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ABSTRACΤ 12 

Interneurons are critical for the proper functioning of neural circuits. While often 13 

morphologically complex, their dendrites have been ignored for decades, treating them as 14 

linear point neurons. Exciting new findings reveal complex, non-linear dendritic 15 

computations that call for a new theory of interneuron arithmetic. Using detailed 16 

biophysical models, we predict that dendrites of FS basket cells in both hippocampus and 17 

prefrontal cortex come in two flavors: supralinear, supporting local sodium spikes within 18 

large-volume branches and sublinear, in small-volume branches. Synaptic activation of 19 

varying sets of these dendrites leads to somatic firing variability that cannot be explained 20 

by the point neuron reduction. Instead, a 2-stage Artificial Neural Network (ANN), with 21 

sub- and supralinear hidden nodes, captures most of the variance. Reduced neuronal circuit 22 

modeling suggest that this bi-modal, 2-stage integration in FS basket cells confers 23 

substantial resource savings in memory encoding as well as the linking of memories across 24 

time. 25 

 26 

 27 
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GABAergic interneurons play a key role in modulating neuronal activity and transmission 28 

in multiple brain regions1–5. Among others, they are responsible for controlling the 29 

excitability of excitatory and inhibitory cells, modulating synaptic plasticity and 30 

coordinating synchrony during neuronal oscillations2,6–8,9. GABAergic interneurons come 31 

in a variety of molecular profiles, anatomical features and electrophysiological 32 

properties1,3,5,10. Despite this variability, many interneuron types exhibit similar 33 

computations, the most common being a precise EPSP-spike coupling2,11,12. As they 34 

innervate a large number of cells, near the site of action potential initiation, they are 35 

believed to generate a powerful widespread inhibition, also referred to as an inhibitory 36 

blanket13.  37 

Fast Spiking basket cells (FS BCs) constitute one of the main types of hippocampal and 38 

neocortical interneurons6,13,14. They are part of the PV positive interneuron class, which 39 

also includes the axo-axonic, chandelier and bistratified sub-types. FS BCs are 40 

distinguished from other subtypes by their anatomical features15, synaptic connectivity 41 

patterns13,16 and membrane mechanisms. These include the presence of calcium permeable 42 

AMPA (cp-AMPA) receptors17,6,18,19, the low expression of NMDA receptors19,20, a weak 43 

backpropagation of APs6,21, a low density of sodium channels6 and a high density of 44 

potassium channels in their aspiny dendritic trees5,15,23,6,4,24. 45 

A growing body of literature recognizes the importance of FS BCs in controlling executive 46 

functions such as working memory and attention as well as their role in neurodegenerative 47 

disorders4,25,26. However, little is known about the mechanistic underpinnings of FS BC 48 

contributions to these functions. Most studies have focused on the molecular and 49 

anatomical features of FS BCs7,13 and led to the dogma that FS BCs serve as “on-off” cells, 50 

integrating inputs like linear –or at best sublinear- point neurons28,29.  51 

This dogma is based on the assumption that FS BCs integrate synaptic inputs in a linear 52 

manner, completely ignoring potential dendritic infuences6. Dendritic integrative properties 53 

however, can play a pivotal role in translating incoming information into output 54 

signals30,31,32. In pyramidal neurons for example, this is often done in highly nonlinear ways 55 

that facilitate memory and other executive functions31,33–36.  56 

Exciting new findings suggest a potentially similar contribution of dendrites in interneuron 57 

function. Sublinear dendritic EPSP integration along with supralinear calcium 58 

accumulations has been reported in cerebellar Stellate Cells11,37. Moreover, certain 59 
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interneuron sub-types in the CA1 area exhibit dendritic supralinearities38,39 while in the 60 

CA3, both calcium nonlinearities and sodium spikes in FS BC dendrites during sharp wave 61 

ripples have been reported2. The exact nature of dendritic computations in FS BCs, 62 

however, is unknown. As a result, whether a linear point neuron or a more sophisticated 63 

abstraction -like the two-stage40 or multi-stage integration proposed for pyramidal neurons- 64 

can successfully capture their synaptic integration profile, remains an open question. 65 

 66 

Figure 1: Modeling tools used to study dendritic integration in FS BCs and its functional 67 

implications. a) Detailed, biophysically constrained multi-compartmental models using realistic 68 

reconstructions. b) Reduced 2-stage integrate and fire models of FS BCs. c) 2-layer ANN reduction 69 

describing the FS BCs d) Reduced network model with simplified pyramidal, FS BCs and SOM+ 70 

interneurons. FS-BCs and SOM+ interneurons provide feedback inhibition to excitatory neurons 71 

(beige), with FS-BCs interneurons targeting the somatic subunit while SOM+ neurons target the 72 

dendritic subunits. Memory encoding afferents provide inputs to excitatory cell dendrites. 73 
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To address these questions, we developed an elaborate toolset that consists of a) detailed, 74 

biologically constrained biophysical models of hippocampal and cortical FS BCs, b) 75 

reduced 2-stage integrate-and-fire models of these cells, c) 2-layer Artificial neural network 76 

abstractions and d) a large scale microcircuit model of 2-stage pyramidal, FS BC and 77 

dendrite targeting (SOM) interneurons (See Online Methods and Figure 1). We first 78 

characterized the integration profiles of FS BC dendrites using the detailed biophysical 79 

models. Synaptic stimulation predicted the co-existence of two distinct modes within the 80 

same tree: some dendrites exhibited supralinear while others sublinear summation of inputs 81 

(Figure 2, Supplementary Figures 4, 5). Supralinear dendrites supported local, sodium-82 

dependent spikes (Supplementary Figure 7) and were characterized by large volume and 83 

low input resistance (Figure 3), which are shaped by the combination of dendritic length 84 

and diameter. Direct manipulation of these anatomical features in biophysical models gated 85 

the induction of sodium spikes and determined the integration mode (Figure 3). Using an 86 

array of different activation patterns, we found that spatially dispersed inputs lead to higher 87 

firing rates than inputs clustered within a few dendrites (Figure 4), opposite to respective 88 

findings in pyramidal neurons33. Moreover, these different activation patterns result in a 89 

wide range of firing rates that are better explained by a 2-layer Artificial Neural Network 90 

(ANN) with non-linear hidden layer activation functions rather than a linear ANN (Figures 91 

5, 6, Table 1). Finally, in order to assess the functional implications of these predictions, 92 

we built a reduced network model41 of 2-stage integrator neurons (Figure 1D) and showed 93 

that bi-modal nonlinear integration in FS BCs is beneficial for memory engram storage as 94 

well as the linking of memories across time (Figure 7). 95 

This work provides a systematic, cross-area analysis of dendritic integration in FS BCs and 96 

its functional implications. Our findings challenge the current dogma, whereby 97 

interneurons are treated as linear summing devices, essentially void of dendrites. We 98 

predict that the dendrites of FS BCs in both Hippocampal and Neocortical regions can 99 

operate in distinct non-linear modes. As a result, FS BCs, similar to pyramidal neurons40, 100 

are better represented by a 2-stage integrator abstraction rather than a point neuron. 101 

Importantly, non-linear dendritic integration in these cells offers substantial advantages for 102 

memory encoding in large scale networks.   103 

 104 

RESULTS 105 
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Multi-compartmental, biophysical models 106 

A total of 8 biophysical model neurons were built using realistic reconstructions of FS BCs 107 

from rat hippocampal areas (5 cells) and from the prefrontal cortex of mice (3 cells) 108 

(Supplementary Figure 5). To ensure biological relevance, ionic and synaptic 109 

conductances as well as basic membrane properties of model cells were heavily validated 110 

against experimental data6,13,16,23 (Supplementary Table 1-4, Supplementary Figures 1-111 

3). Moreover, for consistency reasons, the same set of biophysical mechanisms (type and 112 

distribution) was used in all model cells.  113 

114 

Figure 2: Bimodal dendritic integration in multi-compartmental FS BC models. Examples of 115 

Hippocampal (a) and PFC (d) FS BC morphological reconstructions. Representative input-output 116 

curves from supralinear (b, e) and sublinear (c, f) dendritic branches in Hippocampal (top) and PFC 117 

(bottom) models, in response to synaptic stimulation. Increasing numbers of synapses (from 1 to 20 118 

with step=1) are uniformly distributed within each stimulated branch and are activated with a single 119 

pulse. The y-axis shows the amplitude of the dendritic EPSP caused by synaptic activation while 120 

the x-axis shows the expected EPSP amplitude that would result from the linear summation of 121 

synaptic EPSPs. The dashed line indicates linear summation. Insets show representative traces. 122 

Bi-modal dendritic integration in Fast Spiking Basket cells  123 
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The first step for deducing a realistic abstraction of FS BCs is the systematic 124 

characterization of dendritic/neuronal integration properties across a significant number 125 

of neurons and dendrites. Towards this goal, we simulated gradually increasing excitatory 126 

synaptic input to the dendrites of all neuronal models and recorded the voltage response 127 

both locally and at the soma11,44. Increasing numbers of synapses (1-20) were uniformly 128 

distributed in each stimulated dendrite and activated synchronously with a single pulse. 129 

For this particular experiment, sodium conductances in somatic and axonal compartments 130 

were closed to avoid backpropagation contamination effects55,42 that were detectable in 131 

some dendrites. We compared measured EPSPs to their linearly expected values, given by 132 

the number of activated inputs multiplied by the unitary EPSP. We found that within the 133 

same dendritic tree, branches summate inputs either in a supralinear or a sublinear mode 134 

(Figure 2, supplementary Figures 4, 5). While there were differences in the number of 135 

dendrites and proportions of sub- vs. supralinear dendrites, all of the morphologies tested 136 

expressed both integration modes (Supplementary Table 5). Moreover, while both 137 

modes have been suggested in distinct interneuron types11,38, their co-existence in the same 138 

tree has yet to be reported. 139 

To assess the robustness of this finding, we first performed a sensitivity analysis whereby 140 

the cp-AMPA, NMDA, VGCCs, sodium and A-type potassium conductances were varied 141 

by ±20% of their control value. We found no changes in the integration mode of dendrites 142 

(data not shown) and only insignificant alterations in the spike threshold of supralinear 143 

dendrites (Supplementary Figure 6b). The only manipulation that eliminated 144 

supralinearity was the blockade of dendritic sodium channels (Supplementary Figure 7).  145 

Next, we examined whether the two modes are influenced by the presence of Gap 146 

junctions, which are well established in FS BCs46. Towards this goal, we connected pairs 147 

of Hippocampal and PFC cells with 10 electrical synapses (see Online Methods). 148 

Presynaptic cells were synaptically activated so as to fire at gamma rate frequency as per 149 

Tamas et al 200046 and the integration mode was assessed, as previously, in the dendrites 150 

of the post-synaptic cell. We found no influence of gap junctions on the integration mode, 151 

apart from a slightly increased membrane potential (Supplementary Figure 8).  152 

The same effect was observed in simulations of more physiological conditions such as 153 

active whisking47. This was done via weak synaptic activation of randomly selected 154 

dendrites resulting in a somatic firing rate of 3±1 Hz47 (see Online Methods). Both modes 155 
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of dendritic integration remained unaffected by the presence of in vivo like activity 156 

fluctuations (Supplementary Figure 9).   157 

Taken together, the above simulations establish the robustness of bi-modal dendritic 158 

integration and suggest that under physiological conditions, FS BCs are likely to express 159 

both types of dendritic integration modes. 160 

 161 

Determinants of dendritic integration modes 162 

Next, we searched for biophysical and/or anatomical determinants of the two integration 163 

modes. Blockade of sodium conductances in the dendrites eliminated the supralinear 164 

integration mode in all morphologies tested (Supplementary Figure 7), but this was not 165 

the case for blockade of cp-AMPA, NMDA, VGCCs or A-type potassium channels. 166 

(Supplementary Figure 6a). These simulations indicate that sodium channels are the key 167 

ionic mechanism underlying the supralinear mode. What remains unclear is why these 168 

model cells also have sublinear dendrites, when the distribution and conductance values 169 

of sodium channels is the same in all dendrites. 170 

Since morphological features of dendrites were previously shown to influence synaptic 171 

integration profiles36, we investigated whether anatomical features correlate with the 172 

expression of each integration mode. We found that the mean dendritic diameter was 173 

highly statistically different (p-value=2.6041e-60) among sub-(thinner) and supra-linear 174 

(thicker) dendrites in the hippocampus (Figure 3b) while in the PFC the dendritic length 175 

was a better determinant of sub- (shorter) vs. supra-linearity (longer) (p-value=4.1768e-176 

04) (Figure 3c). Length was less, yet, important in the hippocampus (p-value=0.0040) 177 

(Figure 3a) while diameter was not different among sub- and supralinear dendrites in the 178 

PFC (p-value=0.9458) (Figure 3d). Dendritic volume and input resistance consider both 179 

of the above anatomical features and serve as robust morphological / electrophysiological 180 

determinants for all dendrites in both areas (p-value=9.8516e-11, 3.9457e-45 181 

respectively), (Figure 3e,3f).   182 
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 183 

Figure 3: Morphological determinants of dendritic integration mode. a, c:  Total length distributions 184 

of supralinear vs. sublinear dendrites in the hippocampus (a) and the PFC (c). Statistically significant 185 

differences are observed for both sub- and supra-linear dendrites, in both areas. (p-value<0.0001 for 186 

Hippocampus and p-value<0.01 for PFC). b, d: Same as in a, b, for mean dendritic diameter. 187 

Statistically significant differences are observed in Hippocampal (p-value<0.0001) but not in PFC 188 

FS BCs.  e-f. Dendritic Volume and dendritic Input Resistance are common discriminating 189 

characteristics among supralinear (larger, with low input resistance) and sublinear (smaller, with 190 

high input resistance) dendrites, for both areas (p-value<0.0001 for Hippocampus and PFC, for 191 

volume and Input Resistance respectively). g. Schematic illustration of morphological features for 192 

supralinear and sublinear dendrites in Hippocampus (left) and PFC (right). Traces indicate first 193 

EPSP in supralinear and sublinear dendrites. h-j. Distributions of the number of supralinear and 194 

sublinear dendrites in both areas, under control conditions (h), with the mean diameter and length 195 
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of all dendrites set to the mean values of the supralinear class (i) and with mean diameter and length 196 

of all dendrites set to the mean values of the sublinear class (j). 197 

 198 

Overall, we found that supralinear dendrites have high volume and low input resistance 199 

while sublinear dendrites have smaller volume and high input resistance (Figure 3e, 3f). 200 

This can be explained by considering the fast kinetics of cp-AMPA receptors and A-type 201 

potassium channels in the dendrites of FS BCs. In sublinear dendrites, where the input 202 

resistance is high (small volume), coincident synaptic input induces a large, fast rising EPSP 203 

which in turn strongly activates the A-type potassium channels that rapidly repolarize the 204 

membrane, thus preventing the branch from spiking12. The opposite is true for supralinear 205 

dendrites, where the low input resistance results is smaller depolarizations that drive smaller 206 

A-type potassium currents, enabling the branch to reach the sodium spike threshold. This 207 

explanation is consistent with prior findings2,6,42,12. 208 

To test the above proposition, we performed causal manipulations whereby we fixed the 209 

diameter and length of all dendrites to the mean values of first the supralinear and then the 210 

sublinear class and assessed the effect on integration mode. We found that setting the 211 

dendritic anatomy to that of a given class also dictated the integration mode (Figure 3h-j). 212 

These findings suggest that, under the experimentally constrained conductance values for 213 

sodium channels, morphology plays a crucial role in the ability of a given dendrite to 214 

support local sodium spikes and express the supralinear integration mode. 215 

 216 

Effect of bimodal dendritic integration on neuronal firing 217 

To assess the impact of bi-modal dendritic integration on neuronal output, we simulated a 218 

large variety of different spatial patterns of synaptic activation and measured the resulting 219 

firing rates. Specifically, we generated over 10,000 synaptic stimulus patterns, which 220 

comprised of increasing numbers of excitatory synapses. Synapses were either placed 221 

within a few, strongly activated branches (clustered) or they were randomly distributed 222 

within the entire dendritic tree (dispersed). In all cases, synapses were activated with 223 

random Poisson spike trains at 50 Hz (see Online Methods). Dendrites were selected at 224 

random and inputs were distributed uniformly within selected dendrites. For the dispersed 225 

case, we allocated 2, 5, or 10 synapses in randomly selected dendrites, one at a time, while 226 
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for the clustered case we allocated 10,15,20,30,60 synapses within an increasing number of 227 

branches. In all cases, the number of activated synapses increased gradually up to a 228 

maximum of 60, as this number was sufficient to induce spiking at gamma frequencies (30-229 

100 Hz). This process was repeated k times (k = number of dendrites in each cell) to ensure 230 

full coverage of the entire tree. As expected given the two modes of dendritic integration, 231 

the localization of activated inputs affected neuronal firing. For a given number of activated 232 

synapses, dispersed activation led to higher somatic firing rates than clustered activation, 233 

particularly during gamma related frequencies (30-100 Hz) both in Hippocampal (Figure 234 

4c) as well as in PFC FS basket cells (Figure 4d). Interestingly, this finding is opposite to 235 

what has been reported for pyramidal neurons, in which synapse clustering increases firing 236 

rates33.  237 

238 
Figure 4: Effect of bimodal dendritic integration on neuronal firing.  Firing rate responses (in Hz) 239 

from one Hippocampal (a,c) and one PFC (b,d) model cell, in response to stimulation of increasing 240 

numbers of synapses (10 to 60) that are either randomly distributed throughout the entire dendritic 241 

tree (blue) or clustered within a few dendritic branches (pink).) Synapses are stimulated with a 50 242 

Hz Poisson spike train. In both cases, dispersed activation leads to higher firing rates. e,f: Same as 243 

in c,d with dendritic diameter set to 2 microns and removal of A-type dendritic channels. Firing 244 

rates are indistinguishable between clustered and dispersed activation patterns.  Insets depict 245 

representative traces from dispersed (top) and clustered (bottom) activation of 30 synapses 30. Red 246 

dots in show the synaptic allocation motif in a, b. 247 

 248 
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It was previously proposed that the combination of a small diameter with an increased 249 

conductance of A-type potassium channels in FS BCs underlies the preference for dispersed 250 

synaptic allocationions6. To tests this hypothesis, we repeated the above experiment after 251 

increasing the diameter (to 2 microns) and blocking the A-type potassium conductance in 252 

all dendrites. As shown in Figure 4e-f, this manipulation resulted in very similar firing rates 253 

irrespectively of the spatial arrangement of synapses, thus eliminating the preference for 254 

dispersed allocation of excitatory inputs. 255 

Supplementary Figure 12 shows the relative contributions of these two mechanisms in our 256 

model cells. Disperse synaptic arrangements benefit mostly from the dendritic morphology 257 

of FS BCs, as setting the dendritic diameter to 2 microns sharply decreases this preference 258 

(Suppl. Fig. 12 a, b). This is likely because small diameters prevent signal loss, enabling 259 

the small depolarizations produced by dispersed inputs to reach and excite the soma. 260 

Clustered arrangements on the other hand, are severely hampered by the high conductance 261 

of the A-type potassium channels24, as blockade of these currents enhances somatic output 262 

(Suppl. Fig. 12 c, d). This is because clustered -but not disperse- inputs induce large 263 

dendritic depolarizations which strongly activate A-type channels. Since NMDA currents7, 264 

which would further boost and prolong the cluster-induced EPSPs, are very small in these 265 

neurons, the hyperpolarizing effects of the A-type currents are larger than the depolarizing 266 

effects of clustered activation. 267 

Another factor that contributes to disperse preference, is dendritic integration. Unlike 268 

pyramidal neurons where dendrites are mostly supralinear and benefit from clustered inputs 269 

via the induction of dendritic spikes31,35,40, these neurons also have sublinear dendrites 270 

which dampen the abovementioned benefit. The higher the percentage of sublinear 271 

dendrites, the larger the dampening, as: 1) the probability of allocating clustered inputs in 272 

the few supralinear dendrites is much smaller and 2) activating sublinear dendrites with 273 

clustered inputs offers little/no advantage as dendritic spikes don’t occur in these branches. 274 

As shown in Supplementary Table 7 the more sublinear dendrites a FS BC model has, the 275 

weaker the response to clustered input. 276 

Taken together, this analysis reveals that the combination of a high conductance of A-type 277 

channels (which penalizes clustering), the specific morphological features of FS BCs 278 

(which favor dispersed inputs), and the presence of multiple sublinear dendrites underlie 279 
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the preference of these cells for disperse rather than clustered activation of their inputs, 280 

contrary to pyramidal neurons40. 281 

282 
Figure 5: Reduction of multi-compartmental models into ANN abstractions. Two types of 283 

abstractions are examined: a) a Linear ANN, in which the input from all dendrites (xi=number of 284 

synapses in dendrite i, N=number of dendrites) is linearly combined at the cell body and b) a 2-layer 285 

modular ANN, in which the input is fed into two parallel, separated hidden layers. The supralinear-286 

layer receives the number of inputs landing onto supralinear branches (a=number of supralinear 287 

dendrites) while the sublinear layer receives the number of inputs landing onto sublinear dendrites 288 

(b=number of sublinear dendrites). Neurons in both hidden layers are equipped with nonlinear 289 

transfer functions, a logistic sigmoid in the supralinear layer and a sublinear function in the sublinear 290 

layer. The somatic transfer functions of both ANNs are linear. 291 

 292 

FS basket cells as 2-layer artificial neural networks 293 

The non-linear synaptic integration taking place within the dendrites of cortical48 and 294 

CA135,44 pyramidal neurons was previously described as a sigmoidal transfer function49. 295 

Based on this reduction, a single pyramidal neuron was proposed to integrate its synaptic 296 
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inputs like a 2-layer artificial neural network, where dendrites provide the hidden layer and 297 

the soma/axon the output layer40. To assess whether a similar mathematical formalism could 298 

be ascribed to FS BC models, we constructed linear and non-linear artificial neural networks 299 

(as graphically illustrated in Figure 5) and asked which of them can better capture the firing 300 

rate variability in the biophysical models. 301 

Specifically, four types of feedforward, backpropagation Artificial Neural Networks 302 

(ANNs) were constructed (see Online Methods). In the 2-layer modular ANN, supralinear 303 

and sublinear dendrites were simulated as 2 parallel hidden layers consisting of a logistic 304 

sigmoid and a sublinear activation function y(x) = (x+2)0.7-2, respectively49 (Figure 5). The 305 

number of activated synapses allocated to supralinear vs. sublinear dendrites in the 306 

biophysical models was used as input to the respective hidden layers. The output layer 307 

represented the soma/axon of the biophysical model and consisted of a linear activation 308 

function. In the linear ANN, there was only a single hidden layer receiving input from all 309 

dendrites and consisting of linear activation functions (Figure 5). We also constructed two 310 

ANNs with the exact same architecture as the linear one, but with either a) a logistic 311 

sigmoidal (2-layer supralinear ANN) or b) a sublinear y(x) = (x+2)0.7-2 (2-layer sublinear 312 

ANN) activation function in the hidden layer neurons (Supplementary Figure 10). These 313 

ANNs represent FS BCs with just one type of non-linear dendrites.  314 

For all 8 FS BC model neurons the linear and 2-layer modular ANNs were trained using the 315 

number of synapses to supra-/sublinear dendrites as inputs to the respective hidden layers 316 

and the mean firing rate of the soma as target output. A randomly selected 80% of our 317 

synaptic activation data set was used to train the model and the rest 20% to test its 318 

generalization performance (see Online Methods). Performance accuracy was estimated 319 

based on regression analysis between the ANN-generated firing rates and those produced 320 

by the biophysical models. Fits for two representative model cells are shown in Figure 6a-321 

d, while the overall performance for all 8 model cells is shown in Figure 6e. Figure 6f 322 

demonstrates the performance of both ANN types for a dataset of the same power (number 323 

of inputs = 60), whereby the location of the inputs varies. As evident from the results, the 324 

2-layer modular ANN outperformed the linear ANN in all cases tested. 325 

 326 

 327 
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 328 

Figure 6: Challenging the point neuron dogma: FS basket cells as 2-stage nonlinear integrators. 329 

Linear regression analysis for 2-layer modular (a, c) and linear (b, d) ANNs for one indicative 330 

Hippocampal (top) and one indicative PFC (bottom) model cell.  Actual Mean Firing Rates (Hz) 331 

correspond to the responses of the compartmental model when stimulating with 50Hz Poisson spike 332 

trains- varying numbers of synapses (1 to 60), distributed in several ways (clustered or dispersed) 333 

within both sub- and supra-linear dendrites. Expected Mean Firing Rates (Hz) are those produced 334 

by the respective ANN abstraction when receiving the same input (number of stimulated synapses) 335 

in its respective sub-/supra- or linear input layer nodes. e) Regression performance (measured as R2) 336 

for 2-layer modular (right) and Linear (left) ANNs for all 8 FS BC model cells respectively. In all 337 

cases the 2-layer modular ANNs is superior to the Linear ANNs. Mean R2 values over all cells for 338 

the Linear (red) and 2-layer modular (cyan) ANNs are shown in the right. f) Same as e), applied to 339 

datasets comprised of 60 input synapses. The difference in performance of the two ANN types is 340 

higher in this challenging task. 341 

 342 

However, the performance of the linear ANN was relatively good. This can be attributed to 343 

the wide range of activated synapses (2 to 60) which resulted in large differences in the 344 

somatic firing, irrespectively of synapse location, and can thus be captured by any linear 345 

model (also see the work of Poirazi et al 2003b)40. Therefore, we also assessed the 346 

performance accuracy of linear and 2-layer modular ANNs to the more challenging task of 347 

discriminating between input distributions corresponding to the exact same number of 348 
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synapses. To do so, we subdivided the data into input categories corresponding to 20, 40 349 

and 60 synapses, respectively. In these more challenging conditions, the 2-layer modular 350 

ANN clearly outperformed the respective linear ANN, which failed to explain the variance 351 

produced by differences in input location. This result was consistent for all model cells as 352 

shown in Table 1. Performance for the 60-synapse case is shown in figure 6f. 353 

Table 1. ANN regression performance (R2) for individual sets of synapses in the 8 

model cells 

ANN type 20 synapses 40 synapses 60 synapses 

2-layer modular 

ANN 

0.8224 

0.8228 

0.8048 

0.7951 

0.8242 

0.9098 

0.8879 

0.8415 

0.7432 

0.9060 

0.8709 

0.8563 

0.8352 

0.8857 

0.8975 

0.8600 

0.6167 

0.8339 

0.7971 

0.8127 

0.7752 

0.8921 

0.8827 

0.7801 

Linear ANN 

0.4541 

0.6814 

0.6436 

0.5636 

0.5550 

0.7832 

0.6263 

0.6179 

0.3484 

0.7462 

0.5201 

0.4475 

0.4919 

0.7242 

0.5463 

0.7039 

0.2856 

0.5966 

0.5625 

0.4768 

0.4707 

0.6758 

0.4400 

0.4991 

Table 1: Comparison of ANN prediction accuracy (measured as the R2) for linear and 2-layer 354 

modular ANN reductions across all 8 FS BC models, tested on three sets of synaptic inputs 355 

consisting of 20, 40 or 60 activated synapses, respectively. Synapses were randomly distributed in 356 

various ways/locations in the biophysical model cells and resulting firing rates were used as target 357 

vectors for the ANNs. The 2-layer modular ANN is clearly superior to the Linear ANN when it 358 

comes to capturing location-induced firing-rate variability. 359 

Taken together, this analysis suggests that a 2-layer artificial neural network that considers 360 

both types of dendritic non-linearities is a much better mathematical abstraction for FS 361 

basket cells than the currently assumed linear point neuron. 362 

Bimodal nonlinear integration of FS basket cells enhances memory encoding 363 

In order to investigate the functional implications of our findings, we built a canonical 364 

microcircuit network model41 composed of simplified 2-stage excitatory neurons, FS BCs 365 

and dendrite targeting (SOM+) interneurons (Figures 1d and Supplementary Table 6). 366 

The model includes inhibitory feedback connectivity, multi-dendrite and perisomatic 367 

interneurons. It implements plasticity-related processes which act on multiple temporal and 368 
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spatial scales: two-stage dendritic integration, dendritic calcium dynamics, synaptic tagging 369 

and capture (STC), CREB-dependent excitability and homeostasis (see Online Methods).  370 

The network model was first trained to encode a single memory41 (see Online Methods) 371 

using FS BCs with either a) purely linear or b) bi-modal (sublinear and supralinear) 372 

dendritic subunits, as predicted by the compartmental modeling analysis (Figure 2). SOM+ 373 

interneurons were modeled as having either sublinear, linear, supralinear, or bi-modal 374 

dendritic subunits (Supplementary Figure 11). In these simulations, synaptic inputs to the 375 

FS BCs cells were either a) randomly distributed in all dendrites (Dispersed) or b) clustered 376 

within 33% of all dendrites (Clustered) (see Online Methods). The properties of the 377 

resulting memory engram (i.e. the population of active excitatory neurons during recall) 378 

were assessed by analyzing the activity of excitatory neurons during recall 24 hours after 379 

the learning event (Figure 7e).  380 

Our results indicate that, compared to linear dendrites, bi-modal FS BCs dendrites lead to 381 

significant reductions in the size of the resulting memory engram (p-value=5.8e-15), and 382 

the mean engram firing rates (p-value=3.1e-18 linear-dispersed, p-value=7.2e-10 linear-383 

clustered) (Figure 7a,b) while they also increase the network firing sparsity (p-384 

value=0.00095 linear-disperse, p-value =0.00338 linear-clustered) (Figure 7c). All of the 385 

above suggest that dendritic bi-modality in FS BCs promotes resource savings in the 386 
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encoding of new memories. 387 

 388 

Figure 7: Properties of memory engram encoding under different dendritic nonlinearity 389 

configurations, using the circuit model depicted in Figure 1d. a) Size of memory engram (percentage 390 

of excitatory neurons that respond with ff>10Hz during memory recall) for Linear/Bi-modal FS-BC 391 

dendritic subunits receiving dispersed (blue) or clustered (pink) synaptic inputs. b) Mean firing rate 392 

of the excitatory population under the conditions enumerated in (a). c) Treves-Rolls sparsity metric 393 

of the excitatory population firing rates under the conditions enumerated in (a). d) Percentage of 394 

overlap between two memory engrams when 2 memories are separated by 1 hour, under the 395 

conditions enumerated in (B). Dashed lines indicate the chance level of overlap for the engram sizes 396 

of the dispersed case shown in (a). e) As in (d) for 24 hours separation.  Box plots indicate data from 397 

20 simulation trials for A-D, and 10 trials for E-F. **: p<0.05, *** p < 0.005.  398 

As predicted by our multi-compartmental models (Figure 4), we found that dispersed 399 

synaptic activation is beneficial to engram properties by further reducing the engram size 400 

(p-value=4.0e-6) and the mean firing rate (p-value=1.7e-7) (Figure 7a-b). Summarizing, 401 

the memory engram properties indicate that bi-modal FS BC dendrites receiving dispersed 402 

inputs confer resource consumption advantages to memory encoding by a) increasing the 403 

sparsity of the population, b) recruiting fewer engram neurons and c) reducing the overall 404 
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network excitability. The above findings were unaffected by the presence of either linear, 405 

supralinear or bi-modal SOM+ model dendrites (Supplementary Figure 11).  406 

Finally, we also assessed the role of FS-BC nonlinearities in memory linking, by encoding 407 

two memories separated by 1 or 24 hours in the same network model and measuring the 408 

population overlap of the resulting memory engrams. According to previous work33,41,50, 409 

memories learned in close temporal proximity (e.g. 1 hour apart) display increased engram 410 

overlap compared to distant memories (24 hours apart). Overlapping storage is also 411 

associated with behavioral binding of the two memories and has been proposed to underlie 412 

the linking of memories across time51. We found that linear FS BC dendrites result in 413 

substantially larger engram overlaps in the circuit model compared to bi-modal dendrites 414 

(Figure 7d), for the 1-hour case. These overlaps are in fact significantly larger than the 415 

experimentally reported ones50 (~20%), suggesting that the two memories may interfere 416 

with one another.  Taken together, our network modeling analysis suggests a beneficial role 417 

of nonlinear dendrites in FS BCs with respect to memory encoding, storage capacity as well 418 

as the binding of memories over time. 419 

 420 

DISCUSSION 421 

The role of dendrites in interneuron computations is a rapidly emerging and debatable 422 

subject52. Several recent reports present exciting findings according to which dendrites may 423 

serve as key players2,11,37,38,53. For example, sodium spikes and supralinear calcium 424 

accumulation have recently been reported in the dendrites of FS BCs2, yet the consensus 425 

still favors the linear point neuron dogma6,45,52.  The present study provides new insight into 426 

this ongoing debate by systematically analyzing the dendritic integration mode of FS BCs 427 

in two brain areas: The Hippocampus and the PFC. We do so using an extensive set of 428 

computational tools that extends from detailed biophysical single cell models, to reduced 429 

integrate-and-fire single cell and circuit models as well as artificial neural network models 430 

(Figure 1). We predict that dendrites of both cortical and hippocampal FS BCs operate in 431 

one of two modes of synaptic integration: supralinear or sublinear (Figure 2). Supralinearity 432 

is due to the generation of dendritic sodium spikes (Supplementary Figures 7), which are 433 

in turn gated by the morphology (Figure 3) of dendrites. Moreover, we find that somatic 434 

output is influenced by the spatial distribution of activated synapses, with dispersed input 435 

inducing higher firing rates than clustered activation. This feature is opposite to pyramidal 436 
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neurons40 and is attributed to a) the presence of sublinear dendrites in FS BCs and b) the 437 

small dendritic diameter, increased A-type current and fast EPSP kinetics of cp-AMPA 438 

receptors found in these cells6 (Figure 4, Supplementary Figure 12). Due to these 439 

properties, a 2-layer modular Artificial Neural Network abstraction with both sub- and 440 

supra-linear hidden neurons (Figure 5) captures the spiking profile of biophysical neurons 441 

with much higher accuracy than a linear ANN, analogous to a point neuron. This is true for 442 

all of the 8 morphological reconstructions of FS BCs tested and is more evident for datasets 443 

in which the number of inputs is fixed but their location varies (Figure 6, Table 1). This is 444 

because discriminating the effect of input location as opposed to input strength is a much 445 

more challenging task and pushed the linear ANN to its performance limits. Finally, we 446 

show that such a 2-stage integration model facilitates the efficient encoding, storage and 447 

discriminability of memories in a biologically relevant circuit model across time (Figure 448 

7). 449 

 450 

Mediators of supralinear and sublinear dendritic integration in FS basket cells 451 

A bimodal dendritic integration is predicted for all hippocampal and PFC morphologies 452 

analyzed. Supralinearity was found to be due to the occurrence of dendritic sodium spikes 453 

(Supplementary Figure 7). Several mechanisms can influence the generation of such 454 

dendritic spikes: ionic conductances (primarily of sodium currents but also potassium 455 

currents) and morphological features. In our models, biophysical mechanisms are 456 

constrained by existing experimental data and dendritic sodium conductances are kept to a 457 

minimum (10 times smaller than the soma6), so as to minimize the probability of non-458 

physiological dendritic spiking. Sensitivity analysis further demonstrates that results are 459 

robust to physiological variations in a wide range of active dendritic conductances 460 

(Supplementary Figure 6). These findings strongly suggest that dendritic spiking in certain 461 

dendrites of FS basket cells are highly likely to occur under physiological conditions, in line 462 

with recent experimental reports2.  463 

Apart from sodium currents as a universal enabling mechanism, we find a key role of 464 

morphology in gating local dendritic spikes. A combination of dendritic length and mean 465 

diameter, or otherwise the dendritic volume and input resistance, is statistically different 466 

between sub- (smaller) and supralinear (larger) dendrites across all morphologies tested 467 

(Figure 3). The inability of small-volume dendrites (Figure 3F) to support sodium spikes 468 
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is attributed to their high input resistance (Figure 3F), fast kinetics of calcium permeable 469 

AMPA receptors and the high density of A-type potassium channels6,12. This combination 470 

results in large, fast EPSPs that are very efficient in activating IA currents, which in turn 471 

repolarize the membrane6,12. This mechanism has been previously proposed by others6,12,42, 472 

is supported by our morphology and IA manipulation experiments (Figure 4) and is in line 473 

with other studies reporting a similar effect of morphology on the ability of dendrites to 474 

generate local spikes36. 475 

 476 

Functional coexistence of sub- and supra-linear dendrites within FS basket cells 477 

Our simulations predict the co-existence of both sublinear and supralinear dendrites in all 478 

FS BCs models (Figure 2, Supplementary Figures 4-9). Similar bimodal dendritic 479 

integration has been reported in hippocampal CA1 pyramidal neurons35,44 and predicted in 480 

PFC pyramidal neurons48.  481 

The existence of sublinear dendritic branches supports the idea of inhibitory neurons acting 482 

as coincidence detectors by aggregating spatially disperse and nearly synchronous synaptic 483 

inputs6. Moreover, sublinear dendrites can compute complex non-linear functions similar 484 

to those computed by sigmoidal dendrites49, thus substantially extending the processing 485 

capacity of these neurons compared to a linear integrator. Why have two types of 486 

nonlinearity then?  487 

Our network modeling predicts that the presence of both types of nonlinearities confer 488 

substantial benefits to network computations and especially to memory encoding. We find 489 

that bimodal nonlinearities in the dendrites of FS BCs, enables the encoding of new 490 

memories within a smaller neuronal population, thus increasing sparsity and storage 491 

capacity. These nonlinearities also facilitate the interaction of memories over time, via 492 

decreasing the possibility of interference (Figure 7).   493 

Not that Simple: FS basket cells as 2-layer modular ANNs  494 

Artificial Neural Network analysis demonstrates that a FS basket cell is better described by 495 

a 2-stage abstraction that incorporates both modes of dendritic integration (Figure 5,6). 496 

This work, along the lines of the 2-stage model proposed for pyramidal neurons40, strongly 497 

challenges the prevailing point neuron dogma. The 2-stage abstraction is supported by 498 
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experimental reports of dendritic sodium spikes and supralinear calcium accumulations2 499 

while it also explains sublinear dendritic integration6,11,29,55, providing a unifying 500 

framework for interneuron processing. 501 

Possible limitations of our work include the imprecise modeling of ionic and synaptic 502 

mechanisms given the shortage of sufficient information for FS BCs models. This limitation 503 

is counteracted by the sensitivity analysis of the mechanisms that mostly influence our 504 

findings and their consistency across several cortical and hippocampal morphologies. 505 

Another limitation is the lack of inhibitory inputs (except from the autaptic GABAa current 506 

that is incorporated in all models). Inhibitory inputs consist of just 6% of all incoming 507 

contacts in Fast Spiking interneurons6,56,57. Thus, our results are unlikely to be affected by 508 

inhibitory inputs. FS basket cells in the hippocampus and the neocortex are highly 509 

interconnected by gap junctions6, that can speed the EPSP time course, boost the efficacy 510 

of distal inputs and increase the average action potential frequency after repetitive synaptic 511 

activation6. All of these effects would contribute to stronger responses but unless gap 512 

junctions are spatially specific to certain branches and not others, they are unlikely to 513 

influence the non-linear integration modes of dendrites. 514 

 515 

Conclusion 516 

This work provides a novel view of dendritic integration in FS basket cells, that extends in 517 

hippocampal and cortical areas41. Here we suggest new reductionist models for interneuron 518 

processing, in which dendrites play a crucial role. Experimental validation of these new 519 

models is likely to change the way we think about interneuron processing, attribute new and 520 

exciting roles to FS basket cells and open new avenues for understanding interneuron 521 

contributions to brain function. 522 
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 686 

Supplementary Figures. 687 

 688 

Supplementary Figure 1. Model cell firing profiles. Somatic Current-clamp traces of 689 

Hippocampal (A) and PFC (B) model cells, after a depolarizing current injection in somata 690 

(500 pA; 1000 ms) evoked a high-frequency firing pattern. A hyperpolarizing current 691 

injection in somata (-300pA, 1000ms) induced a realistic hyperpolarizing response. 692 
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 693 

 694 

Supplementary Figure 2:  Mean firing frequencies in response to injected currents of 695 

different amplitudes (600 ms duration) in Hippocampal (up) and PFC (down) model cells. 696 

 697 
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 698 

Supplementary Figure 3: Validation of synaptic currents in Fast Spiking basket cells.  699 

Left. A three-step voltage clamp of voltage changes from −70 mV to 10 mV (duration 1 ms) 700 

and back to −70 mV was used to produce a self-inhibitory (autaptic) current . During the 701 

validation of this current, the reversal potential of Cl− was adjusted from −80 to −16 mV, 702 

in order to reproduce the experimental set up of Bacci et al., 2003. However, a physiological 703 

reverse potential (−80 mV) was used for all other simulations. Right. Model reproduction 704 

of cp-AMPA (−70 mV) and NMDA (+60 mV) currents in response to stimulation of 2 705 

synapses as per Wang et al., 2009. * each trace represents the mean of all Hippocampal and 706 

PFC cells respectively. 707 

 708 
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 709 

Supplementary Figure 4: Related to Figure 2. Bimodal non-linear integration in Fast 710 

Spiking basket cells. Supralinear (blue) and sublinear (magenta) dendrites shown in each 711 

model cell. 712 

 713 
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 714 

Supplementary Figure 5: Related to Figure 2. Bimodal non-linear integration in Fast 715 

Spiking basket cells. Representative Somatic EPSPs after stimulation (single pulse) of an 716 

increasing number of synapses (1:1:20), uniformly distributed within dendrites.   717 

 718 
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 719 

Supplementary Figure 6: Related to Figure 1. a. Presence of supralinear summation in 720 

dendrites of FS BCs after blockade of multiple active currents respectively in Hippocampus 721 

(left) and PFC (right). b. Sensitivity analysis of biophysical dendritic mechanisms reveals 722 

minor changes in the synaptic threshold for spike generation in supralinear dendrites across 723 

Hippocampus and PFC. 724 

 725 
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 726 

Supplementary Figure 7. Related to Figure 1. Blockade of active sodium conductances in 727 

the dendrites of FS BCs, totally eliminates the supralinear operation mode. Hippocampal 728 

(a) and PFC (c) representative supralinear responses of dendrites under physiological 729 

conditions. Dendritic spikes are eliminated both in Hippocampal (b) and PFC (d) FS BCs 730 

dendrites EPSP responses after blockade of sodium conductances. Linear line represents 731 

linear summation.  732 

 733 
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 734 

Supplementary Figure 8. FS BCs exhibit supralinear and sublinear dendritic responses in 735 

the presence of Gap Junctions. A) Illustrated dendritic trees that are interconnected with 736 

Gap Junctions. B) Presynaptic firing rate (~30 Hz). Supralinear (C,E) and sublinear (D,F) 737 

dendrites co-exist in Hippocampal (up) and PFC (down) Fast spiking basket cells models. 738 

 739 
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 740 

Supplementary Figure 9. FS BCs exhibit supralinear and sublinear dendritic responses in 741 

the presence of in vivo- like fluctuations. Somatic firing rate of 3±1 Hz induced in 742 

Hippocampal (A) and PFC (D) models of FS BCs after synaptic activation of randomly 743 

selected dendrites with 10Hz Poisson spike trains. Supralinear (B,E) and sublinear (C,F) 744 

dendrites co-exist in FS BCs of Hippocampus (up) and PFC (down). 745 
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 746 

Supplementary Figure 10. Related to Figure 6. Linear regression analysis for one hidden 747 

layer supralinear (b,c) and one hidden layer sublinear (d,e) ANNs for one indicative 748 

Hippocampal (top) and one indicative PFC (bottom) model cell.  Actual Mean Firing Rates 749 

(Hz) correspond to the responses of the compartmental model when stimulating -with 50Hz 750 

Poisson spike trains- varying numbers of synapses (1 to 60), distributed in several ways 751 

(clustered or dispersed) within both sub- and supra-linear dendrites. Expected Mean Firing 752 

Rates (Hz) are those produced by the respective ANN abstraction when receiving the same 753 

input (number of stimulated synapses) in its respective sub-/supra- or linear input layer 754 

nodes. 755 
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 757 

Supplementary Figure 11. Related to Figure 7. Manipulation of SOM+ models dendritic 758 

transfer function results in almost identical responses of multiple properties of the canonical 759 

microcircuit. Modeled SOM+ dendrites A) Supralinear B) Linear C) Supralinear and 760 

sublinear (50% of each mode)  761 

 762 
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 763 

Supplementary Figure 12. Related to Figure 4: Firing rate responses (in Hz) from one 764 

Hippocampal (a, c) and one PFC (b, d) model cell, in response to stimulation of increasing numbers 765 

of synapses (10 to 60) that are either randomly distributed throughout the entire dendritic tree or 766 

clustered within a few dendritic branches. Effect of dendritic diameter (red, setting the diameter of 767 

all dendrites to 2 microns) and A-type current (orange, setting the conductance of dendritic A-type 768 

currents to zero) on somatic firing rates in response to synaptic stimulation under dispersed and 769 

clustered spatial arrangements. As shown in panels a, c disperse synaptic arrangements benefit 770 

mostly from the dendritic morphology of FS BCs, as setting the diameter to 2 microns sharply 771 

decreases this preference. Clustered arrangements on the other hand (panels b, d) are severely 772 

hampered by the high conductance of the A-type potassium channels in these cells, as blockade of 773 

these currents enhances somatic output. This potassium current does not penalize disperse inputs as 774 

much, simply because it is not as strongly activated as in the case of clustered activation (which 775 

induces much higher local depolarizations and thus stronger A-type channel activation). (p-values 776 

for the various comparisons: hippocampus, disperse: diameter vs. control =0.0018, IA vs. control, 777 

non-significant; hippocampus, clustered: diameter vs. control=0.0048, IA vs. control=0.0087; PFC, 778 

disperse diameter vs. control =0.0014, IA vs. control, non-significant; PFC, clustered diameter vs. 779 

control =0.0102, IA vs. control=0.0026) 780 
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