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Abstract

Mycobacterium abscessus is emerging as an important pathogen in chronic lung diseases with
concern regarding patient to patient transmission. The recent introduction of routine whole
genome sequencing (WGS) as a replacement for existing reference techniques in England
provides an opportunity to characterise the genetic determinants of resistance. We conducted a
systematic review to catalogue all known resistance determining mutations. This knowledge
was used to construct a predictive algorithm based on mutations in the erm(41) and rrl genes
which was tested on a collection of 203 sequentially acquired clinical isolates for which there
was paired genotype/phenotype data. A search for novel resistance determining mutations was

conducted using an heuristic algorithm.

The sensitivity of existing knowledge for predicting resistance in clarithromycin was 95% (95%
Cl1 89 - 98%) and the specificity was 66% (95% CIl 54 — 76%). Subspecies alone was a poor
predictor of resistance to clarithromycin. Eight potential new resistance conferring SNPs were
identified. WGS demonstrates probable resistance determining SNPs in regions the NTM-DR
line probe cannot detect. These mutations are potentially clinically important as they all
occurred in samples predicted to be inducibly resistant, and for which a macrolide would
therefore currently be indicated. We were unable to explain all resistance, raising the possibility

of the involvement of other as yet unidentified genes.
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Introduction

The Mycobacterium abscessus complex (M. abscessus) are rapidly growing nontuberculous
mycobacterium (NTM) of increasing clinical concern with a rising burden of associated
pulmonary disease (Prevots et al. 2010). M. abscessus poses a significant problem, particularly
in patients with cystic fibrosis (CF), where infection is associated with a more rapid decline in
lung function and can be a barrier to transplantation(Esther et al. 2010). Of particular concern
are the findings from recent work that have suggested person-to-person transmission of virulent
clones amongst the CF population within a healthcare setting (Bryant et al. 2013, 2016),

although not all studies have supported this (Harris et al. 2014; Tortoli et al. 2017).

The taxonomy of M. abscessus is contentious. It is currently divided into three subspecies: M.
abscessus subspecies abscessus (Mabs), M. abscessus subspecies massiliense (Mmas), and
M. abscessus subspecies bolletii (Mbol)(Adekambi et al. 2017). The organism has intrinsic
resistance to multiple antibiotics including B-lactams, rifampicin and aminoglycosides due to the
synergistic action of the cell envelope and genetic factors (Nessar et al. 2012). Treatment
requires prolonged courses of multiple antibiotics, but outcomes are thought to vary across the
different subspecies. Mmas has been associated with clarithromycin susceptibility and
favourable treatment outcomes, whereas Mabs has been associated with inducible macrolide

resistance and poorer treatment outcomes (Koh et al. 2011).

Whole genome sequencing has been implemented in stages across England since December
2016, replacing existing reference techniques for mycobacterial identification. As a

consequence, there is now the opportunity to explore the molecular determinants of drug
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79  resistance for all clinical NTM isolates. Macrolides are important agents in the management of
80 NTM infection, The American Thoracic Society/Infectious Diseases Society of America and
81  British Thoracic Society (ATS/IDSA and BTS) guidelines recommend including a macrolide in
82 treatment regimens where samples are either susceptible, or demonstrate inducible resistance
83  (Haworth et al. 2017; Griffith et al. 2007).. They act by binding to the 50S ribosomal subunit and
84  resistance in mycobacteria primarily occurs through target site modification for example by erm
85 methylases and point mutations (Nash, Brown-Elliott, and Wallace 2009).As there is a
86  particularly strong correlation between in vitro susceptibility and clinical response to macrolide
87  treatment of M. abscessus (Jeon et al. 2009; Choi et al. 2017), we have undertaken a study to
88  assess the feasibility of predicting clarithromycin susceptibility from whole genome sequencing
89 data for all three subspecies of M. abscessus.
90
91 Methods
92
93 Literature search
94
95  We first conducted a systematic review of the literature to search for known drug resistance
96 conferring mutations in M. abscessus. Pubmed was searched with the terms ‘Mycobacterium
97 abscessus’ AND ‘clarithromycin’ OR ‘macrolide’ OR ‘drug resistance’ OR ‘antibiotic resistance’,
98 looking for English language articles published up to April 2018. To be included in the final list,
99 articles had to contain genotyping of coding regions relevant to clarithromycin resistance in M.
100 abscessus in addition to paired drug susceptibility data. Studies looking at both clinical and
101  non-clinical samples were included. 298 abstracts were screened for relevance and 81 full text
102  articles were obtained of which 26 met the inclusion criteria (Figure 1).
103

104  Sample selection and sequencing
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105

106  We next sought all available clinical isolates (N = 180) which had undergone whole genome
107  sequencing by the Public Health England (PHE) laboratory in Birmingham (UK) as part of the
108 routine diagnostic workflow, and for which paired phenotypic data were also available. We

109 supplemented this with 23 isolates for which the same data was available from a WGS archive
110  at the University of Oxford. Isolates were collected between May 2014 and January 2017 and
111 no prior selection according to site of isolation nor whether confirmed M. abscessus complex
112  disease by guidelines was made. Clinical samples were cultured in BD BACTEC™ MGIT™
113  liquid mycobacterial growth indicator tubes from which an aliquot was removed to be prepared
114  for WGS as previously described (Votintseva et al. 2015).

115

116  Libraries for lllumina Miseq sequencing were prepared using the Illumina Nextera XT protocol
117  with manual library normalisation. Samples where batched 12 to 16 per flow cell and paired end
118 sequencing was performed with the MiSeq reagent kit V2. Bioinformatics was performed using
119 the PHE bioinformatics pipeline as previously described (Walker et al. 2015; Votintseva et al.
120 2015). Briefly, reads were mapped to the Mabs reference genome (NC_010397.1) with Stampy
121  v1.22 and variants called using Samtools v0.1.18 (Only variants with >= 5 high-quality reads,
122  mean quality per base >= 25 and > 90% high-quality bases were retained as variants;

123  heterozygous variants with >10% minor variant were not retained). A self-self blast approach
124  was used to mask repetitive regions. Sub-species were identified by computing maximum

125 likelihood (ML) phylogenetic trees incorporating published representative isolates from each
126  subspecies. A whole genome SNP alignment was used as input to IQ-TREE OMP version 1.5.5
127  using a generalised time reversible model. The erm(41) and rplV genes were manually

128 inspected for insertions/deletions from aligned fasta files using Seaview version 4.6.2. All newly
129 sequenced data has been uploaded to NCBI under project accession number PRINA420644.

130
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Drug susceptibility testing

Phenotypic drug susceptibility testing (DST) was performed at the PHE National Mycobacterial
reference service in London. DST was performed using the broth microdilution method with 96-
well RAPMYCO microtitre plates (Mueller Hinton medium with TES buffer, Thermo Fisher).
Plates were read at day three post-inoculation, and if poor growth again at day 5, according to
Clinical and Laboratory Standards Institute (CLSI) guidelines (Committee for Clinical Laboratory
Standards 2000). Isolates deemed susceptible or intermediate were re-incubated and read again at days
7, 14 and 21. Those found to be resistant (R MIC I 8 pg/ml) at any of these time points are described as
phenotypically resistant. A call of phenotypically sensitive (S MIC [ 2 pg/ml) or intermediate (I MIC >
2 - < 8 ug/ml) was only made after the full 21 days of incubation. This study was an opportunistic
retrospective analysis of routinely collected clinical data and as such phenotypic testing was not repeated

on discordant isol ates.

Genotypic prediction of clarithromycin susceptibility

We used BioPython software to extract base calls from whole genome sequence FASTA files,
comparing these to a list of genomic loci which our literature search indicated were associated
with clarithromycin resistance (table 2). We then predicted phenotypes using an hierarchical
algorithm (Figure 2). A resistant phenotype was predicted where any mutations were present at
rrl positions 2270 or 2271 (E. coli numbering 2058/2059), or where the less well characterized
rrl_A2269G or rrl_A2293C or rrl_G2281A mutations were seen. In the absence of these
mutations, susceptibility was predicted where an isolate had a truncated erm(41) gene ora C
nucleotide at position 28 in erm(41). Inducible resistance was predicted where a wild type call
(T) was present at position 28 in erm41. However, if an erm41_C19T mutation was also

present, susceptibility was predicted instead of inducible resistance. In cases where there was a
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null call at rrl 2270/2271, we subsequently attempted local assembly of the rrl gene using Ariba
(Hunt et al. 2017), followed by comparison by alignment against the reference. Where this was
not possible due to low coverage in this region, no prediction was made. Statistics quoted were

calculated using R Studio v1.1.383.

Search for novel resistance conferring mutations

We attempted to characterise new resistance mutations within genes linked to drug resistance
from the literature search. To maximise power for discovering new potential resistance
mutations, we included all genomes available to us. All variants in these genes or their
promoter regions were extracted using Python software from variant call files. Phylogenetic
SNPs were identified by considering each subspecies in turn, assumed to be benign and

excluded from further analysis.

We considered variants at the level of SNPs in promoter regions or rRNA and amino acid
changes in coding regions. A mutation (a variant with an observable phenotype) was
characterised as causing resistance if it occurred as the only variant in the relevant region in a
resistant isolate or if it was always associated with resistance when it was seen and did not co-
occur with any other mutations known to cause resistance. Variants were characterised as
consistent with susceptibility (‘benign’) if all isolates were susceptible when it occurred alone or
if it occurred only in susceptible isolates. We assumed no prior knowledge in this section of the
analysis and the identification of known resistance SNPs was used as an internal validation of

our approach.

Results
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We studied 143 Mabs, 20 Mbol and 40 Mmas genomes. Genotypic predictions were made on
the basis of mutations identified by the literature search. All relevant mutations identified were
contained in the genes rrl and erm(41) (figure 2 and table 2). The genes rplV, whiB7 and rpld

were also considered of potential interest and were additionally searched for variants.

Genotypic predictions

Inducible resistance was predicted in 101 isolates, of which, 74/101 (73%) were reported as
phenotypically resistant. After excluding isolates for which no prediction could be made due to
missing data in key genomic loci (n = 20) as well as those with an intermediate phenotype (n =
4), the sensitivity was 95/100 (95%, 95% CI 89 - 98%) and specificity was 52/79 (66%, 95% CI
54 - 76%) . The very major error rate (phenotype resistant, WGS prediction sensitive) was 5/100
5% (95% Cl% 1 — 9%) and the major error rate (phenotype susceptible, WGS prediction
resistant) was 27/79, 34% (95% Cl 24 — 44%). Positive predictive value was 95/122, 78% (95%
Cl1 69 - 85%) and the negative predictive value was 52/57, 91% (95% CI 81 - 97%) (Table 3). The
F score for WGS predictions was 0.86. When isolates with a prediction of inducible resistance
were further excluded, the specificity of a resistance prediction was 21/21 (100%, 95% CI 93 -

100%) and the sensitivity was 21/26 (81%, 95% CI 61 - 93%).

Clarithromycin resistance in the subspecies

81/143 Mabs were resistant, 58 sensitive and 4 intermediate. For Mbol 18/20 were resistant
and for Mmas 19/40 were resistant (table 1). There was one Mmas isolate carrying a full length
erm(41) gene which was phenotypically resistant to clarithromycin. This was not unexpected
from a genotypic perspective as it harboured a wild type thymine nucleotide at position 28

erm(41), associated with inducible resistance.
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209

210 Mechanisms of resistance

211

212  The negative predictive value of a truncated erm(41) gene for clarithromycin susceptibility was
213  53% (21/39 - there was one Mmas isolate with a full length erm(41)). In 11/18 instances,

214  resistance in the presence of a truncated erm(41) could be explained by a mutation in position
215 2270 o0r 2271 in rrl. No coverage at all was seen at these positions for 4/18 isolates. No genomic
216  explanation could be identified for the remaining three discordant isolates (table 1).

217

218  Allisolates which had any mutation of positions 2269, 2270 or 2271(E. Coli numbering 2057,
219 2058, 2059) in rrl were resistant to clarithromycin (21/203 (10%)). Such a mutation was found in
220 3 Mbol, 11 Mmas and 7 Mabs isolates. We did not observe any isolates with an rrl mutation
221  which also harboured a T28C mutation in erm(41). Where this occurred in isolates reported in
222  the literature, they were always resistant (Kehrmann et al. 2016; Rubio et al. 2015).

223

224  Of 37 isolates with a T28C mutation in erm(41) and no other relevant mutations, 84% (31/37)
225  were susceptible to clarithromycin, 11% (4/31) had intermediate susceptibility and 5% (2/31)
226  were resistant. This mutation was exclusively found in Mabs isolates. We did not identify any
227  drug resistance associated mutations in any of these intermediate or resistant isolates. Across
228  all three subspecies, of 101 isolates with the T28 erm41 call associated with inducible

229  resistance (and no other relevant mutation), 73% (74/101) were resistant and 27% (27/101)
230  susceptible at the final day 21 reading.

231

232 De novo search for resistance determining mutations

233
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The search for potential novel resistance determining mutations for clarithromycin revealed 13
SNPs of interest (table 4). Of these, five have previously been described in the literature.
There were additionally four SNPs (rrl_A2746T, rrl_G836A, rrl_T2674G and rrl_T636C) which
were only ever seen in resistant isolates but always co-occurred with known resistance
determining SNPs. There was one phenotypically resistant isolate which harboured 18 novel
SNPs. On performing a nucleotide BLAST of a 120 base region encompassing all of these
SNPs, there was a 99% (E 2 x10°°) match with Streptococcus species. This therefore likely
represents sample contamination with flora from the nasopharynx. No new resistance

associated variants were discovered in rplV, rpld or whiB7.

Discussion

We conducted a systematic review of drug resistance determining mutations for clarithromycin
in M. abscessus and used the results to make genotypic predictions. The sensitivity of this
approach was 95% (95% CI 89 — 98%) and the positive predictive value 78% (95% CI 69 —
85%). The prevalence of resistance amongst our collection of isolates was high compared to
that which has been reported elsewhere (Koh et al. 2011; Hatakeyama et al. 2017; Li et al.

2016; Cowman et al. 2016).

These results show that for clarithromycin, drug resistance can be predicted from WGS data as
it has been previously through targeted PCR and line probe assays such as the Hain GenoType
NTM-DR. Assessment of the genotype of erm(41) with molecular diagnostics allows prediction
of its functional status which has been thought to correlate to treatment outcome (Haworth et al.
2017). Similarly, as the absence of a functional erm(41) gene has been associated with good
therapeutic outcomes its molecular detection ought to be beneficial to patients (Koh et al. 2011),

although in our study this alone was not an adequate predictor of in vitro resistance. A
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260 genotypic prediction of inducible resistance produced a variable phenotype in our study (27/101
261  sensitive). Discriminating such isolates predicted to be inducibly resistant which are

262  unexpectedly sensitive after prolonged incubation with clarithromycin or show early time point
263  high level resistance may help to identify additional genotypic markers to better identify patients
264  more likely to benefit from the use of macrolides...

265

266 In addition to mutations identified in the literature search, we also managed to identify variants
267 that may plausibly be new resistance determining mutations. However, these will require

268 validation against an independent data set. Using routinely collected diagnostic data to improve
269  our understanding of the molecular determinants of drug resistance is a key advantage WGS
270  has over line-probe assays or PCR. The eight previously undescribed mutations we report in
271  this work could be of clinical importance because they all occur in samples which the existing
272  literature predicts to be inducibly resistant. As BTS guidelines recommend that patients with
273  such isolates should be given a macrolide, it is important to determine further whether these
274  SNPs are true resistance-determinants, and whether macrolide therapy should be avoided in
275  their presence.

276

277  Previous authors have suggested that it is clinically useful to discriminate between subspecies,
278  (Koh et al. 2011) as Mmas is typically associated with durable susceptibility to clarithromycin
279 and Mbol and Mabs with inducible resistance (unless the T28C mutation is present). We found
280 identifying sub-species alone to be an inadequate predictor of in vitro clarithromycin phenotype.
281  There were three Mmas isolates in our collection that were resistant to clarithromycin and had
282  no mutations known to be relevant. Mougari and colleagues found that in 39/40 Mmas selected
283  for clarithromycin resistance, this could be explained by an rrl mutation at positions 2270/2271

284  with a further sample containing an rplV insertion (Mougari et al. 2017). All of our isolates


https://doi.org/10.1101/251918
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/251918; this version posted September 28, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

285  contained this ‘insertion’ (also present in the NC_010397.1 reference) which was associated with
286  susceptibility to clarithromycin except in the presence of a relevant rrl mutation.

287

288  In keeping with previous reports, we identified an isolate of Mmas with a full length erm(41) and
289  athymine nucleotide at position 28(Shallom et al. 2015). This likely represents recombination
290  between the subspecies. A recent study showed the Hain GenoType NTM-DR line probe assay
291 incorrectly predicted subspecies in 8% of samples, presumably because it lacks the whole

292  genome resolution provided by sequencing and is vulnerable to between species recombination
293 (Kehrmann et al. 2016).

294

295  Despite analysing all mutations occurring in erm(41) and rrl for the full collection of genomes,
296  we were unable to predict all clarithromycin resistance. This may be because there are other
297  genes implicated or due to unreliable DST results. Future work should aim to select discordant
298  genotypes and identify additional infrequently occurring genetic loci implicated in clarithromycin
299 resistance, for example by using genome wide association (GWAS) approaches. All of the new
300 clarithromycin resistance mutations we discovered occurred in isolates which we originally

301 predicted to be inducibly resistant. Although M. abscessus is primarily thought to be an

302 environmental organism, these patients may be colonised for long periods with subsequent

303 potential exposure to multiple courses of macrolides. An alternative hypothesis may therefore
304 be that some or all of these SNPs are compensatory mutations which act to reduce a fitness
305 cost of the expression of erm, which has been experimentally demonstrated in other bacteria
306 (Guptaetal. 2013). There were four SNPs which only occurred in resistant samples but were
307 always seen with a known drug resistance causing SNP, possibly also representing

308 compensatory mutations.

309
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310 Key weaknesses of our study include that we were unable establish a temporal relationship
311  between antibiotic prescribing and inducible phenotypic resistance as we did not have the

312  relevant ethics approval to link to patient records. If for example, any SNPs on our list of novel
313  mutations were observed in isolates from patients who had never previously had macrolide
314  therapy, it would be much more likely that they were genuine resistance conferring rather than
315 compensatory mutations. In addition it is possible that some of the genomes were same patient
316 replicates over a number of months/years, although this may have also diversified the range of
317  mutations observed. We chose to include all available samples to maximise detection of low
318 frequency resistance determining SNPs meaning there was no validation set available. Our list
319  of novel resistance determining SNPs will therefore require validation on an independent

320 dataset before being applied to the clinical setting. We chose to target a select list of genes with
321  known SNPs identified in the literature search; other approaches such as GWAS will likely be
322  additive to the knowledge base we present here.

323

324  In summary, WGS allows identification of known resistance conferring mutations as well as
325 demonstrating probable novel resistance determining SNPs in regions the Hain NTM-DR line
326  probe cannot detect which if further validated may change management. Identification of

327  subspecies alone inadequately predicts macrolide resistance in M. abscessus. Our data does
328 not support the replacement of phenotypic tests at this point in time; as more paired

329 genome/DST data becomes available in the near future, and we learn more about the molecular
330 determinants of drug resistance, it is likely that sensitivity and specificity of WGS resistance
331  prediction will improve. Given that WGS data is already being produced in the UK for the

332  purposes of molecular epidemiology, it would now be possible to phase out existing molecular
333 tests and replicate their results in silico at no additional cost.

334
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Rubio et al.
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Shallom et al.

2015; Maurer

et al. 2014;
Wallace et al.
1996; Chew
et al. 2017)
Truncated A T Resistant(Ba
stian et al.
2011)
Full T A A C19T Sensitive(S.-
erm(41) Y. Kim et al.
2016)
Truncated A A A2269G Resistant(Ru
rrl (2057) bio et al.
2015)
Full Unknown Unknown Unknown A2293C rrl Resistant(Liu
(2082) + et al. 2017)
G2281C rrl
(2069

Table 2: Resistance determining mutations for clarithromycin identified in the literature search.

M. abscessus numbering is used with E. coli numbering in brackets.
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In vitro phenotype

Genomic Prediction  Sensitive Resistant Intermediate
No Prediction* 2 18 0
Inducible resistance 27 74 0
Resistant 0 21 0
Sensitive 52 5 4
Sensitivity 95% (95% CI 89 - 98%)

Specificity 66% (95% CI 54 - 76)%

Positive predictive

value 78% (95% CI 69 - 85%)

Negative predictive

value 91% (95% CI 81.0 - 97%)

Table 3 - WGS Predictions vs DST phenotype for clarithromycin.
Sensitivity/Specificity/PPV/NPV are calculated excluding isolates with and intermediate
phenotype and those where no prediction was made due to inadequate coverage at key

positions.

Position Nucleotide/Amino acid Rule met

change
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rrl 2039 A>G 1
rrl 1401 T>C 2
rrl 371 T>C 2
rrl 795 G>A 1
rrl 2270* A>C 1
rrl 2270* A>G 2
rrl 2271* A>G 2
rrl 2270 * A>T 2
erm(41) 131 A>V 2
rrl 2279 G>A 2
rrl 2269* A>G 2
erm (41) -31** A>T 2
rrl 1932 A>G 2

Table 4: Mutations (both novel and previously described) detected during de novo search for
resistance determining SNPs. Rule 1 = occurs as only SNP in relevant regions in resistant
isolate, rule 2 = all samples resistant when SNP occurs, never seen in sensitive isolate. All
numbering is relative to M. abscessus. * mutation already described in literature - M. abscessus
rrl numbering 2270/2271 is E. coli numbering 2058/2059. ** mutation in erm(41) promoter

region, 31 bases upstream of start of coding region.
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