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Abstract

We present CoPhosK to predict kinase-substrate associations for phosphopeptide substrates detected by mass spectrometry
(MS). The tool utilizes a Naive Bayes framework with priors of known kinase-substrate associations (KSAS) to generate
its predictions. Through the mining of MS data for the collective dynamic signatures of the kinases’ substrates revealed by
correlation analysis of phosphopeptide intensity data, the tool infers KSAs in the data for the considerable body of
substrates lacking such annotations. We benchmarked the tool against existing approaches for predicting KSAs that rely
on static information (e.g. sequences, structures and interactions) using publically available MS data, including breast,
colon, and ovarian cancer models. The benchmarking reveals that co-phosphorylation analysis can significantly improve
prediction performance when static information is available (about 35% of sites) while providing reliable predictions for
the remainder, thus tripling the KSAs available from the experimental MS data providing a to comprehensive and reliable
characterization of the landscape of kinase-substrate interactions well beyond current limitations.

Author Summary

Kinases play an important role in cellular regulation and have emerged as an important class of drug targets for many
diseases, particularly cancers. Comprehensive identification of the links between kinases and their substrates enhances our
ability to understand the underlying mechanism of diseases and signalling networks to drive drug discovery. Most of the
current computational methods for prediction of kinase-substrate associations use static information such as sequence
motifs and physical interactions to generate predictions. However, phosphorylation is a dynamic process and these static
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predictions may overlook unique features of cellular context, where kinases may be rewired. In this manuscript, we propose
a computational method, CoPhosK, which uses the mass spectrometry based phosphoproteomics data to predict the kinase
for all identified phosphosites in the experiment. We show that our approach complements and extends existing
approaches.

Introduction

Protein phosphorylation (PP) is a post-translational modification that is central to cellular signalling where networks
composed of kinases, phosphatases, and their substrates regulate the sites and levels of phosphorylation at the molecular
level. MS-based approaches based on phosphopeptide enrichment can report the identity and intensity of thousands of
protein phosphorylation sites in the context of their phosphopeptides [1-4] and these data have populated several public
databases of phosphosites (e.g. phospho.ELM [5] and PhosphoSitePlus [6]) with over 500,000 sites already identified in
humans. Despite this success in identifying cellular kinase substrates, the identity of the responsible kinase is typically
unknown for 90% of the cases. For this reason, effective bioinformatics tools to predict KSAs have been essential to filling
the gap between phosphosite identification and kinase annotation.

Prior KSA prediction methods have focused mainly on the consensus sequence motifs recognized by the active sites of
kinases [7-11]. The modest specificity of these methods led researchers to integrate other contextual information such as
protein structure and physical interactions between proteins [12,13]. Addition of these cues to the analysis has enhanced
the accuracy of prediction methods [14]. The latest improvements have reduced hub bias in the predictions [15] and are
promulgated in the software KinomeXplorer (Figure 1). Weaknesses of these approaches include: 1) the network
predictions are static and 2) incomplete information on protein structure and protein interactions permit predictions of
KSAs for only 30-40% of the sites observed in MS experiments. As cellular signalling is a highly dynamic and transient
process, the incorporation of specific experimental information on the dynamics of phosphorylation (e.g. the changes in
phosphosite occupancy and intensity across selected biological states) into KSA predictions could provide a key to
permitting “global” scale predictions.
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Figure 1. The overview of CophosK and CophosK+. After identification of phosphorylated sites, KinomeXplorer
utilizes sequence match scoring and network proximity of kinases and substrates to predict KSAs. CophosK
constructs the co-phosphorylation network in order to infer KSAs. CophosK+ combines all the scores to provide
more accurate KSA predictions. PhosphoSitePlus annotates ~6% of the identified phosphosites by their associated
kinases. KinomeXplorer improves the coverage of annotations to 35% and can improve accuracy of predictions in
the context of co-phosphorylation information (CoPhosK+). On the other hand, CophosK alone is able to annotate
100% of the identified phosphosites in the experiment.
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The payoff is that identifying the kinases active with respect to specific substrates can provide critical insights into
biological processes in both development and disease. In particular, kinase inhibition strategies for combating multiple
cancer related phenotypes have leveraged an understanding of the phosphorylation dynamics of cellular systems through
elucidation of kinase-substrate networks [16-18]. As of early 2018, over 40 kinase inhibitors have received US FDA
approval for the treatment of various diseases, most of them related to cancer [19]. Overall, a detailed understanding of
phosphorylation networks is critical for drug discovery and development as well as understanding the basic biology of
signalling. To address this challenge, we present CophosK, an algorithmic pipeline that extracts co-phosphorylation
patterns from MS data to provide global predictions of KSAs (Figure 1). Our results show that pairs of phosphosites that
are substrates of the same kinase are significantly more likely to be co-phosphorylated (i.e., exhibit correlated
phosphorylation levels across different biological states and/or over time), as compared to other pairs of phosphosites.
Motivated by this observation, our algorithm for predicting kinase-substrates associations is based on the following
principle: If a pair of phosphosites exhibit similar phosphorylation patterns through different biological states, and if we
know that a specific kinase acts on one of these phosphosites, it is likely that the kinase acts on the other phosphosite as
well. Based on this principle, we develop a Bayesian framework that utilizes multiple co-phosphorylation relationships of
a phosphosite to score and rank kinases for that phosphosite.

Results

MS based phosphorylation data to probe biological states for co-phosphorylation detection
To develop and validate our method, we initially analyzed two following datasets:

(1) Breast Cancer (BC) Patient-Derived Xenografts (PDX) tissues: Huang et al. used the proteomic method called isobaric
tags for relative and absolute quantification (iTRAQ) to identify 56874 phosphosites in 24 breast cancer PDX models [20].
In this study, we removed phosphosites with missing intensity values in any sample. This resulted in intensity data for
15780 phosphosites from 4539 proteins, where 13840 serines, 2280 threonines and 67 tyrosines are phosphorylated. As
suggested by Huang et al, the reference sample used to compute fold change is comprised of a standard sample from 16
out of 24 tumours with equal amounts from each tumour.

(1) Ovarian Cancer (OC) tumors: The Clinical Proteomic Tumor Analysis Consortium conducted an extensive MS based
phosphoproteomic of ovarian HGSC tumors characterized by The Cancer Genome Atlas [21]. They have reported 24429
phosphosites from 6769 phosphoproteins in 69 tumors. We filtered out the phosphosites with missing data and also selected
a subset of tumors to cover more phosphosites. This resulted in a total of 5017 phosphosites from 2425 proteins in 12
tumors where 4258 serines, 657 threonines and 102 tyrosines are phosphorylated.

Then we applied the proposed method to predict KSAs and assess the performance of the methods on four other
independent datasets:

(111) BC PDX: The NCI Clinical Proteomic Tumor Analysis Consortium (CPTAC) conducted an extensive MS based
phosphoproteomic of TCGA breast cancer samples [22]. After selecting the subset of samples to have the highest coverage
and filtering the phosphosites with missing intensity values in those tumors, the remaining data contained intensity values
for 11018 phosphosites mapping to 8304 phosphoproteins in 20 tumors.

(IV, V) Breast Cancer (BC) PDX and Ovarian Cancer (OC) PDX: This dataset was generated to analyze the effect of
delayed cold Ischemia on the stability of phosphoproteins in tumor samples using quantitative LC-MS/MS. The
phosphorylation level of tumor samples have been measured across 3 time points [23]. After phosphosites with missing
intensity values were filtered out, the dataset included 4802 phosphosites corresponding to 2230 phosphoproteins in 12
ovarian tumors and 8150 phosphosites mapping to 3025 phosphosproteins in 18 breast cancer xenograft tissues.

(V1) Colorectal cancer (CC): Abe et al. performed immobilized metal-ion affinity chromatography-based
phosphoproteomic and highly sensitive pY proteomic analyses to obtain deep phosphoproteomic data in 4 different
colorectal cancer cell lines [24]. The dataset included 5382 phosphosites with intensity values cross 12 different conditions.
These phosphosites mapped to 2230 phosphoproteins.
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Evidence for Statistically Significant Co-phosphorylation Distributions

We used the data above to address two initial questions related to the appropriate development of our phosphorylation
analysis method. First, we considered the correlation analysis approach appropriate for these data and second; we
considered the effect of experimental design (e.g. number of independent samples). For the latter, we intuited that a larger
number of samples should provide greater opportunity to sample a wider range of phosphorylation states based on sampling
a wider range of biological variations. For the analysis, we define the vector containing the phosphorylation levels of a
phosphosite across a number of biological states as the phosphorylation profile of a phosphosite for which co-
phosphorylation will be evaluated using fold-change values in this vector. For assessing the correlations of these vectors
across the data matrix, we compared the suitability of various mathematical methods from the literature. For example, for
gene co-expression, Pearson’s correlation is the most popular correlation measure used to capture linear relations between
the expression profiles of genes [25], while mutual information is commonly utilized to describe non-linear relationships
[26]. Song et al. proposed biweight-midcorrelation as an alternative, and showed that it outperforms mutual information
in terms elucidating pairwise relationships between genes; it is also more robust than Pearson correlation with respect to
outliers [27]. Therefore, we chose biweight-midcorrelation to assess the correlation between the phosphorylation profiles
of phosphosites.

As a second consideration, we reasoned that the number of biological states (i.e., the number of dimensions in the
phosphorylation profiles of phosphosites, which is equal to the number of independent samples/tumors in our datasets)
may have a significant effect on the interpretation and reliability of our co-phosphorylation analysis, thus we investigated
the effect of number of states on the distribution of co-phosphorylation across all pairs of phosphosites. Using the 24 breast
cancer PDX samples for testing, we randomly selected 3, 6 and 12 samples and analyzed the co-phosphorylation
distribution for phosphorylation profiles composed of these randomly selected samples. Then, we randomized the
phosphoproteomics data (see below) and compared the distribution of co-phosphorylation among phosphosites in the
original data against the randomized data (S1 Fig). We observed that for both the original data and randomized data, co-
phosphorylation is normally distributed with a mean around zero when three or more independent biological states are
analyzed, and the standard deviation of this distribution goes down with increasing number of samples (i.e., the correlation
between phosphorylation profiles tends to be higher when the number of dimensions is lower). However, as the number
of biological states in the study increases, the co-phosphorylation distribution among pairs of phosphosites becomes
statistically significant and more easily distinguishable from random data (solid vs. dashed lines in S1 Fig). As seen in S1
Fig(b), the curve is steeply sloping below 5-dimensions and flattens out considerably above 10 dimensions. To provide
further guidance for benchmarking the method, we carried out simulations using synthetic data. For this purpose, we
generated thousands of random vectors (using normal distributions) by varying number of dimensions and plotted the
distribution of correlation among pairs of vectors (S2 Fig). Based on this analysis, at least five biological states (or
dimensions) are recommended for capturing statistically significant associations. As our datasets had 12- and 24
dimensions, this analysis indicates they were suitable for further analysis. We also show that selection of different samples
with fixed number of dimensions do not have a significant effect on co-phosphorylation distribution (S3 Fig).

We compared the distribution of co-phosphorylation for both ovarian (12-dimensions) and breast cancer (24-dimensions)
datasets against three different null models to assess the statistical significance of co-phosphorylation for pairs of
phosphosites that were detected in these experiments. These null models are constructed via (i) random permutation of the
phosphorylation intensities of phosphosites within each sample (biological state), (ii) random permutation of
phosphorylation intensities representing the phosphorylation profiles across biological states for each phosphosite, and (iii)
random permutation of all intensity values in the phosphosite-biological state matrix. The results of this analysis for the
breast cancer cell line dataset are presented in Figure 2. The distribution of co-phosphorylation among pairs of phosphosites
in the original dataset is significantly different as compared to the distribution of co-phosphorylation among pairs of
phosphosites in all permuted datasets (Kolmogorov-Smirnov (KS) test p-value << 0.01). Namely, the distribution of co-
phosphorylation is wider in the original data as compared to any of the three null models; e.g. there are more phosphosite
pairs with high positive or negative correlation.

The distribution of co-phosphorylation for ovarian cancer samples is shown in Supplementary S4 Fig; a similar pattern is

observed for these data. The statistically significant co-phosphorylation suggests that the correlations may have underlying
biological drivers. The same result using Pearson correlation also reported in S5-S7 Fig.
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Figure 2. Distribution of co-phosphorylation among pairs of phosphosites on breast cancer PDX. The blue
histogram shows the distribution of co-phosphorylation (the correlation between the phosphorylation levels) of all
pairs of phosphosites in breast cancer PDX (p=0.01,06=0.22). (a) Illustration of the three different permutations tests
that were used to assess the significance of this distribution. The pink histogram in each panel shows the distribution
of co-phosphorylation of all pairs of phosphosites in 100 permutation representing (b) randomization of all entries in
the phosphorylation matrix (u=0.008,6=0.20), (c) permutation of all entries across phosphosites for each state
(1=0.01,6=0.20), and (d) permutation of all entries across states within each phosphosite (1=0.01,6=0.20). The
distribution of co-phosphorylation in the original dataset is significantly broader as compared to the distribution of co-
phosphorylation in all permutations (Kolmogorov-Smirnov (KS) test p-value << 1E-9).

As Li et al showed that phosphorylated sites that are modified together tend to participate in similar biological process
[28], we hypothesized that phosphosite pairs exhibiting positive correlation of co-phosphorylation may be substrates of
the same kinase (e.g. shared-kinase pairs). We thus compared the co-phosphorylation distributions (actually sub-
distributions) for substrates from the same kinase, as annotated by gold standards, to the original distribution. Using KSAs
from PhosphoSitePlus (PSP) for each of the 347 reported kinases, we quantified the co-phosphorylation of all pairs of
phosphosites that are listed as that kinase’s substrates (37234 and 8235 shared-kinase pairs in breast cancer and ovarian
cancer data, respectively). The distribution of co-phosphorylation of shared-kinase pairs as compared to all other
phosphosite pairs is shown in Figure 3. As seen in the figure, these two distributions are significantly different and the co-
phosphorylation distribution of shared-kinase pairs is shifted to the right (Kolmogorov-Smirnov test p-value respective <
7.36E-103, 1.1E-6 for breast cancer PDX and ovarian cancer, respectively). In other words, substrates that share a kinase
are more likely to be positively co-phosphorylated compared to all pairs of phosphosites.

Although this positive correlation of substrate pairs can be potentially explained by shared kinase annotation, the data also
contains negative correlations of phosphosite pairs (Figure 3) that point to more complex regulatory relationships. One
reason for this observation could be that for some phosphosites, multiple kinases have been reported in PhosphoSitePlus,
but the annotation does not provide context-specific information, e.g., the kinases might not be active at the same time.
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The negative co-phosphorylation also might reflect the relationship between substrates and their associated phosphatases
since they are expected to follow the opposite pattern in phosphorylation.
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Figure 3. Distribution of co-phosphorylation between phosphosites that are substrates of the same kinase. (a)
For each of 347 reported kinases, we compute the co-phosphorylation of all pairs of phosphosites that are reported to
be common substrates of that kinase in PhosphositePLUS (shared-kinase pairs). In panels (b), (c), the green
histogram shows the distribution of co-phosporylation for all shared-kinase pairs and the blue histogram shows the
distribution of co-phosphorylation for all pairs of phosphosites in the dataset. (b) Breast Cancer PDX dataset (37234
shared Kinase pairs; p=0.05,6=0.23 kutosis=2.85, skewness=0.10), (¢) Ovarian Cancer tumors (8235 shared kinase
pairs; u=0.11,6=0.32 kutosis=2.54, skewness= -0.10) . For both datasets, the distribution for shared-kinase pairs is
significantly wider and shifted to the right as compared to the distribution for all phosphosite pairs (KS-test p-value
<< 1E-9).

Using Co-Phosphorylation for Kinase-Substrate Association Prediction

Motivated by our observation that substrates of the same kinase are more likely to be positively co-phosphorylated (Figure
3), we developed a co-phosphorylation based prediction method, CophosK, that constructs a co-phosphorylation network
(Figure 4) and uses a Naive Bayes framework on this network to predict KSAs. The idea behind the approach is that the
likelihood of the association of a phosphosite with a given kinase is proportional to the fraction of its neighbours in the co-
phosphorylation network that are associated with the kinase. This method directly incorporates the dynamics of
phosphorylation into KSA prediction methods. Furthermore, since the co-phosphorylation network is context-specific, this
method can potentially point to context specific KSAs. Note that this can provide a prediction for all the substrates in the
data. Here we are able to score nearly 15,000 KSAs for 101 kinases in breast cancer data and nearly 5,000 KSAs for 75
kinases in the ovarian cancer data. As static information provided by tools like NetworKIN and KinomeXplorer and
dynamic information provided by CophosK may be complementary, we also developed CophosK*, which is designed to
take three main elements into consideration to predict KSAs: Sequence motifs associated with targets of kinases, the
network proximity of kinases and substrates in the protein association network, and co- phosphorylation of substrates of
kinases (Figure 1). In this case the number of KSA predictions is limited to those that can be predicted by KinomeXplorer.
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Figure 4. Workflow of CophosK for using co-phosphorylation to predict kinase-substrate associations
(KSAs). The method takes as input available information on KSAs and phosphorylation data representing the
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phosphorylation levels of thousands of phosphosites across multiple biological states. The co-phosphorylation of all
pairs of phosphosites is assessed and a co-phosphorylation network is constructed in which phosphosites represent
nodes and the weight of the edges is the correlation between phosphosites. CophosK then uses a Naive Bayes
classifier that integrates the interactions in this network with partial information on kinase-substrate interactions to
predict new kinase substrate interaction

Static and dynamic data provide orthogonal KSA predictions

To test the effectiveness of CoPhosK and CophosK*, we use leave-one-out cross validation on the list of KSAs reported
in PhosphoSitePlus. Namely, for each phosphosite, we hide the association between the phosphosite and its known kinase
(called the target kinase) and we use other reported KSAs to rank the likely kinases for that phosphosite. To enhance the
reliability of the predictions, we only consider kinases that have at least two reported substrates in the database. For each
phosphosite in the dataset, we rank all kinases based on the scores computed by CophosK, CoPhosK* and KinomeXplorer
and determine the rank of the target kinase.

Figure 5(a) shows the rankings provided by KinomeXplorer (on the y-axis) and the rankings provided by CophosK (on the
x-axis) for 313 kinase-substrate association predictions for the ovarian cancer data and 740 kinase-substrate association
predictions for the breast cancer PDX data. In the figure, a point that is closer to the origin indicates higher ranking. Figure
5b shows the data in box plot format, this visualization indicates that the distribution of results is overall similar. If the two
methods were consistently correct in their predictions, we would see a cluster of points only around the origin. In fact aside
the dense cluster around the origin, many predictions are “close to the axes”, indicating a high rank from one approach and
a low rank from the competing method. This suggests that these two methods contribute different information, therefore
integrating the prediction of these two methods might improve the predictions. Moreover, Figure 5(b) shows the box plot
distributions of target kinase rankings for the breast cancer PDX and ovarian cancer data.

(a) (b)
Breast Cancer acs Ovarian Cancer Breast Cancer Ovarian Cancer
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Figure 5. The correspondence between the predictions of CophosK vs. KinomeXplorer in ranking kinases for
each phosphosite. For all kinase-substrate associations reported in PhosphoSitePlus for which we can detect a
substrate in the LC/MS data, we perform leave-one-out cross validation by hiding the association between the
phosphosite and using CophosK to utilize other kinase-substrate associations and co-phosphorylation to rank the likely
kinases for the phosphosite. (a) shows the comparison of the rankings provided by CoPhosK (x-axis) against the
rankings provided by KinomeXplorer (y-axis) for breast cancer PDX data (740 predictions) and ovarian cancer (313
predictions). In (b), the box plot distribution of the rank of the target kinase according to the prediction of two methods
are presented.

To investigate whether CophosK™* can exploit any potential synergy between dynamic co-phosphorylation and static
predictions, we investigated the performance of CophosK* using the leave-one-out cross validation method described
above. Figure 6 shows the overall performance of CophosK, CophosK*, KinomeXplorer, and PUEL, an alternative analysis
approach [29], when analysed with respect to the six cancer datasets (the residue-specific performance is reported in S8
Fig). In the figure, we report the fraction of phosphosites for which the target kinase is ranked in top 1 and top 5 by each
scoring method. As seen in the figure, CophosK and KinomeXplorer deliver similar prediction performance. Since PUEL’s
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predictions are considerably less accurate on breast cancer (I) and ovarian cancer (1) datasets, we did not run it on other
datasets. However, CophosK™*, our algorithm that comprehensively integrates co-phosphorylation, sequence motifs, and
protein interactions, improves the accuracy of KSA predictions over all approaches.
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Figure 6. Performance of CophosK, KinomeXplorer and CophosK+ in predicting kinases for phosphosites. For
each dataset, we consider all phosphosites that are identified in the dataset and/or reported in PhosphoSitePlus.
For each phosphosite, we perform leave-one-out cross validation by hiding the association between the
phosphosite and one of its associated kinases (target kinase) to rank the likely kinases for the phosphosite using
PUEL, CophosK, KinomeXplorer, and CophosK*. We report the fraction of phosphosites for which the target kinase
is ranked in the top 1 and top 5 predicted kinases by each method (as indicated by different colors in the bar plot).
Each panel shows the performance of the methods on (a) breast cancer PDX data(l), (b) ovarian cancer(ll), (c)
breast cancer(lll), (d) breast cancer(lV), (e) ovarian cancer(V), and (f) colorectal cancer(VI) datasets.

CophosK provides global predictions of KSAs

Next, we investigate the coverage of the phosphoproteome provided by the proposed KSA prediction methods. The number
of phosphosites annotated by each method (i.e., the number of phosphosites for which the method was able to make a
prediction) is shown in S9 Fig. In the ovarian cancer and breast cancer datasets, respectively 5017 and 15780 phosphosites
are identified. Among these, approximately 6% have reported kinase substrate associations in PhosphoSitePlus. If we use
KinomeXplorer, we can predict the associated kinase for 47% and 35% of identified phosphosites in ovarian cancer and
breast cancer study, respectively.

Since we can compute the co-phosphorylation among all the identified phosphosites in these studies, CoPhosK can predict
the associated kinase for all of the phosphosites identified in these studies, providing annotations for 12,000 phosphosites
that had no kinase annotation previously available. A downside of these predictions is that their current estimated accuracy
is just over 50%, if we consider ranking in the top five a true positive (Figure 6). To this end, CophosK* and CoPhosK
together capture the trade-off between adding new annotations and improving existing annotations. Using CophosK* the
annotations of phosphosites with existing “static”” annotations can be enhanced. Using CoPhosK, on the other hand, new
annotations can be also developed for previously uncharacterized phosphoproteins. Thus, the methods create a set of
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medium confidence predictions for all the phosphosites and high confidence predictions (65%) for the better annotated
subset. The kinases predicted for all phosphosites by CophosK and CophosK* are available at compbio.case.edu/cophosk.
Any phosphoproteomics data and pre-defined KSAs data can be used for predictions. For example, the results obtained by
the application of the proposed methods using phospho.ELM (an alternative phosphosite database) is reported in S10 Fig.

The runtime of CophosK depends on the number of kinases that should be scored for each phosphosite. We assess the
runtime of CophosK using a workstation with an AMD Opteron CPU with a 1.9 GHz processor with 64G RAM. For
ovarian cancer data, it takes approximately 1 hour and 20 minutes to score 75 kinases for 5017 phosphosites. For breast
cancer data, CophosK scores 101 kinases for 15780 phosphosites in approximately 18 hours. Please note that the reporting
time is for a single thread process. Since the scoring procedure of each kinase and substrate is independent of each other,
this process is highly parallelizable and can be optimized.

CophosK+ provides reproducible predictions

To investigate whether the KSA predictions provided by CoPhosK* are reproducible, we compared the prediction results
from datasets | and Il with the other two independent public MS-based phosphoproteomics datasets from human ovarian
tumors and breast cancer xenograft tissue (IV and V). 543 phosphosites appear in both ovarian cancer datasets. 373 out of
543 phosphosites have a predicted kinase in KinomeXplorer and consequently in CophosK+. We have run CophoskK+ on
these new datasets and crosschecked the KSA predictions. Our results showed that the top predicted kinase of 155
phosphosites in this new ovarian cancer data is identical to the predicted kinase in the previous ovarian cancer data (i.e.
155/373 = 41% reproducibility rate for the top-ranked prediction). Moreover, the top-ranked kinase for 349 of the 373
phosphosites in the previous ovarian cancer dataset are ranked in the top 5 predicted kinases in this new dataset (i.e.
349/373 = 93% reproducibility rate for top-1 vs. top-5). There were 1899 common phosphosites between the two breast
cancer datasets. CophosK+ has kinase predictions for 1079 out of 1899 phosphosites. Our result showed that, for these
datasets, there are 22% and 40% reproducibility in top 1 and top 5 predicted KSAs, respectively.

Enhancing KSA prediction by combining datasets

In Figure 7(a), we examine the overlap of CophosK* based KSA predictions in the two biological contexts we consider
(breast cancer and ovarian cancer). For this analysis, considering the top-ranked kinase as the prediction of CoPhosK*, we
cluster the predictions by CophosK® into three categories: 1. Predictions of CophosK* that are consistent with those
reported in PhosphoSitePlus. These include 402 predictions with 80 in common between breast and ovarian cancer datasets.
2. Prediction of CophosK™ is different from the kinase reported in PhosphoSitePlus. These include 393 predictions, with
29 in common. 3. No kinase annotation is available for that phosphosite in PhosphoSitePlus. These include 6425
phosphosites that are newly annotated with respect to a predicted KSA in this CophosK* analysis, with 678 in common.
Note that the predictions in the second category do not necessarily represent false positives, since a phosphosite can be
targeted by multiple kinases and the annotations provided by PhosphoSitePlus are limited. The top-ranked kinase according
to CophosK* is identical for 109 phosphosites in categories 1 and 2. Among these, the kinase that is reported in
PhosphoSitePlus is identical to that reported by CophosK* for 80 phosphosites. If we define precision as the number of
target kinases that are ranked first (category 1) divided by the total number phosphosites with a known target kinases in
PhosphoSitePlus (union of category 1 and category 2), we can expect that (at least) 73% of top predictions which are
identical between two different datasets will be correct. This improved accuracy also may be applicable in the context of
expanded coverage for the 678 phosphosites that do not have any annotation in PhosphoSitePlus (category 3).

Motivated by the observation that predictions that are supported by two datasets have improved accuracy as compared to
predictions that are supported by a single dataset, we also investigate the effect of the number of datasets supporting a
prediction on the accuracy of that prediction. To characterize the trade-off between accuracy and coverage in integrating
multiple datasets, we also assessed the number of predictions that are supported by multiple datasets as a function of the
number of datasets. The results of this analysis are tabulated in Figure 7(b). As seen on the table, if the kinase that is ranked
top by CophosK+ is identical across multiple datasets, it is more likely to be the kinase that is also reported in PSP, as
compared to a candidate KSA that is predicted on only one dataset. Thus the accuracy is much improved when multiple
phosphoproteomics datasets are available as compared to the accuracy of predictions provided by CoPhosK+ on a single
dataset. These predictions are also drastically more accurate than the predictions of KinomeXplorer alone. While
CoPhosK+ can provide predictions for thousands of sites using one or two datasets (e.g., the number of sites that are shared
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between two datasets is 2020 and the top-ranked kinase for 1417 of these 2020 sites are identical for the two datasets; only
122 of these 2020 have an annotation in PSP and the predicted kinase for 91 of these 122 sites is consistent with the PSP
annotation.), there are only a few sites for which the predicted kinase is supported by at least five datasets. Nevertheless,
as seen on the table, CoPhosK+ is able to provide predictions for more than 100 sites for which the predicted kinase is
supported by four datasets (12 of which have annotations in PSP and 9 of these annotations are consistent with CoPhosK+’s
predictions) and more than 400 sites for which the predicted kinase is supported by three datasets (57 of which have
annotations in PSP and 48 of these annotations are consistent with CoPhosK+’s predictions).

(a) Top ranked kinase-substrate interaction
Breast is reported in PhosphoSitePlus 216 Precision
Cancer

0.42
’ Top ranked kinase-substrate interaction @

Is not among reported kinase-substrate 292

interactions in PhosphoSitePlus

There is no reported kinase-substrate

interaction in PhosphoSitePlus
(b)
Number of Studies 1 2 3 4 | 5|6
Phosphosites with Annotation at PhosphoSitePlus
Number of Phosphosites 347 231 163 86 | 37 | 13
Number of identical predicted KSAs 347 122 57 12 3 1
Number of true identical KSAs 233 91 48 9 2 1
Phosphosites with No Annotation at PhosphoSitePlus
Number of Phosphosites 3659 | 2020 | 1121 | 537 | 206 | 82
Number of identical predicted KSAs 3659 | 1417 | 449 | 138 | 24 | 4

Figure 7. Consistency and reproducibility of kinase-substrate predictions made using different phosphorylation
data sets. For each phosphosite in each data set, we rank the kinases using CophosK®, and then we identify the top
ranked kinase based on two different datasets. (a) The Venn diagrams show (1) the number of phosphosites for which
top-ranked kinase agrees with that reported in PhosphoSitePlus (True Positive), (2) the number of phosphosites that
have kinases reported in PhosphoSitePlus but top-ranked kinase does not agree with that reported in PhosphoSitePlus
(False Positive), and (3) the number of phosphosites with no kinase annotation reported in PhosphoSitePlus. The blue
circles represent predictions based on ovarian cancer tumor cell lines, pink circles represents predictions based on
breast cancer PDX. For the phosphosites for which at least one kinase is listed in PhosphoSitePlus, the right panel
shows the “precision” (True Positive / (True Positive + False Positive)) of the top ranked kinase for each individual
dataset and the intersection between the two datasets (i.e., the same kinase is ranked top in both datasets). (b) The
number of phosphosites with at least one annotation in PhosphoSitePlus (upper panel) and no annotation in
PhosphoSitePlus (lower panel) are shown as a function of the number of datasets that contain the phosphosite. Among
these phosphosites, the number of phosphosites for which the top ranked kinase is identical across multiple datasets
(identical predicted KSAs) is also shown as a function of the number of supporting datasets. For the phosphosites with
annotations, the number of predictions that are consistent with PhosphositePlus annotations are also shown (true
identical KSAS).

CophosK provides context-specific predictions of co-phosphorylation networks

As some phosphosites can be phosphorylated by multiple kinases, ascertaining which individual kinase is activated in
different cell or tissues types is challenging to predict and yet crucial to the drug discovery process. Therefore, an important
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benefit of integrating MS-based phosphoproteomic data into KSA predictions is that these data can capture the context-
specificity of these interactions. Clearly, no other method can consider a similar global biological context while predicting
KSAs, since sequence motifs, structural information, and protein interactions considered by these methods do not represent
a specific biological context, at least with the current state of cell based information. To investigate how CophosK*
captures context-specificity of KSAs, we identify common phosphosites between two datasets such that the kinase ranked
as the top kinase by CophosK* is different for different datasets, but all the kinase annotations are reported in
PhosphoSitePlus (S1 Table). For example, NDRG1, the N-Myc downstream regulated 1, is known in PhosphoSitePlus to
have multiple possible kinases, SGK1 and PRKACA, for which its phosphosite S330 represents a substrate target.
However, a previous study shows that several Akt-inhibitor-sensitive breast cancer cells showed marked NDRG1
phosphorylation despite the low or undetectable level of SGK1 protein [30]. Co-phosphorylation analysis suggests strong
correlation between the behaviour of SGK1 substrates and S330 in the ovarian cancer cell line while PRKACA annotated
substrates track S330 more closely in the breast cancer models (S1 Table). NDRGL1 is clearly annotated as having multiple
and wide ranging roles in cellular stress response [31], proliferation and growth arrest [32], and tumor progression and
metastasis [33] and a static prediction for its regulatory circuitry may not suffice for explaining its diverse roles. Our co-
phosphorylation approach provides clear and testable predictions to uncovering these relationships in the relevant cellular
or disease context. Nevertheless, they must be validated by knocking out the target kinase and assessing the effect on
phosphorylation of specific sites of interest.

Discussion and Future Work

In this paper, we present an integrative approach for KSA prediction using correlations among phosphosite intensities from
phosphoproteomics data alone or coupled to sequence and protein interaction data to provide global and accurate
predictions of KSAs. Although these advances are considerable, there is still much work to be done to better understand
the power of co-phosphorylation analysis. For example, our method is limited by the coverage of phosphosites identified
in LC/MS studies and prior knowledge of KSAs. The former limits the overlap between datasets making comparisons
difficult while the latter limits the benchmarking of the approach. As our understanding of these phosphorylation overall
improves, the tools will become more valuable over time. In particular, the functional meaning of negative correlations in
the data needs further exploration.

Negative co-phosphorylation between a pair of phosphosites might occur for different reasons. One possibility involves
sites on the same protein, where the phosphorylation of one site inhibits the phosphorylation of another site [28,34] thus
exhibiting negative (and statistically significant) co-phosphorylation values. For negative correlations of sites on different
proteins many explanations are possible, and should be considered. First, phosphorylation of a kinase may activate or
inhibit the kinase; in the former case the kinases’ substrates will tend towards positive co-phosphorylation with that
regulatory site on the kinase or negative co-phosphorylation when the effect of the phosphorylation is inhibitory [35].
Furthermore, it is expected that phosphatases regulated by phosphorylation may exhibit negative or positive co-
phosphorylation with their substrates depending on whether the phosphorylation is activating or inhibitory towards the
phosphatase. More subtle effects are also clearly possible, where a chain of kinases and phosphatases (essentially a
pathway) may activate or deactivate a key regulatory node at the intersection of other regulatory circuits. Thus, negative
or positive correlation “signals” can be generated across the cell resulting in the complex set of in interactions implied by
this analysis.

In the context of gene co-expression analysis, partial correlation is often utilized to remove indirect effects of genes on
each other, thereby revealing direct interactions [36]. The application of partial correlation in the construction of co-
phosphorylation networks can also improve the accuracy of these networks, and thus can improve the accuracy of
CoPhosK’s predictions. The application of partial correlation to the assessment of co-phosphorylation requires
consideration of the relationships between the phosphorylation sites on the same protein, as well as the relationship between
the expression of proteins and the phosphorylation levels of the sites on these proteins. The promising results presented in
this paper, along with the availability of multi-omic data that includes measurements of protein expression and
phosphorylation, pave the way for the application of such advanced statistical measures to co-phosphorylation analysis as
well.

As functional signalling networks rely on many types of post-translational modifications (PTMs), an integrated correlation
analysis framework for multiple PTMs must ultimately be developed to explain phenotype and may be effective in defining
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relationships between types of PTMs. Nevertheless, CophosK provides a strong data-driven approach for prediction of
KSAs and drastically increases the coverage of the phosphaosites for which kinase associations can be predicted. Thus,
generation of more high-throughput MS-based phosphoproteomics data representing a variety of biological contexts can
be used in conjunction with CophosK to better enable drug discovery and provide a deeper understanding of biological
signalling.

Methods

Co-phosphorylation. Co-phosphorylation between phosphorylation sites is computed using Biweight midcorrelation.
In contrast to other measures of correlation that use the mean to standardize observations, biweight midcorrelation uses
the median. Biweight midcorrelation of two vectors x € R¥*™ and y € R™™ is computed as

m

Gy = ) X )

i=1

where,

) (x; — med(x))wf

e @
\/Z;nzl[xi - med(x))wl-"]"Z
2
x _ __|xiz med(x) 2 _ |xizmed(x) (3)
Wi = (1 9 mad(x) ) 1a 9 mad(x) ).

med(x) represents the median of vector x and mad(x) represents the median absolute deviation of vector x. I(u) is the
indicator function which takes on value 1 if u> 0 and 0 otherwise. y;and w;” are also computed similarly for vector y.

Model development for kinase prioritization. In order to prioritize the kinases for phosphorylation sites, we apply
Bayes’ rule to derive the score for every pair of kinase-substrate.

Construction of co-phosphorylation network. Let T denote a set of all phosphorylation sites in PhosphoSitePlus and P
denote the set of all phosphorylation sites that are present in the experimental data. We create a complete graph G in which
the nodes represent the phosphosites in P. The weights of each edge are computed as the co-phosphorylation between the
two corresponding phosphosites. Namely, for phosphosites p, g € P, we denote the co-phosphorylation of p and g as c,,.

Scoring Schema (CophosK). Note that it is possible to compute the co-phosphorylation of two phosphosites only if both
phosphosites are present in the MS data (i.e, both sites are in P). Let A denote the distribution of co-phosphorylation among
all pairs of phosphosites in P (i.e., A is the set of c,, values across all (p,q) € P X P). On the other hand, kinase
information is available for the phosphosites that are in T. We call two phosphosites a shared-kinase pair if the two
phosphosites are annotated as being regulated by the same kinase in PhosphoSitePlus. We denote the distribution of co-
phosphorylation among shared-kinase pairs as S (i.e., S is the set of ¢, values across all (p,q) € (T N P) X (T N P)).

For a kinase k, we define T}, T as the set of phosphosites that are reported in PhosphoSitePlus as the substrates of kinase
k. For a pair of phosphosites (p, q) € P, Pr(Cpq > cpq|5) is the probability that the co-phosphorylation of p and g would
be higher than c,,, given that p and g share a kinase. On the other hand, Pr(C,, > cpq|A) represents the probability that
the co-phosphorylation of p and g would be higher than c,, for any pair of phosphosites. Using the Bayesian rule, we
compute the log-likelihood of the association of phosphosite p with kinase k using the weights of edges between p and its
neighbours that are in Ty :

Pr(Cp, > cpq|5)) (4)

h(k, p) = Z log2
(op) 8 (Pr(cpq>cpq|‘4)

vq € {PNTy}
|

PLOS Page 12


https://doi.org/10.1101/251009
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/251009; this version posted January 28, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

@ PLOS | SUBMISSION

For a given phosphosite p € P, CoPhosK computes all h(k,p) values (i.e. the log likelihood of association of kinase k and
phosphosite p) for all kinases k and ranks the kinases in decreasing order of h(k,p), where a larger value of h(k,p) indicates
that k is more likely to be a kinase that phosphorylates p.

Integrated Score (CophosK*). To integrate the co-phosphorylation-based scores with static information, we have
downloaded the pre-computed data for all available predictors on known phosphorylation sites from KinomeXporer-
DB.version59. The scores reported by KinomeXplorer-DB represent the likelihood of association of kinases and substrates
based on the integration of protein interaction based scoring and sequence-based scoring. Assume that the KinomeXplorer
score for the interaction between kinase k to phosphosite p is x(k,p). We compute CophosK* score (i.e. M(k,p) ) for
phosphosite p and kinase k by combining CophosK score and KinomeXplorer score as follows:

M(k,p) = h(k,p) + log2(x(k,p)) (5)

As in CoPhosK, CoPhosK+ also computes M(k,p) for all phosphosite-kinase pairs, and ranks kinases for each phosphosites
such that a larger value of M(k,p) indicates that k is more likely to be a kinase that phosphorylates p.

Running PUEL. We downloaded the jar file provided byYang et al. and used the default parameters as initial parameters
(Size of ensemble = 50, kernel type = radial) . For each kinase, we run PUEL on our data using the known kinase-substrate
interactions downloaded from PhosphoSitePlus as the training set. Then, for each phosphosite, we rank the kinases using
the computed scores.
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