if the same individuals were used in both the 60

target dataset and the discovery dataset or if they were related, estimates of the predictive power of 61

PGS would be inflated. Although not specifically mentioned, the phenomenon underlying this was that 62

of overfitting of the data to the target dataset. Here, we define overfitting to be the inflation of the 63

correlation of the PGS with the genetic component in the target dataset over a completely independent 64

(unseen) external dataset. More precisely, let us assume the following linear model 65
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y = Xβ + ε (1)

ε ∼ N(0, σ2I) (2)

where y = (y1, y2, . . . , yn)′ denotes a vector of phenotype from n independent individuals from the target 66

dataset. Let Xβ denote the genetic component and ε = (ε1, ε2, . . . , εn)′ residual environmental effects, 67

with εi assumed independently and identically distributed. We assume X = (x′1,x
′
2, . . . ,x

′
n)′ is a n-by-p 68

genotype matrix and β a vector of causal effects. In the case where adjustment for principal components 69

is necessary[29], we assume that both y and X have the principal components of X regressed out of 70

them. A PGS for an individual i is an estimate of xiβ, denoted PGSi = xiβ̂. We define overfitting as 71

Cor(xiβ̂, yi) > Cor(xEi β̂, y
E
i ). (3)

where (xi, yi) is a randomly chosen sample from the target dataset, and (xEi , y
E
i ) is a randomly chosen 72

sample from an independent external dataset. Given the independence of Xβ and ε, equation (3) can 73

be expressed as 74

√
h2 Cor(xiβ̂,xiβ) +

√
1− h2 Cor(xiβ̂, εi) >

√
h2E Cor(xEi β̂,x

E
i β) +

√
1− h2E Cor(xEi β̂, ε

E
i ). (4)

where h2 = Var(xiβ)
Var(yi)

and h2E =
Var(xE

i β)

Var(yEi )
denote the heritability of the trait in the target and the external 75

dataset respectively, and Cor(xEi β̂, ε
E
i ) = 0 by definition. A sufficient condition for no overfitting is 76

thus 77

Cor(xiβ̂,xiβ) = Cor(xEi β̂x
E
i β),

Cor(xiβ̂, εi) = 0

h2 = h2E. (5)

The fact that when the target data is used to calculate the summary statistics β̂, overfitting occurs, 78

can be seen by considering a Directed Acyclic Graph (DAG), showing the relationship between Xβ̂ 79

and Xβ (Fig 2(a)). (A DAG can be seen as a graphical representation of the probabilistic dependency 80

of the different variables, and its interpretation is grounded in probability theory [30]. Two variables 81

are ‘connected’ if a line can be traced through the graph connecting the two variables, except when 82

a ‘collider’ is present along the path that connects the two. A ‘collider’ is a variable within a path 83

where the two edges connecting it are both arrows pointing towards it, such as the variables y, β̂, 84
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Figure 2: DAGs illustrating the relationship between the different variables in
PGS estimation (a) when the target data is also used in the estimation of β, (b)
when a separate discovery dataset (XD,yD) is used, (c) when the target dataset
is used in choosing the tuning paramter or the best β̂ among a set of different β̂s,
and (d) when the target dataset is genetically related to the discovery dataset.

and Xβ̂, in Fig 2(a). Probabilistically, variables that are connected are expected to be dependent and 85

correlated. Variables that are not connected are not dependent and thus not correlated.) We see that 86

Xβ̂ is connected to ε through y and thus expected to be correlated. Moreover, because in general we 87

expect Cor(xiβ̂, yi) > 0 and Cor(yi, εi) > 0, we expect Cor(xiβ̂, εi) > 0, resulting in overfitting. In this 88

article, we refer to this type of overfitting as OTD (Overfitting due to the overlap between the Target 89

and the Discovery data). 90

In Fig 2(b) we see that if we use an external discovery dataset for estimating β, Cor(xiβ̂, εi) = 0, 91

because the path between β̂ and y is broken. Moreover, if the external discovery sample xD, xE, and 92

x are all drawn from the same population, Cor(xiβ̂,xiβ) = Cor(xEi β̂,x
E
i β) and overfitting is avoided. 93

A less appreciated kind of overfitting can be seen in Fig 2(c). Here, although the target dataset is 94

not used for estimating β, it is used for choosing a p-value threshold in the construction of PGS, as 95

represented by the arrows pointing to β̂ from X and y. The fact that we generally choose the p-value 96

threshold that maximizes the correlation between the PGS and the phenotype means that there is a 97

Winner’s curse such that the apparent correlation between the PGS and the phenotype is higher than 98

it would be in an external dataset. In this article we refer to overfitting due to the target data being 99
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used in validation OTV (Overfitting due to the overlap between the Target and the Validation data). 100

Finally, let us note that the inflation of correlation as cautioned by Wray et al [24] concerns not only 101

the overlapping of samples. Rather, Wray et al [24] pointed out that inflation of correlation was likely if 102

the target dataset were genetically related to the discovery dataset. We illustrate this situation in Fig 103

2(d), where correlations are expected between x and xD. Here, although we still have Cor(xiβ̂, εi) = 104

0, we cannot expect Cor(xiβ̂,xiβ) = Cor(xEi β̂,x
E
i β), leading to overfitting. For the purposes of 105

constructing PGS in large cohorts, however, this type of overfitting is of arguably less importance, 106

since we are not interested in some external population xE. In any case, accounting for differences in 107

relatedness between the sample population and the general population at large is difficult and beyond 108

the scope of this paper. 109

Cross-prediction as a method to overcome overfitting due to the overlap of 110

the target with the discovery data 111

As already noted above, overfitting can be avoided by breaking the path connecting y to β̂. One way 112

to do this in practice is to use an independent discovery dataset for estimating β (Fig 2(b)). When 113

faced with a large target dataset which we also want to use as our discovery dataset, we can repeat this 114

procedure in a cross-validation-like manner, i.e. we split the data into a number of folds, and repeatedly 115

estimateXβ̂ for the different folds, using the remaining folds for discovery. We call this procedure cross- 116

prediction (Figure 3(a)), to distinguish it from the more familiar procedure of cross-validation where 117

fold-splitting is used only for choosing tuning parameters [31, 32, 33]. If external summary statistics are 118

available, these can also be meta-analysed with those calculated from the discovery folds. To combine 119

the PGS calculated in the different folds, we standardize them before stacking them together to form 120

the final PGS. Standarizing and stacking them in this way will imply that the resulting stacked PGS 121

represents the average correlation between the particular variable and the fold-specific PGS. Moreover, 122

we prove that stacking the fold-specific PGS in this way preserves independence between individual 123

elements of Xβ̂ and ε and therefore does not introduce overfitting. Both of these proofs are presented 124

in the Methods section. 125

Split-validation as a method to overcome overfitting due to the overlap of 126

the target with the validation data 127

In practical application of PGS, we do not simply have one PGS. Far more often, PGS are calculated for 128

a range of p-value thresholds and the best one chosen. Letting B̂ denote a matrix of coefficients where 129

each column represent a vector of β̂ with different elements set to zero for different p-value thresholds, 130

our estimated PGS is a matrix Ẑ = XB̂ rather than a vector. This applies to each of the folds in cross- 131

6

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 5, 2018. ; https://doi.org/10.1101/252270doi: bioRxiv preprint 

https://doi.org/10.1101/252270
http://creativecommons.org/licenses/by-nc-nd/4.0/


X1 (fold 1)
standardize

X (fold 2)

X (fold 3)

X (fold 4)

^
β1 (fold 1)y

×
X1

^
β1 Stack

X2

^
β2

X3

^
β3

X4

^
β4

X

λ →SNP →

Sample 
↓

 ̂
B

 ̂
Z

standardize

a

b

Figure 3: (a) Cross-prediction. The data (X,y) is split into 4 folds. For fold 1,
the coefficients β̂1 is estimated from folds 2,3, and 4. The estimated PGS X1β̂1

is standardized and stacked together to form the final PGS. (b) Split-validation.
Let X deonte the genotype matrix, B̂ the matrix of coefficients, and λ indices the
p-value threshold. Let Ẑ = XkB̂−k be the matrix of PGS calculated for the kth

fold. Ẑ and Xk are split into two halves. The green columns are the columns of
B̂ corresponding to the p-value threshold selected by validation. The red columns
are the corresponding Ẑ taken to form the PGS.
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Figure 4: Barplots of mean estimated correlations between simulated null pheno-
types (no genetic component) and the estimated PGSs, when the target dataset
doubles up as the validation dataset, and when the target dataset is external.
Error bars represent 95% confidence intervals.

prediction, where for each fold k we have a matrix of standardized PGS Ẑk. We need to choose the best 132

column of Ẑk for each fold in order to form the final PGS, a step we refer to as validation. A common 133

practice in PGS construction is to double up the target dataset as the validation dataset [13, 10, 34]. If 134

put in the context of cross-prediction, this translates to performing validation and calculating the PGS 135

within the target fold using the same data. However, as mentioned above, this can lead to overfitting, 136

in particular OTV. Although the impact of this type of overfitting is commonly believed to be small, 137

we illustrate its impact in the UK Biobank dataset by results from a simulation, whose details are 138

given in the Methods section. Figure 4 shows the estimated correlations between multiple randomly 139

generated (null) phenotypes and their PGSs calculated using cross-prediction. We see that although 140

the phenotype was generated with no genetic component, when the target data doubled up as the 141

validation data, the estimated correlations were inflated, compared to correlations with the phenotype 142

in an external dataset. In Figure 5, we show this bias in terms of inflation in Type 1 error. When 143

p-values between the estimated PGS and the phenotype are plotted against the expected distribution, 144

there is a small but visible inflation in the statistics. Our strategy to overcome this is split-validation. 145

In both Figures 4 and 5, we see that the method of split validation did not incur overfitting. 146

The idea of split validation is similar to that of cross prediction. We first split the target dataset 147

(or the target fold in cross-prediction) into two halves. We take turn to use each half for validation 148
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Figure 5: qq plot of p-values calculated for the relationship between the PGS and
phenotype when the target data is also used for validation under a simulated null
model.
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Figure 6: Comparison of split-validation vs “stack and validate” in calculating
PGS. Mean and standard deviation of estimated correlation from 10 simulated
phenotypes are plotted for each scenario.

(i.e. the selection of the p-value threshold), and calculate the PGS in the other half using the p-value 149

threshold selected in the other half and weights derived in the discovery dataset. A diagram illustrating 150

split-validation is given in Figure 3(b). 151

Sample size concerns 152

One possible concern with the cross-prediction + split-validation strategy is that instead of carrying 153

out validation once, we carry out validation in multiple sub-samples within the target dataset, and this 154

may reduce the power in choosing the best p-value threshold because of smaller samples. An alternative 155

method that does not prevent OTV (but does prevent OTD) is to stack up the (standardized) PGS (Ẑk) 156

first (calculated for all p-value thresholds), and then validate them against the phenotype to choose the 157

best p-value threshold. In Figure 6, we compare the performance of cross-prediction + split-validation 158

vs the latter strategy (stack and validate) using sub-samples of the UK Biobank data and simulated 159

phenotypes under two heritability scenarios (h2 = 0.1 and 0.5). 2,000 SNPs among 734,447 SNPs were 160

assigned to be causal. It can be seen that when the sample size was 100,000, basically there were no 161

difference in the predictive power of the PGS calculated using split-validation and stack and validate. 162

When the sample size was smaller, we see that the predictive power of split-validation was reduced, 163

particularly in the heritability=0.1 setting. 164
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Discussion 165

In this article, we show how cross-prediction, combined with split-validation, can be used to calculate 166

PGS in large cohorts such as the UK Biobank. This can lead to a considerable increase in predictive 167

power compared to using summary statistics alone. An overview of what constitutes overfitting is also 168

given and it is shown that cross-prediction combined with split-validation overcomes both overfitting 169

due to the target dataset overlapping with the discovery dataset (OTD) and with the validation dataset 170

(OTV). The basic principle of the approach is the separation of the discovery, the validation, and the 171

target subset of the dataset, and the combination of the resulting PGS from the different subsets through 172

standardizing and stacking, which is shown preserve predicitve power and independence between the 173

subsets. 174

One possible issue with this appraoch is that performing validation in different subsets and stacking 175

the resulting PGS can reduce predictive power, compared to using the same data both for validation 176

and prediction. However, it may be argued that with sample sizes of the magnitude of the UK Biobank, 177

this is not an important issue. 178

In this article, we have not discussed overfitting due to other kinds of overfitting. In particular, we 179

have not discussed possible overfitting due to the sample being related. Indeed it has been pointed out 180

that the UK Biobank consists of a considerable number of second and third degree relatives [25]. This 181

can lead to inflated estimates of the predictive accuracy of the PGS if estimates of r2 from the UK 182

Biobank were extrapolated to the general population. On the other hand, we note that if our aim is to 183

assess genetic correlation within the UK Biobank sample, then this type of overfitting is not relevant. 184

Usually genetic correlations can be assessed by examining the relationship between the PGS and 185

various phenotypes. An important point to note is that overfitting can still occur when correlating 186

different PGS calculated using the method of this paper. This is because in cross-prediction we try to 187

keep the discovery and the target samples separate. However, when two PGS are both calculated using 188

cross-prediction, their discovery samples can overlap, leading to overfitting. 189

We conclude with a number of suggestions for future work. First, depending on the number of folds 190

use, a proportion of the sample is left out in the calculation of the summary statistics. It is unsure 191

whether there can be a procedure that uses all data and also avoids OTD and OTV. Secondly, the 192

current procedure is stochastic as the folds are randomly defined. The resulting PGS is also not a linear 193

predictor in that it is not calculated as a linear combination of X. Rather it is a mixture of different 194

linear combinations. This has the disadvantage that theoretical properties of the PGS are less easily 195

obtained. In principle, it is possible to find estimates of β such that when multiplied with X, equals 196

the CP PGS as calculated in our study. However, in our preliminary simulations, these estimates of β 197

had very poor performance in external validation and we have not pursued this approach further. It is 198

also possible in principle to extend this work further to the case where the number of folds used equals 199
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the sample size, such that we have a jackknife-like procedure for cross-prediction. This approach has 200

not been studied. Thirdly, calculation of PGS using cross-prediction is currently time consuming for 201

large cohorts and a large number of SNPs. In the simulations we have limited the number of SNPs to 202

around 700,000. It may be possible to perform cross-prediction on a pre-selected set of SNPs using for 203

example, informed pruning (clumping) [35]. However, if this set of SNPs were selected based on the 204

entire dataset, overfitting would also arise, and future work is needed to minimize or avoid this bias. 205

Methods 206

PGS for six UK Biobank phenotypes 207

353,465 white British participants from the UK Biobank study were selected for these analyses. We used 208

the genotype array of 734,447 SNPs, made available by the UK Biobank. The 6 phenotypes consid- 209

ered were height (ID=50), BMI (ID=21001), neuroticism (ID=20127), heart problems, taking medica- 210

tion for lowering cholesterol (ID=6153, 6177), and diabetes (ID=2443). Where multiple measurements 211

were taken, the average was used. The variable “heart problems” was defined as a score from 0 to 3 212

based on the question “Vascular/heart problems diagnosed by doctor” (ID=6150), where 3 represents 213

“Heart attack” or “Stroke”, 2 represents “Angina”, 1 represents “High blood pressure”, and 0 “None 214

of the above”. The corresponding summary statistics were taken from the following studies: height[36], 215

BMI[37], Neuroticism[38], Heart problems[39] (summary statistics for coronary artery disease), Medi- 216

cation for lowering cholesterol[40] (summary statistics for total cholesterol levels), Diabetes[41]. Only 217

variants that were present in both the summary statistics and the UK Biobank genotype array were 218

used for constructing PGS, both for the summary-statistics derived PGS and for cross-prediction. 5- 219

fold cross-prediction was used with split-validation. All analyses, including the correlation between the 220

phenotype and the PGS, were adjusted for the first 20 principal components and inferred gender. For 221

Figure 1, selection of the p-value threshold for the summary-statistics only PGS was performed on an 222

independent sample of 10,000 white British participants from the UK Biobank. 223

Simulated phenotypes from the UK Biobank 224

For Figures 4 and 5, the same cohort of 353,465 white British participants from the UK Biobank was used. 225

The phenotype was a simulated vector of 353,465 N(0, 1) random variables and thus was completely 226

independent of the genetic data. 5-fold cross-prediction was applied to compute the PGS. In the “without 227

Split-Validation” scenario, the method of “stack and validate” was used (see Results section). The 228

simulation was repeated 10 times and fold-specific correlations and p-values were plotted in the figures. 229

The “external” target dataset was an independent dataset of 10,000 white British participants randomly 230

selected from the UK biobank. No covariate adjustments were performed with these analyses. 231
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For Figure 6, the linear model of (1) was used to generate the phenotype, with heritability, i.e. 232

V̂ar(Xβ)/(V̂ar(Xβ) + σ2) constrained to be either 0.1 or 0.5. Samples of size 1,000, 10,000, and 233

100,000 were randomly selected from the 353,465 white British participants. 234

Details of PGS calculation 235

In all calculation of PGS in this paper, clumping and thresholding was used. First, summary statis- 236

tics were clumped using the default settings in PLINK 1.9[42], where variants with an R2 of 0.2 or 237

above within a 250kb region were “clumped” with the most significant SNP. p-value thresholds of 238

1e−20, 5e−20, 1e−19, 5e−19, . . . , 0.001, 0.005, 0.01, 0.02, 0.03, ..., 0.99, 1 were used. Clumping and p-value 239

thresholding was performed independently for each fold in cross-prediction. 240

Computation 241

An R package (crosspred) has been written to perform cross-prediction and split-validation, and is avail- 242

able on https://github.com/tshmak/crosspred/blob/master/CrossPrediction.md. The package is 243

designed to be a wrapper around the package lassosum [43]. Although clumping and p-value thresh- 244

olding was used throughout this paper to calculate PGS (as it is the more widely used method), in 245

principle, it is possible and even preferable to use lassosum instead, which can lead to better predictive 246

power. 247

Proof: standardizing PGS within fold before stacking approximates the 248

average correlation of the PGS with another variable 249

Let x = (x′1,x
′
2, . . . ,x

′
N)′ denote a stacked column of PGS, and y a column of phenotype. Further 250

assume x is standardized within fold, such that 1′xk = 0 and x′kxk = nk, and that y is standardized 251

such that 1′y = 0 and y′y = n =
∑

k nk without loss of generality. The correlation of x with y is 252

x′y/n. Let the standard deviation of y within fold k be 1/sk. We have 253

x′y

n
=

∑
k

x′kyksk
nk

nk
skn

(6)

where
x′
kyksk
nk

is the fold-specific correlation. Thus, x
′y
n

is a weighted average of the fold-specific correlation 254

with weights nk

skn
. In general sk approximates 1, such that the weights are approximately optimal. 255
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Proof that Xβ̂ remain independent of with ε after stacking 256

As in the main text, we assume thatX = (X ′1,X
′
2, . . . ,X

′
N)′, y = (y′1,y

′
2, . . . ,y

′
N)′, ε = (ε′1, ε

′
2, . . . , ε

′
N)′. 257

Denote zk = Xkβ̂. From Figure 2(b), we establish that zk is independent of ε if β̂ is derived from a 258

different fold from zk. It follows that the ith element of zk, denoted zki is independent of the ith element 259

of ε, within a particular fold F . In notation: 260

fzi,εi|F(zi, εi) = fzi|F(zi)fεi|F(εi) (7)

Proof: fzi,εi(zi, εi) = fεi(εi)fzi(zi).

fzi,εi(zi, εi) =
∑
F

p(F)fzi,εi|F(zi, εi) (8)

=
∑
F

p(F)fzi|F(zi)fεi|F(εi) (9)

Now, because εi are assumed i.i.d. regardless of fold, we have

fεi|F(εi) = fεi(εi) (10)

fzi,εi(zi, εi) = fεi(εi)
∑
F

p(F)fzi|F(zi) (11)

= fεi(εi)fzi(zi) (12)

completing the proof. 261
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