

1 Locally distributed abstraction of temporal distance in human parietal
2 cortex

3

4 Qun Ye¹, Yi Hu¹, Yixuan Ku^{1,3}, Kofi Appiah⁴, Sze Chai Kwok *^{1,2,3}

5

6 Short title: Precuneus and temporal context memory

7

- 8 1. Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics
9 Ministry of Education, School of Psychology and Cognitive Science, East China Normal University,
10 Shanghai 200062, China
- 11 2. Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China
- 12 3. NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai 200062, China
- 13 4. Department of Computing, Faculty of ACES, Sheffield Hallam University, Sheffield S1 2NU, England

14

15 *Corresponding author: sze-chai.kwok@st-hughs.oxon.org (Sze Chai Kwok)

16

17 **Abstract**

18 An enduring puzzle in the neuroscience of memory is how the brain parsimoniously
19 situates past events by their order in relation to time. By combining functional MRI,
20 and representational similarity analysis, we reveal a multivoxel representation of time
21 intervals separating pairs of episodic event-moments in the posterior medial memory
22 system, especially when the events were experienced within a similar temporal context.
23 We further show such multivoxel representations to be vulnerable to disruption through
24 targeted repetitive transcranial magnetic stimulation and that perturbation to the
25 mnemonic abstraction alters the neural—behavior relationship across the wider parietal
26 memory network. Our findings establish a mnemonic “pattern-based” code of temporal
27 distances in the human brain, a fundamental neural mechanism for supporting the
28 temporal structure of past events, assigning the precuneus as a locus of flexibly
29 effecting the manipulation of physical time during episodic memory retrieval.

30

31

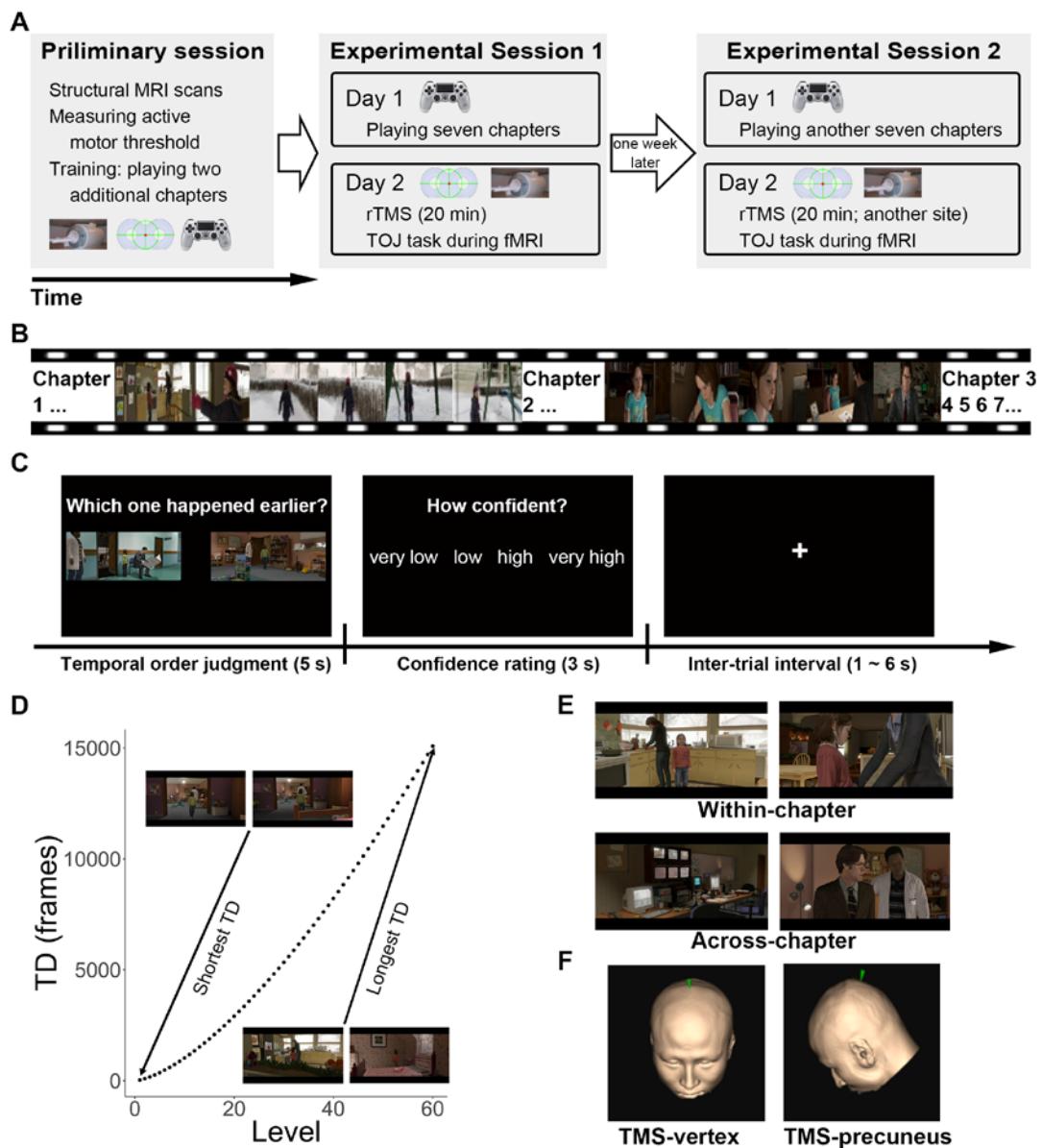
32

33

34 **Introduction**

35 Time in physics is operationally defined as “what a clock reads”. While the
36 passage of time between two moments can be precisely measured by a quartz crystal
37 oscillator or biologically registered by distributed sets of brain regions across intervals
38 of time (1, 2), how the human brain can parsimoniously situate past events by their
39 order in relation to time and *abstract* temporal distances separating events in long-term,
40 episodic memory is incompletely understood (3).

41 Representations of brief elapsed time can be inferred from single neuron activities
42 in the primate brain (4-6). Time-registering neurons are found to code time with high
43 precision in the cortico-basal ganglia circuits (5), inferior parietal cortex (4) and medial
44 temporal lobe (6) across short timescales. Recent work in rats has provided evidence
45 that temporal information is encoded across time scales from seconds to hours within
46 the overall population state of the lateral entorhinal cortex (7). In contrast, when
47 complex, coherent experiences become consolidated into long-term memories (8), the
48 neural circuits that build time representations as an infrastructure for episodic retrieval
49 are theorized to be distinct from those implicated in hippocampal-dependent encoding
50 (9, 10) and retrieval (11, 12), and from those during transient temporal processing (4-
51 6). For the recollection of long-term autobiographical memories or episodic events, the
52 posterior medial (PM) memory system, including hippocampus, precuneus and angular
53 gyrus, plays an instrumental role (13). Event representations in these regions
54 generalized across modalities (e.g., EEG and MRI) and domains (e.g., perception and
55 memory) (14-16).


56 Temporal representation is intertwined with the construct of context. A prominent
57 memory model posits that item representations are linked to a changing “context” at
58 encoding, such that a common retrieved context is triggered during recall for items that
59 were experienced within a similar temporal context (17). However, the critical issue of
60 how elapsed time between pairs of long-term episodic events – and its interplay with
61 the encoding context – is represented by the PM system has yet to be addressed. Here
62 we investigated the abstraction, at a macro-anatomical level, of temporal distances that
63 were encoded more than 24 hours previously (18, 19), and determined how several
64 members of this large cortical system are differentially implicated in this putative
65 mnemonic function (20).

66 Combining functional magnetic resonance imaging (fMRI) with an interactive-
67 video memory paradigm and a temporal order judgement task (TOJ; **Fig 1A**)—a
68 validated paradigm to study neural correlates underpinning temporal distances between
69 units of memory traces (10, 18, 19)—we adopted a two-forked protocol to ascertain
70 how temporal distances separating pairs of past moments-in-time are represented in the
71 human neocortex. On the one hand, we identified a locally distributed neural
72 representation characterizing the neural patterns of retrieving temporal distances using
73 a multivariate searchlight representational similarity analysis (RSA) (21). We
74 parametrized a large set of pairs of event-moments geometrically separated by varying
75 temporal intervals and applied RSA to compare neural representational dissimilarity
76 matrices (RDM) with a number of parametric, condition-rich hypothetical/candidate
77 models. Applied across the entire brain, the searchlight approach identifies local multi-

78 voxel patterns driven by structured co-activation at a voxel level within the size of the
79 9-mm radius spherical searchlight, thereby giving us a snapshot of the locally
80 distributed neural architecture supporting temporal order judgements. On the other
81 hand, to enhance the causal strength of the anatomical associations thereby revealed,
82 we focally disrupted the identified critical region with repetitive transcranial magnetic
83 stimulation (rTMS, **Fig 1F**), seeking to confirm its functional necessity for mediating
84 the distributed representation of temporal distances. The spatial scale of rTMS-induced
85 disruption is comparable to that of our chosen searchlight, rendering it an optimal tool
86 for targeted, reversible disruption of the distributed representation of interest.

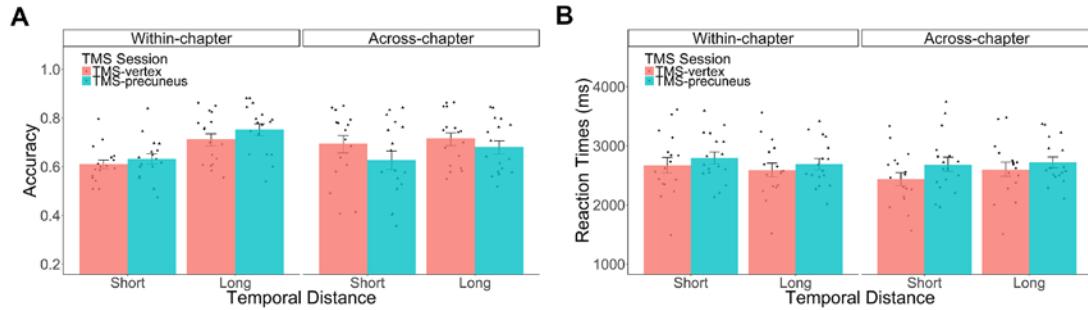
87 For memory encoding, participants played an interactive video game containing
88 seven distinct yet related chapters, each in the range of tens of minutes on day 1 (**S1**
89 **Fig, S1 Table**). By the nature of the video game, within chapter segments contained
90 more coherent narrative strands than those across chapters, yet all chapters were
91 connected by a common plot. After a 24-hour retention period (day 2), on each trial,
92 participants judged the temporal order of two images (extracted from their individually-
93 played video game, **Fig 1B**), depicting two time-points in their encoded memory, while
94 their blood-oxygen-level-dependent (BOLD) activity was measured (TOJ task, **Fig 1C**).
95 Assuming a scale-free temporal memory representation (22), we manipulated the
96 between-images temporal distances (TD) for all pairs of images so that the TD
97 distribution adhered to a power function permitting scale-invariance across subjects (23)
98 (60 levels of TD, **Fig 1D**). To test the interaction effect between TD and its encoding
99 context, we manipulated the factor “context” by controlling whether the paired images

100 presented at TOJ task were extracted from the same chapters or two adjacent chapters
101 of the video game while keeping the 60 TDs fully matched between the two conditions
102 (Within-chapter vs. Across-chapter, **Fig 1E**).
103

104
105 **Fig 1. Experiment overview.** (A) In experimental sessions 1 and 2, participants played a video
106 game containing seven related chapters with a first-person perspective for encoding, and 24
107 hours later, received 20 min of repetitive transcranial magnetic stimulation (rTMS) to either

108 one of two cortical sites before performing a temporal order judgement task during fMRI. Order
109 of TMS sites (within-subjects) and choices of video game chapters were counterbalanced across
110 subjects (**S1 Table**). The two experimental sessions were conducted on different days to
111 minimize rTMS carry-over effects (mean separation = 8 days). Participants underwent
112 structural MRI scans and familiarized themselves with the gameplay using a console prior to
113 experimental sessions proper. **(B)** Gameplay video: each encoding session consisted of seven
114 chapters (**S1 Fig**). **(C)** Temporal order judgement task. Participants chose the image that
115 happened earlier in the video game and reported their confidence level. **(D)** 60 levels of
116 temporal distances (TD) were generated for each subject according to their subject-specific
117 video-playing duration. Although the absolute TD were different across subjects (**S1 Fig**), we
118 ensured it to be scale-invariant using a power function during image selection. Actual TDs from
119 one subject (subj01) are shown. **(E)** Two pairs of images were extracted from the same chapter
120 (Within-chapter) or two adjacent chapters (Across-chapter). The 60 levels of TD were fully
121 matched within-subjects for these two conditions. Note that scenes depicted in Within-chapter
122 tended to be more contextually similar than those depicted in Across-chapter. **(F)** TMS
123 stimulation sites, superimposed onto one subject's MRI-reconstructed skull, are marked by a
124 green pointer. The MNI coordinates for precuneus stimulation: x, y, z = 6, -70, 44.
125

126 **Results**


127 **Behavioral results**

128 We first looked into the interaction effect between TD and encoding context and
129 the TMS effect on memory retrieval. We collapsed the 60 TD conditions into two levels

130 (short vs. long) for each subject and analyzed the behavioral performance of TOJ
131 (dependent variable: accuracy or reaction times or confidence level) as a function of
132 TMS stimulation site, Context and TD. We ran a three-way repeated-measures ANOVA
133 (TD: Short/Long \times Context: Within-chapter/Across-chapter \times TMS: TMS-
134 vertex/TMS-precuneus) on task accuracy, and obtained a significant main effect of TD
135 ($F_{(1, 16)} = 25.53, P < 0.001, \eta^2 = 10.02\%$) and a significant two-way interaction effect
136 between TD and Context ($F_{(1, 16)} = 5.97, P = 0.026, \eta^2 = 2.71\%$). Such interaction effect
137 was driven by a significant difference in accuracy between short and long TD in Within-
138 chapter condition ($t_{(33)} = 5.94, P < 0.001$), but not in Across-chapter condition ($t_{(33)} =$
139 $1.61, P = 0.117$) (**Fig 2A**).

140 A similar two-way interaction effect was found in reaction times ($F_{(1, 16)} = 24.21,$
141 $P < 0.001, \eta^2 = 1.16\%$), with longer RT in short than in long TD in Within-chapter
142 condition ($t_{(33)} = -3.33, P = 0.002$) but longer RT in long TD condition in Across-chapter
143 condition ($t_{(33)} = 2.83, P = 0.008$) (**Fig 2B**). No three-way interaction effects were found
144 in either of the measures ($P > 0.05$). A similar behavioral pattern was found in the
145 measure of confidence level (**S2 Fig**). In terms of TMS effect on behavioral measures,
146 TMS to the precuneus resulted in slowed reaction times (main effect of TMS: $F_{(1, 16)} =$
147 $5.34, P = 0.035, \eta^2 = 2.65\%$) as compared with the TMS-vertex condition.

148

149

150 **Fig 2. Behavioral results.** **(A)** Accuracy: The difference between short and long temporal
151 distances was more pronounced for Within-chapter condition than for Across-chapter condition
152 irrespective of TMS stimulation. **(B)** Reaction times: The differences between short and long
153 temporal distances were in an opposite way between the Within-chapter condition and the
154 Across-chapter condition. TMS stimulation resulted in longer reaction times in TOJ task. Dots
155 denote behavioral performance per subject. Error bars denote the SEM over subjects.

156

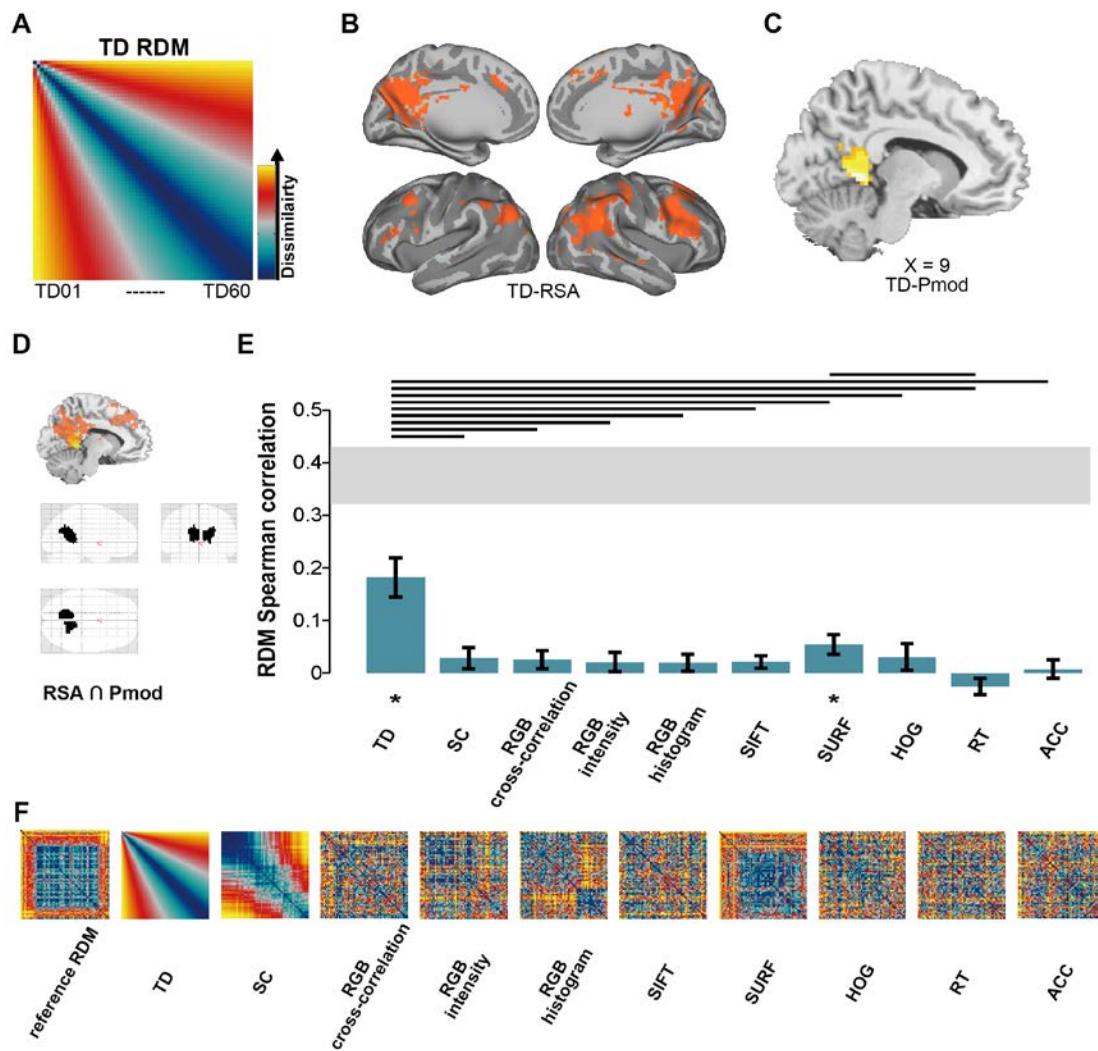
157 **Functional MRI results**

158 **Representation of temporal distances.** First and foremost, we searched for
159 neural representations which might resemble the matrix of temporal distances using
160 searchlight representational similarity analysis (21). Without *a priori* bias for any
161 region of interest, we searched the entirety of the cortex using an RDM consisting of
162 60 levels of logarithmically-transformed subject-specific TD (**Fig 3A**) and identified
163 clusters of voxels that contain information of the set of geometrically defined temporal
164 distances in memory (see **Materials and methods** and **S3 Fig**). Within this 60×60
165 RDM of temporal-distances, we revealed that the neural pattern of judging the temporal
166 order of a pair of memories separated with a given temporal distance is more similar to
167 other temporal order judgements which also enclosed temporal distances of a

168 comparable scale. These voxels were in the posteromedial parietal areas, bilateral
169 angular gyri, and middle frontal gyri (**Fig 3B, S2 Table**).

170 The temporal-distance memory representation could be confounded by perceptual
171 similarity in each pair of images. To address this concern, we conducted six separate
172 RSAs, in which we indexed perceptual similarity between the image-pairs by six
173 different metrics, some drawn from the visual categorization models referred by Greene
174 et al (24) and Aminnoff et al (25). The six RDMs are Red Green and Blue (RGB) cross-
175 correlation RDM, RGB-intensity RDM, RGB-histogram RDM, Scale Invariant Feature
176 Transform (SIFT) RDM (26), Speeded Up Robust Features (SURF) RDM (27), and
177 Histogram of Oriented Gradients (HOG) RDM (28) (see **Materials and methods**). No
178 similar representation was observed in the posteromedial parietal cortex using these
179 candidate RDMs except the SURF RDM (**S4B-G Fig**). Importantly, to further exclude
180 the contribution of these additional perceptual properties, we conducted a whole brain
181 searchlight correlation between the TD RDM and the brain response pattern, this time
182 regressing out the six perceptual RDMs using a partial Spearman correlation analysis
183 method. This partial correlation analysis showed that the effects of abstraction of TD
184 distributed in the posteromedial parietal areas remained even after removing the
185 influences of all of these perceptual properties, suggesting that TD multivoxel
186 representation could not be driven simply by the perceptual properties (**S4J Fig**).

187 Considering previous work on space-time relationships in episodic memory (11,
188 29), we also quantified the space displacement embedded between the image-pairs by
189 computing the number of locations each participant had virtually traversed in the video


190 game, and entered them into a subject-specific Situational Changes RDM (**S5 Fig**).
191 Despite the space-time correlation in the encoding material (**S8 Fig**), subject-specific
192 Situational Changes RDMs explained very little variances in comparison to our
193 temporal-distance RDM (**S4A Fig**). We also confirmed that participants' behavioral
194 performance RDMs, namely reaction times and accuracy, could not explain the putative
195 temporal-distance representation (**S4H-I Fig**).

196 Having identified a multivariate pattern underlying the temporal memory
197 abstraction in the posterior medial parietal cortex, we asked further whether there were
198 voxels whose activities change monotonically as a function of temporal distance using
199 a standard univariate approach, irrespective of its multivoxel characteristics. A whole-
200 brain parametric modulation analysis revealed TD-specific BOLD signals in a cluster
201 within the posteromedial region, including the precuneus (**Fig 3C, S3 Table**). This
202 parametric relationship could not be attributed to difficulty (results were the same after
203 trial-by-trial reaction times were regressed out, **S6A Fig**). Importantly, since the two
204 types of analyses extracted two different kinds of neural information, their overlap in
205 the precuneus jointly confirms the critical involvement of this region. We accordingly
206 created a conjunction map (**Fig 3D**), so that both the multivariate and univariate results
207 underlying the temporal distance abstraction would be available for the next analysis.

208 We then performed inference tests to statistically assess whether the TD RDM is
209 significantly correlated with subject-specific neural RDM (labelled as reference RDM
210 in **Fig 3**) estimated from the fMRI response pattern in accordance to the 60 TD levels
211 (4 repetitions per TD level) within this conjunction region. This would allow us to test

212 whether the TD RDM could explain the neural representation better than the other
213 candidate RDMs. The TD RDM (our best-performing model) accounted for the
214 variance far better than the other candidate RDMs, such as SC RDM, six perceptual
215 RDMs and two behavioral RDMs (**Fig 3E-F**). These results showed that the neural
216 signals coded in the posteromedial region as revealed by these searchlight analyses
217 were most attributable to the mnemonic representation of temporal distances.

218

219

220 **Fig 3. Representation of temporal distances.** Abstraction of temporal distances in
221 posteromedial parietal cortex. **(A)** TD representational dissimilarity matrix (RDM) for

222 searchlight RSA. The RDM consisted of 60 subject-specific TD levels. Any two event-moments
223 that are separated by short TD will get increasingly dissimilar with other two event-moments
224 as the TD increases. **(B)** Using TD RDM for searchlight RSA, clusters of voxels that contained
225 TD information were primarily in the posteromedial cortex, bilateral angular gyri, and bilateral
226 middle frontal gyri. **(C)** Activation signal intensity from parametric modulation analysis
227 (Pmod). The intensity of these voxels, primarily in the left precuneus, increased as a function
228 of TD. **(D)** Conjunction region for neural signals extraction for subsequent inferential tests. The
229 mask was created by intersecting the similarity map from RSA and activation map from Pmod
230 (**S2&3 Table**). **(E)** Inferential comparisons of multiple model representations. Several
231 candidate RDMs were tested and compared for their ability to explain the neural reference
232 RDM extracted from the conjunction mask. TD RDM was the best model among these
233 candidate RDMs to explain the variances in the neural reference RDM. Horizontal lines over
234 two bars indicate that the two models having significant statistical differences (signed-rank test)
235 after multiple testing correction. The gray horizontal bar indicates the expected performance of
236 an unknown true model, given the noise in the data. Asterisks indicate a significant Spearman
237 correlation between the subject-specific reference RDM and candidate RDMs. Error bars
238 indicate the SEM over participants. * $P < 0.05$, FDR-corrected. **(F)** Reference (neural) RDM
239 and candidate RDMs. The reference RDM was estimated using the BOLD responses elicited
240 by the stimuli during fMRI in accordance to the 60 TD levels in the conjunction region. We
241 averaged 17 subject-specific neural reference RDMs for display purpose. SC RDM was
242 computed by the number of locations each participant had virtually traversed in the video (**S5**
243 **Fig**). Perceptual RDMs (RGB cross-correlation, RGB intensity, RGB histogram, SIFT, SURF,

244 HOG) were computed based on image properties (see details in **Materials and methods**).

245 Behavioral RDMs (RT and ACC) were computed based on the behavioral performance of

246 reaction times and percentage correct for each trial (see details in **Materials and methods**).

247 MRI results are displayed at $P_{\text{uncorrected}} < 0.001$.

248

249 **TD representation is context-dependent.** To test the hypothesis that the TD-

250 neural pattern similarity index to be higher when the two images are extracted from a

251 “similar context” than when they are from two “different contexts”, we ran a new

252 searchlight RSA, now separately for the Within-chapter and Across-chapter trials. The

253 representation of TD was observed only in the Within-chapter condition (**Fig 4A**, left)

254 but not in the Across-chapter condition (**Fig 4A**, right). The voxels identified by the

255 searchlight RSA were in the precuneus, retrosplenial cortex, and angular gyri bilaterally.

256 For statistical inference, we extracted the similarity index within the

257 aforementioned conjunction mask (RSA and pmod maps), using a bias-free leave-one-

258 subject-out method (see **Materials and methods**). In line with our prediction, the

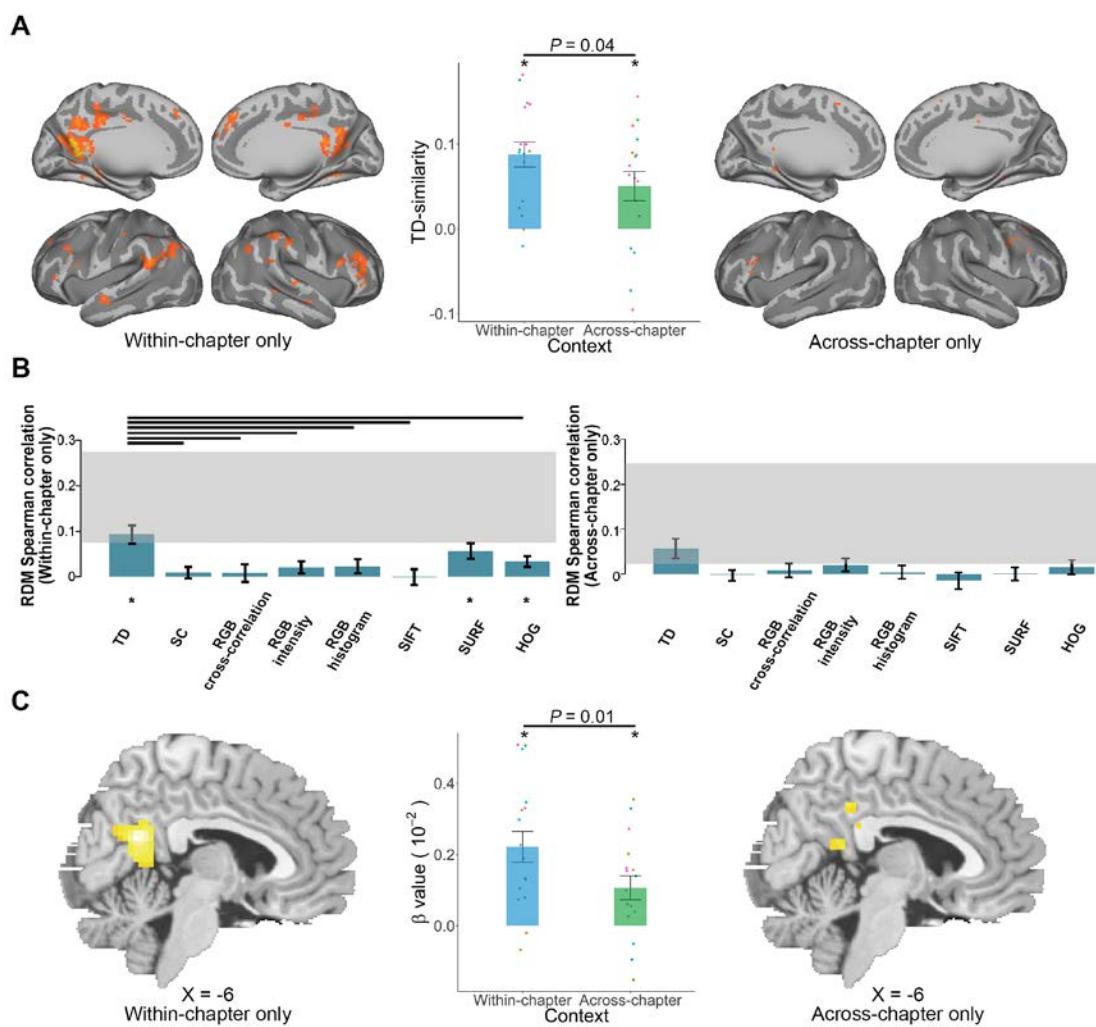
259 voxels in the Within-chapter trials contained higher pattern similarity to the TD RDM

260 than Across-chapter trials (**Fig 4A**, middle panel; one-tailed: $P = 0.04$), confirming the

261 neural pattern similarity related to the TD RDM was indeed stronger in Within-chapter

262 trials. We then performed statistical inference tests to assess whether the TD RDM

263 explains the neural reference RDM better than other candidate RDMs separately for


264 Within-chapter and Across-chapter conditions (**Fig 4B**). The TD model accounted for

265 the variances far better than the other candidate RDMs in the Within-chapter condition

266 (Fig 4B, left). By contrast, the TD RDM (and all other candidate RDMs) failed to
267 explain the neural reference RDM in the Across-chapter condition (Fig 4B, right).

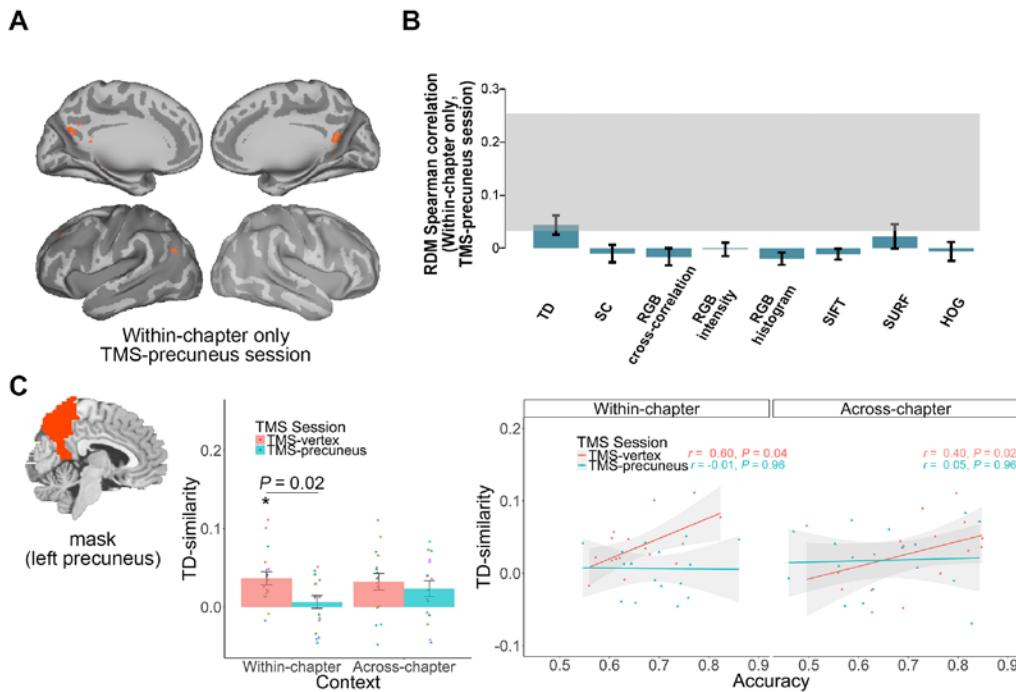
268 This context-dependent difference was also found in a voxel-wise univariate
269 analysis. The beta-estimates (β) from a pmod analysis using TD as a regressor were
270 significantly higher in the Within-chapter condition compared to the Across-chapter
271 condition (Fig 4C). These results were consistent in a control analysis while RT were
272 regressed out from the pmod analysis (S6B Fig). This confirmed that the mnemonic
273 representation of temporal distances was determined by whether the pairs of images
274 were experienced within a similar context, corroborating the interaction between
275 temporally- and semantically-defined factors observed during memory encoding (9)
276 and retrieval (12).

277

278

279 **Fig 4. TD representation is context-dependent.** (A) Stronger multivoxel similarity
280 representing TD variation in the Within-chapter condition than in the Across-chapter condition
281 in the conjunction region (middle panel, one-tailed: $P = 0.04$). Each same color dot represents
282 one subject. Error bars denote the SEM over subjects. * $P < 0.05$, FDR-corrected, one-sample
283 t-test against zero. (B) Separate model comparisons showed the TD RDM is the best model to
284 explain neural variances in the Within-chapter condition (although SURF RDM and HOG RDM
285 are also related to the neural reference RDM), whereas all the candidate RDMs could not
286 explain the neural variances in the Across-chapter condition. (C) Stronger parametric activation
287 intensity in the Within-chapter condition than in the Across-chapter condition.

288


289 **TMS reduced the precuneal representation of TD.** To causally ascertain a
290 pivotal role of the precuneus in this memory operation we deployed a disruptive
291 technique, strategically targeting the precuneus with repetitive transcranial magnetic
292 stimulation to interrogate changes on both neural and behavioral levels (within-subjects:
293 TMS-precuneus vs. TMS-vertex; **Fig 1F** and **S1 Table**). We found the widespread
294 representation of TD disappeared following TMS on the precuneus, either considering
295 the Within-chapter condition (**Fig 5A**) or collapsing Within-chapter and Across-chapter
296 conditions. Model comparison results showed that the correlation values between all
297 the candidate RDMs and neural reference RDM now failed to reach statistical
298 significance even when only considering Within-chapter trials alone (**Fig 5B**). In
299 contrast, the activation-based Pmod analyses showed that TMS to the precuneus did not
300 induce any discernable changes in the univariate BOLD intensity (**S6C Fig**)

301 In light of the fractionation view for the parietal cortex (30), we further tested the
302 possibility that there might be differences in the patterns of neural activity associated
303 with the abstraction of temporal distances in the sub-regions of the PM memory
304 network (13). Based on our main MRI results (**Fig 3B**) and previous work on the
305 parcellation of the PM memory network (20), we have chosen six anatomical regions-
306 of-interest in the PM memory network (ROIs: bilateral precuneus, bilateral angular
307 gyrus and bilateral hippocampus; see **Materials and methods**), together with the
308 primary visual region (entire occipital cortex) as a control, to more finely characterize
309 the disruptive effect caused by the TMS.

310 We extracted the similarity indices from these ROIs and found that the neural-TD

311 pattern similarity in the left precuneus was significantly weakened following TMS to
312 the precuneus specifically for Within-chapter condition (**Fig 5C**, one tailed: $P = 0.02$;
313 to a lesser extent, also the right precuneus and left angular gyrus, **S7A&D Fig**).
314 Specifically, we found that changes in individuals' neural-TD pattern similarity in the
315 vertex condition to be associated positively with their TOJ memory performance in this
316 key region (**Fig 5C**, $r = 0.60$, $P = 0.04$; also in the left hippocampi, see **S7B Fig**),
317 implying these multivoxel representations are relevant neurobiological prerequisites for
318 the ability to support temporal order judgement. In the experimental condition wherein
319 we disrupted the precuneal activity with magnetic field prior to retrieval, changes in
320 neural-behavioral correlation were resulted (**Fig 5C**, right panel; comparison between
321 two correlations: $z = 2.07$, $P = 0.04$). Since the focal perturbation altered the mnemonic
322 representation across parts of the PM system implicating the precuneus, the angular
323 gyri and the hippocampi, the putative disruption might have been effective through
324 inducing alternation in functional connectivity between multiple regions, or more
325 globally throughout the entire parietal memory network (31, 32).

326

327

328 **Fig 5. TMS reduced the precuneal representation of TD.** TMS reduced the precuneal

329 representation of TD. **(A)** Very few voxels survived in the searchlight RSA after TMS on the

330 precuneus (voxel level: $P_{\text{uncorrected}} < 0.001$; cluster level: $P_{\text{FWE}} < 0.05$). **(B)** Model comparisons

331 showed that the candidate RDMs explain little neural variances after TMS on the precuneus.

332 **(C)** We used left precuneus as a mask to extract TD-similarity values from subjects and found

333 that TMS-precuneus, compared to the TMS-vertex, reduced the TD representation specifically

334 in the Within-chapter condition (middle panel, one tailed: $P = 0.02$). Further correlation

335 analyses showed that TMS on the precuneus weakened the significant neural-behavioral

336 correlation (TMS-vertex session: $r = 0.60, P = 0.04$; TMS-precuneus session: $r = -0.01, P =$

337 0.96; comparison between two correlations: $z = 2.07, P = 0.04$). P values are FDR-corrected.

338

339 **Discussion**

340 By combining fMRI, rTMS and multivoxel pattern analysis with a novel interactive

341 memory paradigm, we provided the first characterization of multivoxel pattern of

342 temporal distance between pairs of episodic events in the human parietal cortex and
343 showed that BOLD intensity of posteromedial cortex, especially the precuneus, varied
344 as a function of temporal distance. We showed that such information carried by these
345 regions is more pronounced within a similar context and such representations reduced
346 significantly after the precuneus was perturbed. We further revealed that the precuneal
347 representation of TD is associated with subjects' memory performance, especially
348 when two images for temporal order judgment were extracted from the same context.

349 Our findings align with the Temporal Context Model (17) which stipulates that the
350 fine-grained TD memory information distributed in this cortex is stronger when paired
351 images were associated within a similar context. The parietal representation of temporal
352 distances between pairs of episodic events observed here, as revealed by both univariate
353 and multivariate pattern analyses, might act in parallel with hippocampal cells that code
354 specific moments in time or temporal positions (33), or act independently as a separate
355 mnemonic establishment of episodes over and above the hippocampal memory
356 ensemble (34).

357 Previous studies have associated neural similarity in the hippocampus with both
358 spatial and temporal aspects of episodic memory (29, 35, 36). Studies on rats have also
359 showed that gradually changing representation, as manipulated by temporal
360 lag/distance, is manifested in the hippocampus (10). These studies have mostly focused
361 on neural similarities in the hippocampus (29, 36, 37), whereas here we revealed a TD
362 representation primarily in the PM system. This discrepancy might be due to the fact
363 that instead of using a passive paradigm (viewing movies or listening to narratives), we

364 used an active paradigm (first-person perspective gameplay for encoding), which
365 should have implicated a distinct system upon retrieval (38)(39) when the memories in
366 question are akin to real-life autobiographical/episodic experiences. The consideration
367 that a temporal order judgment task was used in which participants had to extract
368 temporal distance for making a decision (40), and then the neural signals were assessed
369 in relation to the actual temporal distances rather than to subjective estimation of
370 temporal separation might have also engaged the PM memory system more heavily.

371 It is theoretically interesting that the multivariate representations were more
372 vulnerable to the magnetic stimulation than the voxel-wise signal intensity (note that
373 TMS to the precuneus did not induce any discernable changes in univariate BOLD level,
374 see **S6C Fig**). These findings support our argument that memory traces that are
375 represented during temporal order judgement are indeed conveyed in some localized
376 multivoxel readouts housed in the PM system cortices, above and beyond the modulated
377 changes in canonical BOLD activation. Building on extant connectivity findings
378 between the hippocampus and neocortical regions (13, 41, 42) and the hippocampal
379 role in temporal context memory (9, 12), our demonstration of distributed pattern of
380 temporal information in the posteromedial parietal region implied the existence of a
381 higher level parietal mnemonic readout of temporal distances between episodic
382 experiences.

383 Model comparisons incorporating several control analyses robustly confirm that
384 such precuneal representation of temporal distances do not merely reflect some trivial
385 effects related to task difficulty (18, 43) or inferred distance based on image properties.

386 Although some perceptual models (such as SUFT model) might produce a similar RSA
387 map, when we partially removed the respective influences of perceptual properties, the
388 effects of TD representation in the posteromedial parietal cortex were largely
389 unaffected (**S4J Fig**). Moreover, in terms of the stimuli features, since our images were
390 extracted randomly across chapters of the video game (**S1C Fig**), and since the TD
391 distributions were fully matched between the Within-chapter and Across-chapter
392 conditions, predictions made by the positional coding theory (44) would also not be
393 sufficient to account for the differential TD representational results across these two
394 conditions.

395 In summary, our multivariate searchlight results reveal that the temporal distance
396 representations in the posterior parietal cortex, especially in the precuneus, during TOJ
397 retrieval are determined by how temporally distant (and how similar the encoding
398 contexts) two given event-moments the subjects had encountered (18, 19). We also
399 establish that this multivoxel mnemonic abstraction is localized in the precuneal area
400 and perturbation to it alters the neural—behavior relationship across the global parietal
401 memory network, assigning this structure as a locus of flexibly effecting the
402 manipulation of physical time during episodic memory retrieval.

403

404 **Materials and methods**

405 **Participants.** Twenty individuals participated in the study (7 female, 22.55 ± 1.54 years, mean \pm sd). Data from 3 subjects were excluded due to either poor performance (1 subject performed at chance level) or scanner malfunction (projector crashed during scanning for 2 subjects at TMS-vertex session), resulting in a final group of 17 subjects (7 female, 20.65 ± 1.54 years, mean \pm sd). All subjects were unfamiliar with the video game, had normal or correct-to-normal vision and did not report neurological or psychiatric disorders or current use of psychoactive drugs. All subjects were eligible for MRI and TMS procedures based on standard MRI safety screening as well as on their answers to a TMS safety-screening questionnaire (45). No subjects withdrew due to complication from the TMS or MRI procedures, and no negative treatment responses were observed. All subjects gave written informed consent and were compensated for their participation. All procedures were performed in accordance with the 1964 Helsinki declaration and its later amendments and approved by University Committee on Human Research Protection of East China Normal University (UCHRP-ECNU). The number of participants was determined based on previous studies with similar design (9, 32).

421

422 **Experimental design, stimuli, and tasks.** *Encoding: Interactive video game.* The action-adventure video game (Beyond: Two Souls) was created by the French game developer Quantic Dream and played in the PlayStation 4 video game console developed by Sony Computer Entertainment. Participants played the game using a first-

426 person perspective. To ensure that the participants mastered the operational capability,
427 they were trained to play the game with two additional game chapters (Training
428 chapters: Welcome to the CIA, and The Embassy). The training session varied in
429 duration depending on the dexterity of each participant on using the console (40 – 60
430 min per chapter). After the training session, participants played 14 chapters in total
431 across two sessions: 7 in Experimental Session 1 and then another 7 in Session 2 (**Fig**
432 **1**). The video game they played were recorded and stored as a single video file in MP4
433 format (Chapters 1~7: My Imaginary Friend, First Interview, First Night, Alone, The
434 Experiment, Night Session, Hauntings; Chapters 8~14: The Party, Like Other Girls,
435 Separation, Old Friends, Norah, Agreement, Briefing; see **S1 Fig**).

436 *Retrieval (scanned): Temporal Order Judgment (TOJ) task.* The TOJ retrieval task
437 required participants to choose the image that happened earlier in the video game they
438 had encoded. The task was administrated inside an MRI scanner, where visual stimuli
439 were presented using E-prime software (Psychology Software Tools, Inc., Pittsburgh,
440 PA), as back-projected via a mirror system to the participant. Each trial was presented
441 for 5 s during which participants performed the temporal order judgment. They were
442 then allowed 3 s to report their confidence level following the memory judgement.
443 Participants performed the TOJ task using their index and middle fingers of one of their
444 hands via an MRI compatible five-button response keyboard (Sinorad, Shenzhen,
445 China). Participants reported their confidence level (“Very Low”, “Low”, “High”, or
446 “Very High”) regarding their own judgment of the correctness of TOJ with four fingers
447 (thumb was not used) of the other hand. The left/right hand response contingency was

448 counterbalanced across participants. Participants were told they should report their
449 confidence level in a relative way and make use of the whole confidence scale.
450 Following these judgments, a fixation cross with a variable duration (1 – 6 s) was
451 presented. Each participant completed 240 trials in each of the two experimental
452 sessions. Participants were given 15 practice trials using paired images extracted from
453 the two additional chapters they had played in the training session out of the scanner to
454 ensure they understand the task procedure. Participants completed a surprise
455 recognition test after TOJ task outside scanner; data of which are not reported here.

456 For the TOJ task, we selected still images from the subject-specific recorded
457 videos which the participants had played the day before. Each second in the video
458 consisted of 29.97 static images (frames). For each game-playing session, 240 pairs of
459 images were extracted from the seven chapters and were paired up for the task based
460 on the following criteria: (1) the two images had to be extracted from either the same
461 chapters or adjacent chapters (Within-chapter vs. Across-chapter); (2) the temporal
462 distance (TD) between the two images were matched between Within- and Across-
463 chapter condition; (3) in order to maximize the TD, we first selected the second longest
464 chapter of the video and determined the longest TD according to a power function
465 (power = 1.5), at the same time ensuring the shortest TD to be longer than 30 frames.
466 We generated 60 progressive levels of TD among these pairs (each level repeated twice).
467 In sum, three within-subjects factors regarding the TOJ retrieval task were manipulated:
468 (1) 60 TD levels permitting scale-invariance across subjects between two images (see
469 below); (2) Context (two images extracted from either Within- or Across-chapter); (3)

470 TMS stimulation (TMS-precuneus vs. TMS-vertex, see below).

471 *Selection of 60 levels of temporal distances (TDs).* In order to maximize the range
472 of all TDs, we first selected the second longest chapter of the video game and
473 determined the longest TD (L), while ensuring the shortest TD to be longer than 30
474 frames. The 60 TD levels were selected according to this function,

475
$$TD_n = L * \left(\frac{n}{60}\right)^{1.5},$$

476 where L denotes duration of the second longest chapter of the video game in each
477 experimental session, n denotes TD level, and value of TD_n were rounded to the nearest
478 integer using the “round” function in MATLAB. Note that the actual TDs were different
479 across subjects, but since we applied a power function, the scale was thus rendered
480 invariant (22). Image-pairs extraction from each of the chapters were independently
481 conducted across subjects. The numbers of images-pairs extracted from each of the
482 chapters were approximately equal within-subjects.

483

484 **Transcranial magnetic stimulation. TMS procedure and protocol.** TMS were applied
485 using a 70 mm Double Air Film Coil connected to a Magstim Rapid2 (The Magstim
486 Company, Ltd., Whitland, UK). In order to localize the target brain regions precisely,
487 we obtained individual anatomical T1-weighted magnetic resonance images and then
488 imported them into BrainSight (Rogue Research Inc., Montreal, Canada) for stereotaxic
489 registration of the TMS coil with the participants’ brain. The position of the coil and
490 the subject’s head were co-registered with BrainSight, and monitored using a Polaris
491 Optical Tracking System (Northern Digital, Waterloo, Canada) during TMS. Positional

492 data for both rigid bodies were registered in real time to a common frame of reference
493 and were superimposed onto the reconstructed three-dimensional MRI images of the
494 subject using the BrainSight. The center of the coil was continuously monitored to be
495 directly over the site of interest. For all sites (vertex, precuneus, and motor areas for
496 measuring active motor threshold), the TMS coil was held tangential to the surface of
497 the skull and was placed in a rostro-caudal direction. An adjustable frame was used to
498 hold the TMS coil firmly in place, while the participants rested their heads on the chin
499 rest. Head movements were monitored constantly by BrainSight and were negligible.
500 We measured subjects' active motor threshold, defined as the lowest TMS intensity
501 delivered over the motor cortex necessary to elicit visible twitches of the right index
502 finger in at least 5 out of 10 consecutive pulses. The location used to determine the
503 active motor threshold was identified with a single pulse of TMS over the motor cortex
504 at the left hemisphere. The TMS coil was systematically moved until the optimal
505 cortical site was located to induce the largest and most reliable motor response; this
506 stimulus output was then recorded. The TMS intensity was then calibrated at 110% of
507 individual active motor threshold (stimulator output: $75.2 \pm 6.9\%$, mean \pm se, range
508 from 63% to 88%, **S1 Table**). In Experimental Session 1 and 2, the TMS was applied
509 at a low-frequency rate of 1 Hz with an uninterrupted duration of 20 min.

510 *TMS stimulation sites.* The target stimulation was delivered to the precuneus (18)
511 (MNI x, y, z = 6, -70, 44), whereas the control stimulation was delivered to the vertex.
512 The vertex was defined individually by the point of the same distance to the left and the
513 right pre-auricular, and of the same distance to the nasion and the inion. Due to the

514 folding of the two cerebral hemispheres, the stimulated vertex site lies at a considerable
515 distance from the TMS coil, thereby diminishing the effectiveness of the magnetic
516 pulses. Stimulating the vertex is not known to produce any memory task-relevant
517 effects and deemed as a reliable control site. Stimulation magnitude and protocols in
518 the present study were comparable to those used in similar studies that are robust to
519 produce significant memory-related changes by targeting at the precuneus (46-48) or
520 lateral parietal cortices (31, 32). Immediately after the end of the stimulation,
521 participants performed four runs of Temporal Order Judgment task in the MRI scanner
522 (delay period between the end of TMS and the beginning of MRI: $M_{\text{precuneus}} = 15.29$
523 min, $M_{\text{vertex}} = 20.76$ min, $t(16) = -0.87$, $P = 0.4$).

524

525 **MRI data acquisition and preprocessing.** *Data acquisition.* All the participants were
526 scanned in a 3-Tesla Siemens Trio magnetic resonance imaging scanner using a 32-
527 channel head coil (Siemens Medical Solutions, Erlangen, Germany) at ECNU. In each
528 of the two experimental sessions, a total of 1,350 fMRI volumes were acquired for each
529 subject across 4 runs. The functional images were acquired with the following sequence:
530 TR = 2000 ms, TE = 30 ms, field of view (FOV) = 230×230 mm, flip angle = 70° ,
531 voxel size = $3.6 \times 3.6 \times 4$ mm, 33 slices, scan orientation parallel to AC-PC plane.
532 High-resolution T1-weighted MPRAGE anatomy images were also acquired (TR =
533 2530 ms, TE = 2.34 ms, TI = 1100 ms, flip angle = 7° , FOV = 256×256 mm, 192
534 sagittal slices, 0.9 mm thickness, voxel size = $1 \times 1 \times 1$ mm).

535 *Preprocessing.* Preprocessing was conducted using SPM12

536 (<http://www.fil.ion.ucl.ac.uk/spm>). Scans were realigned to the middle EPI image. The
537 structural image was co-registered to the mean functional image, and the parameters
538 from the segmentation of the structural image were used to normalize the functional
539 images that were resampled to $3 \times 3 \times 3$ mm. The realigned normalized images were
540 then smoothed with a Gaussian kernel of 8-mm full-width half maximum (FWHM) to
541 conform to the assumptions of random field theory and improve sensitivity for group
542 analyses (49). Data were analyzed using general linear models and representational
543 similarity analyses as described below with a high-pass filter cutoff of 256 s and
544 autoregressive AR(1) model correction for auto-correlation.

545

546 **Functional MRI data analysis.** *Parametric modulation analysis.* First-level models
547 were performed on the fMRI data collected from the TMS-vertex session only (either
548 all the trials altogether or separately for Across-chapter vs. Within-chapter conditions).
549 In all of these models, each of the 240 trials was modeled with a canonical
550 hemodynamic response function as an event-related response with a duration of 5 s.

551 For the TMS-vertex session as a whole (Across-chapter and Within-chapter trials
552 collapsed), we performed two parametric modulation analyses (pmod), each with a
553 different combination of modulatory regressor/regressors (namely, TD; TD + RT). For
554 the TD pmod, we assigned the actual TD values at encoding as the modulatory
555 parameter, and used the polynomial function up to first order. Several regressors of no
556 interest were also included: 6 head movement regressors and 1 missing trial regressor
557 (i.e., no-response trials; number of missing trials of Across-chapter condition: $5.65 \pm$

558 6.96, of Within-chapter condition: 5.29 ± 6.8 ; $n = 17$, mean \pm sd) and the run mean.

559 The purpose of this analysis was to test for any linear TD-dependent modulation of

560 signal intensity in the brain between the TD between the two images at encoding and

561 the brain activity during TOJ retrieval of the same events. For the TD + RT pmod, we

562 aimed to identify the voxels whose activities changed as a function of TD after the

563 removal of the influence of reaction times. Each subjects' RTs corresponding to each

564 TD level were entered as the modulatory parameter, together with the regressors of no

565 interest as above.

566 For the Across-chapter vs. Within-chapter comparison, we also performed two

567 pmod analyses with identical sets of regressors as described above (namely, TD; TD +

568 RT). We looked for changes in brain responses as a linear function of the regressor of

569 interest (i.e., TD). Maps were created by multiple regression analyses between the

570 observed signals and regressors. The contrast maps from the first-level model of

571 parametric analyses were taken for second-level group analyses and entered into one-

572 sample *t*-tests. The group analyses were performed for each contrast using a random

573 effects model(50). The statistical threshold was set at $p < 0.05$ (FWE corrected) at

574 cluster level and $p < 0.001$ at an uncorrected peak level according to the SPM12

575 standard procedure. The activation cluster locations were indicated by the peak voxels

576 on the normalized structural images and labeled using the nomenclature of Talairach

577 and Tournoux (1988) (51).

578 *Searchlight Representational Similarity Analysis (searchlight RSA)*. RSA were

579 conducted using the RSA toolbox (<http://www.mrc-cbu.cam.ac.uk/methods-and->

580 resources/toolboxes/) on the fMRI data following realignment and normalization, but
581 without smoothing. In the Across-chapter vs. Within-chapter comparison, each unique
582 TD level was modeled with a separate regressor and was contrasted to produce a T-
583 statistic map (spmT maps), creating 120 statistical maps in total (Across- vs. Within-
584 chapter conditions; 2 repetitions for each TD level). For the TMS-vertex vs. TMS-
585 precuneus comparison, we collapsed the respective trials within the Across- and
586 Within-chapter conditions and generated 60 statistical maps in either of the two sessions
587 (4 repetitions for each TD level). Using searchlight RSA, spherical searchlights with a
588 radius of 9 mm (93 voxels, volume = 2,511 mm³) were extracted from the brain volume
589 and then the data (i.e., signal intensity) for the 60 TD levels were Person product-
590 moment (1 - r) correlated with every other level to generate a representational
591 dissimilarity matrix (RDM), reflecting the between-condition dissimilarity of BOLD
592 signal response. These neural RDMs were then Spearman-rank correlated with a set of
593 candidate RDMs (see **Fig 3F**), reflecting different predictions of the information carried
594 by similarity structure of neural signal responses and generated correlational maps (r -
595 maps). Finally, these r -maps were converted to z -maps using Fisher transformation. All
596 the z -maps were then submitted to a group-level one-sample t -test to identify voxels in
597 which the similarity between the predicted RDM and observed neural RDM was greater
598 than zero. This allowed us to identify voxels in which information of TD at retrieval
599 might be represented (see **S3 Fig**). The statistical threshold was set as identical to those
600 employed in the univariate analysis, which was at $p < 0.05$ (FWE corrected) at cluster
601 level and $p < 0.001$ at an uncorrected peak level.

602 *Leave-one-subject-out approach (LOSO), functional and anatomical ROIs.* We
603 applied a LOSO approach to create functional ROIs to avoid statistical bias (52). For
604 instance, in order to identify an ROI (i.e., conjunction mask in **Fig 3D**) for Subj01, we
605 estimated the contrast using a one-sample *t*-test on the whole-brain searchlight z-maps
606 obtained from Subj02 to Subj17. Likewise, we also estimated the contrast using a one-
607 sample *t*-test on the contrast maps obtained from the Pmod analysis of Subj02 to Subj17.
608 We set the same threshold reported above to extract clusters from these two statistical
609 maps. We then overlaid the two resultant maps and extracted a conjunction region
610 (mask01), with which we used to extract the value in the searchlight *z*-map from Subj01
611 for further statistical analysis. This procedure was repeated 17 times and generated 17
612 different ROIs, which provided statistically independent regions to extract values for
613 testing differences between conditions. For the anatomical ROIs (depicted in **Fig 5** and
614 **S7 Fig**), 7 regions (bilateral precuneus, bilateral angular gyrus, bilateral hippocampus
615 and occipital cortex) of AAL template (53) were created as masks. We extracted and
616 averaged the similarity value within these masks for each subject for statistical tests.
617

618 **Candidate representational dissimilarity matrices (RDM). Model 1** (TD RDM, 60
619 \times 60): We ranked the difference across the 60 TD levels, from the shortest to the longest
620 TD, for the Within-chapter condition (or Across-chapter condition, the two RDMs were
621 identical because of their matched TD). We first log-transformed the subject-specified
622 TD values for each pair of images and then computed the differences with and among
623 every other TD levels producing $60 \times 59/2$ values, which were then assigned to the

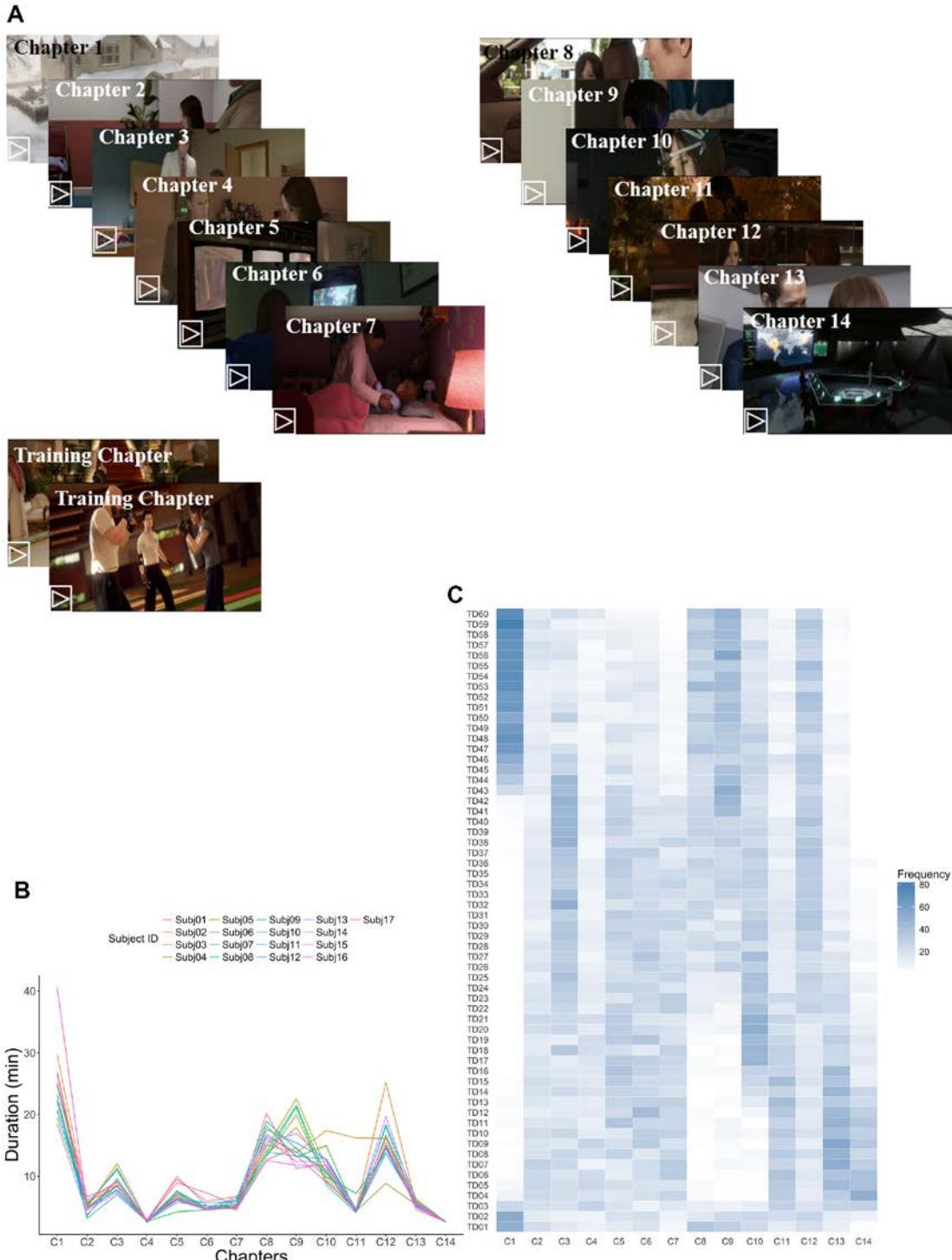
624 corresponding cells of the RDM.

625 *Model 2* (Situational Change RDM, 60×60): Since the temporal and spatial
626 dimensions were closely inter-correlated. We checked whether the situational change
627 might influence the neural patterns in those voxels that represent the TD information.
628 We analyzed the subject-specific videos frame by frame and marked out the boundaries
629 at which a situational location had changed (see illustration in **S4 Fig**). Then we
630 computed the numbers of situational changes contained in each of the paired images
631 and then computed the differences with and among every other conditions producing
632 $60 \times 59/2$ values, which were then assigned to the corresponding cells of the RDM.

633 *Model 3* (RGB-cross-correlation RDM, 60×60), *Model 4* (RGB-intensity RDM,
634 60×60) and *Model 5* (RGB-histogram RDM, 60×60) considered the perceptual
635 characteristics of the images used in TOJ. For Model 3, the similarity measure was
636 based on the cross-correlation value between two images (image of size 1920×1080)
637 for the three color channels (red, green, and blue; RGB). For every pair of images in
638 each of the three color channels (RGB), we computed the cross-correlation coefficients
639 between the pair. This is a measure of the displacement of one image relative to the
640 other; the larger the cross-correlation coefficient (which ranges between -1 and 1), the
641 more similar the two images was. We then computed the differences with and among
642 every other conditions producing $60 \times 59/2$ values, which were then assigned to the
643 corresponding cells of the RDM. For Model 4, we computed the pixel-wise difference
644 between pair images for the three color channels (RGB). The computed difference is
645 useful when the compared images are taken from a stationary camera with infinitesimal

646 time difference. The output pixel for each color channel is assigned with the value 1 if
647 the absolute difference between the corresponding pixels in the image pair is non-zero,
648 or a value of 0 otherwise. A single value is generated for each of the three color channels
649 by summing all the output pixel values (either 0 or 1). We averaged the sum of
650 difference for all three color-channels for the intensity value of each pair of images and
651 then computed the differences with and among every other conditions producing $60 \times$
652 $59/2$ values, which were then assigned to the corresponding cells of the RDM. For
653 Model 5, we constructed color histograms for image pairs and computed the Sum-of-
654 Square-Difference (SSD) error between them for the three color channels (RGB). For
655 each color channel the intensity values range from 0 to 255 (i.e., 256 bins), we first
656 computed the total number of pixels at each intensity value and then computed the SSD
657 for all 256 bins for each image pair. The smaller the value of the SSD, the more similar
658 the two images (image pair) was. We then computed the differences with and among
659 every other conditions producing $60 \times 59/2$ values, which were then assigned to the
660 corresponding cells of the RDM. In contrast to model 4, this approach does not require
661 corresponding pixels in the image pair to be the same, but rather measures the existence
662 of pixel intensity in both images. Overall, the three perceptual-similarity models (3, 4
663 and 5) look at different similarity measures and they complement each other; thus any
664 difference in the appearance of the two images irrespective of the temporal distance,
665 could be accounted for by at least one of the three models. For any two similar images,
666 the RGB-intensity RDM results in a very small value, thus the corresponding pixels are
667 virtually the same for the entire image. The RGB-histogram will also result in a small

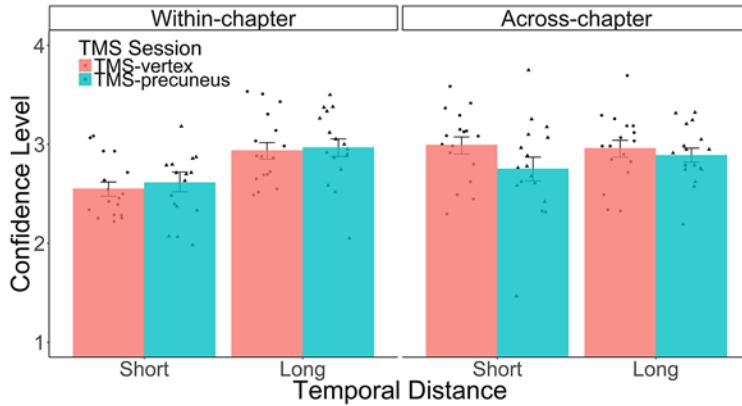
668 value as the image pairs will have the same histogram bins. The RGB-cross-correlation
669 value will be close to 1, signifying the similarity in the images. When subsections of a
670 scene are visible in both images with varied brightness, the RGB-cross-correlation
671 value will still be closer to 1 but with a very high RGB-intensity RDM value.


672 *Model 6* (Scale Invariant Feature Transform (SIFT) RDM, 60×60), *Model 7*
673 (Speeded Up Robust Features (SURF) RDM, 60×60) and *Model 8* (Histogram of
674 Oriented Gradients (HOG), 60×60): For model 6, SIFT transform images into scale-
675 invariant vectors which encoded interest points. For any pair of images to be compared,
676 a computational search over selected scales and image locations is conducted using
677 Difference-of-Gaussian (DoF) to identify potential interest points that are invariant to
678 scale and orientation in each image. Interest points from each image are stabilized using
679 Taylor series expansion of scale space to get a more accurate location of extrema. This
680 is followed by the construction of an orientation histogram to achieve invariance to
681 rotation. Key-points between the two images are then matched by identifying their
682 nearest neighbors using minimum Euclidean distance between the invariant descriptor
683 vectors extracted from each image. For model 7, rather than the use of DoF in SIFT (26)
684 as an approximation of Laplacian-of-Gaussian (LoG), SURF (27) uses Box Filter which
685 is calculated in parallel using integral images (54) to approximate LoG. Wavelet
686 responses in both horizontal and vertical directions are used to assign orientation in
687 SURF. Like SIFT, the first step in SURF consists of fixing a reproducible orientation
688 based on information from a circular region around the interest point (27). A descriptor
689 vector is generated around the interest point using integral image, which is compared

690 to descriptor vectors extracted from a compared image to find a match. The Euclidean
691 distance has been used to measure the similarity between two descriptor vectors from
692 the two images. It is worth noting that SURF was not used in neither Greene et al. (24)
693 nor Aminoff et al (25) but it is robust and much faster to compute than SIFT. However,
694 Greene et al. (24) trained a state-of-the-art convolutional neural network (CNN) on
695 ImageNet 2012 to find visual features to perform their categorization. To remove the
696 time for training a supervised network like CNN which uses SIFT/SURF features in its
697 layers, our dissimilarity measures are based on the features extracted solely from the
698 input images with no prior training. For model 8, in the case of the HOG feature
699 descriptor, we constructed a histogram of directions of gradient over fixed sized grid
700 across the entire image. A vector is generated from each grid cell and correlated with
701 HOG features from another image. It is worth noting that gradients or derivatives of x
702 and y (location) in an image are useful for interest point localization because they have
703 higher values around edges and corners, which hold more information about objects.

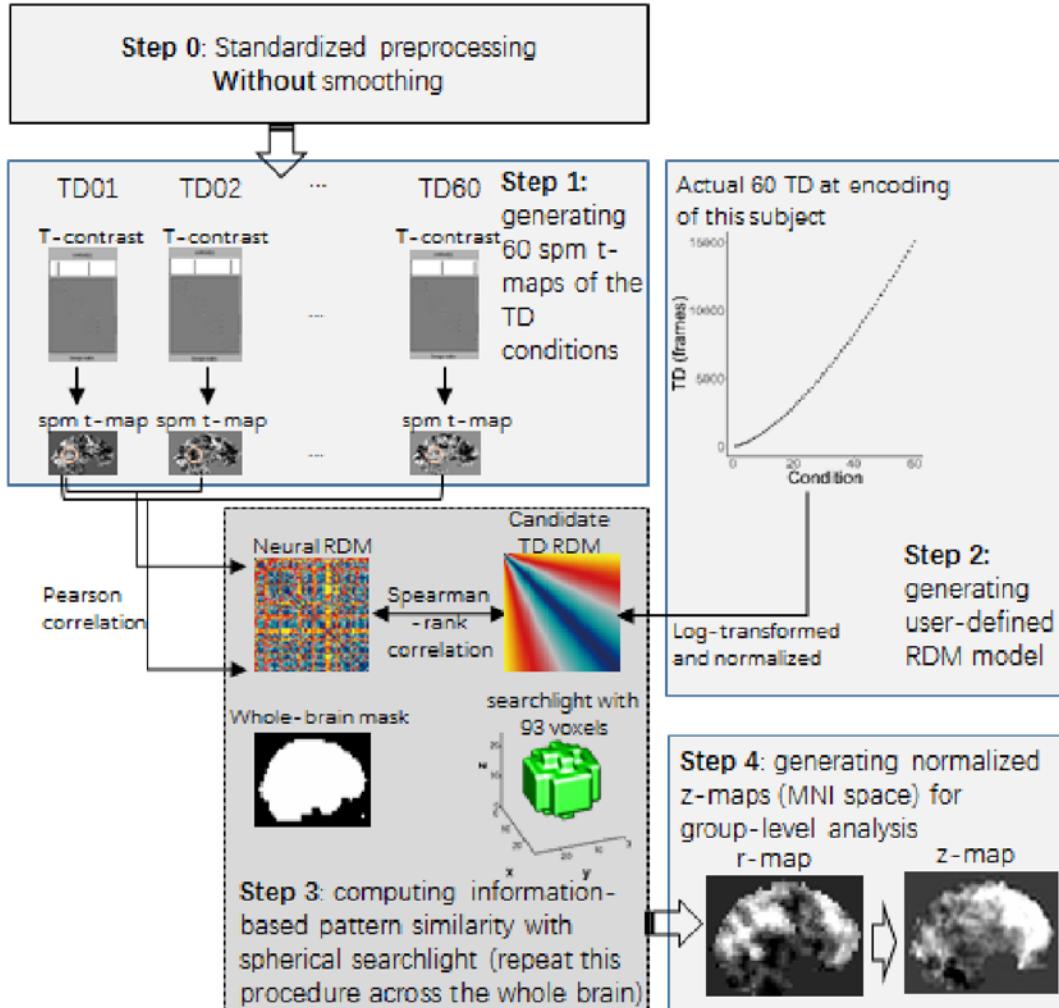
704 *Model 9* (RT RDM, 60×60) and *Model 10* (ACC RDM, 60×60) were computed
705 based on the behavioral performance of reaction times and percentage correct (0 or 1)
706 for each trial. We averaged the values along the 60 TD levels first (4 repetitions when
707 Within-chapter and Across-chapter conditions collapsed; 2 repetitions for Within-
708 chapter or Across-chapter alone) and computed the differences with and among every
709 other TD levels producing $60 \times 59/2$ values, which were then assigned to the
710 corresponding cells of the RT RDM and ACC RDM.

711


712 **Supporting Information**

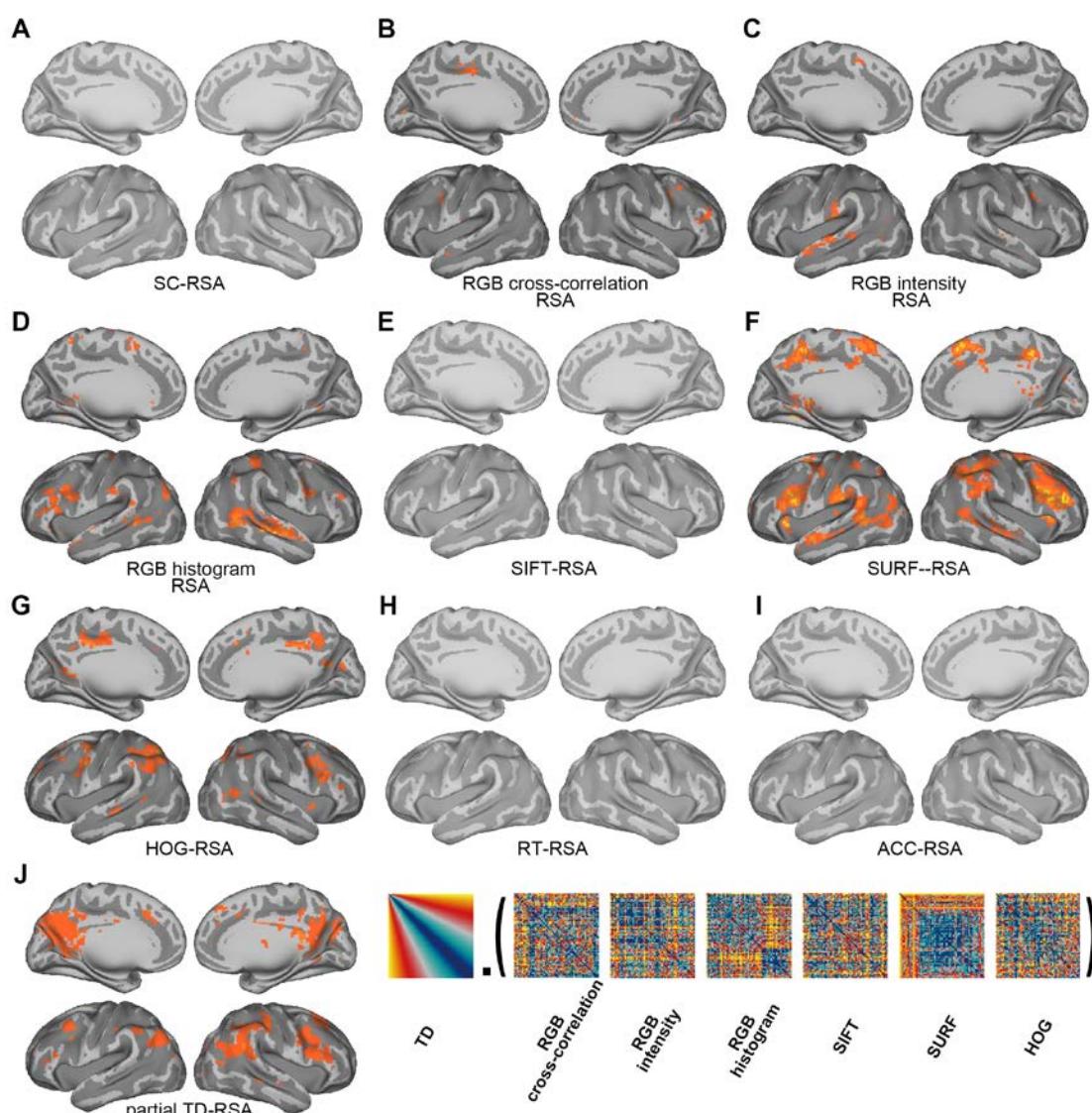
713

714 **S1 Fig. Stimuli.** (A) 14 different chapters were used: seven in each of two within-
715 subjects TMS sessions (see also **S1 Table**). (B) Playing durations varied across chapters
716 and subjects. (C) Intensity map showed that the numbers of trials extracted from the 14


717 game chapters separately for the 60 TD levels across subjects. The numbers of image
718 pairs extracted for the TOJ task were approximately equal across the chapters, except
719 that longer TD are more likely to be extracted from the longest chapter (e.g., C1).
720

721

722 **S2 Fig. Behavioral results of confidence level.** TMS did not result in differences in
723 participants' confidence level, except for a significant TD \times Context interaction ($F_{(1, 16)}$
724 $= 19.12$, $P < 0.001$, $\eta^2 = 4.52\%$), which was driven by significant differences in
725 confidence level between short and long TD in Within-chapter condition ($t_{(33)} = 6.76$,
726 $P < 0.001$), but not in Across-chapter condition ($t_{(33)} = 1.17$, $P = 0.250$). Dots indicate
727 behavioral performance per subject. Error bars denote the SEM over subjects.
728


using TD RDM to perform searchlight RSA as an example

729

730 **S3 Fig. Pipeline of RSA analysis.** Using one model (TD RDM) to perform the
731 searchlight procedure as an example in one subject (Subj01). The same principle and
732 procedure applied to all other candidate RDMs and subjects.

733

734

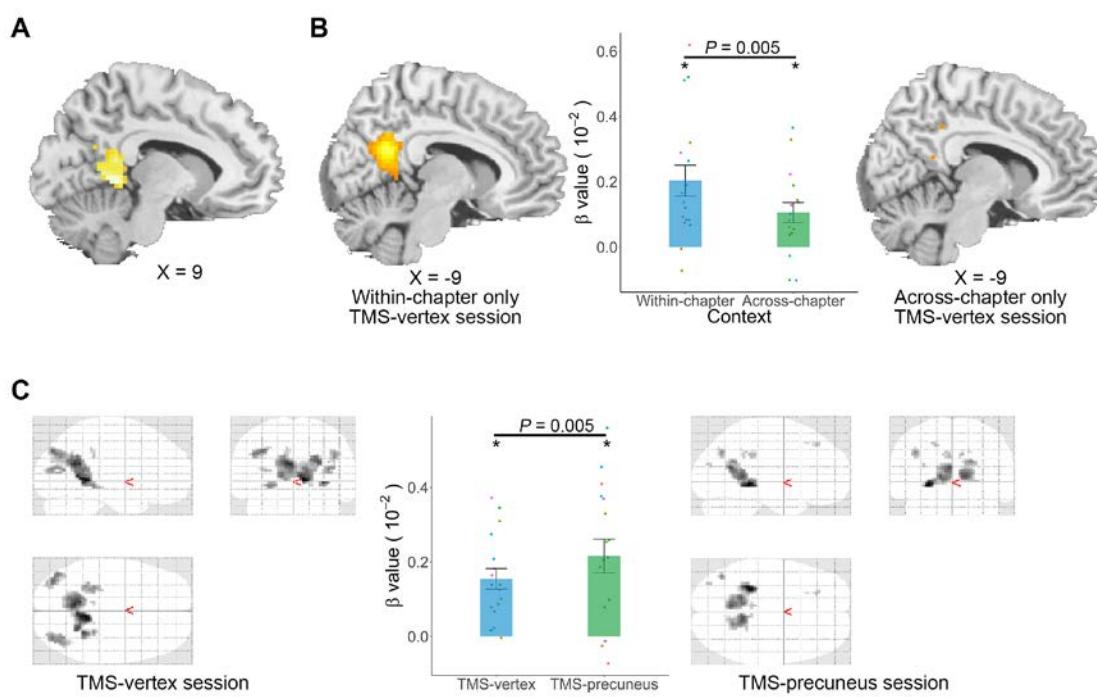
735 **S4 Fig. RSA searchlight results for TMS-vertex sessions using candidate RDMs.**

736 **(A)** Situational Change RDM (see **S5 Fig**). **(B)** RGB cross-correlation RDM. **(C)** RGB-
737 intensity RDM. **(D)** RGB-histogram RDM. **(E)** SIFT RDM. **(F)** SURF RDM. **(G)** HOG
738 RDM. **(H)** Reaction time RDM. **(I)** Accuracy RDM. **(J)** A partial correlation analysis
739 showed that the TD representation in the posteromedial parietal areas was not subject
740 to influences due to the six perceptual RDMs. MRI results are displayed at $P_{\text{uncorrected}} <$
741 0.001.
742

743

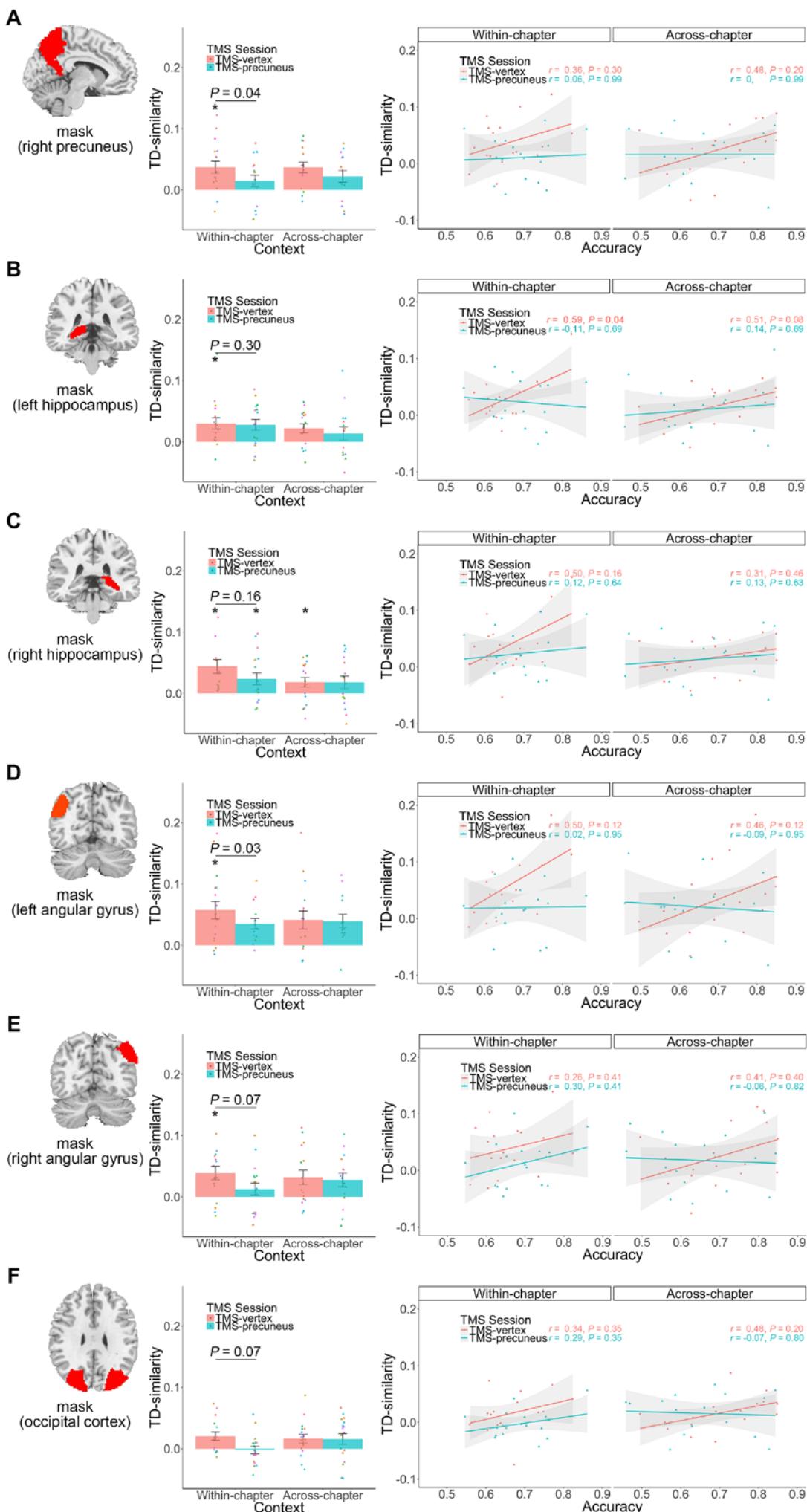
744 **S5 Fig. An excerpt of a subject-specific video.** An excerpt of a subject-specific video

745 illustrates how situational changes were defined frame-by-frame for Situational Change

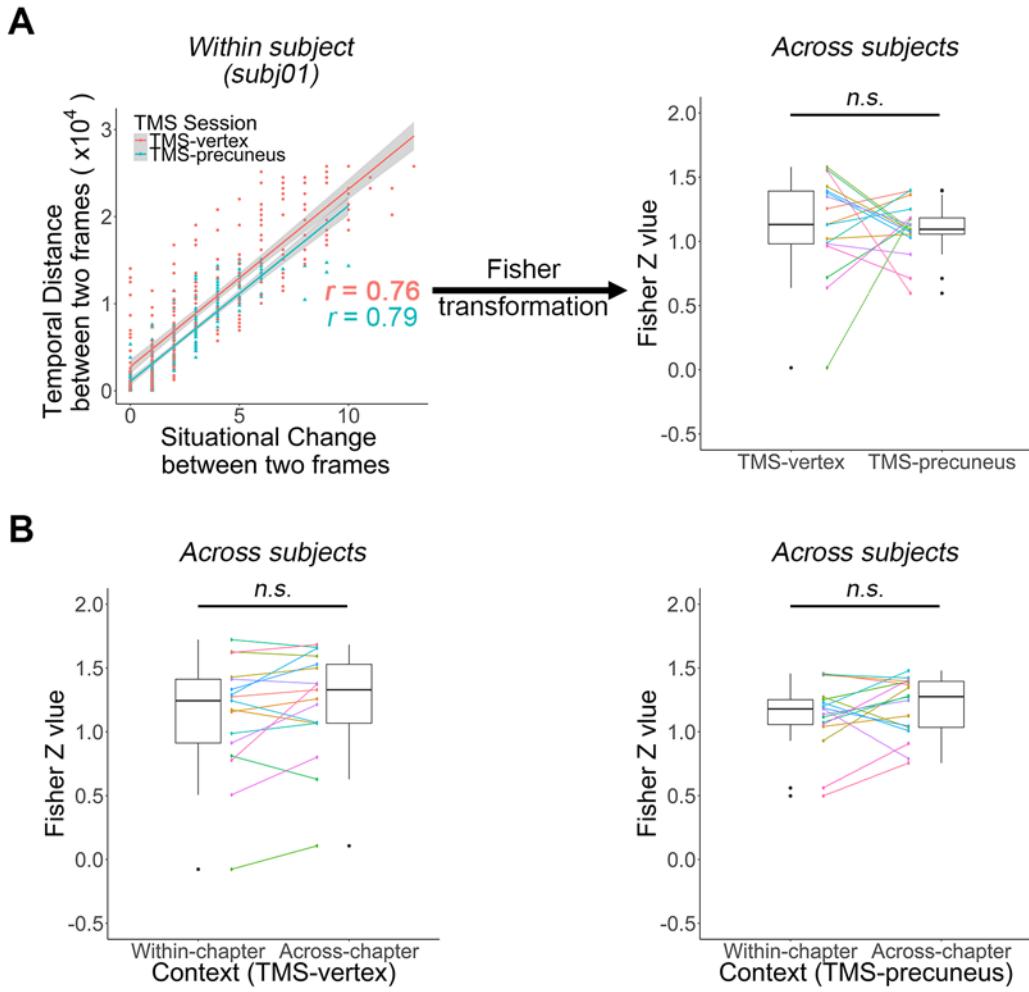

746 RDMs and pmod analyses. Noting that time and space in our task were partially

747 correlated, we quantified subject-specific situational changes in terms of the number of

748 locations each participant had traversed in the video (i.e., spatial displacement


749 embedded in the paired images presented in TOJ task).

750


766 stimulation (middle panel). Activation maps are displayed at $P_{\text{uncorrected}} < 0.001$.

767

769 **S7 Fig. TD-similarity indices in six anatomical ROIs** (A: right precuneus, **B-C**:
770 bilateral hippocampus, **D-E**: bilateral angular gyrus, and **F**: whole occipital cortex)
771 separately for Within-chapter and Across-chapter conditions, in both TMS sessions,
772 and their correlation with individual subjects TOJ accuracy. * $P < 0.05$, FDR-corrected,
773 one-sample t -test against zero. Horizontal lines indicate paired t -test between two bars
774 and P values are FDR-corrected.

775

776

777 **S8 Fig. Correlation coefficients.** Correlation coefficients were very high between
778 temporal distance and the number of situational changes across trials in all subjects. **(A)**
779 Correlation coefficients are highly correlated for all participants in both TMS sessions
780 (each dot represents a trial; one participant illustrated as an example, left panel). Fisher
781 z values (transformed from correlation coefficients) for all participants are shown in a
782 boxplot on the right side. Fisher z values of two conditions are significantly greater than
783 zero (TMS-vertex session: $\text{mean} \pm \text{se} = 1.12 \pm 0.1, t_{16} = 11.52, P = 3.71 \times 10^{-9}$; TMS-
784 precuneus session: $\text{mean} \pm \text{se} = 1.10 \pm 0.05, t_{16} = 21.08, P = 4.24 \times 10^{-13}$). No significant
785 differences exist between the two sessions ($P = 0.83$). Individual participants' values
786 are connected between the two boxplots. **(B)** For completeness, we also calculated the

787 Fisher z values for all participants in the Across-chapter and Within-chapter conditions

788 of two TMS sessions separately. Z values are significantly greater than zero in each

789 conditions ($P < 0.01$). No significant differences exist between the two sessions ($P >$

790 0.05). n.s. denotes not significant.

791 (TIF)

792

793 **S1 Table. Descriptive statistics of TMS motor threshold and full counter-
794 balancing for gameplay chapters by TMS sites.**

795

ID	Motor thresh old	Session 1			Delay (days)	Session 2		
		Chapters (Playing)	Duration (min)	TMS Site		Chapters (Playing)	Duration (min)	TMS Site
Subj01	66%	Chap 1 ~ 7	89.39	Precuneus	9	Chap 8 ~ 14	35.19	Vertex
Subj02	67%	Chap 1 ~ 7	102.70	Vertex	6	Chap 8 ~ 14	44.46	Precuneus
Subj03	80%	Chap 8 ~ 14	35.53	Vertex	9	Chap 1 ~ 7	114.21	Precuneus
Subj04	58%	Chap 8 ~ 14	36.41	Vertex	2	Chap 1 ~ 7	94.70	Precuneus
Subj05	65%	Chap 1 ~ 7	80.50	Precuneus	8	Chap 8 ~ 14	35.31	Vertex
Subj06	67%	Chap 1 ~ 7	95.05	Vertex	3	Chap 8 ~ 14	39.63	Precuneus
Subj07	72%	Chap 8 ~ 14	32.41	Vertex	4	Chap 1 ~ 7	97.06	Precuneus
Subj08	73%	Chap 1 ~ 7	96.08	Precuneus	8	Chap 8 ~ 14	37.03	Vertex
Subj09	69%	Chap 1 ~ 7	88.81	Vertex	7	Chap 8 ~ 14	31.46	Precuneus
Subj10	80%	Chap 8 ~ 14	35.69	Precuneus	7	Chap 1 ~ 7	89.79	Vertex
Subj11	65%	Chap 8 ~ 14	38.77	Vertex	26	Chap 1 ~ 7	86.02	Precuneus
Subj12	71%	Chap 1 ~ 7	90.56	Precuneus	16	Chap 8 ~ 14	35.89	Vertex
Subj13	68%	Chap 8 ~ 14	35.66	Vertex	7	Chap 1 ~ 7	87.98	Precuneus
Subj14	73%	Chap 1 ~ 7	87.94	Precuneus	7	Chap 8 ~ 14	40.56	Vertex
Subj15	57%	Chap 8 ~ 14	32.72	Precuneus	5	Chap 1 ~ 7	91.46	Vertex
Subj16	69%	Chap 8 ~ 14	35.44	Vertex	5	Chap 1 ~ 7	108.49	Precuneus
Subj17	61%	Chap 1 ~ 7	91.10	Precuneus	6	Chap 8 ~ 14	42.13	Vertex

796

797

798 **S2 Table. Brain representation associated with TD RDM in TMS-vertex session**

799 (see **Fig 3B**).

800

Cluster		peak			% Cluster	Brain regions
k	p-FWE	X	y	z		
7554	<.001	30	21	38	5.41	Precuneus_L
					5.32	Precuneus_R
					4.38	Frontal_Mid_2_R
					3.34	Angular_R
					3.24	Parietal_Inf_L
					3.15	Frontal_Inf_Tri_R
					2.99	Parietal_Inf_R
					2.91	Frontal_Mid_2_L
					2.83	Frontal_Inf_Tri_L
					2.74	Angular_L
					2.73	SupraMarginal_R
					2.73	Frontal_Inf_Oper_R
					2.65	Frontal_Sup_2_R
					2.61	Cuneus_L
					2.58	Cingulate_Mid_R
					2.57	Postcentral_R
					2.55	Temporal_Mid_R
					2.26	Calcarine_L
					2.22	Cuneus_R
					1.87	Precentral_R
					1.85	Occipital_Mid_R
					1.62	Calcarine_R
					1.62	Frontal_Sup_Medial_R
					1.56	Cingulate_Mid_L
					1.52	Occipital_Sup_R
					1.47	Frontal_Sup_Medial_L
					1.42	Temporal_Sup_R
					1.22	Occipital_Mid_L
					1.02	Cingulate_Post_L
					1.01	Precentral_L

801 Note. % Cluster denotes percentage of voxels of the cluster that is contained in each of the anatomical regions (53).

802

803 **S3 Table. Brain activation parametrically modulated by temporal distance (TD)**
804 **in TMS-vertex session (see Fig 3C).**

805

Regressor	Cluster		Voxel				Brain Regions	
	k	p-	Z value	x	Y	z	Brain Regions	
			FWE					
TD	555	<.001	4.62	9	-45	-1	Cerebellum_4_5_R	
			4.35	-6	-57	20	Precuneus_L	
			4.27	6	-54	5	Vermis_4_5	
	116	.002	3.87	36	-81	14	Occipital_Mid_L	
			3.78	42	-72	29	Occipital_Mid_L	
			3.75	36	-69	11	Occipital_Mid_R	
	117 [†]	.01	4.34	45	-36	5	Temporal_Sup_R	
			4.17	54	-36	5	Temporal_Sup_R	
			3.81	48	-27	-1	Temporal_Sup_R	

806 Note. [†] denotes a negative relationship between TD and brain activity.

807

808

809 **S1 Video. An excerpt of the gameplay video.**

810 (MP4)

811

812 **Acknowledgements**

813 This research is sponsored by the National Natural Science Foundation of China
814 31872783 (Y.H.), by the Ministry of Education of PRC Humanities and Social Sciences
815 Research grant 16YJC190006, STCSM Shanghai Pujiang Program 16PJ1402800,
816 STCSM Natural Science Foundation of Shanghai 16ZR1410200, Large Instruments
817 Open Foundation (ECNU), and NYU Shanghai and the NYU-ECNU Institute of Brain
818 and Cognitive Science at NYU Shanghai (S.C.K.).

819

820 **Author contributions**

821 Q.Y. designed and conducted the study, analyzed data, drafted and wrote the manuscript.

822 Y.H. discussed the results and commented on drafts. Y.K. advised on TMS protocol.

823 K.A. produced indices for RDM Models 4, 5, 6, 7 and 8. S.C.K. designed the study,

824 supervised the research, and wrote the manuscript.

825 **Competing interests:** The authors declare no competing interests.

826 **Code availability.** The codes used for the analyses are available upon request.

827 **Data availability.** The data reported in this study are available on

828 <http://datadryad.org/review?doi=doi:10.5061/dryad.pj038>.

829

830 **References**

- 831 1. Buhusi CV, Meck WH. What makes us tick? Functional and neural mechanisms of interval timing.
832 Nat Rev Neurosci. 2005;6(10):755-65.
- 833 2. Meck WH, Penney TB, Pouthas V. Cortico-striatal representation of time in animals and humans.
834 Curr Opin Neurobiol. 2008;18(2):145-52.
- 835 3. Mauk MD, Buonomano DV. The neural basis of temporal processing. Annu Rev Neurosci.
836 2004;27:307-40.
- 837 4. Leon MI, Shadlen MN. Representation of time by neurons in the posterior parietal cortex of the
838 macaque. Neuron. 2003;38(2):317-27.
- 839 5. Jin DZ, Fujii N, Graybiel AM. Neural representation of time in cortico-basal ganglia circuits. Proc
840 Natl Acad Sci U S A. 2009;106(45):19156-61.
- 841 6. Naya Y, Suzuki WA. Integrating What and When Across the Primate Medial Temporal Lobe.
842 Science. 2011;333(6043):773-6.
- 843 7. Tsao A, Sugar J, Lu L, Wang C, Knierim JJ, Moser MB, et al. Integrating time from experience in
844 the lateral entorhinal cortex. Nature. 2018.
- 845 8. McGaugh JL. Memory--a century of consolidation. Science. 2000;287(5451):248-51.
- 846 9. Ezzyat Y, Davachi L. Similarity breeds proximity: pattern similarity within and across contexts is
847 related to later mnemonic judgments of temporal proximity. Neuron. 2014;81(5):1179-89.
- 848 10. Manns JR, Howard MW, Eichenbaum H. Gradual changes in hippocampal activity support
849 remembering the order of events. Neuron. 2007;56(3):530-40.
- 850 11. Nielson DM, Smith TA, Sreekumar V, Dennis S, Sederberg PB. Human hippocampus represents
851 space and time during retrieval of real-world memories. Proc Natl Acad Sci U S A. 2015;112(35):11078-
852 83.
- 853 12. Hsieh LT, Gruber MJ, Jenkins LJ, Ranganath C. Hippocampal activity patterns carry information
854 about objects in temporal context. Neuron. 2014;81(5):1165-78.
- 855 13. Ranganath C, Ritchey M. Two cortical systems for memory-guided behaviour. Nat Rev Neurosci.
856 2012;13(10):713-26.
- 857 14. Baldassano C, Chen J, Zadbood A, Pillow JW, Hasson U, Norman KA. Discovering Event Structure
858 in Continuous Narrative Perception and Memory. Neuron. 2017;95(3):709-21 e5.
- 859 15. Chen J, Leong YC, Honey CJ, Yong CH, Norman KA, Hasson U. Shared memories reveal shared
860 structure in neural activity across individuals. Nat Neurosci. 2017;20(1):115-25.
- 861 16. Honey CJ, Thesen T, Donner TH, Silbert LJ, Carlson CE, Devinsky O, et al. Slow cortical dynamics
862 and the accumulation of information over long timescales. Neuron. 2012;76(2):423-34.
- 863 17. Polyn SM, Norman KA, Kahana MJ. A context maintenance and retrieval model of organizational
864 processes in free recall. Psychol Rev. 2009;116(1):129-56.
- 865 18. Kwok SC, Shallice T, Macaluso E. Functional anatomy of temporal organisation and domain-
866 specificity of episodic memory retrieval. Neuropsychologia. 2012;50(12):2943-55.
- 867 19. St Jacques P, Rubin DC, LaBar KS, Cabeza R. The short and long of it: neural correlates of
868 temporal-order memory for autobiographical events. J Cogn Neurosci. 2008;20(7):1327-41.
- 869 20. Richter FR, Cooper RA, Bays PM, Simons JS. Distinct neural mechanisms underlie the success,
870 precision, and vividness of episodic memory. Elife. 2016;5.
- 871 21. Nili H, Wingfield C, Walther A, Su L, Marslen-Wilson W, Kriegeskorte N. A toolbox for
872 representational similarity analysis. PLoS Comput Biol. 2014;10(4):e1003553.

873 22. Kwok SC, Macaluso E. Scale invariance of temporal order discrimination using complex,
874 naturalistic events. *Cognition*. 2015;140:111-21.

875 23. Gallistel CR, Gibbon J. Time, rate, and conditioning. *Psychol Rev*. 2000;107(2):289-344.

876 24. Greene MR, Baldassano C, Esteva A, Beck DM, Fei-Fei L. Visual scenes are categorized by
877 function. *J Exp Psychol Gen*. 2016;145(1):82-94.

878 25. Aminoff EM, Toneva M, Shrivastava A, Chen X, Misra I, Gupta A, et al. Applying artificial vision
879 models to human scene understanding. *Front Comput Neurosci*. 2015;9:8.

880 26. Lowe DG. Distinctive image features from scale-invariant keypoints. *International Journal of
881 Computer Vision*. 2004;60(2):91-110.

882 27. Bay H, Ess A, Tuytelaars T, Van Gool L. Speeded-Up Robust Features (SURF). *Computer Vision
883 and Image Understanding*. 2008;110(3):346-59.

884 28. Dalal N, Triggs B, editors. Histograms of oriented gradients for human detection. *Computer Vision
885 and Pattern Recognition, 2005 CVPR 2005 IEEE Computer Society Conference on*; 2005: IEEE.

886 29. Deuker L, Bellmund JL, Navarro Schroder T, Doeller CF. An event map of memory space in the
887 hippocampus. *Elife*. 2016;5.

888 30. Nelson SM, McDermott KB, Petersen SE. In favor of a 'fractionation' view of ventral parietal cortex:
889 comment on Cabeza et al. *Trends Cogn Sci*. 2012;16(8):399-400; author reply -1.

890 31. Nilakantan AS, Bridge DJ, Gagnon EP, VanHaerents SA, Voss JL. Stimulation of the Posterior
891 Cortical-Hippocampal Network Enhances Precision of Memory Recollection. *Curr Biol*.
892 2017;27(3):465-70.

893 32. Wang JX, Rogers LM, Gross EZ, Ryals AJ, Dokucu ME, Brandstatt KL, et al. Targeted
894 enhancement of cortical-hippocampal brain networks and associative memory. *Science*.
895 2014;345(6200):1054-7.

896 33. Eichenbaum H. Time cells in the hippocampus: a new dimension for mapping memories. *Nat Rev
897 Neurosci*. 2014;15(11):732-44.

898 34. Brodt S, Pohlchen D, Flanagin VL, Glasauer S, Gais S, Schonauer M. Rapid and independent
899 memory formation in the parietal cortex. *Proc Natl Acad Sci U S A*. 2016;113(46):13251-6.

900 35. Kyle CT, Smuda DN, Hassan AS, Ekstrom AD. Roles of human hippocampal subfields in retrieval
901 of spatial and temporal context. *Behav Brain Res*. 2015;278:549-58.

902 36. Copara MS, Hassan AS, Kyle CT, Libby LA, Ranganath C, Ekstrom AD. Complementary roles of
903 human hippocampal subregions during retrieval of spatiotemporal context. *J Neurosci*.
904 2014;34(20):6834-42.

905 37. Lositsky O, Chen J, Toker D, Honey CJ, Shvartsman M, Poppenk JL, et al. Neural pattern change
906 during encoding of a narrative predicts retrospective duration estimates. *Elife*. 2016;5.

907 38. Rotem-Turchinski N, Ramaty A, Mendelsohn A. The opportunity to choose enhances long-term
908 episodic memory. *Memory*. 2018;1-10.

909 39. Chen HY, Gilmore AW, Nelson SM, McDermott KB. Are There Multiple Kinds of Episodic
910 Memory? An fMRI Investigation Comparing Autobiographical and Recognition Memory Tasks. *J
911 Neurosci*. 2017;37(10):2764-75.

912 40. Wang F, Diana RA. Temporal context in human fMRI. *Current Opinion in Behavioral Sciences*.
913 2017;17:57-64.

914 41. Moscovitch M, Cabeza R, Winocur G, Nadel L. Episodic Memory and Beyond: The Hippocampus
915 and Neocortex in Transformation. *Annu Rev Psychol*. 2016;67:105-34.

916 42. Vincent JL, Snyder AZ, Fox MD, Shannon BJ, Andrews JR, Raichle ME, et al. Coherent

917 spontaneous activity identifies a hippocampal-parietal memory network. *J Neurophysiol.*
918 2006;96(6):3517-31.

919 43. Kwok SC, Macaluso E. Immediate memory for "when, where and what": Short-delay retrieval using
920 dynamic naturalistic material. *Hum Brain Mapp.* 2015;36(7):2495-513.

921 44. Long NM, Kahana MJ. Hippocampal contributions to serial-order memory. *Hippocampus.*
922 2018;0(ja).

923 45. Rossi S, Hallett M, Rossini PM, Pascual-Leone A, Safety of TMSCG. Safety, ethical considerations,
924 and application guidelines for the use of transcranial magnetic stimulation in clinical practice and
925 research. *Clinical neurophysiology : official journal of the International Federation of Clinical
926 Neurophysiology.* 2009;120(12):2008-39.

927 46. Bonni S, Veniero D, Mastropasqua C, Ponzo V, Caltagirone C, Bozzali M, et al. TMS evidence for
928 a selective role of the precuneus in source memory retrieval. *Behav Brain Res.* 2015;282:70-5.

929 47. Kraft A, Dyrholm M, Kehrer S, Kaufmann C, Bruening J, Kathmann N, et al. TMS over the right
930 precuneus reduces the bilateral field advantage in visual short term memory capacity. *Brain Stimul.*
931 2015;8(2):216-23.

932 48. Mancini M, Mastropasqua C, Bonni S, Ponzo V, Cercignani M, Conforto S, et al. Theta Burst
933 Stimulation of the Precuneus Modulates Resting State Connectivity in the Left Temporal Pole. *Brain
934 Topogr.* 2017;30(3):312-9.

935 49. Friston KJ, Penny W, Phillips C, Kiebel S, Hinton G, Ashburner J. Classical and Bayesian inference
936 in neuroimaging: theory. *Neuroimage.* 2002;16(2):465-83.

937 50. Penny W, Holmes A. Random-Effects Analysis. In: Frackowiak SJR, Friston JK, Frith DC, Dolan
938 JR, Price JC, Zeki S, et al., editors. *Human Brain Function. Random-Effects Analysis.* Second Edition
939 ed: Elsevier; 2004. p. pp.843-50.

940 51. Talairach J, Tournoux P. Co-planar stereotaxic atlas of the human brain. 3-Dimensional proportional
941 system: an approach to cerebral imaging: Thieme; 1988.

942 52. Esterman M, Tamber-Rosenau BJ, Chiu YC, Yantis S. Avoiding non-independence in fMRI data
943 analysis: leave one subject out. *Neuroimage.* 2010;50(2):572-6.

944 53. Tzourio-Mazoyer N, Landau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al.
945 Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of
946 the MNI MRI single-subject brain. *Neuroimage.* 2002;15(1):273-89.

947 54. Viola P, Jones MJ. Robust real-time face detection. *International Journal of Computer Vision.*
948 2004;57(2):137-54.