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Abstract

Background

Children are substantially affected by enteric fever in most settings with a high burden
of the disease, which could be due to immune naivety, or enhanced risk of exposure to
the pathogen. Although Nepal is a high burden setting for enteric fever, the bacterial
population structure and transmission dynamics are poorly delineated in young

children, the proposed target group for immunization programs.

Methods

Blood culture surveillance amongst children aged 2 months to 15 years of age was
conducted at Patan Hospital between 2008 and 2016. A total of 198 S Typhi and 66
S. Paratyphi A isolated from children treated in both inpatient and outpatient settings
were subjected to whole genome sequencing and antimicrobial susceptibility testing.
Demographic and clinical data were also collected from the inpatients. The resulting
data were used to place these paediatric Nepali isolates into a worldwide context,
based on their phylogeny and carriage of molecular determinants of antimicrobial
resistance (AMR).

Results

Children aged <4 years made up >40% of the inpatient population. The mgjority of
isolates (78 %) were S. Typhi, comprising several distinct genotypes but dominated
by 4.3.1 (H58). Several distinct S Typhi genotypes were identified, but the globally
disseminated S. Typhi clade 4.3.1 (H58) dominated. The majority of isolates (86%)
were insusceptible to fluoroguinolones. This was mainly associated with S Typhi
H58 Lineage Il and S. Paratyphi A; non-susceptible strains from these two genotypes
accounted for 50% and 25% of all enteric fever cases. Multi-drug resistance (MDR)
was rare (3.5% of S. Typhi, 0 S. Paratyphi A) and restricted to chromosomal
insertions of AMR genes in H58 lineage | strains. Comparison to global data sets
showed thelocal S. Typhi and S. Paratyphi A strains had close genetic relativesin

other South Asian countries, indicating regional strain circulation.

Conclusions
These data indicate that enteric fever in Nepal continues to be amajor public health

issue with ongoing inter- and intra-country transmission, and highlights the need for
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regional coordination of intervention strategies. The absence of a S. Paratyphi A
vaccineis cause for concern, given its prevalence as an enteric fever agent in this
setting, and the large proportion of isolates displaying fluoroquinolone resistance.
This study also highlights an urgent need for routine laboratory and molecular
surveillance to monitor the epidemiology of enteric fever and evolution of
antimicrobial resistance within the bacterial population as a means to facilitate public

health interventionsin prevention and control of this febrileillness.
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Introduction

Asin most developing countries, invasive bacterial infections account for a
significant proportion of paediatric morbidity and mortality in Nepal“. Enteric fever,
caused by Salmonella enterica serovars Typhi (S Typhi) and Paratyphi A (S.
Paratyphi A), is the most common cause of bloodstream infection in Nepal*? and on a
global scale causes an estimated 26 million cases of enteric fever annually of which a
large proportion arein children®**. In Nepal, it is estimated that 13% of febrile
paediatric cases attending outpatient care are blood culture positive for S. Typhi or
Paratyphi A®. Single nucleotide polymorphism (SNP) genotyping of S. Typhi isolated
in astudy of paediatric enteric fever cases at Patan Hospital in Kathmandu, Nepal
during 2005 and 2006 suggested that, among children treated as inpatients, those aged
<4 years were susceptible to awider range of haplotypes due to immune naivety®. The
most common genotype was H58 lineage 11 (70%), followed by H42 (19%)°. Another
study of adults and children at Patan Hospital from 2005 to 2009 found that 26% of
culture-positive cases were associated with S. Paratyphi A; the rest were caused by S.
Typhi, mainly H58 lineage Il (61%) or other H58 (3%), or H42 (15%)°. More
recently, whole genome sequencing (WGS) was applied to study S. Typhi isolates
collected during a randomized controlled trial of gatifloxacin vs ceftriaxone for
treatment of blood culture confirmed enteric fever at Patan Hospital between 2011
and 2014, and found the H58 genotype continued to dominate the circulating S. Typhi
population (83%)’.

Multi-drug resistant (MDR) S. Typhi, defined as resistant to the first-line antibiotics
ampicillin, chloramphenicol and co-trimoxazole, became common in the Indian
subcontinent in the 1990s, driven by the spread of H58 carrying an IncHI1 plasmid
harbouring a suite of antimicrobial resistance (AMR) genes’. These S. Typhi strains
are till circulating in the region, including in India, Pakistan and Bangladesh. In this
setting there is also evidence of migration of the AMR genesto the S Typhi
chromosome, and acquisition of additional resistance to fluoroguinolones and third-
generation cephal osporins, which further limits trestment optionsin the region™.
However in Nepal, the MDR H58 S. Typhi appears to have been replaced by non-
MDR H58 S. Typhi carrying the S83F mutation in gyr A and other mutations in the
guinolone resistance determining region (QRDR) associated with reduced

susceptibility to fluoroquinolones™®; and more recently the introduction of
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fluoroquinolone resistant H58 S Typhi, likely from India, resulting in failure of
gatifloxacin treatment’. S Paratyphi A in Nepal is generally not MDR, but frequently

carries fluoroquinolone non-susceptibility alelesin gyrA and parC.*

Given the current trestment complexities of paediatric enteric fever, vaccination
would seem the most feasible short-term strategy. Thereis no vaccine against S.
Paratyphi A, which accounts for approximately a quarter of disease cases in Nepal.
The Vi polysaccharide vaccine against S Typhi is not effective in children under two
years of age™, and has therefore not been deployed as part of the national
immunization schedule in Nepal and is only available privately. While the Vi
conjugate vaccines have the potential to reduce the incidence of enteric fever in
Nepal, the immunization approach and schedule needs to be clearly defined. This
study sheds light on the age distribution of affected inpatient children at Patan
Hospital, and the molecular structure and AMR determinants of circulating bacterial
pathogen populations causing paediatric enteric fever from 2008 to 2016 in Nepal,

with the view of informing preventive strategies including vaccine policy.
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Methods

Ethics statement

Ethical approval was obtained from the Oxford Tropical Research Ethics Committee
(OXTREC) as well as local institutional approval from the Nepal Health Research
Council (R31579/CN0Q7).

Study Setting

Nepal is a low income™, landlocked Himalayan nation with an under-five year old
mortality rate of 35.8 per 1000 live births as of 2015™. Kathmandu Valley, the main
urban centre of Nepal, has three districts and a population of 2.5 million'’ (average
population density: 2,372/km?) of which 31% are between 0-14 years under age'®.
Over the course of the study, the Patan Academy of Health Sciences (PAHS) was one
of only two large hospitals in Kathmandu Valley with referral and paediatric intensive
care services. Patan Hospital accepts patients from all over the Valley. Annually the
paediatric department cares for over 50,000 outpatients (21% of all hospital outpatient
attendances) and accepts approximately 2,700 inpatient admissions. Only 10% of the
patients reside outside Kathmandu Valley.

Surveillance of culture confirmed enteric fever amongst inpatients

Febrile children under 14 years of age, attending PAHS with clinical suspicion of
invasive bacterial disease between January 2008 and December 2016 were included in
an invasive bacterial disease database as described previously™. Inclusion criteria
were: clinical presentation indicating an invasive bacterial infection requiring
inpatient care with intravenous antibiotics. Blood culture was conducted as described
below. Of the patients included in the database, all those that had blood cultures
positive for S. Typhi or S. Paratyphi A were included in the present study, along with
relevant demographic data. A random collection of 67 S. Typhi isolatesand 17 S,
Paratyphi A isolates were selected for whole genome sequencing; these represent
isolates associated with the severe spectrum of paediatric enteric fever presenting to
the hospital.

| solates collected from outpatients
Children with milder clinical presentations who are usually treated with oral

antibiotics as outpatients were not included in the invasive bacterial disease database;
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however they are subjected to the same microbiological diagnostic procedures as
inpatients (as detailed below). A total of 1283 S. Typhi and 926 S. Paratyphi A
isolates from paediatric outpatients were stored between 2008 and 2016; every 10" S
Typhi isolate and every 5" S. Paratyphi A isolate were included in this current study,
representing isolates associated with milder presentation of paediatric enteric fever at
the hospital.

Blood culture processing

Aerobic blood culture bottles were used to culture 3-5 mL of blood, which were then
incubated in aBD Bactec FX 40 incubator at 37°C for amaximum of 5 days. Turbid
samples were then inoculated directly onto MacConkey agar and incubated for
maximum of 5 days at 37°C to identify potential S. Typhi and S. Paratyphi A
colonies. Candidate S. Typhi and S Paratyphi A isolates were further subjected to
standard biochemical tests for additional confirmation?.

Antimicrobial susceptibility testing

Antimicrobial susceptibility profiles were gauged by Kirby-Bauer disk diffusion tests.
The CLSI (Clinical and Laboratory Standards Institute) guidelines were used to
evaluate zones of inhibition for chloramphenicol, co-amoxiclav, co-trimoxazole,
cefexime, ceftriaxone, azithromycin, nalidixic acid, and ciprofloxacin®. Isolates
displaying sensitivity to the tested antimicrobials as per the cut-off valuesin the CLSI
guidelines were designated as susceptible and those that were intermediate (1) or
resistant (R) to the tested antimicrobials were designated as insusceptible.

Genome sequencing and SNP analysis

Briefly, DNA was extracted using the Wizard Genomic DNA Extraction Kit
(Promega, Wisconsin, USA), according to manufacturers instructions. Genomic DNA
was then subjected to indexed whole genome sequencing on an Illumina Hiseq 2500
platform at the Wellcome Trust Sanger Institute to generate paired-end reads of 100-
150 bp in length.

For analysis of SNPsin S Typhi, Illumina reads were mapped to the reference
genome sequence of strain CT18% (accession AL515582) using the RedDog
(V1beta.10.3) mapping pipeline, available at https://github.com/katholt/RedDog.
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193  RedDog uses Bowtie (v2.2.9)% to map reads to the reference sequence; uses

194  SAMtools (v1.3.1)* to identify SNPs with phred quality scores above 30;, filters out
195  those supported by <5 reads or with >2.5 times the average read depth (representing
196  putative repeated sequences), or with ambiguous consensus base calls. For each SNP
197  that passed these criteriain any one isolate, consensus base calls for the SNP locus
198  were extracted from all genomes (ambiguous base calls and those with phred quality
199  scoreslessthan 20 were treated as unknowns and represented with a gap character).
200  These SNPs were used to assign isolates to previously defined lineages according to
201  anextended S. Typhi genotyping framework® (code available at

202 https://github.com/katholt/genotyphi). For phylogenetic analyses, SNPs with

203  confident homozygous allele calls (i.e. phred score >20) in >95% of the S Typhi

204  genomes (representing a ‘soft’” core genome of common S. Typhi sequences) were
205  concatenated to produce an alignment of aleles at 233,527 variant sites. SNPs called
206  in phage regions, repetitive sequences (354 kb; ~7.4% of basesin the CT18 reference
207  chromosome, as defined previously) or in recombinant regions identified using

208  Gubbins (v2.0.0)%® were excluded, resulting in afinal set of 2,187 SNPsidentified in
209  anaignment length of 4,809,037 bp for the 198 novel Nepali S. Typhi isolates. SNP
210 alelesfrom S Paratyphi A strain AKU_12601? (accession FM200053) were also
211  included as an outgroup to root the tree.

212

213  To provide regiona context, genome data from: (i) a published study of mainly

214  Nepali adults’ (n=95), (i) aglobal S Typhi genome collection® (n=1,221); were
215  subjected to SNP calling and genotyping, resulting in an alignment of 12,216 SNPs
216 for atotal of 1,514 isolates. Details and accession numbers of sequence dataincluded
217  inour analysis have been included in Supplementary Tables1 & 2. An additional
218 anaysisof al 261 H58 (genotype 4.3.1) from Nepal was carried out in the same

219  manner, resulting in an alignment of 631 SNPs.

220

221  To characterize and analyse the genomes of the 66 S. Paratyphi A strains, asimilar
222 bioinformatic process was adopted using S. Paratyphi A AKU_12601% (accession no:
223  FM200053) as the reference genome to create an alignment with another selected 176
224  isolates from previous studies®®>°, for global context resulting in an alignment of
225 5277 SNPsin atotal of 242 S. Paratyphi isolates, with alleles from S. Typhi CT18%

226  (accession no: AL515582) included as an outgroup to root the tree.
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Phylogenetic analysis

Maximum likelihood (ML) phylogenetic trees were inferred from SNP alignments
using RAXML (v8.1.23)*, with the generalized time-reversible model, a Gamma
distribution to model site-specific rate variation (the GTR+ I substitution model;
GTRGAMMA in RAXML), and 100 bootstrap pseudo-replicates to assess branch
support. The resulting trees were visualized using Microreact® and the R package
ggtree® . For visualization purposes, S. Typhi isolates representing ‘ outbreaks’
(defined as members of the same monophyletic clade, isolated from the same study

location in the same year) were manually thinned to a single representative.

Temporal analysis

To investigate the temporal signal and emergence dates of antimicrobial resistance
determinants for Nepali S. Typhi 4.3.1, we used several methods. First, we used
TempEst (v1.5)* to assess temporal structure (i.e. whether the data have clocklike
behavior) by conducting a regression of the root-to-tip branch distances of the Nepal
H58/4.3.1 ML tree as afunction of the sampling time, using the heuristic residual
mean squared method with the best-fitting root selected. The resultant data were then
visualized in R®. To estimate divergence times we analysed the sequence datain
BEAST2 (v2.4.7)®. We used both constant-coal escent population size and Bayesian
skyline tree priors, in combination with either a strict molecular clock model or a
relaxed (uncorrelated lognormal distribution) clock model to identify the model that
best fits the data. For the BEAST2 analysis the GTR+I" substitution model was
selected, and the sampling times (tip dates) were defined as the year of isolation to
calibrate the molecular clock. For al model and tree prior combinations, achain
length of 100,000,000 steps sampling every 5000 steps was used*’. The relaxed
(uncorrelated lognormal) clock model, which allows evolutionary rates to vary among
branches of the tree together with the skyline demographic model, proved to be the
best fit for the data. To assess the signal of these Bayesian estimates we conducted a
date-randomi zation test whereby sampling times were assigned randomly to the
sequences, and the analysis re-run 20 times®"8. These randomization tests were
conducted with the same ‘best fit'" models (uncorrelated lognormal clock and skyline
demographic). This test suggested that the data display ‘strong’ temporal structure®”.
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260  For the final analysis reported here, 5 independent runs conducted with achain length
261  of 600,000,000 states, sampling every 300,000 iterations, were combined using

262  LogCombiner (v2.4.7)* following removal of the first 10% of steps from each as
263  burn-in. Maximum-clade credibility (MCC) trees were generated with ‘keep target
264  heights specified for node heights using TreeAnnotator (v2.4.7)%%. The effective
265  sample sizes from the combined runs were estimated to be >200 for all reported

266  parameters.

267

268 Insdilicoresistance plasmid and AMR gene analysis

269  The mapping based alele typer SRST2* was used to detect plasmid replicons and
270  acquired AMR genes and determine their precise aleles, by comparison to the ARG-
271  Annot* and ResFinder* databases (for AMR genes) and PlasmidFinder** (for

272 plasmid replicons). Where AMR genes were observed without evidence of a known
273 resistance plasmid, raw read data was assembled de novo with SPAdes (v3.7.1)*® and
274  Unicycler (v0.3.0b)* and examined visually using the assembly graph viewer

275  Bandage (0.8.1)* to inspect the composition and insertion sites of resistance-

276  associated transposons. These putative transposon sequences were annotated using
277  Prokka (v1.11)* followed by manual curation, and visualized using the R package
278  genoPlotR™. SNPsin the QRDR of gyrA, gyrB, parC and parE genes, which are
279  associated with reduced susceptibility to fluoroguinolonesin S. Typhi, S. Paratyphi A
280  and other species’, were extracted from the whole genome SNP alignments.

281

282  Nucleotide sequence and read data accession numbers

283  Raw sequence data have been deposited in the European Nucleotide Archive under
284  project PRIEB14050; and individual accession numbers are listed in Supplementary
285 Tables 1-2. Genome assemblies for isolates RN2293 and RN2370 were deposited in

286 GenBank.
287
288 Results

289  Paediatric enteric fever surveillance

290 Blood cultures were performed on 11,430 children with a suspected invasive bacterial
291 infection and requiring inpatient care with intravenous antibiotics and supportive care.
292 Of these, 129 had blood cultures positive for the enteric fever agents S Typhi (n=102,
293  79%) or S Paratyphi A (n=27, 21%). Relevant patient characteristics are reported in

10
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Table 1. Most cases of culture-confirmed enteric fever (n=83, 64%) occurred between
the hot and rainy months of May and October. However, a substantial proportion
(36%) of cases aso occurred in colder months, indicating perennia transmission.
Children under 5 years of age accounted for 45% of the disease burden among
inpatients, with children under 2 years of age accounting for 18% (Table 1). Clinical
suspicion of enteric fever at presentation was significantly lower amongst children
under 2 years with culture-confirmed infection (13% vs. 52%, p=0.0005 using
Fisher’s exact test; Table 1), highlighting the undifferentiated febrile nature of the

disease even in an endemic setting such as Nepal.

11
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Table 1. Hospital based (inpatient) paediatric enteric fever surveillance

Total blood cultures 11430
performed
Total number of 1048 (9.2%)

significant cultures

Total number of enteric | 129 (1.1%)

fever pathogens
102 (0.9%)

S Typhi
P 27 (0.2%)

S Paratyphi A

Age stratified characteristics of blood-culture positive enteric fever patients

Age groups <y 2-4y 59y 10-14y
Number 23 35 39 31
Median age (years) 12 3.3 6.8 11.8
Male (%) 16 (70%) 23 (66%) 24 (62%) | 18 (58%)
M edian temperature at 37.2(36.7- | 38.3(36.5- | 38.9(36.1- | 37.2(36.5-
admission (C°) (range) 38.9) 39.9) 40.5) 39.2)
_ . 6 (2-23) 8 (2-36)

Median duration of 6.5 (1-19) 7.5 (3-20)
admission (days) (range)
Enteric fever suspicionon | 3 (13%) 17 (49%) 19 (49%) | 19 (61%)
admission (%)

308
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312

313

314
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Phylogenetic structure of paediatric isolates from Nepal

The genomes of S. Typhi isolated from inpatient surveillance (n=67) and arandom
selection of isolates from outpatients (n=131) were sequenced and subjected to SNP
genotyping and phylogenomic analysis as described in M ethods. The resulting
phylogeny (Figure S1) revealed the presence of 8 distinct genotypes, each
corresponding to a different subclade including 2.0.0 (N=1, 0.5%) 2.2.0 (N=10, 5%),
2.3.4 (N=2, 1%), 3.2.2 (N=6, 3%), 3.3.0 (N=19, 9.6%), 3.3.1 (N=3, 1.5%), 4.1.0
(N=3, 1.5%), and 4.3.1 (N=154, 77.8%). There was no significant association
between genotype and treatment status (outpatient vs. inpatient), period of isolation
(Figure 1A) or patient age (Figure 1B).

Figure 1: Nepal peadiatric S. Typhi genotypes. (A) Genotypes observed per
annum. (B) Genotypes observed per age in years. Individual S Typhi genotypes are
coloured as described in the inset legend.

To place the novel paediatric isolates in context, we constructed a whole genome
phylogeny including other S. Typhi previously sequenced from adults in Nepal, and a
global collection of S. Typhi (Figure 2; an interactive version of the phylogeny and
associated geographical data are also available for exploration online at
https://microreact.org/project/SImU6dhlz). The novel paediatric isolates clustered
together with the adult isolates from Nepal, with no evidence of certain genotypes
circulating in children more so than adults. In comparison to global isolates, Nepali
isolates clustered with those from other regionsin the Indian subcontinent, suggesting
ongoing transmission within the region (Figur e 2); indeed 14% of the novel Nepali
paediatric isolates and 15% of the previously sequenced Nepali isolates were closest
to an isolate from outside Nepal (majority from neighbouring India, Bangladesh or
Pakistan), indicating frequent pathogen transfer within the region.

We used the same approach to investigate genome variation amongst 66 S. Paratyphi
A isolated from inpatients (n=17) and outpatients (n=49) in Nepal, in the context of
globally representative genome diversity (Figure 3; interactive version available at
https.//microreact.org/project/rk2eccmWM). The Nepali S. Paratyphi A population
was far less diverse than that of S. Typhi; most belonged to lineage A and clustered
into two distinct subgroups, which we designated sublineages A1 and A2 (see Figure
3). Akinto S Typhi, the global context of S. Paratyphi A aso revealed close
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clustering with isolates from other regions in the Indian subcontinent and China,

which where S. Paratyphi A infections occur at high prevalence.

Antimicrobial resistance (AMR)

Amongst the paediatric isolates analysed in this study, most S. Typhi isolates (96%)
and all S. Paratyphi A were susceptible to traditional first-line antibiotics co-
trimoxazole, ampicillin and chloramphenicol (Figure 4). Most (86%) of S. Typhi and
all the S Paratyphi A of isolates were insusceptible to the fluoroquinolone
ciprofloxacin (assessed by disk diffusion; Figure 4). MDR was observed insix S
Typhi (3%) and no S. Paratyphi A. There were no differences in the frequency of
MDR or fluoroquinolone insusceptibility between the paediatric inpatients and
outpatients (OR for MDR = 0.97, 95% CI 0.23 — 4.00; and OR for fluoroguinolone
insusceptibility = 1.23, 95% CI 0.62 — 2.44).

Genetic determinants of AMR detected in the paediatric isolates are summarized in
Table 2. All S. Paratyphi A (besides the single lineage C4 isolate) carried the gyrA
S83F mutation responsible for nalidixic acid resistance and fluoroquinolone
insusceptibility. S. Typhi isolates displaying fluoroguinolone insusceptibility
harboured known QRDR SNPs (T able 2); these included isolates of genotypes 4.3.1
(gyrA SNPs), 3.3.0 (parE SNPs), and 3.3.1 (gyr A and parE SNPs, see Figure S1).
Sixteen S. Typhi isolates (all genotype 4.3.1) were QRDR ‘triple mutants’, which are
associated with failure to respond to fluoroquinolone therapy’. All MDR isolates
(n=6) belonged to S. Typhi genotype 4.3.1 and harboured the acquired AMR genes
catA, dfrA7, sull, sul2, strA, strB and blarem-1, conferring resistance to
chloramphenicol, co-trimoxazole, streptomycin and ampicillin. An additional
genotype 4.3.1 isolate carried a subset of four of these genes (sul2, strA, strAB and
blarew-1) and displayed resistance to ampicillin but was sensitive to co-trimoxazole
and chloramphenicol (consistent with the lack of dfr and cat genes). Acquired AMR

genes were not detected amongst the S. Paratyphi A.

Table 2. Genetic deter minants of antimicr obial resistance in paediatric isolates from Nepal

S. Typhi S. Paratyphi A

14
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Total isolates 198 66
QRDR 164 (82.8%) 65 (98%)
gyrA S83F 143 (72%) 65 (98%)
gyr A S83F only 15 (7.6%) 0
gyr A S83F, gyrA D87N 16 (8.1%) 0
gyr A S83F, gyr A D87N, parC S80I 15 (7.6%) 0
gyr A S83F, gyrA D87N, parC E84G 1 (0.5%) 0
gyr A S83F, parC E84G 1 (0.5%) 0
gyr A S83F, parkE A364V 5 (2.5%) 0
gyrA S83Y only 6 (3%) 0
par E A364V only 15 (7.6%) 0
Acquired AMR genes 7 (3.5%) 0
blaTEM-1, strAB, sul2 1 (0.5%) 0
catAl, dfrA7, sull, blaTEM-1, strAB, sul2 (+ gyr A S83F) 4 (2%) 0
catAl, dfrA7, sull, blaTEM-1, strAB, sul2 (+ gyr A S83Y) 2 (1%) 0
379
380
381
382
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383  Thefull suite of seven acquired AMR genes are common amongst S. Typhi globally and are
384 typically located within a composite transposon, comprising Tn6029 (sul 2, strA, strAB and
385  blamem-1) and Tn21 (dfr A7, sull) inserted within Tn9 (catA), which is most often carried on
386  IncHI1 plasmids’. Here, all MDR isolates carried this typical composite transposon, inserted
387  inthe chromosome between genes STY 3618 and STY 3619 and associated with an 8 bp target
388 diteduplication (GGTTTAGA), consistent with integration mediated by the flanking 1S1
389  transposases of Tn9 (see Figure5). The additional ampicillin resistant isolate carried only
390 transposon Tn6029, which was inserted directly into the chromosomal pseudogene slrP and
391 associated with an 8 bp target site duplication (TAGCTGAT), consistent with integration
392 mediated by the flanking 1S26 transposases of Tn6029.

393

394  Evolutionary history of AMR S. Typhi 4.3.1in Nepal

395  We constructed adated phylogeny of all available S Typhi 4.3.1 from Nepal, using BEAST2
396 (Figure®6, interactive version available at https://microreact.org/project/rdnfyOGxG). This
397 analysisyielded alocal substitution rate of 0.8 SNPs per genome per year (95% highest

398  posterior density (HPD), 0.5—1.1) or 1.7x10" genome-wide substitutions per site per year
399  (95% HPD, 1.1x10 " - 2.4x10°"). The data showed strong temporal structure to support these
400  results (see Methods and Figure S2), which were consistent with previous estimates for
401 global S Typhi 4.3.1%°. We estimated the most recent common ancestor (mrca) for all S
402  Typhi 4.3.1in Nepal existed circa 1993, similar to the mrca estimated globally for S. Typhi
403  4.3.1, which s predicted to have emerged in neighbouring India.

404
405  Both of the previously described sublineages of S. Typhi 4.3.1 (I and I1) were present

406  amongst the Nepali isolates, however (i) lineage Il was far more common (67% vs. 10% of
407  peediatric isolates from this study; 68% vs 10% of isolates from other studies); and (ii) the
408 lineages were associated with different AMR patterns (Figure 6): lineage | was associated
409  with MDR (59% of lineage | vs O lineage II, p<1x10™*), while lineage Il was associated with
410 QRDR mutations (99% of lineage Il vs 50% of lineage |, p<1x10 ™). The majority of isolates
411 formed alocal monophyletic clade that was not detected in other countries in the global

412  collection, indicative of local clonal expansion in Nepal. The relative proportion of local S
413  Typhi infections caused by lineage Il increased after 2010 (40% pre-2010 vs 74% from 2011
414  onwards, p=1x10""), suggesting clonal replacement of the MDR-associated Lineage | with the
415  expansion of the quinolone resistance-associated Lineage Il over time.

416
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Most of the ciprofloxacin resistant triple mutant isolates harboured gyr A S83F, gyr A D87N,
and parC S80I and formed a monophyletic subclade of lineage |1, together with those
previously reported as associated with gatifloxacin failure during the treatment trial in 2013-
2014'. We dated the mrca of this subclade to 2008 (95% HPD, 1998-2011; see Figure 6),
and comparison to the global tree confirmed it most likely originated in India’ and was
introduced to Nepal at least twice (see Figure 2B). We also identified a distinct ciprofloxacin
resistant triple mutant (harbouring gyr A S83F, gyr A D87G, and parC E84G) that was isolated
from afive-year old girl in 2011. Thiswas also S Typhi 4.3.1 lineage Il but shared no
particularly close relatives in the Nepali or global collections (Figure 2B, Figur e 6).

All isolates with acquired AMR genes belonged to Lineage I: one cluster of IncHI1 plasmid-
containing isolates (from a previous study conducted by Thanh et al 2016) with a mean tmrca
of 2004 (95% HPD, 1996-2007); two related clusters with the composite transposon inserted
in the chromosome after STY 3618, with mean tmrca 2001 (95% HPD, 1995-2009); and one
cluster with Tn6029 inserted in the chromosome, with mean tmrca 2003 (95% HPD, 1997-
2010) (see Figure6).

Discussion

These data show that there is a substantial burden of enteric fever amongst children in Nepal
(Table 1), the majority of which (86%) isinsusceptible to fluoroquinolones (Table 2).
Genomic analysis revealed substantial diversity within the local pathogen population (Figure
1& S1), with evidence of transfer of S. Typhi and S. Paratyphi A between Nepal and
neighbouring countries in South Asia (Figures 2 and 3), and intermingling of isolates from
adults and children consistent with transmission across age groups (Figur e 2). Data from
2005-2006 suggested that younger children were more susceptible to a wider range of
genotypes, a phenomenon attributed to a naive immune response®. A decade later this
tendency seems to have shifted towards a more pathogen driven trend as seen in Figure 1,
which showsthe S. Typhi 4.3.1 genotype is dominant regardless of the age of the host. Thisis
consistent with recent mathematical modeling of historical enteric fever patternsin this
setting, which identified the introduction of AMR 4.3.1, as well as an increase in migration of
immunologically naive 15-25 year olds from outside the Kathmandu Valley, as key drivers of

the local typhoid problem®.
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451  The high frequency of fluoroguinolone insusceptibility is attributable to indiscriminate and
452  uncontrolled use of antimicrobials, which since the turn of the century have been used to treat
453  arange of infections common in the tropicsin addition to enteric fever. Fluoroguionolone
454  insusceptibility has been observed locally’, associated with mutations in gyrA and par C. Our
455  datashow that the problem of fluoroquinolone insusceptible enteric fever in Nepali children
456 ismainly driven by two locally established pathogen variants, namely S. Typhi 4.3.1 (H58)
457  Lineage Il harbouring the gyr A-S83F mutation (accounting for 50% of all enteric fever, 57%
458  of non-susceptible cases, and 66% of all S. Typhi) and S. Paratyphi A clade A harbouring the
459  gyrA-S83F mutation (accounting for 25% of enteric fever, 28% of non-susceptible cases, and
460 98% of al S. Paratyphi A). These strains have been present since the increasein local case
461  numbersbegan in 1997, and their arrival likely contributed to the increased disease burden™.
462  Theuniversa fluroguinolone resistance demonstrated by the S. Paratyphi A population is of
463  great concern particularly since avaccine against paratyphoid fever is still in development.
464

465  Notably, the fully fluoroquinolone resistant triple mutant S. Typhi strain that was first

466  detected inlocal adultsin 2013 and halted the gatifloxacin treatment trial was still causing in
467  diseasein Nepali children in 2015-2016, but was rare (2.5% of casesin 2015-16) and showed
468  no signs of displacing the wider population that carries only the gyr A-S83F mutation (65% of
469  casesin 2015-16). Thislack of clonal replacement is consistent with the presence of a single,
470  distinct, triple mutant S. Typhi strain isolated from a 5-year old girl in 2011, which had no
471  descendant strains detected amongst the 126 cases examined from 2012-16, suggesting it has
472 not spread within the local human population. The lack of fully resistant S. Paratyphi A is
473  aso notable. It has been shown that the gyr A-S83F mutation is not associated with a fitness
474  cost in S Typhi and can be maintained in the absence of direct selection from

475  fluoroquinolones; however our data suggest the sameis not true of the triple mutants, hence
476  limiting exposure to fluoroquinolones may at least control the spread of highly resistant

477  drains.

478

479  Acquired resistance to other antimicrobials was rare, and in the paediatric population was
480  associated only with S. Typhi 4.3.1 lineage | strains carrying chromosomally integrated AMR
481  genes (Figure6). This has not been reported previously in the local population, where MDR
482 S Typhi has typically been associated with plasmids®’. Here we identified at least two

483  distinct AMR gene integration events, that we estimate occurred contemporaneously with the
484  MDR plasmid circulating in the early 2000s (Figure 6). Although similar findings have aso
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been reported from S. Typhi strains in other neighbouring countries of Indiaand
Bangladesh™, this is the first description in strains from Nepal. Notably, in addition to the
integration of the typical S. Typhi MDR composite transposon mediated by 1S1 transposase
genes of Tn9, we identified for the first time direct integration of Tn6029 into the S. Typhi
chromosome (Figur e 5), mediated by 1S26 and conferring ampicillin resistance in the

absence of resistance to chloramphenicol or co-trimoxazole.

The findings of this study supplement our understanding of enteric fever in an endemic
setting. The occurrence of disease in the <5 years population is in agreement with the other
multi-centre data from South Asia, underscoring the importance of understanding the disease
transmission dynamics and preventive strategies in the vulnerable popul ation. The magnitude
of disease occurrence in this age group is still an underestimation for several reasons; clinical
suspicion of enteric fever in this age group is generally low as evidenced in these data and
this trend has also been reported in other endemic regions®. The lack of clinical suspicion
leads to alack of diagnostic testing, which isin itself, fraught with impediments to reliable
results. Blood culture, which is the feasible gold standard diagnostic performs poorly in this
population owing to the difficulty in obtaining the required amount of blood and due to pre-
treatment with antimicrobials prior to obtaining a blood sample. Despite the unique
challenges associated with diagnosing enteric fever in this population and the supposed lack
of exposure, reports from various endemic regions continue to reiterate the enormous burden
of enteric fever in pre-school children. Coupled with the problem of antimicrobial non-
susceptibility once adiagnosis is made, these difficulties highlight the urgent need for enteric
fever vaccinesin children under 5. However vaccination options for these children are
limited due to the poor immunogenicity of the Vi polysaccharide vaccine in infants and the
difficulty in administering the Ty21avaccine. Until the Vi conjugate vaccines are rolled out,
in addition to improving sanitation and providing clean water, antimicrobial treatment

remains the only short-term option for containing the disease in this age group.

Cephalosporins are currently the first-line treatment for enteric fever in Nepal. We did not
detect any cephal osporin non-susceptibility in these isolates, however it is anticipated that
this will emerge viathe acquisition of plasmid-encoded extended-spectrum beta-lactamase
genes, as has recently been observed among S Typhi isolates from neighbouring India and
Pakistan®2. Given the re-emergence of antimicrobial sensitivity to chloramphenicol and co-

trimoxazole as evidenced in this study, it may be logical to shift to these first-line drugs for
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treating enteric fever; indeed there has already been a case report demonstrating efficacy of
co-trimoxazole treatment in the treatment of fluoroquinolone resistant H58 S. Typhi in this
setting®. We acknowledge the possibility that typhoidal Salmonella strains will acquire
resistance to these antibiotics when re-introduced and the cycling of antimicrobials is seldom
sufficient to effectively prevent MDR in the long-term. However we propose this short-term
strategy might be commissioned until the typhoid conjugate vaccines are deployed, in order
to conserve cephalosporins and macrolides for the treatment of other tropical infections

which require higher-end antibiotics.

Conclusion

These data highlight the burden of enteric fever in children in Nepal while demonstrating the
importance of laboratory and molecular surveillance in endemic regions. Those under the age
of 5 years contributed most to the burden of enteric fever among inpatients who represent the
severe spectrum of disease. The substantial contribution of those less than 2 years emphasize
the urgent need for the Vi conjugate vaccine in regions such as Nepal where antimicrobial
therapy is currently the main modality against enteric fever. Antimicrobial non-susceptibility
continues to complicate management protocols and calls for prudent strategies aimed at
conserving the currently effective drugs while buying time for vaccine deployment. Finally,
the control of enteric fever in Nepal and South Asiarequires a coordinated strategy given the
inter-country transmission that occurs with the Indian subcontinent. The Vi conjugate
vaccines offer the real possibility of controlling enteric fever but eradication will only
become a possibility when the immunization strategy is supplemented by the provision of

clean water and improved sanitation.
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Supplementary Figure 3. Direct comparison of S. Typhi genotype diversity detected in this study
compared to an earlier study of children at the same hospital (Holt et al, 2010; ref 5), stratified by
age group. Simpson’s diversity of S. Typhi genotypes is printed on each plot.
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