bioRxiv preprint doi: https://doi.org/10.1101/249243; this version posted May 14, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

CWL-Airflow: a lightweight pipeline manager supporting Common

Workflow Language

Michael Kotliar'", Andrey V. Kartashov'", and Artem Barskil?#

" Division of Allergy and Immunology, 2 Division of Human Genetics, Cincinnati Children’s Hospital Medical Center and

Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH

* Joint first author; # To whom correspondence should be addressed: Artem.Barski@cchmce.org.

Emails:

MK: michael.kotliar@cchmc.org

AVK: andrey.kartashov@cchmc.org

AB: Artem.barski@cchmc.org

Short title: CWL-Airflow pipeline manager

Abstract

Background: Massive growth in the amount of research data and computational analysis
has led to increased utilization of pipeline managers in biomedical computational research.
However, each of more than 100 such managers uses its own way to describe pipelines, leading to
difficulty porting workflows to different environments and therefore poor reproducibility of
computational studies. For this reason, the Common Workflow Language (CWL) was recently
introduced as a specification for platform-independent workflow description, and work began to

transition existing pipelines and workflow managers to CWL.

Findings: Here, we present CWL-Airflow, an extension for the Apache Airflow pipeline

manager supporting CWL. CWL-Airflow utilizes CWL v1.0 specification and can be used to run

mailto:Artem.Barski@cchmc.org
mailto:Artem.Barski@cchmc.org
mailto:michael.kotliar@cchmc.org
mailto:michael.kotliar@cchmc.org
mailto:andrey.kartashov@cchmc.org
mailto:andrey.kartashov@cchmc.org
mailto:Artem.barski@cchmc.org
mailto:Artem.barski@cchmc.org
https://doi.org/10.1101/249243
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/249243; this version posted May 14, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

workflows on standalone MacOS/Linux servers, on clusters, or on a variety of cloud platforms. A

sample CWL pipeline for processing of ChlP-Seq data is provided.

Conclusions: CWL-Airflow will provide users with the features of a fully-fledged pipeline
manager and an ability to execute CWL workflows anywhere Airflow can run—from a laptop to

cluster or cloud environment.

Availability: CWL-Airflow is available under Apache license v.2 and can be downloaded

from https://barski-lab.qgithub.io/cwl-airflow, http://doi.org/10.5281/zen0do.2669582,

RRID: SCR_017196.

Keywords: Common workflow language, workflow manager, pipeline manager, Airflow,

reproducible data analysis, workflow portability.

Background

Modern biomedical research has seen a remarkable increase in the production and
computational analysis of large datasets, leading to an urgent need to share standardized analytical
techniques. However, of the more than one hundred computational workflow systems used in
biomedical research, most define their own specifications for computational pipelines [1,2].
Furthermore, the evolving complexity of computational tools and pipelines makes it nearly
impossible to reproduce computationally heavy studies or to repurpose published analytical
workflows. Even when the tools are published, the lack of a precise description of the operating
system environment and component software versions can lead to inaccurate reproduction of the
analyses—or analyses failing altogether when executed in a different environment. To ameliorate
this situation, a team of researchers and software developers formed the Common Workflow

Language (CWL) working group [3] with the intent of establishing a specification for describing

https://barski-lab.github.io/cwl-airflow/
https://barski-lab.github.io/cwl-airflow/
http://doi.org/10.5281/zenodo.2669582
http://doi.org/10.5281/zenodo.2669582
https://doi.org/10.1101/249243
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/249243; this version posted May 14, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

analysis workflows and tools in a way that makes them portable and scalable across a variety of
software and hardware environments. The CWL specification provides a set of formalized rules
that can be used to describe each command line tool and its parameters, and optionally a container
(e.g., a Docker [4] or Singularity [5] image) with the tool already installed. CWL workflows are
composed of one or more of such command line tools. Thus, CWL provides a description of the
working environment and version of each tool, how the tools are "connected" together, and what
parameters were used in the pipeline. Researchers using CWL are then able to deposit descriptions
of their tools and workflows into a repository (e.g., dockstore.org) upon publication, thus making

their analyses reusable by others.

After version 1.0 of the CWL standard [6] and the reference executor, cwl-tool, were
finalized in 2016, developers began adapting the existing pipeline managers to use CWL. For
example, companies such as Seven Bridges Genomics and Curoverse are developing the
commercial platforms Rabix [7] and Arvados [8] whereas academic developers (e.g., Galaxy [9],
Toil [10] and others) are adding CWL support to their pipeline managers (See Table 1 for the

comparison of their features).

Airflow [11] is a lightweight workflow manager initially developed by AirBnB, which is
currently an Apache Incubator project, and is available under a permissive Apache license. Airflow
executes each workflow as a Directed Acyclic Graph (DAG) of tasks that have directional
noncircular dependencies. Tasks are usually atomic and are not supposed to share any resources
with each other; therefore, they can be run independently. DAG describes relationships between
the tasks and defines their execution order. DAG objects are initiated from Python scripts placed
in a designated folder. Airflow has a modular architecture and can distribute tasks to an arbitrary

number of workers, across multiple servers, while adhering to the task sequence and dependencies

https://doi.org/10.1101/249243
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/249243; this version posted May 14, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

specified in the DAG. Unlike many of the more complicated platforms, Airflow imposes little
overhead, is easy to install, and can be used to run task-based workflows in various environments
ranging from standalone desktops and servers to Amazon or Google cloud platforms. It also scales
horizontally on clusters managed by Apache Mesos [12] and may be configured to send tasks to
Celery [13] task queue. Here we present an extension of Airflow, allowing it to run CWL-based
pipelines. Altogether, this gives us a lightweight workflow management system with full support

for CWL, the most promising scientific workflow description language.

Methods

§ CWL-Airflow

CWLDAG

\ JobDispatcher

jobs job %

folder input parameters i CWLStepOperator av CWLStepOperator 5,
) 1 2 3
uid L

CWL workflow : CWLStepQperator a,

output folder

&) —
@ @ workflow path output folder
.@. JobCleanup @
w >

|
| ;
1 :
)
1 4 . !
|
BEE @ RN :
workflow steps w workflow output data

workflow intermediate data

Figure 1. CWL-Airflow diagram. Job file contains information about CWL workflow and inputs. CWL-
Airflow creates CWLDAG class instance based on the workflow structure and executes it in Airflow.
The results are saved to the output folder.

The CWL-Airflow package extends Airflow's functionality with the ability to parse and

execute workflows written with the current CWL v1.0 specification [6]. CWL-Airflow can be

https://doi.org/10.1101/249243
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/249243; this version posted May 14, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

easily integrated into the Airflow scheduler logic as shown in the structure diagram in Figure 1.
The Apache Airflow code is extended with a Python package that defines four basic classes—
CWLStepOperator, JobDispatcher, JobCleanup, and CWLDAG. Additionally, the automatically
generated cwl_dag.py script is placed in the DAGs folder. While periodically loading DAGs from
the DAGs folder the Airflow scheduler runs the cwl_dag.py script and creates DAGs based on the

available jobs and corresponding CWL workflow descriptor files.

In order to run a CWL workflow in Airflow, a file describing the job should be placed in
the jobs folder (Fig. 1). Jobs are described by a text file (JSON or YAML) that includes workflow
specific input parameters (e.g. input file locations) and three mandatory fields: workflow (absolute
path to the CWL descriptor file to be run with this job), output_folder (absolute path to the folder
where all the output files should be moved after successful pipeline execution) and uid (unique
identifier for the run). CWL-Airflow parses every job file from the jobs folder, loads corresponding
CWL workflow descriptor file and creates CWLDAG class instance based on the workflow
structure and input parameters provided in the job file. The uid field from the job file is used to

identify the newly created CWLDAG class instance.

CWLDAG is a class for combining the tasks into the DAG that reflects the CWL workflow
structure. Every CWLStepOperator task corresponds to the workflow step and depends on others
based on the workflow step inputs and outputs. This implements dataflow principles and
architecture that are missing in Airflow. Additionally, JobDispatcher and JobCleanup tasks are
added to the graph. JobDisptacher is used to serialize the input parameters from the job file and
provide the pipeline with the input data; JobCleanup returns the calculated results to the output
folder. When the Airflow scheduler executes the pipeline from the CWLDAG it runs the workflow

with the structure identical to the CWL descriptor file used to create this graph.

https://doi.org/10.1101/249243
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/249243; this version posted May 14, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Node 1 ‘ T 7 1
Airflow Scheduler Node 2 Node 3 Node 4
07 BT Airflow Airflow Airflow
- Celery Worker Celery Worker Celery Worker
Airflow Database
Airflow Web Server
A|rflow_FIo_wer ------ | dags jobs temp output
Celery Monitoring Tool folder folder folder folder '
@=P cclerytasks ~ ------ shared resources

Figure 2. Structure diagram for scaling out CWL-Airflow with Celery cluster of 4 nodes. Node 1 runs

the Airflow database to save tasks metadata and the Airflow scheduler with the Celery executor to

submit tasks for processing to the Airflow celery workers on nodes 2, 3 and 4. The Airflow and Flower

(Celery) web servers allow to monitor and control task execution process. All nodes have shared

access to the dags, jobs, temp and output folders.

While running CWL-Airflow on a single node might be sufficient in most of the cases,
when it comes to the computationally intensive pipelines it is worth switching to the multi-node
configuration (Fig. 2). Airflow uses Celery task queue to distribute processing over the multiple
nodes. Celery provides the mechanisms for queueing and assigning tasks to the multiple workers,
whereas the Airflow scheduler uses Celery executor to submit tasks to the queue. The Celery
system helps to not only balance the load over the different machines, but also to define task

priorities by assigning them to the separate queues.

The example of CWL-Airflow Celery cluster of 4 nodes is shown in Figure 2. The tasks
are submitted to the queue by the node 1 and executed by either of the 3 workers (nodes 2, 3 and

4). Node 1 runs two mandatory components - the Airflow database and scheduler. The latter

https://doi.org/10.1101/249243
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/249243; this version posted May 14, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

schedules the tasks execution by adding them to the queue. All Celery workers are subscribed to
the same task queue. Whenever an arbitrary worker pulls the new task from the queue, it runs it
and returns execution results. For the sequential steps, the Airflow scheduler then submits next
tasks to the queue. During the task execution intermediate data are kept in the temp folder. On
successful pipeline completion all output files are moved to the output folder. Both temp and output
folders as well as the dags and the jobs folders are shared between all the nodes of the cluster.
Optionally, node 1 can also run the Airflow webserver (Fig. 3) and the Celery monitoring tool

Flower (Fig. 4) to provide users with the pipeline execution details.

".,’Airflow DAGs DataProfling~ Browsev Adminv Docsv Aboutv 2019-04-29 1452:18UTC G

) heatmap [Nane | airflow @ 2019-03-24 14:36 © @ Ok INI= =060
@ pca [None | airflow @ 2019-04-10 15:19 @ @ OPHIRA=FECO
] plot-dna = aifow (&) 201000252228 @ (@) (5) OPMIMAIZ4=CO
(e} plot-rna = airflow @ 2019-04-26 01:10 @ @ @ OPEIEI= =00
G BY) rmasea-pe [None | airflow 2019-03-29 18:33 @ @ O O IRIA= 4 =00
(e rnaseq-pe-dutp [Nane | airflow OPXIBI=4=C06
G rnaseg-pe-dutp-mitochondrial = airflow OPHINI=+=CO
G BY) rmasease = airflow @ 2019-03-22 17:48 @ @ @ OPHIRIA= =0
G BY) meseq-se-dutp [None | airflow @ 2019-04-26 00:23 @ @ @ OP*INiA=4E0O
G rnaseq-se-dutp-mitochondrial = airflow @ 2019-04-12 18:47 @ @ ol 1 A a0
G satscript [one | aifiow (%) 2019-04-25 22:28 @ (x OrwIIA=+I=C0
G B star-index = airflow OPkINiAS $=0

G super-enhancer = airflow @ 2019-04-25 22:28 @ @ QPR IRAI= =00
G m trim-chipseg-pe [None | airflow @ ® 150 2019-04-25 21:34 @ @@ O ¥ INA= 4=

Figure 3. Airflow web interface. The DAGs tab shows the list of the available pipelines, their latest
execution dates, number of the active, succeeded and failed runs. The buttons of the right allow to

control pipeline execution and obtain additional information on the current workflow and its steps.

https://doi.org/10.1101/249243
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/249243; this version posted May 14, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

OWE p—
Active: 3 Processed: 21 Failed: 0 Succeeded: 18 Retried: 0
Search:

Worker Name Status * Active Processed Failed Succeeded Retried Load Average
celery@worker-2 [Online | 1 7 0 6 0 0.33,0.24,0.15
celery@worker-1 [Online | 1 7 0 6 0 0.17,0.17,0.09
celery@worker-3 (L 1 7 0 6] 0.36, 0.22,0.12

Showing 1 to 3 of 3 entries

Figure 4. Dashboard of the Celery monitoring tool Flower. Shown are the three Celery workers, their

current status and load information.

Results

ChIP-Seq analysis with CWL-Airflow

As an example, we used a workflow for basic analysis of ChIP-Seq data [4] (Fig. 5). This
workflow is a CWL version of a Python pipeline from BioWardrobe [14,15]. It starts by using
BowTie [16] to perform alignment to a reference genome, resulting in an unsorted SAM file. The
SAM file is then sorted and indexed with SAMtools [17] to obtain a BAM file and a BAI index.
Next MACS2 [18] is used to call peaks and to estimate fragment size. In the last few steps, the
coverage by estimated fragments is calculated from the BAM file and is reported in bigWig format
(Fig. 5). The pipeline also reports statistics, such as read quality, peak number and base frequency,
and other troubleshooting information using tools such as FASTX-Toolkit [19] and BamTools
[20]. The directions how to run sample pipeline can be found at [21]. Execution time in CWL-

Airflow was similar to that reference implementation (Table 1).

https://doi.org/10.1101/249243
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/249243; this version posted May 14, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Number of threads’ Coordinate sgfted BAM alignment file (+index BAI)

O]

FASTQ input file samtools_rmdup

. samflools_sort_index @
ract_f
@ Remove duplicates log
- Bowtie & Saghtools Amdup combined log
BOWTIE indices folde
fastx_quality_stat
FASTQ statistics

°"°"""‘5"\. / o

©

Islgnd intersect results

Gappod poak @
/4:1 intersect log

Clip from 3p end bowtie_aligner BOWTIE alignment log
b island_intersect TDE resulta
10 kol | dn3
| 10,095, 008| 18,188, ada| 14,185, aaa| 18,118, a68| @
ATDP log
BigWig file
Callpeak broad
Chromosome length file Annotation file average._tag_density

Figure 5. Using CWL-Airflow for analysis of ChIP-Seq data. (a) ChIP-Seq data analysis pipeline

visualized by Rabix Composer. (b) Drosophila embryo H3K4me3 ChiIP-Seq data (SRR1198790) were

processed by our pipeline and CWL-Airflow. UCSC genome browser view of tag density and peaks at
trx gene is shown.

The CWL-Airflow package includes two additional demo workflows: (i) identification of
super-enhancers [22] and (ii) a simplified version of Xenbase [23] RNA-Seq pipeline. More
pipelines can be found elsewhere. In particular, BioWardrobe’s [14] pipelines for analysis of single
and paired-end ChlIP-Seq, stranded and un-stranded, single and paired RNA-Seq are available on
GitHub [24]. Additional collections of tools are available in Rabix Composer [7], a graphical CWL

Editor from Seven Bridges and at the dockstore [25].

https://doi.org/10.1101/249243
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/249243; this version posted May 14, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Portability of CWL analyses

The key promise of CWL is the portability of analyses. Portability refers to the ability to
seamlessly run a containerized CWL pipeline developed for one CWL platform on another CWL
platform allowing users to easily share computational workflows. To check whether CWL-Airflow
can use pipelines developed by others, we downloaded an alternative workflow for analysis of
ChlP-Seq data developed by ENCODE Data Coordination Center [26,27] using a test dataset
(CEBPB ChIP-Seq in A549 cells, ENCODE accession: ENCSR000DY). CWL-Airflow was able
to run the pipeline and produced results identical to those obtained with the reference cwl-tool.
Execution time is shown in Table 1. As we can see it from the table, running the tested pipelines
on the single node CWL-Airflow system resulted in the 18% longer execution time, whereas the
3 node CWL-Airflow cluster reduced execution time by 41% per workflow compared to the
reference cwl-tool. These results confirm that CWL-Airflow complies with the CWL specification,
support portability and can perform analysis in a reproducible manner. Additional testing of
pipeline portability is currently conducted as a part of GA4GH workflow portability challenge

[28].
Using CWL-Airflow in multi-node configuration with Celery executor

To demonstrate the use of CWL-Airflow in a multi-node configuration we set up the Celery
cluster of 3 nodes with 4 CPU and 94 GB of RAM each. Every node runs one instance of the
Airflow Celery worker. Tasks are queued for execution by the Airflow scheduler that is launched
on the first node. Communication between the Celery workers is managed by the message
queueing service, RabbitMQ. The latter, as well as the Airflow database and web server, are run
on the first node. The results of running two tested pipelines on the Airflow Celery cluster are

shown in the Table 1 and show only a slight slow-down on a per-run basis.

10

https://doi.org/10.1101/249243
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/249243; this version posted May 14, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Table 1. CWL-Airflow and cwitool average execution time (seconds + SEM’, n=3).

CWL-Airflow Cwltool
Pipeline 1 node 3 nodes 1 node
1 workflow at a time 3 workflows at a time 1 workflow at a time
BioWardrobe ChIP-Seq Workflow 1141 + 18 1231+ 3 955+1
ENCODE ChlP-Seq Mapping Workflow 3784 £ 10 3824 + 28 3245+ 7

"standard error of the mean

Discussion

CWL-Airflow is one of the first pipeline managers supporting version 1.0 of the CWL
standard and provides a robust and user-friendly interface for executing CWL pipelines. Unlike
more complicated pipeline managers, the installation of Airflow and the CWL-Airflow extension
can be performed with a single pip install command. Airflow has multiple advantages compared
to the competing pipeline managers (Table 2). Specifically, Airflow provides a wide range of tools
for managing workflow execution process, such as pausing and resuming workflow execution,
stopping and restarting the individual workflow steps, restarting the workflow from the certain
step, skipping part of the workflow by updating the states of the specific steps from a web-based
GUI. Similarly, to other workflow management systems, Airflow can run on clusters and the major
cloud services. Unlike some of the workflow executors, it supports both Docker and Singularity
containerization technologies. The latter is particularly important since many clusters do not allow

the use of Docker for security reasons.

Unlike most of the other workflow managers, Airflow provides a convenient web-based
GUI that allows to monitor and control pipeline execution. Within this web interface, one can

easily track workflow execution history, collect and visualize statistics from multiple workflow

11

https://doi.org/10.1101/249243
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/249243; this version posted May 14, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

runs. Similarly, to some of the other pipeline managers Airflow provides REST API that allows to
access its functionality through the dedicated endpoints. The latter can be used by other software

to communicate with the Airflow system.

Airflow supports parallel workflow steps execution. Step parallelization can be convenient
when the workflow complexity is not that high and the computational resources are not limited.
However, when running multiple workflows, especially on a multi-node system, it becomes
reasonable to limit parallelism and balance load over the available computing resources. Besides
the standard load balancing algorithms provided by the computing environment, Airflow supports

pools and queues that allow to evenly distribute tasks among multiple nodes.

Addition of CWL capability to Airflow, has made it more convenient for scientific
computing, where the users are more interested in the flow of data rather than the tasks being
executed. While Airflow itself (and most of pipeline managers [28]) only define workflows as
sequences of steps to be executed (e.g. DAGs), CWL description of inputs and outputs leads to
better representation of data flow which allows to better understand data dependencies and

produces more readable workflows.

Furthermore, as one of the most lightweight pipeline managers, Airflow contributes only a
small amount of overhead to the overall execution of a computational pipeline (Table 1). We
believe, however, that this is a small price to pay for the ability to monitor and control workflow
execution afforded by Airflow and better reproducibility and portability of biomedical analyses as
afforded by the use of CWL. In summary, CWL-Airflow will provide users with the ability to
execute CWL workflows anywhere Airflow can run—from a laptop to cluster or cloud

environment.

12

https://doi.org/10.1101/249243
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/249243; this version posted May 14, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Table 2. Comparison of the open source workflow managers and engines with existing or planned support for
CWL. GUI: graphical user interface; CLI: command line interface; REST API: representational state transfer
application programming interface.

Airflow &
Feature CWL- Rabix Toil Cromwell REANA Galaxy Arvados CWLEXEC
Airflow
Software group of
installation JAR roup of python multiple
complexity single python single python JAR group packages components
python . JAR
package Electron package for min. 7
o packages .
application node.js nodes system
application
License type Apache
License 2.0
Apache Apache Apache BSD 3- .) Apache
License 2.0 License 2.0 License 2.0 Clause MIT License | AFLvV.3.0 AGPL-3.0 License 2.0
CC-BY-SA-
3.0
Z’!?E'ﬁgﬁfn CWL V1.0 CWL VL0 X'\"fhetoo'
lanquage CWL v1.0 CWL V1.0
guag CWLV1O0 | WDLvL.0 Serial 150N CWLVLO | CWLVLO
python code WDL v1.0
workflow
python code Yadage file
Docker
containerization + + + + + + + +
Singularity
containerization + - + + - + - -
Cloud / cluster
processing + - + + + + + +
Workflow
execution load + — + + + + + +
balancing®
Parallel
workflow step + + + + + + + +
execution
a a a a o o o o
< < < < < < < <
=5 =% =% =% =% =% =% =5
Slw|IJlD2lw|JD2(w|J)1D2|w|J1D2|lw|JlD2|lw|dJlD2|lw|dJlD|lw|3
o|le|ojJo|le|olJ]o|x|o]l]o|lx|o]lo|e|o]lJo|x|o]l]o|x|Oo|lo|x|O
pwgnew N+ +|o|+|o|o|+|o|+|+|a|+|+|+]+|a|+|+|+]|o| 0|+
workflow
o M =+ |+ || ||| +H|o|+|+H|o|+ |+ +]|+ ||+ |+ |+]|o| 0|+
Start / Stop
workflow +i+|+|+|o|+|o|o|+]|a|+|+|o|+|+]|+|+|o|+|+|+]|2|2]|+
execution
Manage
workflow
execution +|+|+|—-|D| -0+ |—|—|D|+|+]|+|+|T|—|+|+|T|T|+
process*
Get execution
e |+ ==+ e|=|a|a|+|a|+|=|2|+|+|+|+|2|+|+|+|2|2]|-
workflow®
View workflow
eXecuticmlogs+—++®+®®+®++®++++®+++®®+
View workflow
execution +|+|+|=|o|=|o|o|+|a|+|=|o|+|+|+|+|o|+|+]|+]|2|o|+
history and - - -
statistics

13

https://doi.org/10.1101/249243
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/249243; this version posted May 14, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

"assign workflow steps to the different pools and queues; use other resource utilization algorithms provided by
the computing environment

?load the workflow from the file; create the workflow by combining the steps in GUI
3 set the path to the job file; set input values through the GUI or CLI
4 pause/resume workflow execution process; manually restart workflow steps

5 get output files locations by the workflow id, step id, execution date or other identifiers

Abbreviations

CWL: Common Workflow Language

DAG: Directed Acyclic Graph

ChIP-Seq: Chromatin ImmunoPrecipitation - Sequencing
GUI: Graphical User Interface

CLI: Command Line Interface

REST API: Representational State Transfer Application Programming Interface

Declarations
Ethics approval and consent to participate: Not applicable.

Consent to publish: Not applicable.

Availability of data and materials: No new datasets or materials were generated. The
source code is available under Apache license v.2 and can be downloaded from https://barski-

lab.github.io/cwl-airflow, http://doi.org/10.5281/zen0do.2669582, RRID: SCR_017196.

Competing Interests: AVK and AB are co-founders of Datirium, LLC. Datirium, LLC

provides bioinformatics software support services.

14

https://barski-lab.github.io/cwl-airflow/
https://barski-lab.github.io/cwl-airflow/
https://barski-lab.github.io/cwl-airflow/
https://barski-lab.github.io/cwl-airflow/
http://doi.org/10.5281/zenodo.2669582
http://doi.org/10.5281/zenodo.2669582
https://doi.org/10.1101/249243
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/249243; this version posted May 14, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Funding: The project was supported in part by Center for Clinical & Translational
Research and Training (NIH CTSA grant UL1TR001425) and by NIH NIGMS New Innovator
Award to AB (DP2GM119134). The funders had no role in study design, data collection and

analysis, decision to publish, or preparation of the manuscript.

Author contributions statement: AVK and AB conceived the project, AVK and MK wrote

the software, MK, AVK and AB wrote and reviewed the manuscript.

Acknowledgements: The authors thank all members of the CWL working group for their

support and Shawna Hottinger for editorial assistance.

References

1. Leipzig J. A review of bioinformatic pipeline frameworks. Brief Bioinform. 2017;18:530-6.

2. Existing Workflow Systems [Internet]. Available from: https://s.apache.org/existing-
workflow-systems

3. Common Workflow Language [Internet]. Available from: http://www.commonwl.org/
4. Docker [Internet]. Available from: https://www.docker.com/why-docker

5. Kurtzer GM, Sochat V, Bauer MW. Singularity: Scientific containers for mobility of compute.
PLoS One. 2017;12.

6. Amstutz P, Crusoe MR, Tijani¢ N, Chapman B, Chilton J, Heuer M, et al. Common Workflow
Language, v1.0 [Internet]. Doi.Org. 2016. p. Available from:
https://www.commonwl.org/v1.0/Workflow.html

7. Kaushik G, Ivkovic S, Simonovic J, Tijanic N, Davis-Dusenbery B, Kural D. RABIX: an
open-source workflow executor supporting recomputability and interoperability of workflow
descriptions. Pac Symp Biocomput. 2016;22:154-65.

8. Arvados [Internet]. Available from: https://arvados.org/

9. Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L, Shah P, et al. Galaxy: a platform
for interactive large-scale genome analysis. Genome Res. 2005;15:1451-5.

10. Vivian J, Rao A, Nothaft FA, Ketchum C, Armstrong J, Novak A, et al. Rapid and efficient
analysis of 20,000 RNA-seq samples with Toil. bioRxiv. 2016;2:062497.

11. Airflow [Internet]. Available from: http://airflow.incubator.apache.org/

12. Hindman B, Konwinski A, Zaharia M, Ghodsi A, Joseph AD, Katz R, et al. Mesos: A
platform for fine-grained resource sharing in the data center. Proc 8th USENIX Conf Networked

15

https://doi.org/10.1101/249243
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/249243; this version posted May 14, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Syst Des Implement. 2011;295.
13. Celery Project [Internet]. Available from: http://www.celeryproject.org/

14. Kartashov A V, Barski A. BioWardrobe: an integrated platform for analysis of epigenomics
and transcriptomics data. Genome Biol. 2015;16:158.

15. Vallabh S, Kartashov A V., Barski A. Analysis of ChIP-Seq and RNA-Seq Data with
BioWardrobe. Methods Mol Biol. 2018;1783:343-60.

16. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of
short DNA sequences to the human genome. Genome Biol. 2009;10:R25.

17. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence
Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078-9.

18. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based
analysis of ChlP-Seq (MACS). Genome Biol. 2008/09/19. 2008;9:R137.

19. FASTX Toolkit [Internet]. Available from:
http://hannonlab.cshl.edu/fastx_toolkit/index.html

20. Barnett DW, Garrison EK, Quinlan AR, Stromberg MP, Marth GT. BamTools: a C++ API
and toolkit for analyzing and managing BAM files. Bioinformatics. 2011;27:1691-2.

21. Barski Lab ChlIP-Seq SE Workflow [Internet]. Available from: https://barski-
lab.github.io/cwl-airflow/#running-sample-chip-seq-se-workflow

22. Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-André V, Sigova A a, et al. Super-enhancers in
the control of cell identity and disease. Cell. 2013;155:934-47.

23. Karimi K, Fortriede JD, Lotay VS, Burns KA, Wang DZ, Fisher ME, et al. Xenbase: a
genomic, epigenomic and transcriptomic model organism database. Nucleic Acids Res.
2018;46:D861-8.

24. Barski Lab CWL Workflows on GitHub [Internet]. Available from:
https://github.com/Barski-lab/workflows

25. O’Connor BD, Yuen D, Chung V, Duncan AG, Liu XK, Patricia J, et al. The Dockstore:
enabling modular, community-focused sharing of Docker-based genomics tools and workflows.
F1000Research. 2017;6:52.

26. Landt SG, Marinov GK, Kundaje A, Kheradpour P, Pauli F, Batzoglou S, et al. ChIP-seq
guidelines and practices of the ENCODE and modENCODE consortia. Genome Res.
2012;22:1813-31.

27. ENCODE ChlIP-Seq pipeline [Internet]. Available from: https://github.com/ENCODE-
DCCl/pipeline-container

28. GA4GH-DREAM Workflow Execution Challenge [Internet]. Available from:
https://www.synapse.org/#!Synapse:syn8507133/wiki/415976

16

https://doi.org/10.1101/249243
http://creativecommons.org/licenses/by-nc-nd/4.0/

