
 1

CWL-Airflow: a lightweight pipeline manager supporting Common

Workflow Language

Michael Kotliar1,*, Andrey V. Kartashov1,*, and Artem Barski1,2,#

1 Division of Allergy and Immunology, 2 Division of Human Genetics, Cincinnati Children’s Hospital Medical Center and

Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH

* Joint first author; # To whom correspondence should be addressed: Artem.Barski@cchmc.org.

Emails:

MK: michael.kotliar@cchmc.org

AVK: andrey.kartashov@cchmc.org

AB: Artem.barski@cchmc.org

Short title: CWL-Airflow pipeline manager

Abstract

Background: Massive growth in the amount of research data and computational analysis

has led to increased utilization of pipeline managers in biomedical computational research.

However, each of more than 100 such managers uses its own way to describe pipelines, leading to

difficulty porting workflows to different environments and therefore poor reproducibility of

computational studies. For this reason, the Common Workflow Language (CWL) was recently

introduced as a specification for platform-independent workflow description, and work began to

transition existing pipelines and workflow managers to CWL.

Findings: Here, we present CWL-Airflow, an extension for the Apache Airflow pipeline

manager supporting CWL. CWL-Airflow utilizes CWL v1.0 specification and can be used to run

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/249243doi: bioRxiv preprint

mailto:Artem.Barski@cchmc.org
mailto:Artem.Barski@cchmc.org
mailto:michael.kotliar@cchmc.org
mailto:michael.kotliar@cchmc.org
mailto:andrey.kartashov@cchmc.org
mailto:andrey.kartashov@cchmc.org
mailto:Artem.barski@cchmc.org
mailto:Artem.barski@cchmc.org
https://doi.org/10.1101/249243
http://creativecommons.org/licenses/by-nc-nd/4.0/

 2

workflows on standalone MacOS/Linux servers, on clusters, or on a variety of cloud platforms. A

sample CWL pipeline for processing of ChIP-Seq data is provided.

Conclusions: CWL-Airflow will provide users with the features of a fully-fledged pipeline

manager and an ability to execute CWL workflows anywhere Airflow can run—from a laptop to

cluster or cloud environment.

Availability: CWL-Airflow is available under Apache license v.2 and can be downloaded

from https://barski-lab.github.io/cwl-airflow, http://doi.org/10.5281/zenodo.2669582,

RRID: SCR_017196.

Keywords: Common workflow language, workflow manager, pipeline manager, Airflow,

reproducible data analysis, workflow portability.

Background

Modern biomedical research has seen a remarkable increase in the production and

computational analysis of large datasets, leading to an urgent need to share standardized analytical

techniques. However, of the more than one hundred computational workflow systems used in

biomedical research, most define their own specifications for computational pipelines [1,2].

Furthermore, the evolving complexity of computational tools and pipelines makes it nearly

impossible to reproduce computationally heavy studies or to repurpose published analytical

workflows. Even when the tools are published, the lack of a precise description of the operating

system environment and component software versions can lead to inaccurate reproduction of the

analyses—or analyses failing altogether when executed in a different environment. To ameliorate

this situation, a team of researchers and software developers formed the Common Workflow

Language (CWL) working group [3] with the intent of establishing a specification for describing

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/249243doi: bioRxiv preprint

https://barski-lab.github.io/cwl-airflow/
https://barski-lab.github.io/cwl-airflow/
http://doi.org/10.5281/zenodo.2669582
http://doi.org/10.5281/zenodo.2669582
https://doi.org/10.1101/249243
http://creativecommons.org/licenses/by-nc-nd/4.0/

 3

analysis workflows and tools in a way that makes them portable and scalable across a variety of

software and hardware environments. The CWL specification provides a set of formalized rules

that can be used to describe each command line tool and its parameters, and optionally a container

(e.g., a Docker [4] or Singularity [5] image) with the tool already installed. CWL workflows are

composed of one or more of such command line tools. Thus, CWL provides a description of the

working environment and version of each tool, how the tools are "connected" together, and what

parameters were used in the pipeline. Researchers using CWL are then able to deposit descriptions

of their tools and workflows into a repository (e.g., dockstore.org) upon publication, thus making

their analyses reusable by others.

After version 1.0 of the CWL standard [6] and the reference executor, cwl-tool, were

finalized in 2016, developers began adapting the existing pipeline managers to use CWL. For

example, companies such as Seven Bridges Genomics and Curoverse are developing the

commercial platforms Rabix [7] and Arvados [8] whereas academic developers (e.g., Galaxy [9],

Toil [10] and others) are adding CWL support to their pipeline managers (See Table 1 for the

comparison of their features).

Airflow [11] is a lightweight workflow manager initially developed by AirBnB, which is

currently an Apache Incubator project, and is available under a permissive Apache license. Airflow

executes each workflow as a Directed Acyclic Graph (DAG) of tasks that have directional

noncircular dependencies. Tasks are usually atomic and are not supposed to share any resources

with each other; therefore, they can be run independently. DAG describes relationships between

the tasks and defines their execution order. DAG objects are initiated from Python scripts placed

in a designated folder. Airflow has a modular architecture and can distribute tasks to an arbitrary

number of workers, across multiple servers, while adhering to the task sequence and dependencies

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/249243doi: bioRxiv preprint

https://doi.org/10.1101/249243
http://creativecommons.org/licenses/by-nc-nd/4.0/

 4

specified in the DAG. Unlike many of the more complicated platforms, Airflow imposes little

overhead, is easy to install, and can be used to run task-based workflows in various environments

ranging from standalone desktops and servers to Amazon or Google cloud platforms. It also scales

horizontally on clusters managed by Apache Mesos [12] and may be configured to send tasks to

Celery [13] task queue. Here we present an extension of Airflow, allowing it to run CWL-based

pipelines. Altogether, this gives us a lightweight workflow management system with full support

for CWL, the most promising scientific workflow description language.

Methods

Figure 1. CWL-Airflow diagram. Job file contains information about CWL workflow and inputs. CWL-

Airflow creates CWLDAG class instance based on the workflow structure and executes it in Airflow.

The results are saved to the output folder.

The CWL-Airflow package extends Airflow's functionality with the ability to parse and

execute workflows written with the current CWL v1.0 specification [6]. CWL-Airflow can be

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/249243doi: bioRxiv preprint

https://doi.org/10.1101/249243
http://creativecommons.org/licenses/by-nc-nd/4.0/

 5

easily integrated into the Airflow scheduler logic as shown in the structure diagram in Figure 1.

The Apache Airflow code is extended with a Python package that defines four basic classes—

CWLStepOperator, JobDispatcher, JobCleanup, and CWLDAG. Additionally, the automatically

generated cwl_dag.py script is placed in the DAGs folder. While periodically loading DAGs from

the DAGs folder the Airflow scheduler runs the cwl_dag.py script and creates DAGs based on the

available jobs and corresponding CWL workflow descriptor files.

In order to run a CWL workflow in Airflow, a file describing the job should be placed in

the jobs folder (Fig. 1). Jobs are described by a text file (JSON or YAML) that includes workflow

specific input parameters (e.g. input file locations) and three mandatory fields: workflow (absolute

path to the CWL descriptor file to be run with this job), output_folder (absolute path to the folder

where all the output files should be moved after successful pipeline execution) and uid (unique

identifier for the run). CWL-Airflow parses every job file from the jobs folder, loads corresponding

CWL workflow descriptor file and creates CWLDAG class instance based on the workflow

structure and input parameters provided in the job file. The uid field from the job file is used to

identify the newly created CWLDAG class instance.

CWLDAG is a class for combining the tasks into the DAG that reflects the CWL workflow

structure. Every CWLStepOperator task corresponds to the workflow step and depends on others

based on the workflow step inputs and outputs. This implements dataflow principles and

architecture that are missing in Airflow. Additionally, JobDispatcher and JobCleanup tasks are

added to the graph. JobDisptacher is used to serialize the input parameters from the job file and

provide the pipeline with the input data; JobCleanup returns the calculated results to the output

folder. When the Airflow scheduler executes the pipeline from the CWLDAG it runs the workflow

with the structure identical to the CWL descriptor file used to create this graph.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/249243doi: bioRxiv preprint

https://doi.org/10.1101/249243
http://creativecommons.org/licenses/by-nc-nd/4.0/

 6

Figure 2. Structure diagram for scaling out CWL-Airflow with Celery cluster of 4 nodes. Node 1 runs

the Airflow database to save tasks metadata and the Airflow scheduler with the Celery executor to

submit tasks for processing to the Airflow celery workers on nodes 2, 3 and 4. The Airflow and Flower

(Celery) web servers allow to monitor and control task execution process. All nodes have shared

access to the dags, jobs, temp and output folders.

While running CWL-Airflow on a single node might be sufficient in most of the cases,

when it comes to the computationally intensive pipelines it is worth switching to the multi-node

configuration (Fig. 2). Airflow uses Celery task queue to distribute processing over the multiple

nodes. Celery provides the mechanisms for queueing and assigning tasks to the multiple workers,

whereas the Airflow scheduler uses Celery executor to submit tasks to the queue. The Celery

system helps to not only balance the load over the different machines, but also to define task

priorities by assigning them to the separate queues.

The example of CWL-Airflow Celery cluster of 4 nodes is shown in Figure 2. The tasks

are submitted to the queue by the node 1 and executed by either of the 3 workers (nodes 2, 3 and

4). Node 1 runs two mandatory components - the Airflow database and scheduler. The latter

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/249243doi: bioRxiv preprint

https://doi.org/10.1101/249243
http://creativecommons.org/licenses/by-nc-nd/4.0/

 7

schedules the tasks execution by adding them to the queue. All Celery workers are subscribed to

the same task queue. Whenever an arbitrary worker pulls the new task from the queue, it runs it

and returns execution results. For the sequential steps, the Airflow scheduler then submits next

tasks to the queue. During the task execution intermediate data are kept in the temp folder. On

successful pipeline completion all output files are moved to the output folder. Both temp and output

folders as well as the dags and the jobs folders are shared between all the nodes of the cluster.

Optionally, node 1 can also run the Airflow webserver (Fig. 3) and the Celery monitoring tool

Flower (Fig. 4) to provide users with the pipeline execution details.

Figure 3. Airflow web interface. The DAGs tab shows the list of the available pipelines, their latest

execution dates, number of the active, succeeded and failed runs. The buttons of the right allow to

control pipeline execution and obtain additional information on the current workflow and its steps.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/249243doi: bioRxiv preprint

https://doi.org/10.1101/249243
http://creativecommons.org/licenses/by-nc-nd/4.0/

 8

Figure 4. Dashboard of the Celery monitoring tool Flower. Shown are the three Celery workers, their

current status and load information.

Results

ChIP-Seq analysis with CWL-Airflow

As an example, we used a workflow for basic analysis of ChIP-Seq data [4] (Fig. 5). This

workflow is a CWL version of a Python pipeline from BioWardrobe [14,15]. It starts by using

BowTie [16] to perform alignment to a reference genome, resulting in an unsorted SAM file. The

SAM file is then sorted and indexed with SAMtools [17] to obtain a BAM file and a BAI index.

Next MACS2 [18] is used to call peaks and to estimate fragment size. In the last few steps, the

coverage by estimated fragments is calculated from the BAM file and is reported in bigWig format

(Fig. 5). The pipeline also reports statistics, such as read quality, peak number and base frequency,

and other troubleshooting information using tools such as FASTX-Toolkit [19] and BamTools

[20]. The directions how to run sample pipeline can be found at [21]. Execution time in CWL-

Airflow was similar to that reference implementation (Table 1).

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/249243doi: bioRxiv preprint

https://doi.org/10.1101/249243
http://creativecommons.org/licenses/by-nc-nd/4.0/

 9

Figure 5. Using CWL-Airflow for analysis of ChIP-Seq data. (a) ChIP-Seq data analysis pipeline

visualized by Rabix Composer. (b) Drosophila embryo H3K4me3 ChIP-Seq data (SRR1198790) were

processed by our pipeline and CWL-Airflow. UCSC genome browser view of tag density and peaks at

trx gene is shown.

The CWL-Airflow package includes two additional demo workflows: (i) identification of

super-enhancers [22] and (ii) a simplified version of Xenbase [23] RNA-Seq pipeline. More

pipelines can be found elsewhere. In particular, BioWardrobe’s [14] pipelines for analysis of single

and paired-end ChIP-Seq, stranded and un-stranded, single and paired RNA-Seq are available on

GitHub [24]. Additional collections of tools are available in Rabix Composer [7], a graphical CWL

Editor from Seven Bridges and at the dockstore [25].

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/249243doi: bioRxiv preprint

https://doi.org/10.1101/249243
http://creativecommons.org/licenses/by-nc-nd/4.0/

 10

Portability of CWL analyses

The key promise of CWL is the portability of analyses. Portability refers to the ability to

seamlessly run a containerized CWL pipeline developed for one CWL platform on another CWL

platform allowing users to easily share computational workflows. To check whether CWL-Airflow

can use pipelines developed by others, we downloaded an alternative workflow for analysis of

ChIP-Seq data developed by ENCODE Data Coordination Center [26,27] using a test dataset

(CEBPB ChIP-Seq in A549 cells, ENCODE accession: ENCSR000DYI). CWL-Airflow was able

to run the pipeline and produced results identical to those obtained with the reference cwl-tool.

Execution time is shown in Table 1. As we can see it from the table, running the tested pipelines

on the single node CWL-Airflow system resulted in the 18% longer execution time, whereas the

3 node CWL-Airflow cluster reduced execution time by 41% per workflow compared to the

reference cwl-tool. These results confirm that CWL-Airflow complies with the CWL specification,

support portability and can perform analysis in a reproducible manner. Additional testing of

pipeline portability is currently conducted as a part of GA4GH workflow portability challenge

[28].

Using CWL-Airflow in multi-node configuration with Celery executor

To demonstrate the use of CWL-Airflow in a multi-node configuration we set up the Celery

cluster of 3 nodes with 4 CPU and 94 GB of RAM each. Every node runs one instance of the

Airflow Celery worker. Tasks are queued for execution by the Airflow scheduler that is launched

on the first node. Communication between the Celery workers is managed by the message

queueing service, RabbitMQ. The latter, as well as the Airflow database and web server, are run

on the first node. The results of running two tested pipelines on the Airflow Celery cluster are

shown in the Table 1 and show only a slight slow-down on a per-run basis.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/249243doi: bioRxiv preprint

https://doi.org/10.1101/249243
http://creativecommons.org/licenses/by-nc-nd/4.0/

 11

Table 1. CWL-Airflow and cwltool average execution time (seconds ± SEM1, n=3).

Pipeline
CWL-Airflow Cwltool

1 node

1 workflow at a time

3 nodes
3 workflows at a time

1 node

1 workflow at a time

BioWardrobe ChIP-Seq Workflow 1141 ± 18 1231 ± 3 955 ± 1

ENCODE ChIP-Seq Mapping Workflow 3784 ± 10 3824 ± 28 3245 ± 7

1 standard error of the mean

Discussion

CWL-Airflow is one of the first pipeline managers supporting version 1.0 of the CWL

standard and provides a robust and user-friendly interface for executing CWL pipelines. Unlike

more complicated pipeline managers, the installation of Airflow and the CWL-Airflow extension

can be performed with a single pip install command. Airflow has multiple advantages compared

to the competing pipeline managers (Table 2). Specifically, Airflow provides a wide range of tools

for managing workflow execution process, such as pausing and resuming workflow execution,

stopping and restarting the individual workflow steps, restarting the workflow from the certain

step, skipping part of the workflow by updating the states of the specific steps from a web-based

GUI. Similarly, to other workflow management systems, Airflow can run on clusters and the major

cloud services. Unlike some of the workflow executors, it supports both Docker and Singularity

containerization technologies. The latter is particularly important since many clusters do not allow

the use of Docker for security reasons.

Unlike most of the other workflow managers, Airflow provides a convenient web-based

GUI that allows to monitor and control pipeline execution. Within this web interface, one can

easily track workflow execution history, collect and visualize statistics from multiple workflow

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/249243doi: bioRxiv preprint

https://doi.org/10.1101/249243
http://creativecommons.org/licenses/by-nc-nd/4.0/

 12

runs. Similarly, to some of the other pipeline managers Airflow provides REST API that allows to

access its functionality through the dedicated endpoints. The latter can be used by other software

to communicate with the Airflow system.

Airflow supports parallel workflow steps execution. Step parallelization can be convenient

when the workflow complexity is not that high and the computational resources are not limited.

However, when running multiple workflows, especially on a multi-node system, it becomes

reasonable to limit parallelism and balance load over the available computing resources. Besides

the standard load balancing algorithms provided by the computing environment, Airflow supports

pools and queues that allow to evenly distribute tasks among multiple nodes.

Addition of CWL capability to Airflow, has made it more convenient for scientific

computing, where the users are more interested in the flow of data rather than the tasks being

executed. While Airflow itself (and most of pipeline managers [28]) only define workflows as

sequences of steps to be executed (e.g. DAGs), CWL description of inputs and outputs leads to

better representation of data flow which allows to better understand data dependencies and

produces more readable workflows.

Furthermore, as one of the most lightweight pipeline managers, Airflow contributes only a

small amount of overhead to the overall execution of a computational pipeline (Table 1). We

believe, however, that this is a small price to pay for the ability to monitor and control workflow

execution afforded by Airflow and better reproducibility and portability of biomedical analyses as

afforded by the use of CWL. In summary, CWL-Airflow will provide users with the ability to

execute CWL workflows anywhere Airflow can run—from a laptop to cluster or cloud

environment.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/249243doi: bioRxiv preprint

https://doi.org/10.1101/249243
http://creativecommons.org/licenses/by-nc-nd/4.0/

 13

Table 2. Comparison of the open source workflow managers and engines with existing or planned support for

CWL. GUI: graphical user interface; CLI: command line interface; REST API: representational state transfer

application programming interface.

Feature
Airflow &

CWL-

Airflow

Rabix Toil Cromwell REANA Galaxy Arvados CWLEXEC

Software

installation

complexity single python
package

JAR

Electron

application

single python
package

JAR

group of

python

packages

group of

python

packages

node.js

application

multiple

components
for min. 7

nodes system

JAR

License type

Apache

License 2.0

Apache

License 2.0

Apache

License 2.0

BSD 3-

Clause
MIT License AFL v. 3.0

Apache
License 2.0

AGPL-3.0

CC-BY-SA-

3.0

Apache

License 2.0

Workflow
description

language
CWL v1.0

python code

CWL v1.0

CWL v1.0

WDL v1.0

python code

CWL v1.0

WDL v1.0

CWL v1.0

Serial

Yadage

XML tool
file

JSON
workflow

file

CWL v1.0 CWL v1.0

Docker

containerization + + + + + + + +
Singularity
containerization + – + + – + – –
Cloud / cluster
processing + – + + + + + +
Workflow

execution load

balancing1
+ – + + + + + +

Parallel
workflow step

execution
+ + + + + + + +

G
U

I

R
E

S
T

 A
P

I

C
L

I

G
U

I

R
E

S
T

 A
P

I

C
L

I

G
U

I

R
E

S
T

 A
P

I

C
L

I

G
U

I

R
E

S
T

 A
P

I

C
L

I

G
U

I

R
E

S
T

 A
P

I

C
L

I

G
U

I

R
E

S
T

 A
P

I

C
L

I

G
U

I

R
E

S
T

 A
P

I

C
L

I

G
U

I

R
E

S
T

 A
P

I

C
L

I

Add new
workflow2 – – + +  +   +  + +  + + + +  + + +   +
Set workflow

inputs3 – + + +  +   +  + +  + + + +  + + +   +
Start / Stop

workflow
execution

+ + + +  +   +  + +  + + + +  + + +   +

Manage
workflow

execution
process4

+ + + –  –   +  – –  + + + +  – + +   +

Get execution
results of the

specific

workflow5

+ – – +  –   +  + –  + + + +  + + +   –

View workflow
execution logs + – + +  +   +  + +  + + + +  + + +   +
View workflow

execution

history and
statistics

+ + + –  –   +  + –  + + + +  + + +   +

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/249243doi: bioRxiv preprint

https://doi.org/10.1101/249243
http://creativecommons.org/licenses/by-nc-nd/4.0/

 14

1 assign workflow steps to the different pools and queues; use other resource utilization algorithms provided by

the computing environment

2 load the workflow from the file; create the workflow by combining the steps in GUI

3 set the path to the job file; set input values through the GUI or CLI

4 pause/resume workflow execution process; manually restart workflow steps

5 get output files locations by the workflow id, step id, execution date or other identifiers

Abbreviations

CWL: Common Workflow Language

DAG: Directed Acyclic Graph

ChIP-Seq: Chromatin ImmunoPrecipitation - Sequencing

GUI: Graphical User Interface

CLI: Command Line Interface

REST API: Representational State Transfer Application Programming Interface

Declarations

Ethics approval and consent to participate: Not applicable.

Consent to publish: Not applicable.

Availability of data and materials: No new datasets or materials were generated. The

source code is available under Apache license v.2 and can be downloaded from https://barski-

lab.github.io/cwl-airflow, http://doi.org/10.5281/zenodo.2669582, RRID: SCR_017196.

Competing Interests: AVK and AB are co-founders of Datirium, LLC. Datirium, LLC

provides bioinformatics software support services.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/249243doi: bioRxiv preprint

https://barski-lab.github.io/cwl-airflow/
https://barski-lab.github.io/cwl-airflow/
https://barski-lab.github.io/cwl-airflow/
https://barski-lab.github.io/cwl-airflow/
http://doi.org/10.5281/zenodo.2669582
http://doi.org/10.5281/zenodo.2669582
https://doi.org/10.1101/249243
http://creativecommons.org/licenses/by-nc-nd/4.0/

 15

Funding: The project was supported in part by Center for Clinical & Translational

Research and Training (NIH CTSA grant UL1TR001425) and by NIH NIGMS New Innovator

Award to AB (DP2GM119134). The funders had no role in study design, data collection and

analysis, decision to publish, or preparation of the manuscript.

Author contributions statement: AVK and AB conceived the project, AVK and MK wrote

the software, MK, AVK and AB wrote and reviewed the manuscript.

Acknowledgements: The authors thank all members of the CWL working group for their

support and Shawna Hottinger for editorial assistance.

References

1. Leipzig J. A review of bioinformatic pipeline frameworks. Brief Bioinform. 2017;18:530–6.

2. Existing Workflow Systems [Internet]. Available from: https://s.apache.org/existing-

workflow-systems

3. Common Workflow Language [Internet]. Available from: http://www.commonwl.org/

4. Docker [Internet]. Available from: https://www.docker.com/why-docker

5. Kurtzer GM, Sochat V, Bauer MW. Singularity: Scientific containers for mobility of compute.

PLoS One. 2017;12.

6. Amstutz P, Crusoe MR, Tijanić N, Chapman B, Chilton J, Heuer M, et al. Common Workflow

Language, v1.0 [Internet]. Doi.Org. 2016. p. Available from:

https://www.commonwl.org/v1.0/Workflow.html

7. Kaushik G, Ivkovic S, Simonovic J, Tijanic N, Davis-Dusenbery B, Kural D. RABIX: an

open-source workflow executor supporting recomputability and interoperability of workflow

descriptions. Pac Symp Biocomput. 2016;22:154–65.

8. Arvados [Internet]. Available from: https://arvados.org/

9. Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L, Shah P, et al. Galaxy: a platform

for interactive large-scale genome analysis. Genome Res. 2005;15:1451–5.

10. Vivian J, Rao A, Nothaft FA, Ketchum C, Armstrong J, Novak A, et al. Rapid and efficient

analysis of 20,000 RNA-seq samples with Toil. bioRxiv. 2016;2:062497.

11. Airflow [Internet]. Available from: http://airflow.incubator.apache.org/

12. Hindman B, Konwinski A, Zaharia M, Ghodsi A, Joseph AD, Katz R, et al. Mesos: A

platform for fine-grained resource sharing in the data center. Proc 8th USENIX Conf Networked

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/249243doi: bioRxiv preprint

https://doi.org/10.1101/249243
http://creativecommons.org/licenses/by-nc-nd/4.0/

 16

Syst Des Implement. 2011;295.

13. Celery Project [Internet]. Available from: http://www.celeryproject.org/

14. Kartashov A V, Barski A. BioWardrobe: an integrated platform for analysis of epigenomics

and transcriptomics data. Genome Biol. 2015;16:158.

15. Vallabh S, Kartashov A V., Barski A. Analysis of ChIP-Seq and RNA-Seq Data with

BioWardrobe. Methods Mol Biol. 2018;1783:343–60.

16. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of

short DNA sequences to the human genome. Genome Biol. 2009;10:R25.

17. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence

Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9.

18. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based

analysis of ChIP-Seq (MACS). Genome Biol. 2008/09/19. 2008;9:R137.

19. FASTX Toolkit [Internet]. Available from:

http://hannonlab.cshl.edu/fastx_toolkit/index.html

20. Barnett DW, Garrison EK, Quinlan AR, Stromberg MP, Marth GT. BamTools: a C++ API

and toolkit for analyzing and managing BAM files. Bioinformatics. 2011;27:1691–2.

21. Barski Lab ChIP-Seq SE Workflow [Internet]. Available from: https://barski-

lab.github.io/cwl-airflow/#running-sample-chip-seq-se-workflow

22. Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-André V, Sigova A a, et al. Super-enhancers in

the control of cell identity and disease. Cell. 2013;155:934–47.

23. Karimi K, Fortriede JD, Lotay VS, Burns KA, Wang DZ, Fisher ME, et al. Xenbase: a

genomic, epigenomic and transcriptomic model organism database. Nucleic Acids Res.

2018;46:D861–8.

24. Barski Lab CWL Workflows on GitHub [Internet]. Available from:

https://github.com/Barski-lab/workflows

25. O’Connor BD, Yuen D, Chung V, Duncan AG, Liu XK, Patricia J, et al. The Dockstore:

enabling modular, community-focused sharing of Docker-based genomics tools and workflows.

F1000Research. 2017;6:52.

26. Landt SG, Marinov GK, Kundaje A, Kheradpour P, Pauli F, Batzoglou S, et al. ChIP-seq

guidelines and practices of the ENCODE and modENCODE consortia. Genome Res.

2012;22:1813–31.

27. ENCODE ChIP-Seq pipeline [Internet]. Available from: https://github.com/ENCODE-

DCC/pipeline-container

28. GA4GH-DREAM Workflow Execution Challenge [Internet]. Available from:

https://www.synapse.org/#!Synapse:syn8507133/wiki/415976

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/249243doi: bioRxiv preprint

https://doi.org/10.1101/249243
http://creativecommons.org/licenses/by-nc-nd/4.0/

