

1 Laboratory and Molecular Surveillance of Paediatric Typhoidal *Salmonella* in

2 Nepal: Antimicrobial Resistance and Implications for Vaccine Policy

4 Carl D Britto^{1*}, Zoe A Dyson^{2*}, Sebastian Duchene², Michael J Carter¹, Meeru
5 Gurung³, Dominic F Kelly¹, David Murdoch⁴, Imran Ansari³, Stephen Thorson³,
6 Shrijana Shrestha³, Neelam Adhikari³, Gordon Dougan⁵, Kathryn E Holt^{2**}, Andrew J
7 Pollard^{1**}

8 1. Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the
9 NIHR Oxford Biomedical Research Centre, Oxford, UK, OX3 7LE.

10

11 2. Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and
12 Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia

13

14 3. Oxford University Clinical Research Unit-Patan Academy of Health Sciences,
15 Nepal

16

¹⁷ 4. University of Otago, Christchurch, New Zealand

18

19 5. Wellcome Trust Sanger Institute and the Department of Medicine, Cambridge
20 University, United Kingdom.

21

* CDB and ZAD contributed equally to this manuscript as first authors

23 ** KEH and AJP are joint senior authors

24

25 Corresponding author: Carl D Britto

26 Contact information: carl.britto@paediatrics.ox.ac.uk

27 Oxford Vaccine Group, Department of Paediatrics,
28 University of Oxford, Oxfordshire, United Kingdom

29

30

31

32 **Abstract**

33 **Background**

34 Children are substantially affected by enteric fever in most settings with a high burden
35 of the disease, which could be due to immune naivety, or enhanced risk of exposure to
36 the pathogen. Although Nepal is a high burden setting for enteric fever, the bacterial
37 population structure and transmission dynamics are poorly delineated in young
38 children, the proposed target group for immunization programs.

39

40 **Methods**

41 Blood culture surveillance amongst children aged 2 months to 15 years of age was
42 conducted at Patan Hospital between 2008 and 2016. A total of 198 *S. Typhi* and 66
43 *S. Paratyphi A* isolated from children treated in both inpatient and outpatient settings
44 were subjected to whole genome sequencing and antimicrobial susceptibility testing.
45 Demographic and clinical data were also collected from the inpatients. The resulting
46 data were used to place these paediatric Nepali isolates into a worldwide context,
47 based on their phylogeny and carriage of molecular determinants of antimicrobial
48 resistance (AMR).

49

50 **Results**

51 Children aged ≤ 4 years made up $>40\%$ of the inpatient population. The majority of
52 isolates (78 %) were *S. Typhi*, comprising several distinct genotypes but dominated
53 by 4.3.1 (H58). Several distinct *S. Typhi* genotypes were identified, but the globally
54 disseminated *S. Typhi* clade 4.3.1 (H58) dominated. The majority of isolates (86%)
55 were insusceptible to fluoroquinolones. This was mainly associated with *S. Typhi*
56 H58 Lineage II and *S. Paratyphi A*; non-susceptible strains from these two genotypes
57 accounted for 50% and 25% of all enteric fever cases. Multi-drug resistance (MDR)
58 was rare (3.5% of *S. Typhi*, 0 *S. Paratyphi A*) and restricted to chromosomal
59 insertions of AMR genes in H58 lineage I strains. Comparison to global data sets
60 showed the local *S. Typhi* and *S. Paratyphi A* strains had close genetic relatives in
61 other South Asian countries, indicating regional strain circulation.

62

63 **Conclusions**

64 These data indicate that enteric fever in Nepal continues to be a major public health
65 issue with ongoing inter- and intra-country transmission, and highlights the need for

66 regional coordination of intervention strategies. The absence of a *S. Paratyphi A*
67 vaccine is cause for concern, given its prevalence as an enteric fever agent in this
68 setting, and the large proportion of isolates displaying fluoroquinolone resistance.
69 This study also highlights an urgent need for routine laboratory and molecular
70 surveillance to monitor the epidemiology of enteric fever and evolution of
71 antimicrobial resistance within the bacterial population as a means to facilitate public
72 health interventions in prevention and control of this febrile illness.
73

74 **Introduction**

75 As in most developing countries, invasive bacterial infections account for a
76 significant proportion of paediatric morbidity and mortality in Nepal^{1,2}. Enteric fever,
77 caused by *Salmonella enterica* serovars Typhi (*S. Typhi*) and Paratyphi A (*S.*
78 *Paratyphi A*), is the most common cause of bloodstream infection in Nepal^{1,2} and on a
79 global scale causes an estimated 26 million cases of enteric fever annually of which a
80 large proportion are in children^{3,4}. In Nepal, it is estimated that 13% of febrile
81 paediatric cases attending outpatient care are blood culture positive for *S. Typhi* or
82 *Paratyphi A*². Single nucleotide polymorphism (SNP) genotyping of *S. Typhi* isolated
83 in a study of paediatric enteric fever cases at Patan Hospital in Kathmandu, Nepal
84 during 2005 and 2006 suggested that, among children treated as inpatients, those aged
85 ≤ 4 years were susceptible to a wider range of haplotypes due to immune naivety⁵. The
86 most common genotype was H58 lineage II (70%), followed by H42 (19%)⁵. Another
87 study of adults and children at Patan Hospital from 2005 to 2009 found that 26% of
88 culture-positive cases were associated with *S. Paratyphi A*; the rest were caused by *S.*
89 *Typhi*, mainly H58 lineage II (61%) or other H58 (3%), or H42 (15%)⁶. More
90 recently, whole genome sequencing (WGS) was applied to study *S. Typhi* isolates
91 collected during a randomized controlled trial of gatifloxacin vs ceftriaxone for
92 treatment of blood culture confirmed enteric fever at Patan Hospital between 2011
93 and 2014, and found the H58 genotype continued to dominate the circulating *S. Typhi*
94 population (83%)⁷.

95

96 Multi-drug resistant (MDR) *S. Typhi*, defined as resistant to the first-line antibiotics
97 ampicillin, chloramphenicol and co-trimoxazole, became common in the Indian
98 subcontinent in the 1990s⁸, driven by the spread of H58 carrying an IncHI1 plasmid
99 harbouring a suite of antimicrobial resistance (AMR) genes⁹. These *S. Typhi* strains
100 are still circulating in the region, including in India, Pakistan and Bangladesh. In this
101 setting there is also evidence of migration of the AMR genes to the *S. Typhi*
102 chromosome, and acquisition of additional resistance to fluoroquinolones and third-
103 generation cephalosporins, which further limits treatment options in the region¹⁰.
104 However in Nepal, the MDR H58 *S. Typhi* appears to have been replaced by non-
105 MDR H58 *S. Typhi* carrying the S83F mutation in *gyrA* and other mutations in the
106 quinolone resistance determining region (QRDR) associated with reduced
107 susceptibility to fluoroquinolones^{5,6}; and more recently the introduction of

108 fluoroquinolone resistant H58 *S. Typhi*, likely from India, resulting in failure of
109 gatifloxacin treatment⁷. *S. Paratyphi A* in Nepal is generally not MDR, but frequently
110 carries fluoroquinolone non-susceptibility alleles in *gyrA* and *parC*.¹¹⁻¹³

111

112 Given the current treatment complexities of paediatric enteric fever, vaccination
113 would seem the most feasible short-term strategy. There is no vaccine against *S.*
114 *Paratyphi A*, which accounts for approximately a quarter of disease cases in Nepal.
115 The Vi polysaccharide vaccine against *S. Typhi* is not effective in children under two
116 years of age¹⁴, and has therefore not been deployed as part of the national
117 immunization schedule in Nepal and is only available privately. While the Vi
118 conjugate vaccines have the potential to reduce the incidence of enteric fever in
119 Nepal, the immunization approach and schedule needs to be clearly defined. This
120 study sheds light on the age distribution of affected inpatient children at Patan
121 Hospital, and the molecular structure and AMR determinants of circulating bacterial
122 pathogen populations causing paediatric enteric fever from 2008 to 2016 in Nepal,
123 with the view of informing preventive strategies including vaccine policy.

124

125 **Methods**

126 ***Ethics statement***

127 Ethical approval was obtained from the Oxford Tropical Research Ethics Committee
128 (OxTREC) as well as local institutional approval from the Nepal Health Research
129 Council (R31579/CN007).

130

131 ***Study Setting***

132 Nepal is a low income¹⁵, landlocked Himalayan nation with an under-five year old
133 mortality rate of 35.8 per 1000 live births as of 2015¹⁶. Kathmandu Valley, the main
134 urban centre of Nepal, has three districts and a population of 2.5 million¹⁷ (average
135 population density: 2,372/km²) of which 31% are between 0-14 years under age¹⁸.
136 Over the course of the study, the Patan Academy of Health Sciences (PAHS) was one
137 of only two large hospitals in Kathmandu Valley with referral and paediatric intensive
138 care services. Patan Hospital accepts patients from all over the Valley. Annually the
139 paediatric department cares for over 50,000 outpatients (21% of all hospital outpatient
140 attendances) and accepts approximately 2,700 inpatient admissions. Only 10% of the
141 patients reside outside Kathmandu Valley.

142

143 ***Surveillance of culture confirmed enteric fever amongst inpatients***

144 Febrile children under 14 years of age, attending PAHS with clinical suspicion of
145 invasive bacterial disease between January 2008 and December 2016 were included in
146 an invasive bacterial disease database as described previously¹⁹. Inclusion criteria
147 were: clinical presentation indicating an invasive bacterial infection requiring
148 inpatient care with intravenous antibiotics. Blood culture was conducted as described
149 below. Of the patients included in the database, all those that had blood cultures
150 positive for *S. Typhi* or *S. Paratyphi A* were included in the present study, along with
151 relevant demographic data. A random collection of 67 *S. Typhi* isolates and 17 *S.*
152 *Paratyphi A* isolates were selected for whole genome sequencing; these represent
153 isolates associated with the severe spectrum of paediatric enteric fever presenting to
154 the hospital.

155

156 ***Isolates collected from outpatients***

157 Children with milder clinical presentations who are usually treated with oral
158 antibiotics as outpatients were not included in the invasive bacterial disease database;

159 however they are subjected to the same microbiological diagnostic procedures as
160 inpatients (as detailed below). A total of 1283 *S. Typhi* and 926 *S. Paratyphi A*
161 isolates from paediatric outpatients were stored between 2008 and 2016; every 10th *S.*
162 *Typhi* isolate and every 5th *S. Paratyphi A* isolate were included in this current study,
163 representing isolates associated with milder presentation of paediatric enteric fever at
164 the hospital.

165

166 ***Blood culture processing***

167 Aerobic blood culture bottles were used to culture 3-5 mL of blood, which were then
168 incubated in a BD Bactec FX 40 incubator at 37°C for a maximum of 5 days. Turbid
169 samples were then inoculated directly onto MacConkey agar and incubated for
170 maximum of 5 days at 37°C to identify potential *S. Typhi* and *S. Paratyphi A*
171 colonies. Candidate *S. Typhi* and *S. Paratyphi A* isolates were further subjected to
172 standard biochemical tests for additional confirmation²⁰.

173

174 ***Antimicrobial susceptibility testing***

175 Antimicrobial susceptibility profiles were gauged by Kirby-Bauer disk diffusion tests.
176 The CLSI (Clinical and Laboratory Standards Institute) guidelines were used to
177 evaluate zones of inhibition for chloramphenicol, co-amoxiclav, co-trimoxazole,
178 cefexime, ceftriaxone, azithromycin, nalidixic acid, and ciprofloxacin²¹. Isolates
179 displaying sensitivity to the tested antimicrobials as per the cut-off values in the CLSI
180 guidelines were designated as susceptible and those that were intermediate (I) or
181 resistant (R) to the tested antimicrobials were designated as insusceptible.

182

183 ***Genome sequencing and SNP analysis***

184 Briefly, DNA was extracted using the Wizard Genomic DNA Extraction Kit
185 (Promega, Wisconsin, USA), according to manufacturers instructions. Genomic DNA
186 was then subjected to indexed whole genome sequencing on an Illumina Hiseq 2500
187 platform at the Wellcome Trust Sanger Institute to generate paired-end reads of 100-
188 150 bp in length.

189

190 For analysis of SNPs in *S. Typhi*, Illumina reads were mapped to the reference
191 genome sequence of strain CT18²² (accession AL515582) using the RedDog
192 (V1beta.10.3) mapping pipeline, available at <https://github.com/katholt/RedDog>.

193 RedDog uses Bowtie (v2.2.9)²³ to map reads to the reference sequence; uses
194 SAMtools (v1.3.1)²⁴ to identify SNPs with phred quality scores above 30; filters out
195 those supported by <5 reads or with >2.5 times the average read depth (representing
196 putative repeated sequences), or with ambiguous consensus base calls. For each SNP
197 that passed these criteria in any one isolate, consensus base calls for the SNP locus
198 were extracted from all genomes (ambiguous base calls and those with phred quality
199 scores less than 20 were treated as unknowns and represented with a gap character).
200 These SNPs were used to assign isolates to previously defined lineages according to
201 an extended *S. Typhi* genotyping framework²⁵ (code available at
202 <https://github.com/katholt/genotyphi>). For phylogenetic analyses, SNPs with
203 confident homozygous allele calls (i.e. phred score >20) in >95% of the *S. Typhi*
204 genomes (representing a ‘soft’ core genome of common *S. Typhi* sequences) were
205 concatenated to produce an alignment of alleles at 233,527 variant sites. SNPs called
206 in phage regions, repetitive sequences (354 kb; ~7.4% of bases in the CT18 reference
207 chromosome, as defined previously) or in recombinant regions identified using
208 Gubbins (v2.0.0)²⁶ were excluded, resulting in a final set of 2,187 SNPs identified in
209 an alignment length of 4,809,037 bp for the 198 novel Nepali *S. Typhi* isolates. SNP
210 alleles from *S. Paratyphi* A strain AKU_12601²⁷ (accession FM200053) were also
211 included as an outgroup to root the tree.

212

213 To provide regional context, genome data from: (i) a published study of mainly
214 Nepali adults⁷ (n=95), (ii) a global *S. Typhi* genome collection²⁵ (n=1,221); were
215 subjected to SNP calling and genotyping, resulting in an alignment of 12,216 SNPs
216 for a total of 1,514 isolates. Details and accession numbers of sequence data included
217 in our analysis have been included in **Supplementary Tables 1 & 2**. An additional
218 analysis of all 261 H58 (genotype 4.3.1) from Nepal was carried out in the same
219 manner, resulting in an alignment of 631 SNPs.

220

221 To characterize and analyse the genomes of the 66 *S. Paratyphi* A strains, a similar
222 bioinformatic process was adopted using *S. Paratyphi* A AKU_12601²⁷ (accession no:
223 FM200053) as the reference genome to create an alignment with another selected 176
224 isolates from previous studies²⁸⁻³⁰, for global context resulting in an alignment of
225 5,277 SNPs in a total of 242 *S. Paratyphi* isolates, with alleles from *S. Typhi* CT18²²
226 (accession no: AL515582) included as an outgroup to root the tree.

227 ***Phylogenetic analysis***

228 Maximum likelihood (ML) phylogenetic trees were inferred from SNP alignments
229 using RAxML (v8.1.23)³¹, with the generalized time-reversible model, a Gamma
230 distribution to model site-specific rate variation (the GTR+ Γ substitution model;
231 GTRGAMMA in RAxML), and 100 bootstrap pseudo-replicates to assess branch
232 support. The resulting trees were visualized using Microreact³² and the R package
233 ggtree³³. For visualization purposes, *S. Typhi* isolates representing ‘outbreaks’
234 (defined as members of the same monophyletic clade, isolated from the same study
235 location in the same year) were manually thinned to a single representative.

236

237 ***Temporal analysis***

238 To investigate the temporal signal and emergence dates of antimicrobial resistance
239 determinants for Nepali *S. Typhi* 4.3.1, we used several methods. First, we used
240 TempEst (v1.5)³⁴ to assess temporal structure (i.e. whether the data have clocklike
241 behavior) by conducting a regression of the root-to-tip branch distances of the Nepal
242 H58/4.3.1 ML tree as a function of the sampling time, using the heuristic residual
243 mean squared method with the best-fitting root selected. The resultant data were then
244 visualized in R³⁵. To estimate divergence times we analysed the sequence data in
245 BEAST2 (v2.4.7)³⁶. We used both constant-coalescent population size and Bayesian
246 skyline tree priors, in combination with either a strict molecular clock model or a
247 relaxed (uncorrelated lognormal distribution) clock model to identify the model that
248 best fits the data. For the BEAST2 analysis the GTR+ Γ substitution model was
249 selected, and the sampling times (tip dates) were defined as the year of isolation to
250 calibrate the molecular clock. For all model and tree prior combinations, a chain
251 length of 100,000,000 steps sampling every 5000 steps was used³⁷. The relaxed
252 (uncorrelated lognormal) clock model, which allows evolutionary rates to vary among
253 branches of the tree together with the skyline demographic model, proved to be the
254 best fit for the data. To assess the signal of these Bayesian estimates we conducted a
255 date-randomization test whereby sampling times were assigned randomly to the
256 sequences, and the analysis re-run 20 times^{37,38}. These randomization tests were
257 conducted with the same ‘best fit’ models (uncorrelated lognormal clock and skyline
258 demographic). This test suggested that the data display ‘strong’ temporal structure³⁷.

259

260 For the final analysis reported here, 5 independent runs conducted with a chain length
261 of 600,000,000 states, sampling every 300,000 iterations, were combined using
262 LogCombiner (v2.4.7)³⁶ following removal of the first 10% of steps from each as
263 burn-in. Maximum-clade credibility (MCC) trees were generated with ‘keep target
264 heights’ specified for node heights using TreeAnnotator (v2.4.7)^{36,39}. The effective
265 sample sizes from the combined runs were estimated to be >200 for all reported
266 parameters.

267

268 ***In silico resistance plasmid and AMR gene analysis***

269 The mapping based allele typer SRST2⁴⁰ was used to detect plasmid replicons and
270 acquired AMR genes and determine their precise alleles, by comparison to the ARG-
271 Annot⁴¹ and ResFinder⁴² databases (for AMR genes) and PlasmidFinder⁴¹ (for
272 plasmid replicons). Where AMR genes were observed without evidence of a known
273 resistance plasmid, raw read data was assembled *de novo* with SPAdes (v3.7.1)⁴³ and
274 Unicycler (v0.3.0b)⁴⁴ and examined visually using the assembly graph viewer
275 Bandage (0.8.1)⁴⁵ to inspect the composition and insertion sites of resistance-
276 associated transposons. These putative transposon sequences were annotated using
277 Prokka (v1.11)⁴⁵ followed by manual curation, and visualized using the R package
278 *genoPlotR*⁴⁵. SNPs in the QRDR of *gyrA*, *gyrB*, *parC* and *parE* genes, which are
279 associated with reduced susceptibility to fluoroquinolones in *S. Typhi*, *S. Paratyphi A*
280 and other species⁷, were extracted from the whole genome SNP alignments.

281

282 ***Nucleotide sequence and read data accession numbers***

283 Raw sequence data have been deposited in the European Nucleotide Archive under
284 project PRJEB14050; and individual accession numbers are listed in **Supplementary**
285 **Tables 1–2.** Genome assemblies for isolates RN2293 and RN2370 were deposited in
286 GenBank.

287

288 **Results**

289 ***Paediatric enteric fever surveillance***

290 Blood cultures were performed on 11,430 children with a suspected invasive bacterial
291 infection and requiring inpatient care with intravenous antibiotics and supportive care.
292 Of these, 129 had blood cultures positive for the enteric fever agents *S. Typhi* (n=102,
293 79%) or *S. Paratyphi A* (n=27, 21%). Relevant patient characteristics are reported in

294 **Table 1.** Most cases of culture-confirmed enteric fever (n=83, 64%) occurred between
295 the hot and rainy months of May and October. However, a substantial proportion
296 (36%) of cases also occurred in colder months, indicating perennial transmission.
297 Children under 5 years of age accounted for 45% of the disease burden among
298 inpatients, with children under 2 years of age accounting for 18% (**Table 1**). Clinical
299 suspicion of enteric fever at presentation was significantly lower amongst children
300 under 2 years with culture-confirmed infection (13% vs. 52%, p=0.0005 using
301 Fisher's exact test; **Table 1**), highlighting the undifferentiated febrile nature of the
302 disease even in an endemic setting such as Nepal.
303
304
305
306
307

Table 1. Hospital based (inpatient) paediatric enteric fever surveillance

Total blood cultures performed	11430			
Total number of significant cultures	1048 (9.2%)			
Total number of enteric fever pathogens	129 (1.1%) 102 (0.9%) <i>S. Typhi</i> 27 (0.2%) <i>S. Paratyphi A</i>			
Age stratified characteristics of blood-culture positive enteric fever patients				
Age groups	<2 y	2-4 y	5-9 y	10-14 y
Number	23	35	39	31
Median age (years)	1.2	3.3	6.8	11.8
Male (%)	16 (70%)	23 (66%)	24 (62%)	18 (58%)
Median temperature at admission (C°) (range)	37.2 (36.7-38.9)	38.3 (36.5-39.9)	38.9 (36.1-40.5)	37.2 (36.5-39.2)
Median duration of admission (days) (range)	6 (2-23)	6.5 (1-19)	8 (2-36)	7.5 (3-20)
Enteric fever suspicion on admission (%)	3 (13%)	17 (49%)	19 (49%)	19 (61%)

308

309

310

311

312

313

314

315 ***Phylogenetic structure of paediatric isolates from Nepal***

316 The genomes of *S. Typhi* isolated from inpatient surveillance (n=67) and a random
317 selection of isolates from outpatients (n=131) were sequenced and subjected to SNP
318 genotyping and phylogenomic analysis as described in **Methods**. The resulting
319 phylogeny (**Figure S1**) revealed the presence of 8 distinct genotypes, each
320 corresponding to a different subclade including 2.0.0 (N=1, 0.5%) 2.2.0 (N=10, 5%),
321 2.3.4 (N=2, 1%), 3.2.2 (N=6, 3%), 3.3.0 (N=19, 9.6%), 3.3.1 (N=3, 1.5%), 4.1.0
322 (N=3, 1.5%), and 4.3.1 (N=154, 77.8%). There was no significant association
323 between genotype and treatment status (outpatient vs. inpatient), period of isolation
324 (**Figure 1A**) or patient age (**Figure 1B**).

325 **Figure 1: Nepal paediatric *S. Typhi* genotypes.** (A) Genotypes observed per
326 annum. (B) Genotypes observed per age in years. Individual *S. Typhi* genotypes are
327 coloured as described in the inset legend.

328

329 To place the novel paediatric isolates in context, we constructed a whole genome
330 phylogeny including other *S. Typhi* previously sequenced from adults in Nepal, and a
331 global collection of *S. Typhi* (**Figure 2**; an interactive version of the phylogeny and
332 associated geographical data are also available for exploration online at
333 <https://microreact.org/project/SJmU6dhlz>). The novel paediatric isolates clustered
334 together with the adult isolates from Nepal, with no evidence of certain genotypes
335 circulating in children more so than adults. In comparison to global isolates, Nepali
336 isolates clustered with those from other regions in the Indian subcontinent, suggesting
337 ongoing transmission within the region (**Figure 2**); indeed 14% of the novel Nepali
338 paediatric isolates and 15% of the previously sequenced Nepali isolates were closest
339 to an isolate from outside Nepal (majority from neighbouring India, Bangladesh or
340 Pakistan), indicating frequent pathogen transfer within the region.

341

342 We used the same approach to investigate genome variation amongst 66 *S. Paratyphi*
343 A isolated from inpatients (n=17) and outpatients (n=49) in Nepal, in the context of
344 globally representative genome diversity (**Figure 3**; interactive version available at
345 <https://microreact.org/project/rk2ec5mWM>). The Nepali *S. Paratyphi* A population
346 was far less diverse than that of *S. Typhi*; most belonged to lineage A and clustered
347 into two distinct subgroups, which we designated sublineages A1 and A2 (see **Figure**
348 **3**). Akin to *S. Typhi*, the global context of *S. Paratyphi* A also revealed close

349 clustering with isolates from other regions in the Indian subcontinent and China,
350 which where *S. Paratyphi A* infections occur at high prevalence.

351

352 **Antimicrobial resistance (AMR)**

353 Amongst the paediatric isolates analysed in this study, most *S. Typhi* isolates (96%)
354 and all *S. Paratyphi A* were susceptible to traditional first-line antibiotics co-
355 trimoxazole, ampicillin and chloramphenicol (**Figure 4**). Most (86%) of *S. Typhi* and
356 all the *S. Paratyphi A* of isolates were insusceptible to the fluoroquinolone
357 ciprofloxacin (assessed by disk diffusion; **Figure 4**). MDR was observed in six *S.*
358 *Typhi* (3%) and no *S. Paratyphi A*. There were no differences in the frequency of
359 MDR or fluoroquinolone insusceptibility between the paediatric inpatients and
360 outpatients (OR for MDR = 0.97, 95% CI 0.23 – 4.00; and OR for fluoroquinolone
361 insusceptibility = 1.23, 95% CI 0.62 – 2.44).

362

363 Genetic determinants of AMR detected in the paediatric isolates are summarized in
364 **Table 2**. All *S. Paratyphi A* (besides the single lineage C4 isolate) carried the *gyrA*
365 S83F mutation responsible for nalidixic acid resistance and fluoroquinolone
366 insusceptibility. *S. Typhi* isolates displaying fluoroquinolone insusceptibility
367 harboured known QRDR SNPs (**Table 2**); these included isolates of genotypes 4.3.1
368 (*gyrA* SNPs), 3.3.0 (*parE* SNPs), and 3.3.1 (*gyrA* and *parE* SNPs, see **Figure S1**).
369 Sixteen *S. Typhi* isolates (all genotype 4.3.1) were QRDR ‘triple mutants’, which are
370 associated with failure to respond to fluoroquinolone therapy⁷. All MDR isolates
371 (n=6) belonged to *S. Typhi* genotype 4.3.1 and harboured the acquired AMR genes
372 *catA*, *dfrA7*, *sul1*, *sul2*, *strA*, *strB* and *blaTEM-1*, conferring resistance to
373 chloramphenicol, co-trimoxazole, streptomycin and ampicillin. An additional
374 genotype 4.3.1 isolate carried a subset of four of these genes (*sul2*, *strA*, *strAB* and
375 *blaTEM-1*) and displayed resistance to ampicillin but was sensitive to co-trimoxazole
376 and chloramphenicol (consistent with the lack of *dfr* and *cat* genes). Acquired AMR
377 genes were not detected amongst the *S. Paratyphi A*.

378

Table 2. Genetic determinants of antimicrobial resistance in paediatric isolates from Nepal

	<i>S. Typhi</i>	<i>S. Paratyphi A</i>
--	-----------------	-----------------------

Total isolates	198	66
QRDR	164 (82.8%)	65 (98%)
<i>gyrA</i> S83F	143 (72%)	65 (98%)
<i>gyrA</i> S83F only	15 (7.6%)	0
<i>gyrA</i> S83F, <i>gyrA</i> D87N	16 (8.1%)	0
<i>gyrA</i> S83F, <i>gyrA</i> D87N, <i>parC</i> S80I	15 (7.6%)	0
<i>gyrA</i> S83F, <i>gyrA</i> D87N, <i>parC</i> E84G	1 (0.5%)	0
<i>gyrA</i> S83F, <i>parC</i> E84G	1 (0.5%)	0
<i>gyrA</i> S83F, <i>parE</i> A364V	5 (2.5%)	0
<i>gyrA</i> S83Y only	6 (3%)	0
<i>parE</i> A364V only	15 (7.6%)	0
Acquired AMR genes	7 (3.5%)	0
<i>blaTEM-1</i> , <i>strAB</i> , <i>sul2</i>	1 (0.5%)	0
<i>catA1</i> , <i>dfrA7</i> , <i>sull</i> , <i>blaTEM-1</i> , <i>strAB</i> , <i>sul2</i> (+ <i>gyrA</i> S83F)	4 (2%)	0
<i>catA1</i> , <i>dfrA7</i> , <i>sull</i> , <i>blaTEM-1</i> , <i>strAB</i> , <i>sul2</i> (+ <i>gyrA</i> S83Y)	2 (1%)	0

379

380

381

382

383 The full suite of seven acquired AMR genes are common amongst *S. Typhi* globally and are
384 typically located within a composite transposon, comprising Tn6029 (*sul2*, *strA*, *strAB* and
385 *bla_{TEM-1}*) and Tn21 (*dfrA7*, *sul1*) inserted within Tn9 (*catA*), which is most often carried on
386 IncHI1 plasmids⁹. Here, all MDR isolates carried this typical composite transposon, inserted
387 in the chromosome between genes STY3618 and STY3619 and associated with an 8 bp target
388 site duplication (GGTTTAGA), consistent with integration mediated by the flanking IS1
389 transposases of Tn9 (see **Figure 5**). The additional ampicillin resistant isolate carried only
390 transposon Tn6029, which was inserted directly into the chromosomal pseudogene *slrP* and
391 associated with an 8 bp target site duplication (TAGCTGAT), consistent with integration
392 mediated by the flanking IS26 transposases of Tn6029.

393

394 ***Evolutionary history of AMR S. Typhi 4.3.1 in Nepal***

395 We constructed a dated phylogeny of all available *S. Typhi* 4.3.1 from Nepal, using BEAST2
396 (**Figure 6**, interactive version available at <https://microreact.org/project/rJnfyOGxG>). This
397 analysis yielded a local substitution rate of 0.8 SNPs per genome per year (95% highest
398 posterior density (HPD), 0.5 – 1.1) or 1.7×10^{-7} genome-wide substitutions per site per year
399 (95% HPD, 1.1×10^{-7} – 2.4×10^{-7}). The data showed strong temporal structure to support these
400 results (see **Methods** and **Figure S2**), which were consistent with previous estimates for
401 global *S. Typhi* 4.3.1¹⁰. We estimated the most recent common ancestor (mrca) for all *S.*
402 *Typhi* 4.3.1 in Nepal existed circa 1993, similar to the mrca estimated globally for *S. Typhi*
403 4.3.1, which is predicted to have emerged in neighbouring India¹⁰.

404

405 Both of the previously described sublineages of *S. Typhi* 4.3.1 (I and II) were present
406 amongst the Nepali isolates, however (i) lineage II was far more common (67% vs. 10% of
407 paediatric isolates from this study; 68% vs 10% of isolates from other studies); and (ii) the
408 lineages were associated with different AMR patterns (**Figure 6**): lineage I was associated
409 with MDR (59% of lineage I vs 0 lineage II, $p < 1 \times 10^{-15}$), while lineage II was associated with
410 QRDR mutations (99% of lineage II vs 50% of lineage I, $p < 1 \times 10^{-15}$). The majority of isolates
411 formed a local monophyletic clade that was not detected in other countries in the global
412 collection, indicative of local clonal expansion in Nepal. The relative proportion of local *S.*
413 *Typhi* infections caused by lineage II increased after 2010 (40% pre-2010 vs 74% from 2011
414 onwards, $p = 1 \times 10^{-7}$), suggesting clonal replacement of the MDR-associated Lineage I with the
415 expansion of the quinolone resistance-associated Lineage II over time.

416

417 Most of the ciprofloxacin resistant triple mutant isolates harboured *gyrA* S83F, *gyrA* D87N,
418 and *parC* S80I and formed a monophyletic subclade of lineage II, together with those
419 previously reported as associated with gatifloxacin failure during the treatment trial in 2013-
420 2014⁷. We dated the mrca of this subclade to 2008 (95% HPD, 1998–2011; see **Figure 6**),
421 and comparison to the global tree confirmed it most likely originated in India⁷ and was
422 introduced to Nepal at least twice (see **Figure 2B**). We also identified a distinct ciprofloxacin
423 resistant triple mutant (harbouring *gyrA* S83F, *gyrA* D87G, and *parC* E84G) that was isolated
424 from a five-year old girl in 2011. This was also *S. Typhi* 4.3.1 lineage II but shared no
425 particularly close relatives in the Nepali or global collections (**Figure 2B**, **Figure 6**).
426

427 All isolates with acquired AMR genes belonged to Lineage I: one cluster of IncH1 plasmid-
428 containing isolates (from a previous study conducted by Thanh et al 2016) with a mean tmrca
429 of 2004 (95% HPD, 1996-2007); two related clusters with the composite transposon inserted
430 in the chromosome after STY3618, with mean tmrca 2001 (95% HPD, 1995-2009); and one
431 cluster with Tn6029 inserted in the chromosome, with mean tmrca 2003 (95% HPD, 1997-
432 2010) (see **Figure 6**).
433

434 **Discussion**

435
436 These data show that there is a substantial burden of enteric fever amongst children in Nepal
437 (**Table 1**), the majority of which (86%) is insusceptible to fluoroquinolones (**Table 2**).
438 Genomic analysis revealed substantial diversity within the local pathogen population (**Figure**
439 **1 & S1**), with evidence of transfer of *S. Typhi* and *S. Paratyphi* A between Nepal and
440 neighbouring countries in South Asia (**Figures 2 and 3**), and intermingling of isolates from
441 adults and children consistent with transmission across age groups (**Figure 2**). Data from
442 2005-2006 suggested that younger children were more susceptible to a wider range of
443 genotypes, a phenomenon attributed to a naïve immune response⁵. A decade later this
444 tendency seems to have shifted towards a more pathogen driven trend as seen in **Figure 1**,
445 which shows the *S. Typhi* 4.3.1 genotype is dominant regardless of the age of the host. This is
446 consistent with recent mathematical modeling of historical enteric fever patterns in this
447 setting, which identified the introduction of AMR 4.3.1, as well as an increase in migration of
448 immunologically naïve 15-25 year olds from outside the Kathmandu Valley, as key drivers of
449 the local typhoid problem⁴⁶.
450

451 The high frequency of fluoroquinolone insusceptibility is attributable to indiscriminate and
452 uncontrolled use of antimicrobials, which since the turn of the century have been used to treat
453 a range of infections common in the tropics in addition to enteric fever. Fluoroquinolone
454 insusceptibility has been observed locally⁷, associated with mutations in *gyrA* and *parC*. Our
455 data show that the problem of fluoroquinolone insusceptible enteric fever in Nepali children
456 is mainly driven by two locally established pathogen variants, namely *S. Typhi* 4.3.1 (H58)
457 Lineage II harbouring the *gyrA*-S83F mutation (accounting for 50% of all enteric fever, 57%
458 of non-susceptible cases, and 66% of all *S. Typhi*) and *S. Paratyphi* A clade A harbouring the
459 *gyrA*-S83F mutation (accounting for 25% of enteric fever, 28% of non-susceptible cases, and
460 98% of all *S. Paratyphi* A). These strains have been present since the increase in local case
461 numbers began in 1997, and their arrival likely contributed to the increased disease burden⁴⁶.
462 The universal fluoroquinolone resistance demonstrated by the *S. Paratyphi* A population is of
463 great concern particularly since a vaccine against paratyphoid fever is still in development.
464

465 Notably, the fully fluoroquinolone resistant triple mutant *S. Typhi* strain that was first
466 detected in local adults in 2013 and halted the gatifloxacin treatment trial was still causing in
467 disease in Nepali children in 2015-2016, but was rare (2.5% of cases in 2015-16) and showed
468 no signs of displacing the wider population that carries only the *gyrA*-S83F mutation (65% of
469 cases in 2015-16). This lack of clonal replacement is consistent with the presence of a single,
470 distinct, triple mutant *S. Typhi* strain isolated from a 5-year old girl in 2011, which had no
471 descendant strains detected amongst the 126 cases examined from 2012-16, suggesting it has
472 not spread within the local human population. The lack of fully resistant *S. Paratyphi* A is
473 also notable. It has been shown that the *gyrA*-S83F mutation is not associated with a fitness
474 cost in *S. Typhi* and can be maintained in the absence of direct selection from
475 fluoroquinolones; however our data suggest the same is not true of the triple mutants, hence
476 limiting exposure to fluoroquinolones may at least control the spread of highly resistant
477 strains.
478

479 Acquired resistance to other antimicrobials was rare, and in the paediatric population was
480 associated only with *S. Typhi* 4.3.1 lineage I strains carrying chromosomally integrated AMR
481 genes (**Figure 6**). This has not been reported previously in the local population, where MDR
482 *S. Typhi* has typically been associated with plasmids⁴⁷. Here we identified at least two
483 distinct AMR gene integration events, that we estimate occurred contemporaneously with the
484 MDR plasmid circulating in the early 2000s (**Figure 6**). Although similar findings have also

485 been reported from *S. Typhi* strains in other neighbouring countries of India and
486 Bangladesh¹⁰, this is the first description in strains from Nepal. Notably, in addition to the
487 integration of the typical *S. Typhi* MDR composite transposon mediated by *IS1* transposase
488 genes of *Tn9*, we identified for the first time direct integration of *Tn6029* into the *S. Typhi*
489 chromosome (**Figure 5**), mediated by *IS26* and conferring ampicillin resistance in the
490 absence of resistance to chloramphenicol or co-trimoxazole.

491

492 The findings of this study supplement our understanding of enteric fever in an endemic
493 setting. The occurrence of disease in the <5 years population is in agreement with the other
494 multi-centre data from South Asia, underscoring the importance of understanding the disease
495 transmission dynamics and preventive strategies in the vulnerable population. The magnitude
496 of disease occurrence in this age group is still an underestimation for several reasons; clinical
497 suspicion of enteric fever in this age group is generally low as evidenced in these data and
498 this trend has also been reported in other endemic regions⁴⁸. The lack of clinical suspicion
499 leads to a lack of diagnostic testing, which is in itself, fraught with impediments to reliable
500 results. Blood culture, which is the feasible gold standard diagnostic performs poorly in this
501 population owing to the difficulty in obtaining the required amount of blood and due to pre-
502 treatment with antimicrobials prior to obtaining a blood sample. Despite the unique
503 challenges associated with diagnosing enteric fever in this population and the supposed lack
504 of exposure, reports from various endemic regions continue to reiterate the enormous burden
505 of enteric fever in pre-school children. Coupled with the problem of antimicrobial non-
506 susceptibility once a diagnosis is made, these difficulties highlight the urgent need for enteric
507 fever vaccines in children under 5. However vaccination options for these children are
508 limited due to the poor immunogenicity of the *Vi* polysaccharide vaccine in infants and the
509 difficulty in administering the *Ty21a* vaccine. Until the *Vi* conjugate vaccines are rolled out,
510 in addition to improving sanitation and providing clean water, antimicrobial treatment
511 remains the only short-term option for containing the disease in this age group.

512

513 Cephalosporins are currently the first-line treatment for enteric fever in Nepal. We did not
514 detect any cephalosporin non-susceptibility in these isolates, however it is anticipated that
515 this will emerge via the acquisition of plasmid-encoded extended-spectrum beta-lactamase
516 genes, as has recently been observed among *S. Typhi* isolates from neighbouring India and
517 Pakistan⁴⁹⁻⁵². Given the re-emergence of antimicrobial sensitivity to chloramphenicol and co-
518 trimoxazole as evidenced in this study, it may be logical to shift to these first-line drugs for

519 treating enteric fever; indeed there has already been a case report demonstrating efficacy of
520 co-trimoxazole treatment in the treatment of fluoroquinolone resistant H58 *S. Typhi* in this
521 setting⁵³. We acknowledge the possibility that typhoidal *Salmonella* strains will acquire
522 resistance to these antibiotics when re-introduced and the cycling of antimicrobials is seldom
523 sufficient to effectively prevent MDR in the long-term. However we propose this short-term
524 strategy might be commissioned until the typhoid conjugate vaccines are deployed, in order
525 to conserve cephalosporins and macrolides for the treatment of other tropical infections
526 which require higher-end antibiotics.

527

528 Conclusion

529 These data highlight the burden of enteric fever in children in Nepal while demonstrating the
530 importance of laboratory and molecular surveillance in endemic regions. Those under the age
531 of 5 years contributed most to the burden of enteric fever among inpatients who represent the
532 severe spectrum of disease. The substantial contribution of those less than 2 years emphasize
533 the urgent need for the Vi conjugate vaccine in regions such as Nepal where antimicrobial
534 therapy is currently the main modality against enteric fever. Antimicrobial non-susceptibility
535 continues to complicate management protocols and calls for prudent strategies aimed at
536 conserving the currently effective drugs while buying time for vaccine deployment. Finally,
537 the control of enteric fever in Nepal and South Asia requires a coordinated strategy given the
538 inter-country transmission that occurs with the Indian subcontinent. The Vi conjugate
539 vaccines offer the real possibility of controlling enteric fever but eradication will only
540 become a possibility when the immunization strategy is supplemented by the provision of
541 clean water and improved sanitation.

542

543 Acknowledgements, Funding and Conflicts of Interest.

544 CB is a Rhodes scholar, class of 2015 funded by the Rhodes trust. ZAD was supported by the
545 Wellcome Trust of Great Britain (106158/Z/14/Z). SD was supported by a McKenzie
546 Fellowship from the University of Melbourne. KEH was supported by the NHMRC of
547 Australia (Fellowship #1061409). GD is supported by the NIHR Cambridge, BRC and the
548 Wellcome trust. AJP is funded the NIHR Oxford, BRC and Wellcome trust. The authors also
549 wish to acknowledge the Gates foundation, which support enteric fever studies conducted by
550 our group in Nepal. The WGS sequencing of isolates in this study was funded by the
551 Wellcome Trust Strategic Award: “A strategic vision to drive the control of enteric fever
552 through vaccination”.

553 AJP has previously conducted studies on behalf of Oxford University funded by vaccine
554 manufacturers, but currently does not undertake industry funded clinical trials. AJP chairs the
555 UK Department of Health's (DH) Joint Committee on Vaccination and Immunisation (JCVI)
556 and is a member of the World Health Organisation Strategic Group of Experts (SAGE); the
557 views expressed in this manuscript do not necessarily reflect the views of JCVI, DH or
558 SAGE. The other authors have no conflicts of interest.

559

560

561 **References**

- 562 1 Kelly DF, Thorson S, Maskey M, *et al.* The burden of vaccine-preventable invasive
563 bacterial infections and pneumonia in children admitted to hospital in urban Nepal. *Int
564 J Infect Dis* 2011; **15**: e17–23.
- 565 2 Pradhan R, Shrestha U, Gautam SC, *et al.* Bloodstream Infection among Children
566 Presenting to a General Hospital Outpatient Clinic in Urban Nepal. *PLoS One* 2012; **7**.
567 DOI:10.1371/journal.pone.0047531.
- 568 3 Buckle GC, Walker CLF, Black RE. Typhoid fever and paratyphoid fever: Systematic
569 review to estimate global morbidity and mortality for 2010. *J Glob Health* 2012; **2**:
570 10401.
- 571 4 Azmatullah A, Qamar FN. Systematic review of the global epidemiology, clinical and
572 laboratory profile of enteric fever. *J Glob Health* 2015; **5**.
573 DOI:10.7189/jogh.05.020407.
- 574 5 Holt KE, Baker S, Dongol S, *et al.* High-throughput bacterial SNP typing identifies
575 distinct clusters of *Salmonella Typhi* causing typhoid in Nepalese children. *BMC
576 Infect Dis* 2010; **10**: 144.
- 577 6 Baker S, Holt KE, Clements ACA, *et al.* Combined high-resolution genotyping and
578 geospatial analysis reveals modes of endemic urban typhoid fever transmission. *Open
579 Biol* 2011; **1**: 110008.
- 580 7 Thanh DP, Karkey A, Dongol S, *et al.* A novel ciprofloxacin-resistant subclade of h58.
581 *Salmonella typhi* is associated with fluoroquinolone treatment failure. *Elife* 2016; **5**: 1–
582 13.
- 583 8 Ugboko H, De N. Mechanisms of Antibiotic resistance in *Salmonella typhi*.
584 *IntJCurrMicrobiolAppSci* 2014; **3**: 461–76.
- 585 9 Holt KE, Phan MD, Baker S, *et al.* Emergence of a globally dominant inchi1 plasmid
586 type associated with multiple drug resistant typhoid. *PLoS Negl Trop Dis* 2011; **5**.

587 DOI:10.1371/journal.pntd.0001245.

588 10 Wong VK, Baker S, Pickard DJ, *et al.* Phylogeographical analysis of the dominant
589 multidrug-resistant H58 clade of *Salmonella Typhi* identifies inter- and
590 intracontinental transmission events. *Nat Genet* 2015; published online May.
591 DOI:10.1038/ng.3281.

592 11 Chau TT, Campbell JI, Galindo CM, *et al.* Antimicrobial drug resistance of
593 *Salmonella enterica* serovar *typhi* in asia and molecular mechanism of reduced
594 susceptibility to the fluoroquinolones. *Antimicrob Agents Chemother* 2007; **51**: 4315–
595 23.

596 12 Wu W, Wang H, Lu J, *et al.* Genetic Diversity of *Salmonella enteric* serovar *Typhi* and
597 *Paratyphi* in Shenzhen, China from 2002 through 2007. *BMC Microbiol* 2010; **10**: 32.

598 13 Bharat P, Tuladhar NR. Multidrug-resistant and extended-spectrum beta-lactamase
599 (ESBL)-producing *Salmonella enterica* (serotypes *Typhi* and *Paratyphi A*) from blood
600 isolates in Nepal: surveillance of resistance and a search for newer alternatives. *Int J
601 Infect Dis* 2006; **10**: 434–8.

602 14 Date KA, Bentsi-Enchill A, Marks F, Fox K. Typhoid fever vaccination strategies.
603 *Vaccine* 2015; **33**: C55–61.

604 15 World Bank. datahelpdesk.worldbank.org.
605 Available:<https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world->
606 bank-country-and-lending-groups. .

607 16 Available at. UNICEF. [https://data.unicef.org/topic/child-survival/under-five-mortality/..](https://data.unicef.org/topic/child-survival/under-five-mortality/)

609 17 World Bank. Available at.
610 [http://www.worldbank.org/en/news/feature/2013/04/01/managing-nepals-urban-](http://www.worldbank.org/en/news/feature/2013/04/01/managing-nepals-urban-transition.)
611 transition. .

612 18 IndexMundi. Nepal Age Structure. IndexMundi.com. 2013.

613 19 Williams EJ, Thorson S, Maskey M, *et al.* Hospital-based surveillance of invasive
614 pneumococcal disease among young children in urban Nepal. *Clin Infect Dis* 2009; **48**.
615 DOI:10.1086/596488.

616 20 Services M. UK Standards for Microbiology Investigations. *Bacteriology* 2015; **B 55**:
617 1–21.

618 21 Matuschek E, Brown DFJ, Kahlmeter G. Development of the EUCAST disk diffusion
619 antimicrobial susceptibility testing method and its implementation in routine
620 microbiology laboratories. *Clin Microbiol Infect* 2014; **20**. DOI:10.1111/1469-

621 0691.12373.

622 22 Parkhill J, Dougan G, James KD, *et al.* Complete genome sequence of a multiple drug
623 resistant *Salmonella enterica* serovar Typhi CT18. *Nature* 2001; **413**: 848–52.

624 23 Langmead BSS. Fast gapped-read alignment with Bowtie 2. *Nat Commun* 2012; **9**:
625 357–9.

626 24 Li H, Handsaker B, Wysoker A, *et al.* The Sequence Alignment/Map format and
627 SAMtools. *Bioinformatics* 2009; **25**: 2078–9.

628 25 Wong VK, Baker S, Connor TR, *et al.* An extended genotyping framework for
629 *Salmonella enterica* serovar Typhi, the cause of human typhoid. *Nat Commun* 2016; :
630 1–11.

631 26 Croucher NJ, Page AJ, Connor TR, *et al.* Rapid phylogenetic analysis of large samples
632 of recombinant bacterial whole genome sequences using Gubbins. *Nucleic Acids Res*
633 2015; **43**: e15–e15.

634 27 Holt,K.E Thomson,N.R Wain,J., Langridge,G.C Hasan, R Bhutta,Z.A Quail,MA
635 Norbertczak,H. Walker,D Simmonds,M White,B Bason,N Mungall,K Dougan,G
636 Parkhill J. *Salmonella enterica* subsp. *enterica* serovar Paratyphi A str. AKU_12601
637 complete genome, strain AKU_12601. *Bioinformatics*. 2009; **25**: 2078–9.

638 28 Zhou Z, McCann A, Weill F-X, *et al.* Transient Darwinian selection in *Salmonella*
639 enterica serovar Paratyphi A during 450 years of global spread of enteric fever. *Proc*
640 *Natl Acad Sci U S A* 2014; **111**: 12199–204.

641 29 Yan M, Yang B, Wang Z, *et al.* A Large-Scale Community-Based Outbreak of
642 Paratyphoid Fever Caused by Hospital-Derived Transmission in Southern China. *PLoS*
643 *Negl Trop Dis* 2015; **9**: e0003859.

644 30 Kuijpers LMF, Le Hello S, Fawal N, *et al.* Genomic analysis of *Salmonella enterica*
645 serotype Paratyphi A during an outbreak in Cambodia, 2013-2015. *Microb genomics*
646 2016; **2**: e000092.

647 31 Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses
648 with thousands of taxa and mixed models. *Bioinformatics* 2006; **22**: 2688–90.

649 32 Argimón S, Abudahab K, Goater RJE, *et al.* Microreact: visualizing and sharing data
650 for genomic epidemiology and phylogeography. *Microb genomics* 2016; **2**: e000093.

651 33 Yu G, Smith DK, Zhu H, Guan Y, Lam TT-Y. ggtree: an r package for visualization
652 and annotation of phylogenetic trees with their covariates and other associated data.
653 *Methods Ecol Evol* 2017; **8**: 28–36.

654 34 Rambaut A, Lam TT, Max Carvalho L, Pybus OG. Exploring the temporal structure of

655 heterochronous sequences using TempEst (formerly Path-O-Gen). *Virus Evol* 2016; **2**:
656 vew007.

657 35 Core Team R. A language and environment for statistical computing. *R Found Stat*
658 *Comput Vienna, Austria* <http://www.r-project.org/>. (accessed Oct 31, 2017).

659 36 Bouckaert R, Heled J, Kühnert D, *et al.* BEAST 2: A Software Platform for Bayesian
660 Evolutionary Analysis. *PLoS Comput Biol* 2014; **10**: e1003537.

661 37 Duchêne S, Holt KE, Weill F-X, *et al.* Genome-scale rates of evolutionary change in
662 bacteria. DOI:10.1099/mgen.0.000094.

663 38 Firth C, Kitchen A, Shapiro B, Suchard MA, Holmes EC, Rambaut A. Using Time-
664 Structured Data to Estimate Evolutionary Rates of Double-Stranded DNA Viruses.
665 DOI:10.1093/molbev/msq088.

666 39 Luo X, Zhao B. A Statistical Tree Annotator and Its Applications. 2011; : 1230–8.

667 40 Inouye M, Dashnow H, Raven L, *et al.* SRST2: Rapid genomic surveillance for
668 public health and hospital microbiology labs. 2014; : 1–16.

669 41 Gupta SK, Padmanabhan BR, Diene SM, *et al.* ARG-ANNOT, a new bioinformatic
670 tool to discover antibiotic resistance genes in bacterial genomes. *Antimicrob Agents*
671 *Chemother* 2014; **58**: 212–20.

672 42 Zankari E, Hasman H, Cosentino S, *et al.* Identification of acquired antimicrobial
673 resistance genes. DOI:10.1093/jac/dks261.

674 43 Bankevich A, Nurk S, Antipov D, *et al.* SPAdes: A New Genome Assembly
675 Algorithm and Its Applications to Single-Cell Sequencing.
676 DOI:10.1089/cmb.2012.0021.

677 44 Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome
678 assemblies from short and long sequencing reads. DOI:10.1371/journal.pcbi.1005595.

679 45 Wick RR, Schultz MB, Zobel J, Holt KE. Bandage: interactive visualization of de
680 novo genome assemblies. DOI:10.1093/bioinformatics/btv383.

681 46 Saad NJ, Bowles CC, Grenfell BT, *et al.* The impact of migration and antimicrobial
682 resistance on the transmission dynamics of typhoid fever in Kathmandu, Nepal: A
683 mathematical modelling study. DOI:10.1371/journal.pntd.0005547.

684 47 Tamang MD, Oh JY, Seol SY, *et al.* Emergence of multidrug-resistant *Salmonella*
685 *enterica* serovar Typhi associated with a class 1 integron carrying the dfrA7 gene
686 cassette in Nepal. *Int J Antimicrob Agents* 2007; **30**: 330–5.

687 48 Britto C, Pollard AJ, Voysey M, Blohmke CJ. An Appraisal of the Clinical Features of
688 Pediatric Enteric Fever: Systematic Review and Meta-analysis of the Age- Stratified

689 Disease Occurrence. *Clin Infect Dis* 2017. DOI:10.1093/cid/cix229.

690 49 Rodrigues C, Kapil A, Sharma A, *et al.* Whole-Genome Shotgun Sequencing of

691 Cephalosporin-Resistant *Salmonella enterica* Serovar Typhi. 2017; : 4–5.

692 50 Qamar FN, Saleem K, Shakoor S, *et al.* 10t h INTERNATIONAL CONFERENCE

693 ONTYPH ID & OTHER INVASIVE SALMONELLOSES.

694 <http://www.coalitionagainsttyphoid.org/wp-content/uploads/2016/07/10th-Conference-Final-Agenda.pdf> (accessed Aug 16, 2017).

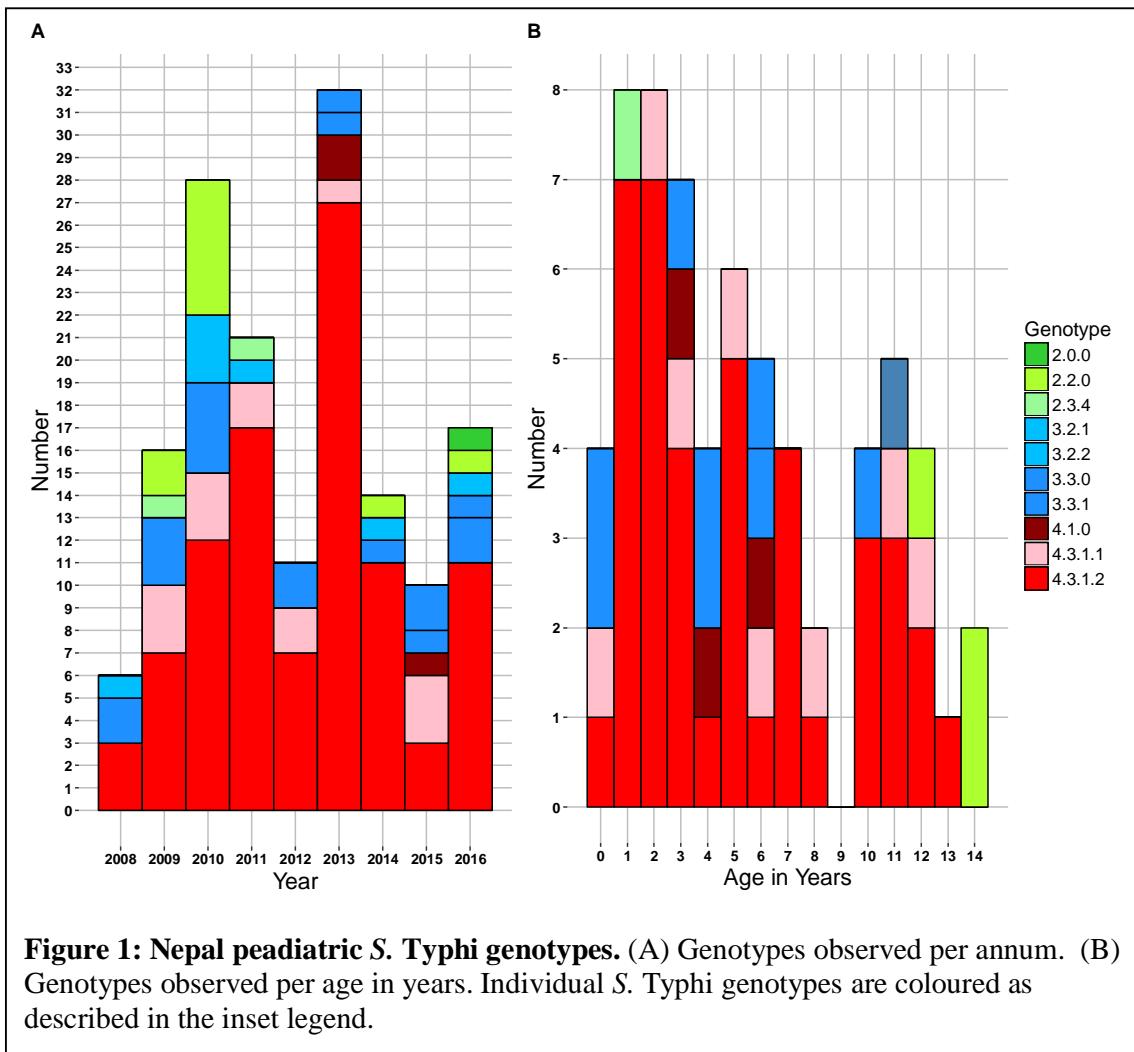
696 51 Munir T, Lodhi M, Ansari JK, Andleeb S, Ahmed M. Extended Spectrum Beta

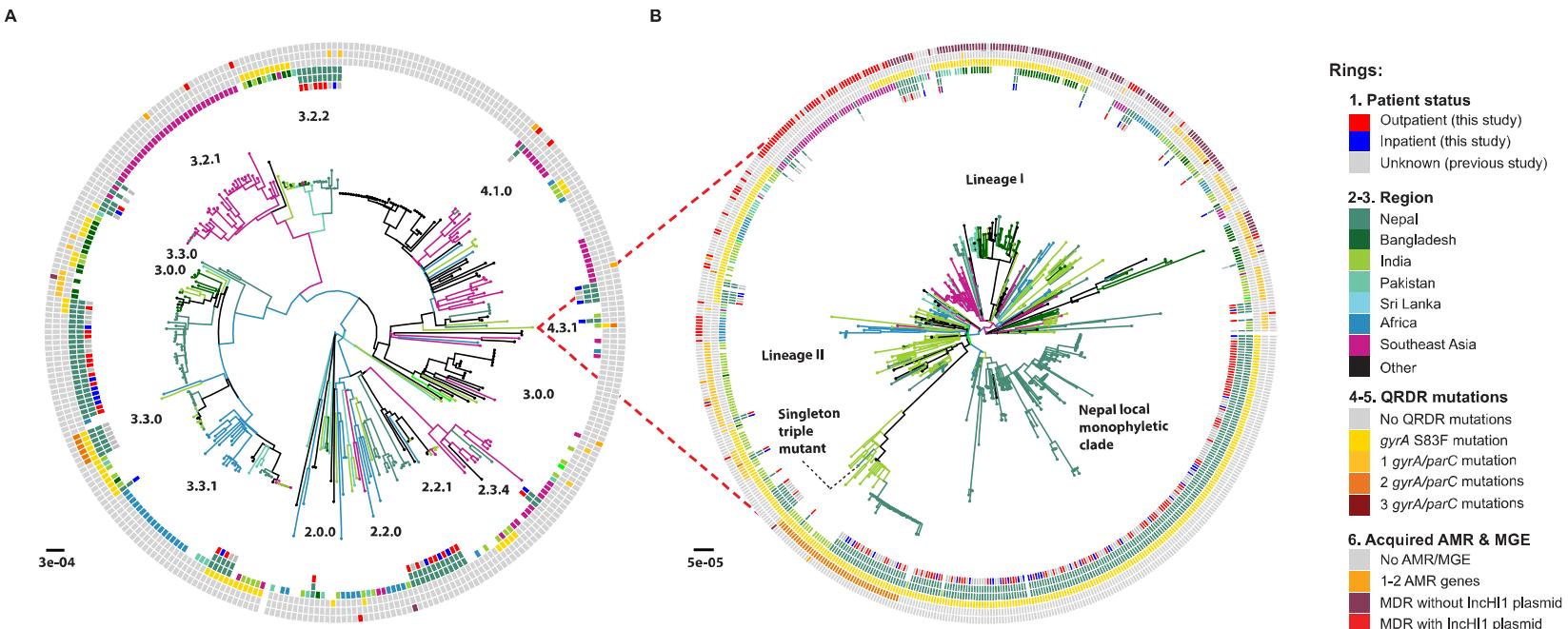
697 Lactamase producing Cephalosporin resistant *Salmonella Typhi*, reported from

698 Rawalpindi, Pakistan. *J Pak Med Assoc* 2016; **66**: 1035–6.

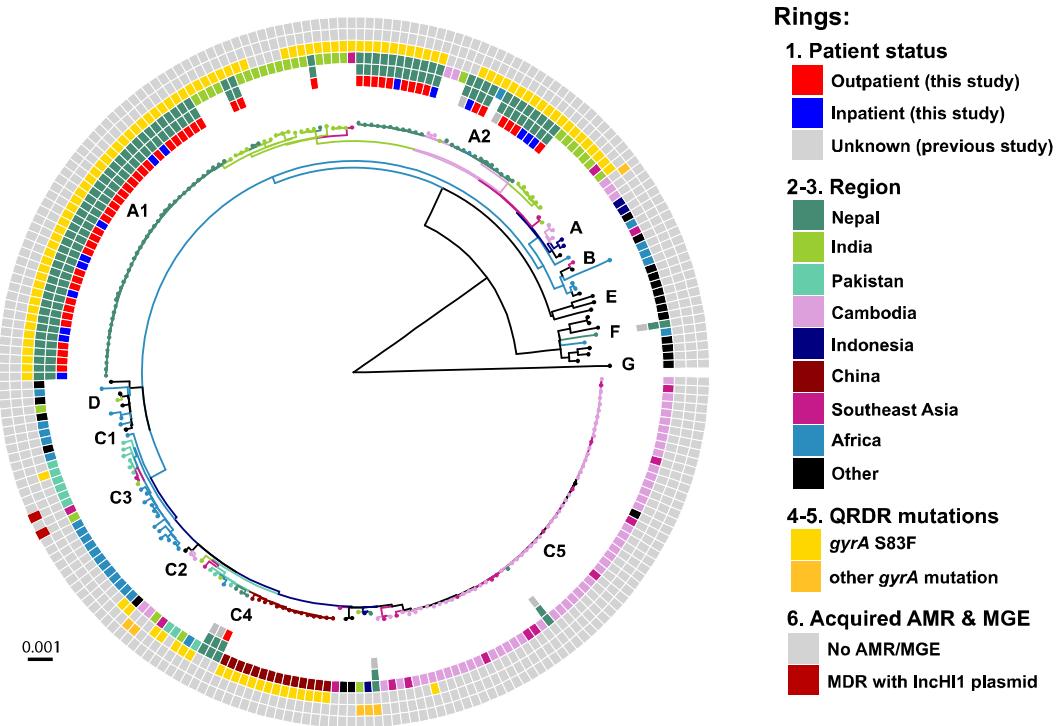
699 52 Devanga Ragupathi NK, Muthuirulandi Sethuvel DP, Shankar BA, Munusamy E,

700 Anandan S, Veeraraghavan B. Draft genome sequence of blaTEM-1-mediated

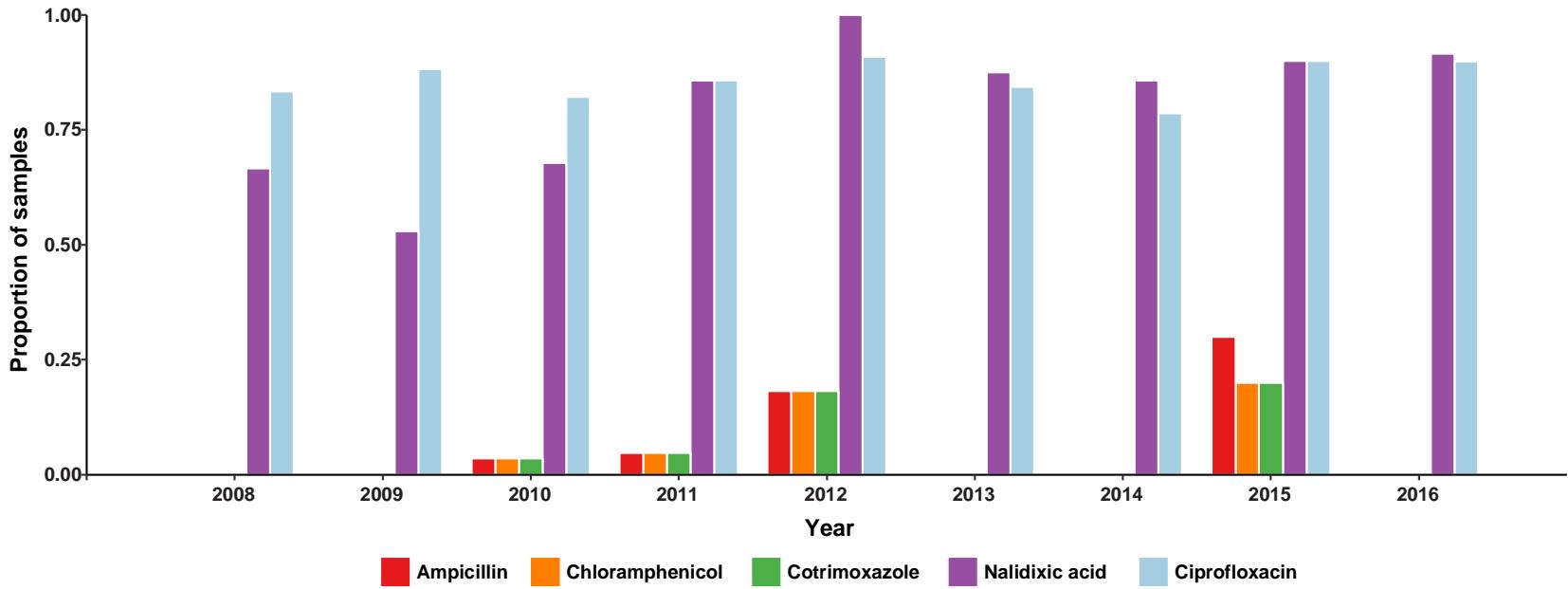

701 cephalosporin-resistant *Salmonella enterica* serovar Typhi from bloodstream infection.

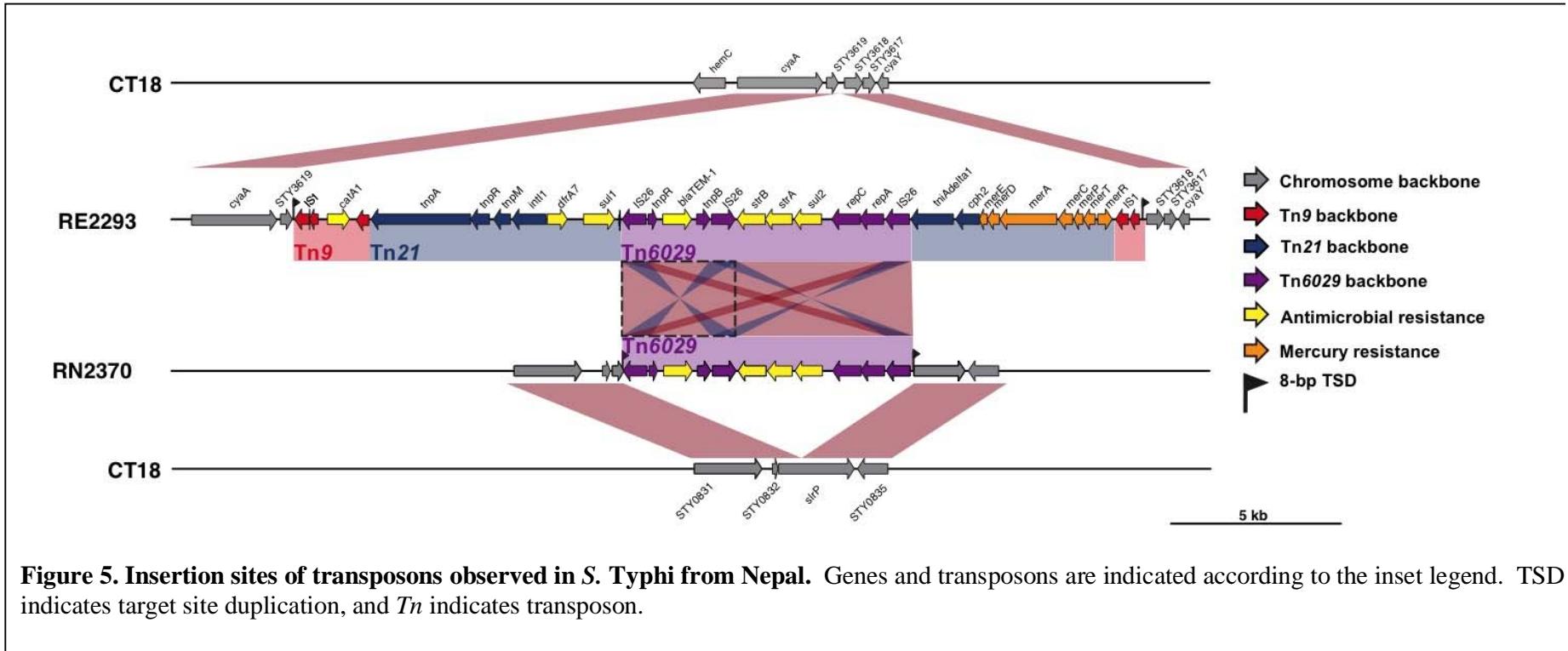

702 *J Glob Antimicrob Resist* 2016; **7**: 11–2.

703 53 Karki M, Pandit S, Baker S, Basnyat B. Cotrimoxazole treats fluoroquinolone-resistant


704 *Salmonella typhi* H58 infection. *BMJ Case Rep* 2016; **2016**. DOI:10.1136/bcr-2016-217223.

706




Figure 2. Global population structure of Nepalese *S. Typhi* genotypes. (A) Global population structure of Non-H58 (4.3.1) Nepalese genotypes. (B) Global population structure of H58 (4.3.1). Inner ring shows patient status. Branch colours indicate country/region of origin, as do the second ring and third rings from the inside. Fourth ring from the inside indicates QRDR *gyrA* S83F mutation. Fifth ring from the inside indicates the number of additional *gyrA* and *parC* QRDR mutations. Outer ring describes the presence of MDR. All rings and branches are coloured as per the inset legend. Branch lengths are indicative of the estimated number of substitutions rate per variable site, and the tree was outgroup rooted with a *S. Paratyphi A* strain AKU_12601

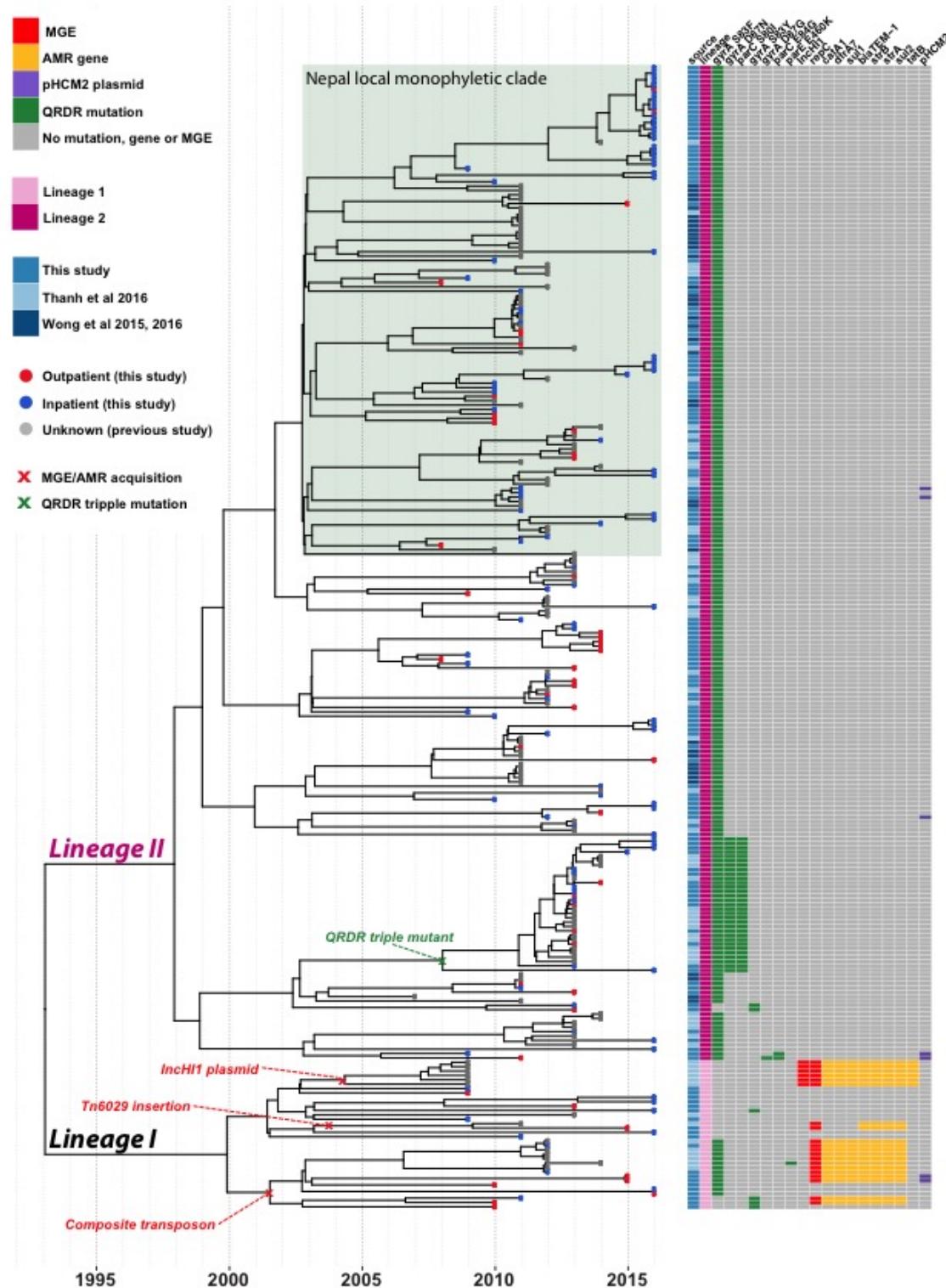
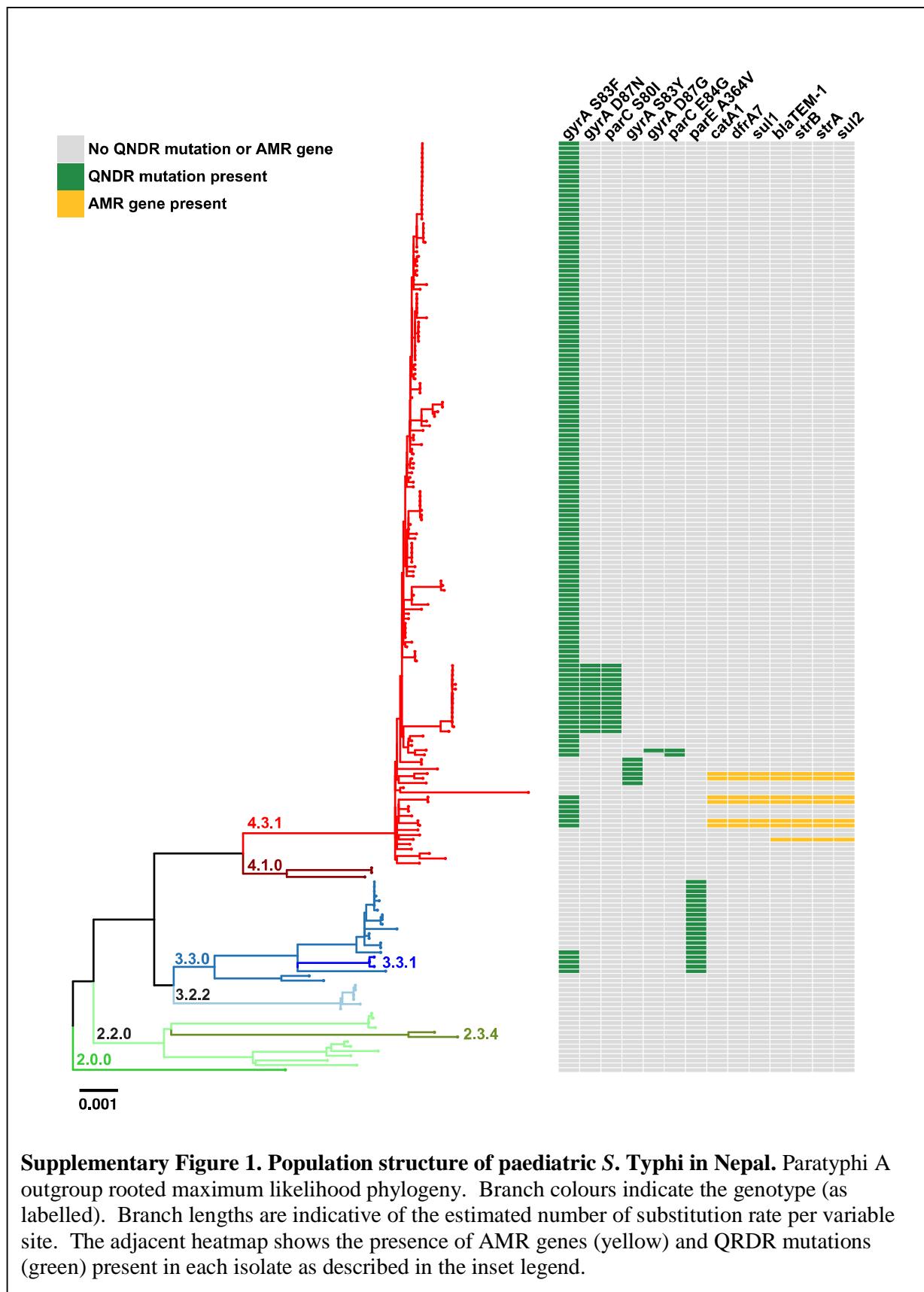
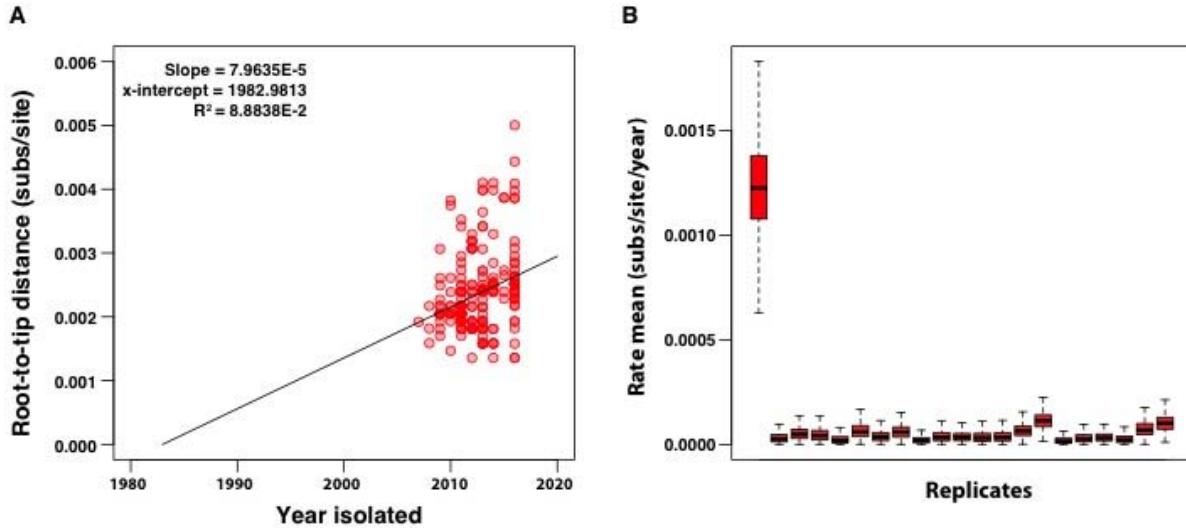


Figure 3. Global population structure of *S. Paratyphi A*. Inner ring indicates patient status. Branch colours indicate country/region of origin, as do the second and third rings from the inside. Fourth ring from the inside indicates QRDR *gyrA* S83F mutation. Fifth ring from the inside indicates the number of additional *gyrA* and *parC* QRDR mutations. Outer ring describes the presence of MDR. All rings and branches are coloured as per the inset legend. Branch lengths are indicative of the estimated number of substitutions rate per variable site, and the tree was outgroup rooted with *S. Typhi* strain CT18.




Figure 4. Bars are coloured as described in the inset legend. Susceptibility to Ampicillin, Chloramphenicol, Ciprofloxacin, Cotrimoxazole, Nalidixic acid, Cephalosporin, Ceftriaxone, Cefixime, and Azithromycin were tested. No resistance to Azithromycin, Ceftriaxone, and Cefixime was observed.

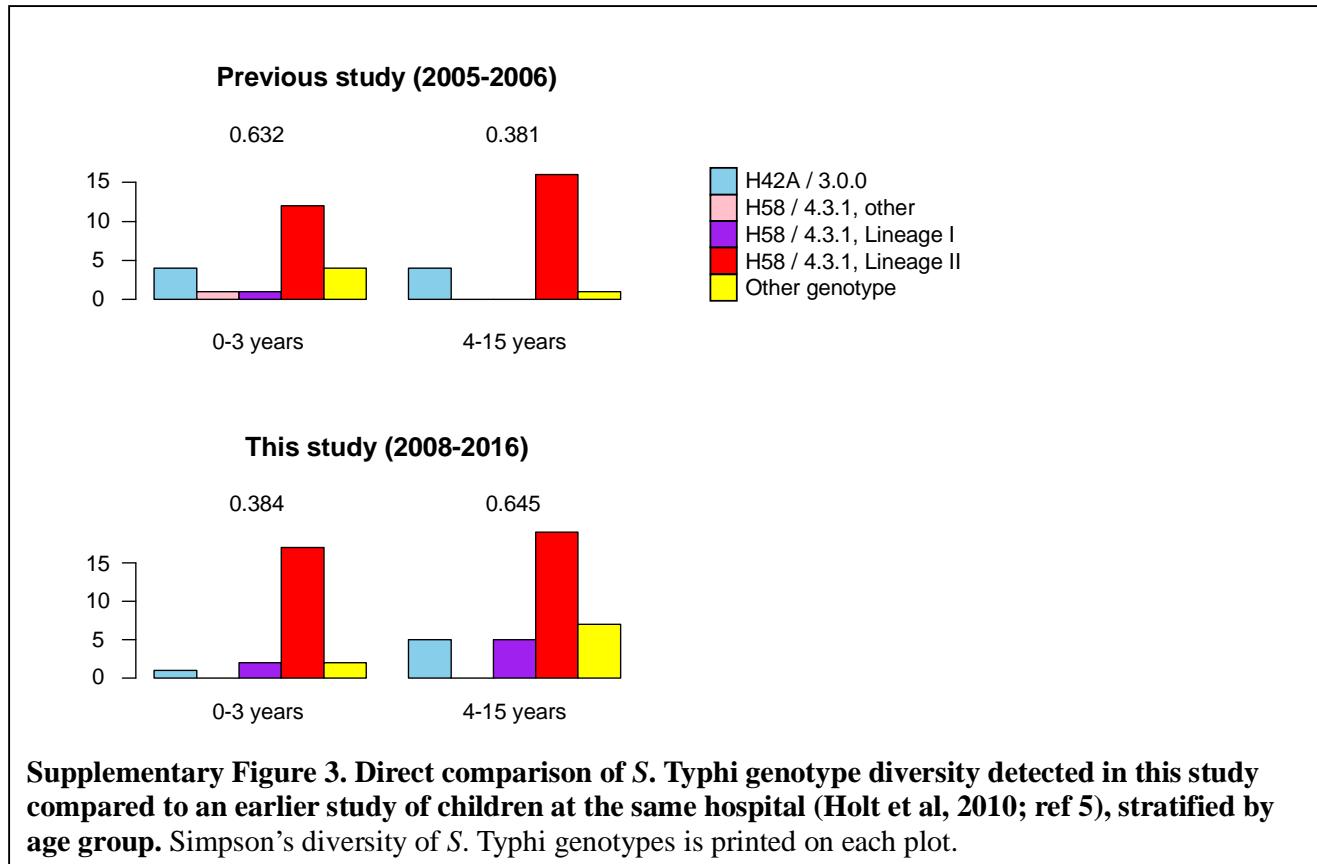


Figure 6. BEAST2 maximum-clade credibility phylogenetic tree of Nepalese genotype 4.3.1 (H58) *S. Typhi*. Tips colours indicate outpatient (red) vs. inpatient (blue) isolates. Acquisitions of molecular determinants of resistance are labelled according to the inset legend. A local Nepal monophyletic clade is shaded in green. Branch lengths are indicative of time and the scale bar corresponds to calendar years

Supplementary Figure 2. Temporal analysis of Nepalese H58 (4.3.1). (A) Tempest regression of root-to-tip distance as (in the SNP alignment) a function of sampling time, with the root of the tree selected using heuristic residual mean squared (each point represents a tip of the maximum likelihood tree). The slope is a crude estimate of the substitution rate for the SNP alignment, the x-intercept corresponds to the age of the root node, and the R^2 is a measure of clocklike behaviour (B) Date randomisation test with the left most box plot showing the posterior substitution rate estimate from the SNP alignment of the data with the correct sampling times, and the remaining 20 boxplots showing the posterior distributions of the rate from replicate runs using randomised dates. The data are considered to have strong temporal structure if the estimate with the correct sampling times does not overlap with those from the randomisations.

