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ABSTRACT

Interneurons are critical for the proper functioning of neural circuits. While often
morphologically complex, their dendrites have been ignored for decades, treating them as
linear point neurons. Exciting new findings reveal complex, non-linear dendritic
computations that call for a new theory of interneuron arithmetic. Using detailed
biophysical models, we predict that dendrites of FS basket cells in both hippocampus and
prefrontal cortex come in two flavors: supralinear, supporting local sodium spikes within
large-volume branches and sublinear, in small-volume branches. Synaptic activation of
varying sets of these dendrites leads to somatic firing variability that cannot be explained
by the point neuron reduction. Instead, a 2-stage Artificial Neural Network (ANN), with
sub- and supralinear hidden nodes, captures most of the variance. Reduced neuronal circuit
modeling suggest that this bi-modal, 2-stage integration in FS basket cells confers
substantial resource savings in memory encoding as well as the linking of memories across

time.
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GABAergic interneurons play a key role in modulating neuronal activity and transmission
in multiple brain regions*>. Among others, they are responsible for controlling the
excitability of excitatory and inhibitory cells, modulating synaptic plasticity and
coordinating synchrony during neuronal oscillations?®8°, GABAergic interneurons come
in a variety of molecular profiles, anatomical features and electrophysiological
propertiest®>1°  Despite this variability, many interneuron types exhibit similar
computations, the most common being a precise EPSP-spike coupling®!12, As they
innervate a large number of cells, near the site of action potential initiation, they are
believed to generate a powerful widespread inhibition, also referred to as an inhibitory

blanket!3.

Fast Spiking basket cells (FS BCs) constitute one of the main types of hippocampal and
neocortical interneurons®!314, They are part of the PV positive interneuron class, which
also includes the axo-axonic, chandelier and bistratified sub-types. FS BCs are
distinguished from other subtypes by their anatomical features'®, synaptic connectivity
patterns'*!® and membrane mechanisms. These include the presence of calcium permeable
AMPA (cp-AMPA) receptors'’®1819 the low expression of NMDA receptors®?, a weak
backpropagation of APs®2! a low density of sodium channels® and a high density of

potassium channels in their aspiny dendritic trees®15236424,

A growing body of literature recognizes the importance of FS BCs in controlling executive
functions such as working memory and attention as well as their role in neurodegenerative
disorders*?>%, However, little is known about the mechanistic underpinnings of FS BC
contributions to these functions. Most studies have focused on the molecular and
anatomical features of FS BCs”*3 and led to the dogma that FS BCs serve as “on-off” cells,

integrating inputs like linear —or at best sublinear- point neurons2°,

This dogma is based on the assumption that FS BCs integrate synaptic inputs in a linear
manner, completely ignoring potential dendritic infuences®. Dendritic integrative properties
however, can play a pivotal role in translating incoming information into output
signals®>3+32_ In pyramidal neurons for example, this is often done in highly nonlinear ways

that facilitate memory and other executive functions3%-33-36,

Exciting new findings suggest a potentially similar contribution of dendrites in interneuron
function. Sublinear dendritic EPSP integration along with supralinear calcium
accumulations has been reported in cerebellar Stellate Cells'*®. Moreover, certain
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interneuron sub-types in the CA1 area exhibit dendritic supralinearities®3® while in the
CAS3, both calcium nonlinearities and sodium spikes in FS BC dendrites during sharp wave
ripples have been reported?. The exact nature of dendritic computations in FS BCs,
however, is unknown. As a result, whether a linear point neuron or a more sophisticated
abstraction -like the two-stage*® or multi-stage integration proposed for pyramidal neurons-

can successfully capture their synaptic integration profile, remains an open question.

Single cell models of Fast Spiking Basket Cells
b C

e

detailed multi-compartmental reduced 2-stage IF 2-layer modular ANN

Canonical Circuit Model of Associative Learning

d ' Memory 1 ' Memory 2

Figure 1: Modeling tools used to study dendritic integration in FS BCs and its functional
implications. a) Detailed, biophysically constrained multi-compartmental models using realistic
reconstructions. b) Reduced 2-stage integrate and fire models of FS BCs. c) 2-layer ANN reduction
describing the FS BCs d) Reduced network model with simplified pyramidal, FS BCs and SOM+
interneurons. FS-BCs and SOM+ interneurons provide feedback inhibition to excitatory neurons
(beige), with FS-BCs interneurons targeting the somatic subunit while SOM+ neurons target the
dendritic subunits. Memory encoding afferents provide inputs to excitatory cell dendrites.
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74 To address these questions, we developed an elaborate toolset that consists of a) detailed,
75 biologically constrained biophysical models of hippocampal and cortical FS BCs, b)
76 reduced 2-stage integrate-and-fire models of these cells, ¢) 2-layer Artificial neural network
77 abstractions and d) a large scale microcircuit model of 2-stage pyramidal, FS BC and
78 dendrite targeting (SOM) interneurons (See Online Methods and Figure 1). We first
79 characterized the integration profiles of FS BC dendrites using the detailed biophysical
80 models. Synaptic stimulation predicted the co-existence of two distinct modes within the
81 same tree: some dendrites exhibited supralinear while others sublinear summation of inputs
82 (Figure 2, Supplementary Figures 4, 5). Supralinear dendrites supported local, sodium-
83 dependent spikes (Supplementary Figure 7) and were characterized by large volume and
84 low input resistance (Figure 3), which are shaped by the combination of dendritic length
85 and diameter. Direct manipulation of these anatomical features in biophysical models gated
86 the induction of sodium spikes and determined the integration mode (Figure 3). Using an
87 array of different activation patterns, we found that spatially dispersed inputs lead to higher
88 firing rates than inputs clustered within a few dendrites (Figure 4), opposite to respective
89 findings in pyramidal neurons®. Moreover, these different activation patterns result in a
90 wide range of firing rates that are better explained by a 2-layer Artificial Neural Network
91  (ANN) with non-linear hidden layer activation functions rather than a linear ANN (Figures
92 5, 6, Table 1). Finally, in order to assess the functional implications of these predictions,
93  we built a reduced network model*! of 2-stage integrator neurons (Figure 1D) and showed
94 that bi-modal nonlinear integration in FS BCs is beneficial for memory engram storage as

95 well as the linking of memories across time (Figure 7).

96 This work provides a systematic, cross-area analysis of dendritic integration in FS BCs and
97 its functional implications. Our findings challenge the current dogma, whereby
98 interneurons are treated as linear summing devices, essentially void of dendrites. We
99 predict that the dendrites of FS BCs in both Hippocampal and Neocortical regions can
100 operate in distinct non-linear modes. As a result, FS BCs, similar to pyramidal neurons?,
101 are better represented by a 2-stage integrator abstraction rather than a point neuron.
102 Importantly, non-linear dendritic integration in these cells offers substantial advantages for

103 memory encoding in large scale networks.
104

105 RESULTS
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106 Multi-compartmental, biophysical models

107 Atotal of 8 biophysical model neurons were built using realistic reconstructions of FS BCs
108 from rat hippocampal areas (5 cells) and from the prefrontal cortex of mice (3 cells)
109 (Supplementary Figure 5). To ensure biological relevance, ionic and synaptic
110 conductances as well as basic membrane properties of model cells were heavily validated
111  against experimental data®!3162* (Supplementary Table 1-4, Supplementary Figures 1-
112 3). Moreover, for consistency reasons, the same set of biophysical mechanisms (type and

113  distribution) was used in all model cells.
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115 Figure 2: Bimodal dendritic integration in multi-compartmental FS BC models. Examples of

116  Hippocampal (a) and PFC (d) FS BC morphological reconstructions. Representative input-output
117  curves from supralinear (b, e) and sublinear (c, f) dendritic branches in Hippocampal (top) and PFC
118 (bottom) models, in response to synaptic stimulation. Increasing numbers of synapses (from 1 to 20
119 with step=1) are uniformly distributed within each stimulated branch and are activated with a single
120 pulse. The y-axis shows the amplitude of the dendritic EPSP caused by synaptic activation while
121 the x-axis shows the expected EPSP amplitude that would result from the linear summation of

122 synaptic EPSPs. The dashed line indicates linear summation. Insets show representative traces.

123 Bi-modal dendritic integration in Fast Spiking Basket cells
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124  The first step for deducing a realistic abstraction of FS BCs is the systematic
125  characterization of dendritic/neuronal integration properties across a significant number
126  of neurons and dendrites. Towards this goal, we simulated gradually increasing excitatory
127  synaptic input to the dendrites of all neuronal models and recorded the voltage response
128  both locally and at the soma''#. Increasing numbers of synapses (1-20) were uniformly
129  distributed in each stimulated dendrite and activated synchronously with a single pulse.
130  For this particular experiment, sodium conductances in somatic and axonal compartments
131 were closed to avoid backpropagation contamination effects®#2 that were detectable in
132 some dendrites. We compared measured EPSPs to their linearly expected values, given by
133 the number of activated inputs multiplied by the unitary EPSP. We found that within the
134  same dendritic tree, branches summate inputs either in a supralinear or a sublinear mode
135  (Figure 2, supplementary Figures 4, 5). While there were differences in the number of
136  dendrites and proportions of sub- vs. supralinear dendrites, all of the morphologies tested
137  expressed both integration modes (Supplementary Table 5). Moreover, while both
138 modes have been suggested in distinct interneuron typest®, their co-existence in the same
139  tree has yet to be reported.

140  To assess the robustness of this finding, we first performed a sensitivity analysis whereby
141  the cp-AMPA, NMDA, VGCCs, sodium and A-type potassium conductances were varied
142 by £20% of their control value. We found no changes in the integration mode of dendrites
143  (data not shown) and only insignificant alterations in the spike threshold of supralinear
144  dendrites (Supplementary Figure 6b). The only manipulation that eliminated

145  supralinearity was the blockade of dendritic sodium channels (Supplementary Figure 7).

146 Next, we examined whether the two modes are influenced by the presence of Gap
147  junctions, which are well established in FS BCs*¢. Towards this goal, we connected pairs
148  of Hippocampal and PFC cells with 10 electrical synapses (see Online Methods).
149  Presynaptic cells were synaptically activated so as to fire at gamma rate frequency as per
150  Tamas et al 2000% and the integration mode was assessed, as previously, in the dendrites
151  of the post-synaptic cell. We found no influence of gap junctions on the integration mode,

152  apart from a slightly increased membrane potential (Supplementary Figure 8).

153  The same effect was observed in simulations of more physiological conditions such as
154  active whisking®’. This was done via weak synaptic activation of randomly selected

155  dendrites resulting in a somatic firing rate of 31 Hz*' (see Online Methods). Both modes
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156  of dendritic integration remained unaffected by the presence of in vivo like activity

157  fluctuations (Supplementary Figure 9).

158  Taken together, the above simulations establish the robustness of bi-modal dendritic
159  integration and suggest that under physiological conditions, FS BCs are likely to express
160  both types of dendritic integration modes.

161
162  Determinants of dendritic integration modes

163  Next, we searched for biophysical and/or anatomical determinants of the two integration
164  modes. Blockade of sodium conductances in the dendrites eliminated the supralinear
165  integration mode in all morphologies tested (Supplementary Figure 7), but this was not
166  the case for blockade of cp-AMPA, NMDA, VGCCs or A-type potassium channels.
167  (Supplementary Figure 6a). These simulations indicate that sodium channels are the key
168 ionic mechanism underlying the supralinear mode. What remains unclear is why these
169  model cells also have sublinear dendrites, when the distribution and conductance values

170  of sodium channels is the same in all dendrites.

171 Since morphological features of dendrites were previously shown to influence synaptic
172 integration profiles®®, we investigated whether anatomical features correlate with the
173 expression of each integration mode. We found that the mean dendritic diameter was
174  highly statistically different (p-value=2.6041e-60) among sub-(thinner) and supra-linear
175  (thicker) dendrites in the hippocampus (Figure 3b) while in the PFC the dendritic length
176  was a better determinant of sub- (shorter) vs. supra-linearity (longer) (p-value=4.1768e-
177 04) (Figure 3c). Length was less, yet, important in the hippocampus (p-value=0.0040)
178  (Figure 3a) while diameter was not different among sub- and supralinear dendrites in the
179  PFC (p-value=0.9458) (Figure 3d). Dendritic volume and input resistance consider both
180  of the above anatomical features and serve as robust morphological / electrophysiological
181  determinants for all dendrites in both areas (p-value=9.8516e-11, 3.9457e-45
182  respectively), (Figure 3e,3f).
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184 Figure 3: Morphological determinants of dendritic integration mode. a, c: Total length distributions
185 of supralinear vs. sublinear dendrites in the hippocampus (a) and the PFC (c). Statistically significant
186 differences are observed for both sub- and supra-linear dendrites, in both areas. (p-value<0.0001 for
187 Hippocampus and p-value<0.01 for PFC). b, d: Same as in a, b, for mean dendritic diameter.
188 Statistically significant differences are observed in Hippocampal (p-value<0.0001) but not in PFC
189 FS BCs. e-f. Dendritic Volume and dendritic Input Resistance are common discriminating
190 characteristics among supralinear (larger, with low input resistance) and sublinear (smaller, with
191 high input resistance) dendrites, for both areas (p-value<0.0001 for Hippocampus and PFC, for
192 volume and Input Resistance respectively). g. Schematic illustration of morphological features for
193 supralinear and sublinear dendrites in Hippocampus (left) and PFC (right). Traces indicate first
194 EPSP in supralinear and sublinear dendrites. h-j. Distributions of the number of supralinear and
195 sublinear dendrites in both areas, under control conditions (h), with the mean diameter and length
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196 of all dendrites set to the mean values of the supralinear class (i) and with mean diameter and length

197 of all dendrites set to the mean values of the sublinear class (j).
198

199 Overall, we found that supralinear dendrites have high volume and low input resistance
200 while sublinear dendrites have smaller volume and high input resistance (Figure 3e, 3f).
201 This can be explained by considering the fast kinetics of cp-AMPA receptors and A-type
202 potassium channels in the dendrites of FS BCs. In sublinear dendrites, where the input
203 resistance is high (small volume), coincident synaptic input induces a large, fast rising EPSP
204 which in turn strongly activates the A-type potassium channels that rapidly repolarize the
205 membrane, thus preventing the branch from spiking?. The opposite is true for supralinear
206 dendrites, where the low input resistance results is smaller depolarizations that drive smaller
207 A-type potassium currents, enabling the branch to reach the sodium spike threshold. This

208 explanation is consistent with prior findings>®4212,

209 To test the above proposition, we performed causal manipulations whereby we fixed the
210 diameter and length of all dendrites to the mean values of first the supralinear and then the
211 sublinear class and assessed the effect on integration mode. We found that setting the
212 dendritic anatomy to that of a given class also dictated the integration mode (Figure 3h-j).
213 These findings suggest that, under the experimentally constrained conductance values for
214 sodium channels, morphology plays a crucial role in the ability of a given dendrite to

215 support local sodium spikes and express the supralinear integration mode.
216
217 Effect of bimodal dendritic integration on neuronal firing

218 To assess the impact of bi-modal dendritic integration on neuronal output, we simulated a
219 large variety of different spatial patterns of synaptic activation and measured the resulting
220 firing rates. Specifically, we generated over 10,000 synaptic stimulus patterns, which
221 comprised of increasing numbers of excitatory synapses. Synapses were either placed
222 within a few, strongly activated branches (clustered) or they were randomly distributed
223 within the entire dendritic tree (dispersed). In all cases, synapses were activated with
224 random Poisson spike trains at 50 Hz (see Online Methods). Dendrites were selected at
225 random and inputs were distributed uniformly within selected dendrites. For the dispersed

226 case, we allocated 2, 5, or 10 synapses in randomly selected dendrites, one at a time, while
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227 for the clustered case we allocated 10,15,20,30,60 synapses within an increasing number of
228 Dbranches. In all cases, the number of activated synapses increased gradually up to a
229 maximum of 60, as this number was sufficient to induce spiking at gamma frequencies (30-
230 100 Hz). This process was repeated k times (k = number of dendrites in each cell) to ensure
231 full coverage of the entire tree. As expected given the two modes of dendritic integration,
232 the localization of activated inputs affected neuronal firing. For a given number of activated
233 synapses, dispersed activation led to higher somatic firing rates than clustered activation,
234 particularly during gamma related frequencies (30-100 Hz) both in Hippocampal (Figure
235 4c) as well as in PFC FS basket cells (Figure 4d). Interestingly, this finding is opposite to
236 what has been reported for pyramidal neurons, in which synapse clustering increases firing
237 rates®,
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239 Figure 4: Effect of bimodal dendritic integration on neuronal firing. Firing rate responses (in Hz)

240 from one Hippocampal (a,c) and one PFC (b,d) model cell, in response to stimulation of increasing
241 numbers of synapses (10 to 60) that are either randomly distributed throughout the entire dendritic
242 tree (blue) or clustered within a few dendritic branches (pink).) Synapses are stimulated with a 50
243 Hz Poisson spike train. In both cases, dispersed activation leads to higher firing rates. e,f: Same as
244 in c,d with dendritic diameter set to 2 microns and removal of A-type dendritic channels. Firing
245 rates are indistinguishable between clustered and dispersed activation patterns. Insets depict
246 representative traces from dispersed (top) and clustered (bottom) activation of 30 synapses 30. Red
247 dots in show the synaptic allocation motif in a, b.

248
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249 It was previously proposed that the combination of a small diameter with an increased
250 conductance of A-type potassium channels in FS BCs underlies the preference for dispersed
251 synaptic allocationions®. To tests this hypothesis, we repeated the above experiment after
252 increasing the diameter (to 2 microns) and blocking the A-type potassium conductance in
253 all dendrites. As shown in Figure 4e-f, this manipulation resulted in very similar firing rates
254 irrespectively of the spatial arrangement of synapses, thus eliminating the preference for

255 dispersed allocation of excitatory inputs.

256 Supplementary Figure 12 shows the relative contributions of these two mechanisms in our
257 model cells. Disperse synaptic arrangements benefit mostly from the dendritic morphology
258 of FS BCs, as setting the dendritic diameter to 2 microns sharply decreases this preference
259 (Suppl. Fig. 12 a, b). This is likely because small diameters prevent signal loss, enabling
260 the small depolarizations produced by dispersed inputs to reach and excite the soma.
261 Clustered arrangements on the other hand, are severely hampered by the high conductance
262 of the A-type potassium channels®*, as blockade of these currents enhances somatic output
263 (Suppl. Fig. 12 c, d). This is because clustered -but not disperse- inputs induce large
264 dendritic depolarizations which strongly activate A-type channels. Since NMDA currents’,
265 which would further boost and prolong the cluster-induced EPSPs, are very small in these
266 neurons, the hyperpolarizing effects of the A-type currents are larger than the depolarizing

267 effects of clustered activation.

268 Another factor that contributes to disperse preference, is dendritic integration. Unlike
269 pyramidal neurons where dendrites are mostly supralinear and benefit from clustered inputs
270 via the induction of dendritic spikes®*>40, these neurons also have sublinear dendrites
271 which dampen the abovementioned benefit. The higher the percentage of sublinear
272 dendrites, the larger the dampening, as: 1) the probability of allocating clustered inputs in
273 the few supralinear dendrites is much smaller and 2) activating sublinear dendrites with
274 clustered inputs offers little/no advantage as dendritic spikes don’t occur in these branches.
275 As shown in Supplementary Table 7 the more sublinear dendrites a FS BC model has, the

276 weaker the response to clustered input.

277 Taken together, this analysis reveals that the combination of a high conductance of A-type
278 channels (which penalizes clustering), the specific morphological features of FS BCs

279 (which favor dispersed inputs), and the presence of multiple sublinear dendrites underlie

11
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280 the preference of these cells for disperse rather than clustered activation of their inputs,

281 contrary to pyramidal neurons*,
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283 Figure 5: Reduction of multi-compartmental models into ANN abstractions. Two types of

284 abstractions are examined: a) a Linear ANN, in which the input from all dendrites (xi=number of
285 synapses in dendrite i, N=number of dendrites) is linearly combined at the cell body and b) a 2-layer
286 modular ANN, in which the input is fed into two parallel, separated hidden layers. The supralinear-
287 layer receives the number of inputs landing onto supralinear branches (a=number of supralinear
288 dendrites) while the sublinear layer receives the number of inputs landing onto sublinear dendrites
289 (b=number of sublinear dendrites). Neurons in both hidden layers are equipped with nonlinear
290 transfer functions, a logistic sigmoid in the supralinear layer and a sublinear function in the sublinear
291 layer. The somatic transfer functions of both ANNSs are linear.

292
293 FS basket cells as 2-layer artificial neural networks

294 The non-linear synaptic integration taking place within the dendrites of cortical*® and
295 CA1%4 pyramidal neurons was previously described as a sigmoidal transfer function®.

296 Based on this reduction, a single pyramidal neuron was proposed to integrate its synaptic

12
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297 inputs like a 2-layer artificial neural network, where dendrites provide the hidden layer and
298 the soma/axon the output layer*®. To assess whether a similar mathematical formalism could
299 beascribed to FS BC models, we constructed linear and non-linear artificial neural networks
300 (as graphically illustrated in Figure 5) and asked which of them can better capture the firing

301 rate variability in the biophysical models.

302 Specifically, four types of feedforward, backpropagation Artificial Neural Networks
303 (ANNS) were constructed (see Online Methods). In the 2-layer modular ANN, supralinear
304 and sublinear dendrites were simulated as 2 parallel hidden layers consisting of a logistic
305 sigmoid and a sublinear activation function y(x) = (x+2)%’-2, respectively*® (Figure 5). The
306 number of activated synapses allocated to supralinear vs. sublinear dendrites in the
307 biophysical models was used as input to the respective hidden layers. The output layer
308 represented the soma/axon of the biophysical model and consisted of a linear activation
309 function. In the linear ANN, there was only a single hidden layer receiving input from all
310 dendrites and consisting of linear activation functions (Figure 5). We also constructed two
311 ANNs with the exact same architecture as the linear one, but with either a) a logistic
312 sigmoidal (2-layer supralinear ANN) or b) a sublinear y(x) = (x+2)°7-2 (2-layer sublinear
313 ANN) activation function in the hidden layer neurons (Supplementary Figure 10). These

314 ANNSs represent FS BCs with just one type of non-linear dendrites.

315 Forall 8 FS BC model neurons the linear and 2-layer modular ANNs were trained using the
316 number of synapses to supra-/sublinear dendrites as inputs to the respective hidden layers
317 and the mean firing rate of the soma as target output. A randomly selected 80% of our
318 synaptic activation data set was used to train the model and the rest 20% to test its
319 generalization performance (see Online Methods). Performance accuracy was estimated
320 based on regression analysis between the ANN-generated firing rates and those produced
321 by the biophysical models. Fits for two representative model cells are shown in Figure 6a-
322 d, while the overall performance for all 8 model cells is shown in Figure 6e. Figure 6f
323 demonstrates the performance of both ANN types for a dataset of the same power (number
324 of inputs = 60), whereby the location of the inputs varies. As evident from the results, the

325 2-layer modular ANN outperformed the linear ANN in all cases tested.
326

327
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329 Figure 6: Challenging the point neuron dogma: FS basket cells as 2-stage nonlinear integrators.
330 Linear regression analysis for 2-layer modular (a, ¢) and linear (b, d) ANNSs for one indicative
331 Hippocampal (top) and one indicative PFC (bottom) model cell. Actual Mean Firing Rates (Hz)
332 correspond to the responses of the compartmental model when stimulating with 50Hz Poisson spike
333 trains- varying numbers of synapses (1 to 60), distributed in several ways (clustered or dispersed)
334 within both sub- and supra-linear dendrites. Expected Mean Firing Rates (Hz) are those produced
335 by the respective ANN abstraction when receiving the same input (number of stimulated synapses)
336 inits respective sub-/supra- or linear input layer nodes. e) Regression performance (measured as R?)
337 for 2-layer modular (right) and Linear (left) ANNs for all 8 FS BC model cells respectively. In all
338 cases the 2-layer modular ANNSs is superior to the Linear ANNs. Mean R? values over all cells for
339 the Linear (red) and 2-layer modular (cyan) ANNSs are shown in the right. f) Same as e), applied to
340 datasets comprised of 60 input synapses. The difference in performance of the two ANN types is

341 higher in this challenging task.
342

343 However, the performance of the linear ANN was relatively good. This can be attributed to
344 the wide range of activated synapses (2 to 60) which resulted in large differences in the
345 somatic firing, irrespectively of synapse location, and can thus be captured by any linear
346 model (also see the work of Poirazi et al 2003b)*°. Therefore, we also assessed the
347 performance accuracy of linear and 2-layer modular ANNSs to the more challenging task of
348 discriminating between input distributions corresponding to the exact same number of
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349 synapses. To do so, we subdivided the data into input categories corresponding to 20, 40
350 and 60 synapses, respectively. In these more challenging conditions, the 2-layer modular
351 ANN clearly outperformed the respective linear ANN, which failed to explain the variance
352 produced by differences in input location. This result was consistent for all model cells as

353 shown in Table 1. Performance for the 60-synapse case is shown in figure 6f.

Table 1. ANN regression performance (R?) for individual sets of synapses in the 8
model cells

ANN type 20 synapses 40 synapses 60 synapses
0.8224 0.7432 0.6167
0.8228 0.9060 0.8339
0.8048 0.8709 0.7971
2-layer modular 0.7951 0.8563 0.8127
ANN 0.8242 0.8352 0.7752
0.9098 0.8857 0.8921
0.8879 0.8975 0.8827
0.8415 0.8600 0.7801
0.4541 0.3484 0.2856
0.6814 0.7462 0.5966
0.6436 0.5201 0.5625
i 0.5636 0.4475 0.4768
Linear ANN 0.5550 0.4919 0.4707
0.7832 0.7242 0.6758
0.6263 0.5463 0.4400
0.6179 0.7039 0.4991

354 Table 1: Comparison of ANN prediction accuracy (measured as the R?) for linear and 2-layer
355 modular ANN reductions across all 8 FS BC models, tested on three sets of synaptic inputs
356 consisting of 20, 40 or 60 activated synapses, respectively. Synapses were randomly distributed in
357 various ways/locations in the biophysical model cells and resulting firing rates were used as target
358 vectors for the ANNs. The 2-layer modular ANN is clearly superior to the Linear ANN when it

359 comes to capturing location-induced firing-rate variability.

360 Taken together, this analysis suggests that a 2-layer artificial neural network that considers
361 both types of dendritic non-linearities is a much better mathematical abstraction for FS

362 basket cells than the currently assumed linear point neuron.
363 Bimodal nonlinear integration of FS basket cells enhances memory encoding

364 In order to investigate the functional implications of our findings, we built a canonical
365 microcircuit network model*t composed of simplified 2-stage excitatory neurons, FS BCs
366 and dendrite targeting (SOM+) interneurons (Figures 1d and Supplementary Table 6).
367 The model includes inhibitory feedback connectivity, multi-dendrite and perisomatic

368 interneurons. It implements plasticity-related processes which act on multiple temporal and
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369 spatial scales: two-stage dendritic integration, dendritic calcium dynamics, synaptic tagging

370 and capture (STC), CREB-dependent excitability and homeostasis (see Online Methods).

371 The network model was first trained to encode a single memory** (see Online Methods)
372 using FS BCs with either a) purely linear or b) bi-modal (sublinear and supralinear)
373 dendritic subunits, as predicted by the compartmental modeling analysis (Figure 2). SOM+
374 interneurons were modeled as having either sublinear, linear, supralinear, or bi-modal
375 dendritic subunits (Supplementary Figure 11). In these simulations, synaptic inputs to the
376 FS BCs cells were either a) randomly distributed in all dendrites (Dispersed) or b) clustered
377 within 33% of all dendrites (Clustered) (see Online Methods). The properties of the
378 resulting memory engram (i.e. the population of active excitatory neurons during recall)
379 were assessed by analyzing the activity of excitatory neurons during recall 24 hours after

380 the learning event (Figure 7e).

381 Our results indicate that, compared to linear dendrites, bi-modal FS BCs dendrites lead to
382 significant reductions in the size of the resulting memory engram (p-value=5.8e-15), and
383 the mean engram firing rates (p-value=3.1e-18 linear-dispersed, p-value=7.2e-10 linear-
384 clustered) (Figure 7a,b) while they also increase the network firing sparsity (p-
385 value=0.00095 linear-disperse, p-value =0.00338 linear-clustered) (Figure 7c). All of the
386 above suggest that dendritic bi-modality in FS BCs promotes resource savings in the
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389 Figure 7: Properties of memory engram encoding under different dendritic nonlinearity
390 configurations, using the circuit model depicted in Figure 1d. a) Size of memory engram (percentage
391 of excitatory neurons that respond with ff>10Hz during memory recall) for Linear/Bi-modal FS-BC
392 dendritic subunits receiving dispersed (blue) or clustered (pink) synaptic inputs. b) Mean firing rate
393 of the excitatory population under the conditions enumerated in (a). ¢) Treves-Rolls sparsity metric
394 of the excitatory population firing rates under the conditions enumerated in (a). d) Percentage of
395 overlap between two memory engrams when 2 memories are separated by 1 hour, under the
396 conditions enumerated in (B). Dashed lines indicate the chance level of overlap for the engram sizes
397 of the dispersed case shown in (a). €) As in (d) for 24 hours separation. Box plots indicate data from
398 20 simulation trials for A-D, and 10 trials for E-F. **: p<0.05, *** p < 0.005.

399 As predicted by our multi-compartmental models (Figure 4), we found that dispersed
400 synaptic activation is beneficial to engram properties by further reducing the engram size
401 (p-value=4.0e-6) and the mean firing rate (p-value=1.7e-7) (Figure 7a-b). Summarizing,
402 the memory engram properties indicate that bi-modal FS BC dendrites receiving dispersed
403 inputs confer resource consumption advantages to memory encoding by a) increasing the

404 sparsity of the population, b) recruiting fewer engram neurons and c) reducing the overall
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405 network excitability. The above findings were unaffected by the presence of either linear,

406 supralinear or bi-modal SOM+ model dendrites (Supplementary Figure 11).

407 Finally, we also assessed the role of FS-BC nonlinearities in memory linking, by encoding
408 two memories separated by 1 or 24 hours in the same network model and measuring the
409 population overlap of the resulting memory engrams. According to previous work3341:°0
410 memories learned in close temporal proximity (e.g. 1 hour apart) display increased engram
411 overlap compared to distant memories (24 hours apart). Overlapping storage is also
412 associated with behavioral binding of the two memories and has been proposed to underlie
413 the linking of memories across time®. We found that linear FS BC dendrites result in
414 substantially larger engram overlaps in the circuit model compared to bi-modal dendrites
415 (Figure 7d), for the 1-hour case. These overlaps are in fact significantly larger than the
416 experimentally reported ones® (~20%), suggesting that the two memories may interfere
417 with one another. Taken together, our network modeling analysis suggests a beneficial role
418 of nonlinear dendrites in FS BCs with respect to memory encoding, storage capacity as well

419 as the binding of memories over time.
420
421 DISCUSSION

422 The role of dendrites in interneuron computations is a rapidly emerging and debatable
423 subject®?. Several recent reports present exciting findings according to which dendrites may
424 serve as key players?1137:3853 For example, sodium spikes and supralinear calcium
425 accumulation have recently been reported in the dendrites of FS BCs?, yet the consensus
426 still favors the linear point neuron dogma®4%52, The present study provides new insight into
427 this ongoing debate by systematically analyzing the dendritic integration mode of FS BCs
428 in two brain areas: The Hippocampus and the PFC. We do so using an extensive set of
429 computational tools that extends from detailed biophysical single cell models, to reduced
430 integrate-and-fire single cell and circuit models as well as artificial neural network models
431 (Figure 1). We predict that dendrites of both cortical and hippocampal FS BCs operate in
432 one of two modes of synaptic integration: supralinear or sublinear (Figure 2). Supralinearity
433 is due to the generation of dendritic sodium spikes (Supplementary Figures 7), which are
434 in turn gated by the morphology (Figure 3) of dendrites. Moreover, we find that somatic
435 output is influenced by the spatial distribution of activated synapses, with dispersed input
436 inducing higher firing rates than clustered activation. This feature is opposite to pyramidal
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437 neurons® and is attributed to a) the presence of sublinear dendrites in FS BCs and b) the
438 small dendritic diameter, increased A-type current and fast EPSP kinetics of cp-AMPA
439 receptors found in these cells® (Figure 4, Supplementary Figure 12). Due to these
440 properties, a 2-layer modular Artificial Neural Network abstraction with both sub- and
441 supra-linear hidden neurons (Figure 5) captures the spiking profile of biophysical neurons
442 with much higher accuracy than a linear ANN, analogous to a point neuron. This is true for
443 all of the 8 morphological reconstructions of FS BCs tested and is more evident for datasets
444 in which the number of inputs is fixed but their location varies (Figure 6, Table 1). This is
445 because discriminating the effect of input location as opposed to input strength is a much
446 more challenging task and pushed the linear ANN to its performance limits. Finally, we
447 show that such a 2-stage integration model facilitates the efficient encoding, storage and
448 discriminability of memories in a biologically relevant circuit model across time (Figure
449 7).

450
451 Mediators of supralinear and sublinear dendritic integration in FS basket cells

452 A bimodal dendritic integration is predicted for all hippocampal and PFC morphologies
453 analyzed. Supralinearity was found to be due to the occurrence of dendritic sodium spikes
454 (Supplementary Figure 7). Several mechanisms can influence the generation of such
455 dendritic spikes: ionic conductances (primarily of sodium currents but also potassium
456 currents) and morphological features. In our models, biophysical mechanisms are
457 constrained by existing experimental data and dendritic sodium conductances are kept to a
458 minimum (10 times smaller than the soma®), so as to minimize the probability of non-
459 physiological dendritic spiking. Sensitivity analysis further demonstrates that results are
460 robust to physiological variations in a wide range of active dendritic conductances
461 (Supplementary Figure 6). These findings strongly suggest that dendritic spiking in certain
462 dendrites of FS basket cells are highly likely to occur under physiological conditions, in line

463  with recent experimental reports?.

464 Apart from sodium currents as a universal enabling mechanism, we find a key role of
465 morphology in gating local dendritic spikes. A combination of dendritic length and mean
466 diameter, or otherwise the dendritic volume and input resistance, is statistically different
467 between sub- (smaller) and supralinear (larger) dendrites across all morphologies tested

468 (Figure 3). The inability of small-volume dendrites (Figure 3F) to support sodium spikes
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469 s attributed to their high input resistance (Figure 3F), fast kinetics of calcium permeable
470 AMPA receptors and the high density of A-type potassium channels®*2. This combination
471 results in large, fast EPSPs that are very efficient in activating Ia currents, which in turn
472 repolarize the membrane®!2, This mechanism has been previously proposed by others®1242
473 is supported by our morphology and Ia manipulation experiments (Figure 4) and is in line
474 with other studies reporting a similar effect of morphology on the ability of dendrites to

475 generate local spikes®.
476
477 Functional coexistence of sub- and supra-linear dendrites within FS basket cells

478 Our simulations predict the co-existence of both sublinear and supralinear dendrites in all
479 FS BCs models (Figure 2, Supplementary Figures 4-9). Similar bimodal dendritic
480 integration has been reported in hippocampal CA1 pyramidal neurons®#4 and predicted in

481 PFC pyramidal neurons®.

482 The existence of sublinear dendritic branches supports the idea of inhibitory neurons acting
483 as coincidence detectors by aggregating spatially disperse and nearly synchronous synaptic
484 inputs®. Moreover, sublinear dendrites can compute complex non-linear functions similar
485 to those computed by sigmoidal dendrites*®, thus substantially extending the processing
486 capacity of these neurons compared to a linear integrator. Why have two types of

487 nonlinearity then?

488 Our network modeling predicts that the presence of both types of nonlinearities confer
489 substantial benefits to network computations and especially to memory encoding. We find
490 that bimodal nonlinearities in the dendrites of FS BCs, enables the encoding of new
491 memories within a smaller neuronal population, thus increasing sparsity and storage
492 capacity. These nonlinearities also facilitate the interaction of memories over time, via

493 decreasing the possibility of interference (Figure 7).
494 Not that Simple: FS basket cells as 2-layer modular ANNs

495 Artificial Neural Network analysis demonstrates that a FS basket cell is better described by
496 a 2-stage abstraction that incorporates both modes of dendritic integration (Figure 5,6).
497 This work, along the lines of the 2-stage model proposed for pyramidal neurons*, strongly

498 challenges the prevailing point neuron dogma. The 2-stage abstraction is supported by
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499 experimental reports of dendritic sodium spikes and supralinear calcium accumulations?
500 while it also explains sublinear dendritic integration®2% providing a unifying

501 framework for interneuron processing.

502 Possible limitations of our work include the imprecise modeling of ionic and synaptic
503 mechanisms given the shortage of sufficient information for FS BCs models. This limitation
504 is counteracted by the sensitivity analysis of the mechanisms that mostly influence our
505 findings and their consistency across several cortical and hippocampal morphologies.
506 Another limitation is the lack of inhibitory inputs (except from the autaptic GABAa current
507 that is incorporated in all models). Inhibitory inputs consist of just 6% of all incoming
508 contacts in Fast Spiking interneurons®°®57. Thus, our results are unlikely to be affected by
509 inhibitory inputs. FS basket cells in the hippocampus and the neocortex are highly
510 interconnected by gap junctions®, that can speed the EPSP time course, boost the efficacy
511 of distal inputs and increase the average action potential frequency after repetitive synaptic
512 activation®. All of these effects would contribute to stronger responses but unless gap
513 junctions are spatially specific to certain branches and not others, they are unlikely to
514 influence the non-linear integration modes of dendrites.

515

516 Conclusion

517 This work provides a novel view of dendritic integration in FS basket cells, that extends in
518 hippocampal and cortical areas*. Here we suggest new reductionist models for interneuron
519 processing, in which dendrites play a crucial role. Experimental validation of these new
520 models is likely to change the way we think about interneuron processing, attribute new and
521 exciting roles to FS basket cells and open new avenues for understanding interneuron

522 contributions to brain function.
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689 Supplementary Figure 1. Model cell firing profiles. Somatic Current-clamp traces of
690 Hippocampal (A) and PFC (B) model cells, after a depolarizing current injection in somata
691 (500 pA; 1000 ms) evoked a high-frequency firing pattern. A hyperpolarizing current

692 injection in somata (-300pA, 1000ms) induced a realistic hyperpolarizing response.
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695 Supplementary Figure 2: Mean firing frequencies in response to injected currents of

696 different amplitudes (600 ms duration) in Hippocampal (up) and PFC (down) model cells.
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Supplementary Figure 3: Validation of synaptic currents in Fast Spiking basket cells.

Left. A three-step voltage clamp of voltage changes from =70 mV to 10 mV (duration 1 ms)
and back to —70 mV was used to produce a self-inhibitory (autaptic) current . During the
validation of this current, the reversal potential of Cl— was adjusted from —80 to =16 mV,
in order to reproduce the experimental set up of Bacci et al., 2003. However, a physiological
reverse potential (—80 mV) was used for all other simulations. Right. Model reproduction
of cp-AMPA (=70 mV) and NMDA (+60 mV) currents in response to stimulation of 2
synapses as per Wang et al., 2009. * each trace represents the mean of all Hippocampal and

PFC cells respectively.
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710 Supplementary Figure 4: Related to Figure 2. Bimodal non-linear integration in Fast
711 Spiking basket cells. Supralinear (blue) and sublinear (magenta) dendrites shown in each

712  model cell.

713
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715 Supplementary Figure 5: Related to Figure 2. Bimodal non-linear integration in Fast
716 Spiking basket cells. Representative Somatic EPSPs after stimulation (single pulse) of an

717 increasing number of synapses (1:1:20), uniformly distributed within dendrites.

718
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720 Supplementary Figure 6: Related to Figure 1. a. Presence of supralinear summation in
721 dendrites of FS BCs after blockade of multiple active currents respectively in Hippocampus
722 (left) and PFC (right). b. Sensitivity analysis of biophysical dendritic mechanisms reveals
723 minor changes in the synaptic threshold for spike generation in supralinear dendrites across

724 Hippocampus and PFC.

725
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726

727 Supplementary Figure 7. Related to Figure 1. Blockade of active sodium conductances in
728 the dendrites of FS BCs, totally eliminates the supralinear operation mode. Hippocampal
729 (a) and PFC (c) representative supralinear responses of dendrites under physiological
730 conditions. Dendritic spikes are eliminated both in Hippocampal (b) and PFC (d) FS BCs
731 dendrites EPSP responses after blockade of sodium conductances. Linear line represents

732 linear summation.

733
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Supplementary Figure 8. FS BCs exhibit supralinear and sublinear dendritic responses in

the presence of Gap Junctions. A) lllustrated dendritic trees that are interconnected with

Gap Junctions. B) Presynaptic firing rate (~30 Hz). Supralinear (C,E) and sublinear (D,F)

dendrites co-exist in Hippocampal (up) and PFC (down) Fast spiking basket cells models.
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741 Supplementary Figure 9. FS BCs exhibit supralinear and sublinear dendritic responses in
742 the presence of in vivo- like fluctuations. Somatic firing rate of 3+1 Hz induced in
743 Hippocampal (A) and PFC (D) models of FS BCs after synaptic activation of randomly
744 selected dendrites with 10Hz Poisson spike trains. Supralinear (B,E) and sublinear (C,F)
745 dendrites co-exist in FS BCs of Hippocampus (up) and PFC (down).
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Supplementary Figure 10. Related to Figure 6. Linear regression analysis for one hidden
layer supralinear (b,c) and one hidden layer sublinear (d,e) ANNs for one indicative
Hippocampal (top) and one indicative PFC (bottom) model cell. Actual Mean Firing Rates
(Hz) correspond to the responses of the compartmental model when stimulating -with 50Hz
Poisson spike trains- varying numbers of synapses (1 to 60), distributed in several ways
(clustered or dispersed) within both sub- and supra-linear dendrites. Expected Mean Firing
Rates (Hz) are those produced by the respective ANN abstraction when receiving the same

input (number of stimulated synapses) in its respective sub-/supra- or linear input layer
nodes.
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758 Supplementary Figure 11. Related to Figure 7. Manipulation of SOM+ models dendritic
759 transfer function results in almost identical responses of multiple properties of the canonical
760 microcircuit. Modeled SOM+ dendrites A) Supralinear B) Linear C) Supralinear and
761 sublinear (50% of each mode)

762
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764 Supplementary Figure 12. Related to Figure 4: Firing rate responses (in Hz) from one
765 Hippocampal (a, ¢) and one PFC (b, d) model cell, in response to stimulation of increasing numbers
766 of synapses (10 to 60) that are either randomly distributed throughout the entire dendritic tree or
767 clustered within a few dendritic branches. Effect of dendritic diameter (red, setting the diameter of
768 all dendrites to 2 microns) and A-type current (orange, setting the conductance of dendritic A-type
769 currents to zero) on somatic firing rates in response to synaptic stimulation under dispersed and
770 clustered spatial arrangements. As shown in panels a, ¢ disperse synaptic arrangements benefit
771 mostly from the dendritic morphology of FS BCs, as setting the diameter to 2 microns sharply
772 decreases this preference. Clustered arrangements on the other hand (panels b, d) are severely
773 hampered by the high conductance of the A-type potassium channels in these cells, as blockade of
774 these currents enhances somatic output. This potassium current does not penalize disperse inputs as
775 much, simply because it is not as strongly activated as in the case of clustered activation (which
776 induces much higher local depolarizations and thus stronger A-type channel activation). (p-values
777 for the various comparisons: hippocampus, disperse: diameter vs. control =0.0018, IA vs. control,
778 non-significant; hippocampus, clustered: diameter vs. control=0.0048, IA vs. control=0.0087; PFC,
779 disperse diameter vs. control =0.0014, IA vs. control, non-significant; PFC, clustered diameter vs.
780 control =0.0102, 1A vs. control=0.0026)
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