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Abstract 

Background: Massive growth in the amount of research data and computational analysis 

has led to increased utilization of pipeline managers in biomedical computational research. 

However, each of more than 100 such managers uses its own way to describe pipelines, leading to 

difficulty porting workflows to different environments and therefore poor reproducibility of 

computational studies. For this reason, the Common Workflow Language (CWL) was recently 

introduced as a specification for platform-independent workflow description, and work began to 

transition existing pipelines and workflow managers to CWL.  

Findings: Here, we present CWL-Airflow, an extension for the Apache Airflow pipeline 

manager supporting CWL. CWL-Airflow utilizes CWL v1.0 specification and can be used to run 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/249243doi: bioRxiv preprint 

mailto:Artem.Barski@cchmc.org
mailto:Artem.Barski@cchmc.org
mailto:michael.kotliar@cchmc.org
mailto:michael.kotliar@cchmc.org
mailto:andrey.kartashov@cchmc.org
mailto:andrey.kartashov@cchmc.org
mailto:Artem.barski@cchmc.org
mailto:Artem.barski@cchmc.org
https://doi.org/10.1101/249243
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

workflows on standalone MacOS/Linux servers, on clusters, or on a variety of cloud platforms. A 

sample CWL pipeline for processing of ChIP-Seq data is provided.  

Conclusions: CWL-Airflow will provide users with the features of a fully-fledged pipeline 

manager and an ability to execute CWL workflows anywhere Airflow can run—from a laptop to 

cluster or cloud environment.  

Availability: CWL-Airflow is available under Apache license v.2 and can be downloaded 

from https://barski-lab.github.io/cwl-airflow, http://doi.org/10.5281/zenodo.2669582, 

RRID: SCR_017196. 

Keywords: Common workflow language, workflow manager, pipeline manager, Airflow, 

reproducible data analysis, workflow portability. 

Background 

Modern biomedical research has seen a remarkable increase in the production and 

computational analysis of large datasets, leading to an urgent need to share standardized analytical 

techniques. However, of the more than one hundred computational workflow systems used in 

biomedical research, most define their own specifications for computational pipelines [1,2]. 

Furthermore, the evolving complexity of computational tools and pipelines makes it nearly 

impossible to reproduce computationally heavy studies or to repurpose published analytical 

workflows. Even when the tools are published, the lack of a precise description of the operating 

system environment and component software versions can lead to inaccurate reproduction of the 

analyses—or analyses failing altogether when executed in a different environment. To ameliorate 

this situation, a team of researchers and software developers formed the Common Workflow 

Language (CWL) working group [3] with the intent of establishing a specification for describing 
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analysis workflows and tools in a way that makes them portable and scalable across a variety of 

software and hardware environments. The CWL specification provides a set of formalized rules 

that can be used to describe each command line tool and its parameters, and optionally a container 

(e.g., a Docker [4] or Singularity [5] image) with the tool already installed. CWL workflows are 

composed of one or more of such command line tools. Thus, CWL provides a description of the 

working environment and version of each tool, how the tools are "connected" together, and what 

parameters were used in the pipeline. Researchers using CWL are then able to deposit descriptions 

of their tools and workflows into a repository (e.g., dockstore.org) upon publication, thus making 

their analyses reusable by others. 

After version 1.0 of the CWL standard [6] and the reference executor, cwl-tool, were 

finalized in 2016, developers began adapting the existing pipeline managers to use CWL. For 

example, companies such as Seven Bridges Genomics and Curoverse are developing the 

commercial platforms Rabix [7] and Arvados [8] whereas academic developers (e.g., Galaxy [9], 

Toil [10] and others) are adding CWL support to their pipeline managers (See Table 1 for the 

comparison of their features). 

Airflow [11] is a lightweight workflow manager initially developed by AirBnB, which is 

currently an Apache Incubator project, and is available under a permissive Apache license. Airflow 

executes each workflow as a Directed Acyclic Graph (DAG) of tasks that have directional 

noncircular dependencies. Tasks are usually atomic and are not supposed to share any resources 

with each other; therefore, they can be run independently. DAG describes relationships between 

the tasks and defines their execution order. DAG objects are initiated from Python scripts placed 

in a designated folder. Airflow has a modular architecture and can distribute tasks to an arbitrary 

number of workers, across multiple servers, while adhering to the task sequence and dependencies 
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specified in the DAG. Unlike many of the more complicated platforms, Airflow imposes little 

overhead, is easy to install, and can be used to run task-based workflows in various environments 

ranging from standalone desktops and servers to Amazon or Google cloud platforms. It also scales 

horizontally on clusters managed by Apache Mesos [12] and may be configured to send tasks to 

Celery [13] task queue. Here we present an extension of Airflow, allowing it to run CWL-based 

pipelines. Altogether, this gives us a lightweight workflow management system with full support 

for CWL, the most promising scientific workflow description language. 

Methods 

 

Figure 1. CWL-Airflow diagram. Job file contains information about CWL workflow and inputs. CWL-

Airflow creates CWLDAG class instance based on the workflow structure and executes it in Airflow. 

The results are saved to the output folder. 

The CWL-Airflow package extends Airflow's functionality with the ability to parse and 

execute workflows written with the current CWL v1.0 specification [6]. CWL-Airflow can be 
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easily integrated into the Airflow scheduler logic as shown in the structure diagram in Figure 1. 

The Apache Airflow code is extended with a Python package that defines four basic classes—

CWLStepOperator, JobDispatcher, JobCleanup, and CWLDAG. Additionally, the automatically 

generated cwl_dag.py script is placed in the DAGs folder. While periodically loading DAGs from 

the DAGs folder the Airflow scheduler runs the cwl_dag.py script and creates DAGs based on the 

available jobs and corresponding CWL workflow descriptor files. 

In order to run a CWL workflow in Airflow, a file describing the job should be placed in 

the jobs folder (Fig. 1). Jobs are described by a text file (JSON or YAML) that includes workflow 

specific input parameters (e.g. input file locations) and three mandatory fields: workflow (absolute 

path to the CWL descriptor file to be run with this job), output_folder (absolute path to the folder 

where all the output files should be moved after successful pipeline execution) and uid (unique 

identifier for the run). CWL-Airflow parses every job file from the jobs folder, loads corresponding 

CWL workflow descriptor file and creates CWLDAG class instance based on the workflow 

structure and input parameters provided in the job file. The uid field from the job file is used to 

identify the newly created CWLDAG class instance. 

CWLDAG is a class for combining the tasks into the DAG that reflects the CWL workflow 

structure. Every CWLStepOperator task corresponds to the workflow step and depends on others 

based on the workflow step inputs and outputs. This implements dataflow principles and 

architecture that are missing in Airflow. Additionally, JobDispatcher and JobCleanup tasks are 

added to the graph. JobDisptacher is used to serialize the input parameters from the job file and 

provide the pipeline with the input data; JobCleanup returns the calculated results to the output 

folder. When the Airflow scheduler executes the pipeline from the CWLDAG it runs the workflow 

with the structure identical to the CWL descriptor file used to create this graph. 
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Figure 2. Structure diagram for scaling out CWL-Airflow with Celery cluster of 4 nodes. Node 1 runs 

the Airflow database to save tasks metadata and the Airflow scheduler with the Celery executor to 

submit tasks for processing to the Airflow celery workers on nodes 2, 3 and 4. The Airflow and Flower 

(Celery) web servers allow to monitor and control task execution process. All nodes have shared 

access to the dags, jobs, temp and output folders. 

While running CWL-Airflow on a single node might be sufficient in most of the cases, 

when it comes to the computationally intensive pipelines it is worth switching to the multi-node 

configuration (Fig. 2). Airflow uses Celery task queue to distribute processing over the multiple 

nodes. Celery provides the mechanisms for queueing and assigning tasks to the multiple workers, 

whereas the Airflow scheduler uses Celery executor to submit tasks to the queue. The Celery 

system helps to not only balance the load over the different machines, but also to define task 

priorities by assigning them to the separate queues. 

The example of CWL-Airflow Celery cluster of 4 nodes is shown in Figure 2. The tasks 

are submitted to the queue by the node 1 and executed by either of the 3 workers (nodes 2, 3 and 

4). Node 1 runs two mandatory components - the Airflow database and scheduler. The latter 
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schedules the tasks execution by adding them to the queue. All Celery workers are subscribed to 

the same task queue. Whenever an arbitrary worker pulls the new task from the queue, it runs it 

and returns execution results. For the sequential steps, the Airflow scheduler then submits next 

tasks to the queue. During the task execution intermediate data are kept in the temp folder. On 

successful pipeline completion all output files are moved to the output folder. Both temp and output 

folders as well as the dags and the jobs folders are shared between all the nodes of the cluster. 

Optionally, node 1 can also run the Airflow webserver (Fig. 3) and the Celery monitoring tool 

Flower (Fig. 4) to provide users with the pipeline execution details. 

 

Figure 3. Airflow web interface. The DAGs tab shows the list of the available pipelines, their latest 

execution dates, number of the active, succeeded and failed runs. The buttons of the right allow to 

control pipeline execution and obtain additional information on the current workflow and its steps. 
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Figure 4. Dashboard of the Celery monitoring tool Flower. Shown are the three Celery workers, their 

current status and load information. 

Results 

ChIP-Seq analysis with CWL-Airflow 

As an example, we used a workflow for basic analysis of ChIP-Seq data [4] (Fig. 5). This 

workflow is a CWL version of a Python pipeline from BioWardrobe [14,15]. It starts by using 

BowTie [16] to perform alignment to a reference genome, resulting in an unsorted SAM file. The 

SAM file is then sorted and indexed with SAMtools [17] to obtain a BAM file and a BAI index. 

Next MACS2 [18] is used to call peaks and to estimate fragment size. In the last few steps, the 

coverage by estimated fragments is calculated from the BAM file and is reported in bigWig format 

(Fig. 5). The pipeline also reports statistics, such as read quality, peak number and base frequency, 

and other troubleshooting information using tools such as FASTX-Toolkit [19] and BamTools 

[20]. The directions how to run sample pipeline can be found at [21]. Execution time in CWL-

Airflow was similar to that reference implementation (Table 1). 
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Figure 5. Using CWL-Airflow for analysis of ChIP-Seq data. (a) ChIP-Seq data analysis pipeline 

visualized by Rabix Composer. (b) Drosophila embryo H3K4me3 ChIP-Seq data (SRR1198790) were 

processed by our pipeline and CWL-Airflow. UCSC genome browser view of tag density and peaks at 

trx gene is shown. 

The CWL-Airflow package includes two additional demo workflows: (i) identification of 

super-enhancers [22] and (ii) a simplified version of Xenbase [23] RNA-Seq pipeline. More 

pipelines can be found elsewhere. In particular, BioWardrobe’s [14] pipelines for analysis of single 

and paired-end ChIP-Seq, stranded and un-stranded, single and paired RNA-Seq are available on 

GitHub [24]. Additional collections of tools are available in Rabix Composer [7], a graphical CWL 

Editor from Seven Bridges and at the dockstore [25]. 
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Portability of CWL analyses 

The key promise of CWL is the portability of analyses. Portability refers to the ability to 

seamlessly run a containerized CWL pipeline developed for one CWL platform on another CWL 

platform allowing users to easily share computational workflows. To check whether CWL-Airflow 

can use pipelines developed by others, we downloaded an alternative workflow for analysis of 

ChIP-Seq data developed by ENCODE Data Coordination Center [26,27] using  a test dataset 

(CEBPB ChIP-Seq in A549 cells, ENCODE accession: ENCSR000DYI). CWL-Airflow was able 

to run the pipeline and produced results identical to those obtained with the reference cwl-tool. 

Execution time is shown in Table 1. As we can see it from the table, running the tested pipelines 

on the single node CWL-Airflow system resulted in the 18% longer execution time, whereas the 

3 node CWL-Airflow cluster reduced execution time by 41% per workflow compared to the 

reference cwl-tool. These results confirm that CWL-Airflow complies with the CWL specification, 

support portability and can perform analysis in a reproducible manner.  Additional testing of 

pipeline portability is currently conducted as a part of GA4GH workflow portability challenge 

[28]. 

Using CWL-Airflow in multi-node configuration with Celery executor 

To demonstrate the use of CWL-Airflow in a multi-node configuration we set up the Celery 

cluster of 3 nodes with 4 CPU and 94 GB of RAM each. Every node runs one instance of the 

Airflow Celery worker. Tasks are queued for execution by the Airflow scheduler that is launched 

on the first node. Communication between the Celery workers is managed by the message 

queueing service, RabbitMQ. The latter, as well as the Airflow database and web server, are run 

on the first node. The results of running two tested pipelines on the Airflow Celery cluster are 

shown in the Table 1 and show only a slight slow-down on a per-run basis. 
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Table 1. CWL-Airflow and cwltool average execution time (seconds ± SEM1, n=3). 

Pipeline 
CWL-Airflow Cwltool  

1 node 

1 workflow at a time 

3 nodes 
3 workflows at a time 

1 node 

1 workflow at a time 

BioWardrobe ChIP-Seq Workflow  1141 ± 18 1231 ± 3 955 ± 1 

ENCODE ChIP-Seq Mapping Workflow 3784 ± 10 3824 ± 28 3245 ± 7 

1 standard error of the mean 

Discussion 

CWL-Airflow is one of the first pipeline managers supporting version 1.0 of the CWL 

standard and provides a robust and user-friendly interface for executing CWL pipelines. Unlike 

more complicated pipeline managers, the installation of Airflow and the CWL-Airflow extension 

can be performed with a single pip install command. Airflow has multiple advantages compared 

to the competing pipeline managers (Table 2). Specifically, Airflow provides a wide range of tools 

for managing workflow execution process, such as pausing and resuming workflow execution, 

stopping and restarting the individual workflow steps, restarting the workflow from the certain 

step, skipping part of the workflow by updating the states of the specific steps from a web-based 

GUI. Similarly, to other workflow management systems, Airflow can run on clusters and the major 

cloud services. Unlike some of the workflow executors, it supports both Docker and Singularity 

containerization technologies. The latter is particularly important since many clusters do not allow 

the use of Docker for security reasons. 

Unlike most of the other workflow managers, Airflow provides a convenient web-based 

GUI that allows to monitor and control pipeline execution. Within this web interface, one can 

easily track workflow execution history, collect and visualize statistics from multiple workflow 
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runs. Similarly, to some of the other pipeline managers Airflow provides REST API that allows to 

access its functionality through the dedicated endpoints. The latter can be used by other software 

to communicate with the Airflow system. 

Airflow supports parallel workflow steps execution. Step parallelization can be convenient 

when the workflow complexity is not that high and the computational resources are not limited. 

However, when running multiple workflows, especially on a multi-node system, it becomes 

reasonable to limit parallelism and balance load over the available computing resources. Besides 

the standard load balancing algorithms provided by the computing environment, Airflow supports 

pools and queues that allow to evenly distribute tasks among multiple nodes. 

Addition of CWL capability to Airflow, has made it more convenient for scientific 

computing, where the users are more interested in the flow of data rather than the tasks being 

executed. While Airflow itself (and most of pipeline managers [28]) only define workflows as 

sequences of steps to be executed (e.g. DAGs), CWL description of inputs and outputs leads to 

better representation of data flow which allows to better understand data dependencies and 

produces more readable workflows. 

Furthermore, as one of the most lightweight pipeline managers, Airflow contributes only a 

small amount of overhead to the overall execution of a computational pipeline (Table 1). We 

believe, however, that this is a small price to pay for the ability to monitor and control workflow 

execution afforded by Airflow and better reproducibility and portability of biomedical analyses as 

afforded by the use of CWL. In summary, CWL-Airflow will provide users with the ability to 

execute CWL workflows anywhere Airflow can run—from a laptop to cluster or cloud 

environment. 
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Table 2. Comparison of the open source workflow managers and engines with existing or planned support for 

CWL. GUI: graphical user interface; CLI: command line interface; REST API: representational state transfer 

application programming interface. 

Feature 
Airflow & 

CWL-

Airflow 

Rabix Toil Cromwell REANA Galaxy Arvados CWLEXEC 

Software 

installation 

complexity single python 
package 

JAR 

 
Electron 

application 

single python 
package 

JAR 

group of 

python 

packages 

group of 

python 

packages 
 

node.js 

application 

multiple 

components 
for min. 7 

nodes system 

JAR 

License type 

Apache 

License 2.0 

Apache 

License 2.0 

Apache 

License 2.0 

BSD 3-

Clause 
MIT License AFL v. 3.0 

Apache 
License 2.0 

 

AGPL-3.0 
 

CC-BY-SA-

3.0 

Apache 

License 2.0 

Workflow 
description 

language 
CWL v1.0 

 

python code 

CWL v1.0 

CWL v1.0 

 
WDL v1.0 

 

python code 

CWL v1.0 
 

WDL v1.0 

CWL v1.0 

 
Serial 

 

Yadage 

XML tool 
file 

 

JSON 
workflow 

file 

CWL v1.0 CWL v1.0 

Docker 

containerization + + + + + + + + 
Singularity 
containerization + – + + – + – – 
Cloud / cluster 
processing + – + + + + + + 
Workflow 

execution load 

balancing1 
+ – + + + + + + 

Parallel 
workflow step 

execution 
+ + + + + + + + 

 

G
U

I 

R
E

S
T
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P

I 
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L

I 
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E
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L
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L
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I 
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L

I 
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I 
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E
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L

I 

G
U

I 

R
E

S
T

 A
P

I 

C
L

I 

G
U

I 

R
E

S
T

 A
P

I 

C
L

I 

Add new 
workflow2 – – + +  +   +  + +  + + + +  + + +   + 
Set workflow 

inputs3 – + + +  +   +  + +  + + + +  + + +   + 
Start / Stop 

workflow 
execution 

+ + + +  +   +  + +  + + + +  + + +   + 

Manage 
workflow 

execution 
process4 

+ + + –  –   +  – –  + + + +  – + +   + 

Get execution 
results of the 

specific 

workflow5 

+ – – +  –   +  + –  + + + +  + + +   – 

View workflow 
execution logs + – + +  +   +  + +  + + + +  + + +   + 
View workflow 

execution 

history and 
statistics 

+ + + –  –   +  + –  + + + +  + + +   + 
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1 assign workflow steps to the different pools and queues; use other resource utilization algorithms provided by 

the computing environment 

2 load the workflow from the file; create the workflow by combining the steps in GUI 

3 set the path to the job file; set input values through the GUI or CLI 

4 pause/resume workflow execution process; manually restart workflow steps 

5 get output files locations by the workflow id, step id, execution date or other identifiers 
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CWL: Common Workflow Language 

DAG: Directed Acyclic Graph  
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