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Abstract

Exome-based panels (exome dlices) are becoming the preferred diagnostic strategy in clinical
laboratories, especially for genetically heterogeneous disorders. The advantages of this approach
include enabling frequent updates to gene content without the need for re-designing, reflexing to
exome analysis bioinformatically without requiring additional sequencing, and streamlining
laboratory operation by using established exome kits and protocols. Despite their increasing use,
there are currently no guidelines or appropriate resources to support ther clinica
implementation. Here, we highlight principles and important considerations for the clinical
development and validation of exome-based panels, guided by clinical data from a diagnostic
epilepsy pane using this approach. We also present a novel, publically accessible web-based
resource, ExomeSlicer, and demonstrate its clinical utility in predicting gene-specific and
exome-wide technically challenging regions that are not amenable to Next Generation
Sequencing (NGS), and that might significantly lead to increased post hoc Sanger fill in burden.
Using this tool, we also characterize > 2000 low complexity, GC-rich and/or high homology,
regions across the exome that can be a source of false positive or false negative variant calls thus
potentially leading to misdiagnosesin tested patients.

I ntroduction

Next Generation Sequencing (NGS) has proven to be a powerful tool for the identification of
genetic variants in Mendelian disorders, and as such played major roles in disease gene
discovery in research setting and also clinically for establishing genetic diagnoses [1-3]. While
sequencing of the entire genome (whole genome sequencing [WGS]) represents the most
comprehensive option, sequencing of coding regions only, so-called whole exome sequencing
(WEYS), isthe cheaper and more practical alternative [4].

Using WES or targeted NGS panels as aclinical platform has proven to achieve high, up to 50%,
diagnostic yield for a range of clinical indications [5-10]. Several factors affect the decision
regarding a suitable sequencing approach. While WES is reserved for complex clinical
presentations, or for highly suspected genetic etiologies where exhaustive targeted testing did not
reveal answers, NGS gene panels are mostly used for patients with rather simple clinical
presentations or specific syndromes associated with a number of known disease genes [5].
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Despite the advantages of WES, there are some drawbacks associated with this approach
including its high cost, long turnaround time besides its analytical and interpretative challenges.
WES uncovers numerous variants, including many of uncertain clinical significance, besides
others that are unrelated to patient’s indication raising ethical concerns for the patient and their
families[11, 12]. On the other hand, targeted NGS panels yield a very limited number of variants
in the captured genes only, and with a relatively fast turnaround time. However, given the priori
overlap between a patient’s phenotype and diseases caused by genes on the panel, a complete
test, wherein regions with low depth of coverage are filled in using an orthogonal — most often
Sanger sequencing — approach, is highly warranted [7, 13]. A major limitation of targeted NGS
approach, however, is the static nature associated with its fixed number of captured genes. Thus,
newly discovered genes cannot be easily added to the test and would require significant design
and validation efforts by the laboratory.

The exome-based targeted panel approach (also called “Exome Slice’) has therefore recently
become more attractive to laboratories as it allows dynamic gene content update with minimal
design and validation, and at the same time reduces the interpretation burden associated with
WES. This is most suitable for diseases that are known for high genetic and phenotypic
heterogeneity such as epilepsy and hearing loss where at least a hundred gene might be involved
[14, 15]. In this approach, the exome is sequenced but only indication-relevant genes are
analyzed and interpreted using in silico bioinformatics tools. For laboratories offering exome
sequencing and targeted gene panels, this approach can significantly homogenize the upfront
analysis leading to a uniform wet-bench exome capture workflow. In addition, it allows for
reflexing to exome analysis bioinformatically without requiring additional sequencing.

However, exome-dlices are subject to the same downsides of exome captures including potential
lack of adequate coverage for all the relevant genes. Additionally, more bioinformatics analysis
is needed during test development and validation to identify gaps in coverage and/or regions of
high homology and to design ancillary assays if warranted. Currently, there are no uniform
standards or guidelines for the development and validation of exome slicesin aclinical setting.

Here, we highlight important considerations for the clinical development and use of exome-
based panels. We also develop a user-friendly, web-based tool, ExomeSlicer, for the
identification of gene-specific and exome-wide technically challenging regions that cannot be
reliably sequenced and that can be a source of false positive and/or false negative variant calls.
We show that this tool supports exome-based and targeted panel development through
identification of potential ancillary testing, characterization of test limitation, and streamlining
post hoc Sanger sequencing.

Materialsand Methods
Exome Capture and Sequencing

Exome-wide capture of the coding regions was performed using the SureSelectXT Clinical
Research Exome (CRE) V5 kit (Agilent, CA, USA), followed by cluster generation using the
TruSeq Rapid Cluster Kits (Illumina, CA, USA), and then sequencing on the Illumina HiSeq
2500 platforms with 2x100bp paired-end reads and average sequencing depth of 100X.
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Targeted Next Generation Sequencing

A custom-made capture kit was designed using RNA oligonucleotides targeting all RefSeq
coding exons (x 25bp) of 338 disease genes (Supplementary Table 1) at 3X tiling density
(Agilent SureDesign, Santa Clara, CA). Captured samples were prepared for sequencing using
Agilent’s SureSelect QXT Library Preparation kit and sequenced using Illumina MiSeq or HiSeq
2500.

Sanger Sequencing

M13-tagged primers were custom designed for the specific low coverage regions (see below)
using an in house primer design software. Amplified DNA products were first cleaned to remove
excess primers and dNTPs, and then sequenced using BigDye Terminator Cycle Sequencing
Ready Reaction Kit (Applied Biosystems, CA, USA). Fuorescence-based cycle sequencing was
performed using ABI 3730 automated DNA sequencer (Applied Biosystems, CA, USA).
Sequences were viewed using Mutation Surveyor (SoftGenetics, PA, USA).

Bioinformatics

Bioinformatics analysis of exome data was performed using the in-house “cwes-2.xX" pipeline.
Raw data (FASTQ) files generated by HiSeq were processed through this several components of
this pipeline including hgl9 reference genome (human_glk v37), Novoalign v3.04.06 (for
alignment), SAMtools v1.1 (to convert SAM files to BAM files), Picard v1.123 (to mark
duplicate reads and calculate coverage statistics), GATK v3.6 (for variant, SNV and INDEL,
calling), and Snpeff v4.2 (for variant annotation). The pipeline generates several files (including
VCF, annotations, quality report etc) however, for ExomeSlicer, we used BAM file after mark
duplicate step. The same above components have been utilized for NGS panels.

ExomeSlicer

Mapped reads BAM files from 1932 exome samples were used to calculate coverage and
mapping quality statistics for ExomeSlicer. To calculate exon level coverage and mapping
quality statistics for each sample’s bam file (after marking duplicate reads), Refseq coding exon
hgl19 coordinates, transcript and gene annotations were downloaded from UCSC (March 26,
2017). Using CRE capture bed file, each exon was annotated with number of baits covering the
exon and the number of bases covered by baits. We developed a custom algorithm using PySam
v0.12.0 to calculate statistics for mapping quality and coverage per exon (Figure 1). Coverage
calculation was done by counting only “usable coverage” defined as. For a given base pair, only
reads with Base Quality (BQ) > 20 and Mapping Quality (MQ) > 20. The MQ and BQ thresholds
for counting coverage were used to ensure only reads contributing to variant calling were
considered as most variant callers as recommended by Sanghvi et al [16]. For each sample,
minimum, maximum, and average coverage all bases within an exon were calculated.
Similarlyminimum, maximum, and average mapping quality of all reads covering an exon were
calculated. To aggregate data across 1932 samples, average of each data point for each exon was
calculated across all samples (e.g. average of all minimum coverages for a given exon across
1932 samples) as depicted in Figure 2.

Statistical analysis
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Proportions of good and poor quality regions with different baited bases were compared using a
two-sample t-test. For additional region comparisons, overlapping regions were merged using
bedtools merge. Merged region GC content was taken as the minimum of combined regions.
BLAT hits for merged regions were found by running BLAT with default parameters against
hg19. Merged regions were annotated with disease mutations from the Human Gene Mutation
Database version 2016 and pathogenic, likely pathogenic, and variants of uncertain clinical
significance from ClinVar (verson February 2016) using bedtools intersect. Merged region
genes were located in the Online Mendelian Inheritance in Man (OMIM) database (version
2013) using the OMIM genemap file. The GC content and number of BLAT hits for regions
were compared using atwo-sided Wilcoxon test.

Results
Development and Validation of Clinical Exome-based panels

Gene Content. The first step in the development of a sequencing panel is defining the genes
wherein sequence variants are an established cause of the disease of interest. Although not
specific to exome panels, this step is most critical in this approach given the larger number of
genes that are likely to be included relative to the targeted capture approach. Therefore,
consistent and robust selection criteria are needed to avoid inclusion of genes with limited or no
clinical validity that could lead to unnecessary extra downstream analysis and interpretation, in
addition to increased patient anxiety associated with added reporting of variants of uncertain
clinical significance [14]. The Clinical Genome (ClinGen) Resource recently developed an
evidence-based framework for evaluating the clinical validity of gene-disease associations [17];
using this framework is highly recommended for optimal gene content decisions in clinical
exome-based panels.

Another important consideration is that the phenotype(s) caused by the selected clinically valid
genes on a pane should be significantly overlapping or idare at least the most prominent
feature(s) associated with those disease genes. This especialy critical for highly heterogeneous
genetic disorders, which are most amenable to the exome-based approach, with several
contributing genes, each can be associated with a varied phenotypic spectrum. For example,
sequence variants in over 400 genes cause seizures or epilepsy besides several other features
[15]. However, to design a sequencing panel for the specific diagnosis of epilepsy, then clinically
valid genes known to cause pure epilepsies (non-syndromic or apparent non-syndromic) should
only be included. Around 100 genes would now satisfy these inclusion criteria (Supplementary
Figurel).

Exome Capture. The most important consideration associated with using an exome capture is
whether the relevant disease genes have adequate sequencing coverage or not. With the large
number of targets in an exome, the overall coverage is expected to be low, as compared to
smaller capture approaches, thus potentially leading to sequencing gaps. However, several
commercial exome kits have now boosted the number of baits targeting coding exons, especially
in disease genes, leading to adequate coverage across [18]. For example, in collaboration with
Agilent and researchers from Emory University, we have recently developed an exome capture
kit, the Agilent SureSelectXT Clinical Research Exome (CRE) V5 Plus kit, through which 96%
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of the coding regions (and even higher for disease genes) are covered with at least 10x read
depth when 75M reads are sequenced [18].

To illustrate the efficacy of the CRE V5 plus kit for exome-based panels, we designed a different
custom capture kit targeting 338 genes well known to cause a range of disorders including
cholestasis, pancrestitis, lung disease, connective tissue disease, Corndlia de Lange, primary
ciliary dyskinesia, and Noonan among many others (Supplementary Table 1). We then assessed
coverage across the 338 genes when sequenced after the targeted custom capture or the CRE Kkit.
As shown in Supplementary Figure 2, coverage across all genesis almost identical between the
exome and the targeted custom capture Kits (coding regions with at least 10x coverage was
98.6% and 98.9%, respectively) despite sequencing to an overall coverage of 100x and 400x,
respectively. These data clearly demonstrate the utility of using current exome capture kits, such
asthe Agilent CRE, as a platform for the development of clinical exome-based panels.

Analytical Performance. A reference sample is needed as a benchmark to evaluate variant
detection performance of NGS-based assays [13]. Genomic DNA of the HapMap sample
NA12878 has been extensively sequenced and studied using multiple sequencing platforms in
laboratories across the world. Moreover, the National Institute of Standards and Technology-
Genome in a Bottle (NIST-GIAB) consortium has curated highly confident sequence variants
across the whole genome of NA12878 and catalogued a benchmark reference variant dataset for
this sample, including 28,940 single nuclectide variants (SNVs) and 996 small insertions or
deletions (Indels) [19]. Using the CRE kit and sequencing the NA12878 sample at 100x read
depth, the analytical sensitivity, specificity and positive predictive value for detecting the high
confidence variants were 99.6%, 99.9%, 99.9%, respectively. This analytical performance
further highlights the efficacy of using an exome-based approach for disease panels.

To assess the performance characteristics of the exome-based approach in any disease genes of
interest, the high confidence NA12878 NIST-GIAB variants cals in this gene subset can be
extracted and analyzed. For example, within the 100 epilepsy genes in Supplementary Figure
1, a total of 110 NIST-GIAB variants (including 108 SNVs and 2 indels) are found in the
NA12878 sample. The calculated analytical sensitivity, analytical specificity, and positive
predictive value in the epilepsy region of interest (~432kb) using the CRE kit with 100x read
depth are 99.09%, 99.99%, and 99.09%, respectively. Such analysis complements the coverage
information and ensures highly acceptable variant detection in the genes of interest.

Filtration. Upon exome sequencing, a validated filtration strategy is needed to retain rare
variants only in the disease genes of interest. Removal of putative benign variants is critical to
reduce the interpretation burden. This requires carefully setting a filtering allele frequency cutoff
based on known disease attributes such as prevalence, penetrance, genetic and allelic
heterogeneity, and mode of inheritance. Using variant frequency information in large
representative individuals from the general population, such as the Exome Aggregation
Consortium or EXAC [20], the diseases-specific cutoff can now be used to remove “common”
benign variants.

Several conservative assumptions has to be made when calculating a disease-specific filtering
cutoff due to lack of information regarding the above disease attributes. For example, the SCN1A
gene, the most common cause of autosomal dominant (AD) epilepsy, can be used to establish a
filtering cutoff for all AD epilepsy genes (Supplementary Figure 1). This gene has an estimated
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prevalence of 1/20,000 with a penetrance in the 70-90% range [21, 22]. Assuming that a single
pathogenic variant causes all SCN1A-related seizures and that disease prevalence and penetrance
are 1/10,000 and 50%, respectively, a conservative filtering cutoff of 1 X 10™ for AD epilepsy is
caculated using the Hardy-Weinberg equation or the recently published calculator
(https://cardiodb.org/allelefrequencyapp/) [23]. Before clinical application, the filtration strategy
has to be validated using samples with known pathogenic variants.

Sanger Sequencing Burden

Despite the high overall coverage that can be achieved using a targeted or an exome-based
capture approach (Supplementary Figure 2), certain regions might still fall below the required
coverage for reliable variant detection. Such sequencing gaps are more likely to occur in regions
with sequence complexities, such as GC-rich, repeat, or high homology sequences, which might
affect target capture and/or amplification. It is expected that, for disease panels, a laboratory
would make every effort to complete sequencing of all disease genes [7]. In fact, most clinical
labs use Sanger sequencing to fill in regions falling below a certain coverage cutoff (usually
below 15 or 20x). Given its post hoc nature, this process is cumbersome and can significantly
delay the delivery of test results.

To illustrate this burden, around 1000 Sanger sequencing reactions were performed to fill in
coverage gaps (defined as any region with at least 10bp with less than 15x) in 100 epilepsy cases
originally tested using an exome-based approach shown in Supplementary Figure 1.
Interestingly however, most (>900) of those Sanger reactions were recurrent (Figure 3) with 8
regions filled in ~700 times (Table 1). As expected, all 8 regions were either GC-rich or had
repeat or high homology sequences (Table 1).

Table 1. Technically challenging regionsin epilepsy genes

Gene Transcript CDS % Avg Min ExomeSlicer Assessment
Exon Baited MQ DP Warning
ARX NM_139058 2 98% 69.69 4.92 Coverage Poly-Alanine repeat region
CERS1 NM_021267 1 81% 69.93 2.52 Coverage GC-rich
EPM2A NM_005670 1 100% 69.8 6.8 Coverage GC-rich
1QSEC2 NM_001111125 15 89% 68.98 3.37 Coverage Proline and Histidine
repeats
SYN1 NM_133499 12 94% 69.61 8.14 Coverage GC-rich
WDR45 NM_001029896 10 37% 69.82 5.11 Coverage End of exon with Poly
Asparates
SLC6A8 NM_001142805 1 96% 69.85  8.55 Coverage GC-rich
SLC6A8 NM_001142805 3 44% 61 8.24 Homology  Significant homology to

other genomic regions

CDS: Coding Sequence; Avg MQ: Average Mapping Quality; Min DP: Minimum Depth
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Given the Sanger burden introduced by such regions, we tested whether we can identify them
using exome sequencing data from ~2000 clinical samples (see methods and Figures 1 and 2).
Highlighting such regions in the exome panel (or other targeted) approach can minimize the
downstream post hoc analysis by designing separate upfront specific ancillary assays or by
acknowledging them as part of the test limitation. We hypothesized that regions with sequencing
complexities as in the above can be identified using NGS quality metrics, namely exon-level
mapping quality (MQ) and depth of coverage (DP). In fact, al the regions in Table 1
consistently had average minimum coverage below <10X and for one exon (SLC6A8 exon 3)
also had an average MQ score less than the optimal “70” score. Furthermore, most recurrent
Sanger filled in regions are identified if a 25x, instead of 10X, minimum coverage is used
(Figure 3).

Finaly, it is worth noting that out of ~1000 Sanger fill in of low coverage (<15x) regions
(Figure 3), no variants were detected that would have otherwise been missed by NGS. We
therefore strongly recommend lowering the fill in cutoff (to <10x for example) and limiting to
regions in genes with strong clinical validity, and wherein disease causing variants have been
previously reported.

Resource for Exome-based and Targeted Panel development

ExomeSlicer. Based on our analysis above and the potential utility for genes other than epilepsy,
we developed a tool, ExomeSlicer (http://exomeslicer.chop.edu/), to support exome-based panel
development through identification of technically challenging regions in any gene or gene lists
across the exome. This tool uses empirical NGS quality metrics generated from 1932 samples
that underwent clinical exome sequencing (Figures 1 and 2), and enables users to select
appropriate key exon-level quality metric cutoffs and relevant transcript(s) to view or download
technically challenging regions in their disease genes of interest. As shown in Figure 1,
ExomeSlicer calculates average minimum, average maximum, and mean average MQ and DP in
each baited exon across the exome. These values can be viewed using the “Gene Slicer”
functionality, which provides an exon-by-exon MQ or DP plots for any queried gene/transcript,
in addition to a downloadable table containing annotated exons and their corresponding quality
metric values. Furthermore, users can provide a list of genes in the “Batch Slicer” functionality
to retrieve a downloadable file with poor regions based on quality metrics that they can
interactively provide.

Utility of ExomeSlicer. We chose mean average MQ and average minimum DP as key metrics
for low coverage and/or high homology regions. Since any given exon can randomly have reads
with a range of very low or very high MQ scores, we picked the mean average MQ value as a
more reliable metric for unique mapping/homology issues. The average minimum DP was
chosen to highlight low coverage regions, due to GC-rich or repeat sequences, not only in the
whole exon but also “within” an exon, which can be missed if the mean average coverage was
used instead. Using an average MQ and minimum DP cutoffs of 20 each [16], Gene Slicer
detected known technically challenging sequences, including an intragenic tandem triplication in
NEB [24], a pseudogene in STRC [25], a GC-rich exon in SLC6A8 [26], and a Poly-Alanine
repeat within exon 2 of ARX [27] (Figure 4). Furthermore, most epilepsy low coverage regions
requiring Sanger fill in were predicted by ExomeSlicer (Figure 3).

We further assessed the ability of ExomeSlicer to identify technically challenging regions that
were characterized using different approaches. First, we targeted 338 known disease genes
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(Supplementary Table 1) using a custom capture (Supplementary Figure 1) in three samples,
and then performed sequencing to an average overall coverage of ~400x for those samples. We
then assessed if technically challenging regions defined as having average MQ < 20 and/or
average minimum DP < 15 were comparable using this targeted capture or ExomeSlicer. Indeed,
in addition to the homology issues across several exons within the HYDIN gene, all 28 poor
guality regions in the targeted panel were aso identified by ExomeSlicer (Figure 5 and
Supplementary Table 2), however, four exons (including COL5A1 exon 1, see below) exhibited
suboptimal quality metrics that would still be identified using more relaxed cutoffs in
ExomeSlicer (Supplementary Table 2).

We dso tested if ExomeSlicer would identify the reduced coverage regions recently
characterized across 10 centers within the Clinical Sequencing Exploratory Research (CSER)
Consortium [16]. With the exception of COL5A1 exon 1 which again had suboptimal quality, all
other regions (28/29) identified in the CSER study were also called by ExomeSlicer (Figure 5
and Supplementary Table 3). In addition, all homology regions recently detected, in genes with
strongest clinical validity, through a different mappability-based approach [25] had low or
suboptimal average MQ scores in ExomeSlicer, though these scores had a wide range below
normal most likely reflecting different levels of homology within those regions (Figure 5 and
Supplementary Table 4).

In summary, the above data demonstrate the utility of ExomeSlicer in predicting regions that
cannot be reliably sequenced, most likely due to inherent low complexity sequences (see below).

Characterization of Exome-wide Poor Quality Regions

Given the adequate coverage achieved using our exome sequencing approach (Supplementary
Figure 2) across the 1932 samples used to develop ExomeSlicer, we hypothesized that “well-
baited” poor quality regions identified by this tool using strict quality cutoffs are most likely to
have sequencing complexities obviating appropriate capture, amplification and/or sequencing.
However, it is also possible that some low coverage exons are inappropriately baited leading to
“false” poor quality annotations.

To distill exome-wide “true’ poor quality regions, we first extracted those with either an average
MQ < 20, minimum DP < 10, or both (i.e. average MQ < 20 and minimum DP < 10). Then, we
only retained those regions that also had at least one capture bait; around 2% (4,515/202,567) of
al unique baited exons remained. Despite the presence of one or more baits, their positioning
might affect capturing efficiency leading to inadequate coverage. Therefore, we calculated the
number of bases covered by bait(s) for each exon, and binned the poor quality regions based on
percentage of covered bases (Figure 6A). Interestingly, compared to “good quality” regions,
which do not meet the above MQ and DP cutoffs (n=198,052), a significant proportion of the
4,515 regions had baits covering less than 70% of exon bases (47% poor quality versus 8% good
quality regions, P=0.0016; Figure 6B). There was no statistically significant difference between
the proportions of poor and good quality regions with over 70% baited bases (P=0.51).
Therefore, we only retained the subset of poor regions with more than 70% of their bases
covered by bait(s) and deemed as true “poor quality”. They comprised 1.1% (n=2,278) of all
baited exons (Supplementary Table5).

We further characterized those regions. We determined their GC content and compared to that of
good quality regions of similarly baited (70%) bases (n=175,274). As expected, the former
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regions had significantly higher GC content (median GC% is 0.62 for poor versus 0.49 for good
quality regions, P < 2.2e-16; Figure 7A). Of the 2,278 poor quality regions, 846 had mapping
quality issues (MQ < 50), and as such had significantly higher BLAT hits (P < 2.2e-16)
compared to those with MQ > 50 (Figure 7B). The remaining 1,431 regions mostly suffered
from low coverage.

Finally, the poor quality 2,278 regions affected 1,615 genes, 183 of which have been linked to
human disease according to the Online Mendelian Inheritance in Man (OMIM) database.
Importantly, those regions contained 1,044 disease mutations (DMs) in the Human Gene
Mutation Database (HGMD), in addition to 277 pathogenic or likely pathogenic variants and 179
variants of uncertain clinical significance (VUS) in ClinVar database (Figure 7C).

Discussion

Exome-based panels have become an attractive strategy for multigene panel testing in clinical
laboratories. This approach reduces the interpretation challenges (relative to WES) while
enabling dynamic gene content updates and cost-effective reflex to WES if needed (both are
limitation of targeted gene panels). However, there are currently no standards, guidelines, or
resources — like our newly developed ExomeSlicer tool — to support the clinical development and
implementation of exome-based panels. We have therefore highlighted important considerations
associated with using this approach including gene content, exome capture, coverage iSsues,
Sanger fill in, analytical validation and bioinformatics filtration. We also demonstrate the utility
of ExomeSlicer and characterize exome-wide technically challenging regions affecting over
1600 human genes.

Although we outline a gene selection strategy, we did not discuss the minimum number of genes
at which the exome-based approach should be considered. Sequencing of 5-10 genes might be
more cost-effective using atargeted than an exome-based approach. However, this also has to be
balanced with the laboratory’s sample volume and existing infrastructure. It might be more
disruptive and, therefore, more costly to use a targeted capture and a small-scale sequencing
platform if the lab’s main testing volume involves an exome capture and correspondingly high
sequencing throughput. Therefore, each laboratory should make a decision about the best
platform to use based on cost and their specific needs.

Needless to emphasize, appropriate depth of coverage of the relevant regions of interest (ROI)
should be carefully assessed before an exome-based approach is used. Given the large number of
targets in an exome, the overall coverageis likely to be lower at a given sequencing throughpui.
This might in turn lead to more regions falling below the necessary coverage for reliable variant
detection, thus leading to an increased burden of Sanger sequencing. Alternatively, deeper
sequencing can be achieved though the cost will be higher. Fortunately, current exome Kits,
including the Agilent CRE kit (Supplementary Figure 2), are optimized to enrich for coding
regions in general and specifically in disease genes. However, there are two important
considerations. First, low complexity, such as pseudogenes, repeats, and GC-rich, regions will
often have no or inadequate good quality coverage regardless of capture density or sequencing
throughput. Second, because a large number (> 100) of genes is usually involved in exome-
panels, more of the above technically challenging regions, which labs are often not familiar with,
are expected. Consequently, this will significantly increase the Sanger sequencing fill in burden
associated with this approach (Figure 3).
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Using empirical NGS exon level quality metrics, namely MQ and DP, from 1932 clinical WES
samples, we show that ExomeSlicer can support the development of exome-based panels through
upfront identification of technically challenging regions, thus guiding ancillary assay
development, and reducing post hoc additional analysis, including Sanger sequencing, burden.
Because of their inherent low sequence complexities, we show that such regions are not specific
to the exome-based approach and should thus be carefully assessed even when a custom-based
targeted approach is being used (Figure 4 and 5). We do not rule out the possibility that
ExomeSlicer might identify false positive low coverage regions due low number or absence of
baits or their inadequate positioning. However, this tool displays thisinformation (i.e. number of
baits per exon and percentage of exon covered by baits) for the user to distinguish between this
and a true poor quality region. In addition, users are encouraged to perform more analysis (such
as BLAT, literature search, visual inspection) on any identified regions before considering an
ancillary fill in strategy. More important, ExomeSlicer is unlikely to have a high false negative
rate, if any. Regions falling below adequate DP and MQ across a large number of samples are
more likely to be (or at least equally) identified by ExomeSlicer than by a custom-based targeted
approach.

We have introduced stringent metrics (average MQ < 20 and/or average minimum DP < 10x and
> 70% of bases covered by baits) to distill exome-wide 2,278 regions with inherent low sequence
complexity issues rendering them technically inaccessible to NGS in general. Those regions had
significantly higher GC content and, for a subset (n=846), retrieved more BLAT hits indicative
of high homology issues (Figures 6 and 7). Interestingly, those regions comprised 1.1% of all
baited exons in the exome, and are likely to be an underestimate since, we believe, our quality
cutoffs were too stringent. Additionally, we cannot rule out that other regions, with less 70% of
their exon bases covered by baits, might also have sequencing issues. Intriguingly, those regions
were contained in a large number of genes (n=1,615) including 183 that have been associated
with human disease, and harbored over 1000 disease mutations in HMGD and over 450 variants
of potential clinical significancein ClinVar (Figure 7). It is possible that some of those variants
are technical false positives calls due to inaccurate sequencing quality. Alternatively, they can be
true pathogenic variants identified through different approaches, but can be missed by exome
sequencing and NGS in general. Either scenario supports the strong possibility of false positive
and/or false negative variant calls by NGS/'WES in those regions, thus leading misdiagnosesin a
potentially large number of patients. Finally, 1,432 impacted genes are not linked to disease yet
and should, therefore, be carefully approached by researchers to avoid inaccurate annotations
and/or functional analysis.

In summary, our work provides a comprehensive overview and a novel resource, ExomeSlicer,
for the validation and clinical implementation of exome-base panels. In addition, our
characterization of the exome-wide poor regions represents a valuable resource for clinicians and
researchers using whole exome sequencing.
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Figure L egends

Figure 1. Exome Slicer data generation and visualization process. Exon level statistics were
calculated per sample. Sample level data were then used to calculate aggregate statistics across
1932 clinical whole exome samples used to generate the ExomeSlicer Database. A web
application was designed (exomeslicer.chop.edu) to visualize data from the database in an
interactive way.

Figure3. Post hoc Sanger sequencing fill in performed in 100 epilepsy cases tested using an
exome-based approach. Most reactions were recurrent (frequency of fill in > 2) and were
predictable by ExomeSlicer when the minimum average DP is at < 25x. Singleton exons, filled
in only once (n=17), were sporadic and thus were not as predictable by ExomeSlicer.

Figure 2. An example of ExomeSlicer exon level calculation. A, Seven base exon covered by
four reads R1, R2, R3, R4. R1 isnot counted in coverage of any of the bases because it does not
satisfy MQ > 20 condition of “usable coverage” as defined in methods. Similarly, last base G has
zero coverage as the only read covering the base has BQ < 20. B, Statistics table for the exon.
Average mapping quality is calculated using all reads (R1 through R4). Average coverage is
calculated using coverage of each exon base.
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Figure 4. Exome Slicer visualization of four genes with known technically challenging regions,
from top to bottom: tandem triplication in Nebulin, NEB; a pseudogene in Stereocilin, STRC;
Poly-Alanine repeat within exon 2 of Aristaless-Related Homeobox, ARX; and GC-rich exons in
Creatine Transporter, S C6A8. MQ plots are shown for STRC and NEB, while coverage plots
displayed for ARX and SLC6A8. Green bars indicate exons with both average MQ > 20 and min
DP > 15. Orange bar represents either average MQ < 20 or min DP < 15. Red bars indicate poor
exons where both average MQ < 20 and min DP < 15. Each bar in MQ and coverage plots showx
minimum and maximum range for each exon (top and bottom of the bar), average is shown by a
tick mark in the middle of each bar.

Figure 5. Utility of ExomeSlicer. A, ExomeSlicer visualization of HYDIN, a gene with
significant homology issues. This gene has low quality issues using either a custom-based
targeted approach or ExomeSlicer. B, Identification of poor quality regions in a targeted NGS
panel (with 338 genes) by ExomeSlicer. All 28 regions were called by ExomeSlicer though 4
regions were suboptimal (See Supplementary Table 2). Almost all poor quality regions
identified by CSER consortium or Mandelker et al were also identified by ExomeSlicer (see
Results and Supplementary Tables 3 and 4).

Figure 6. Analysis of baits positioning in targeted regions within the exome. Only regions with
at least one bait were included in this analysis. A, Distribution of poor quality regions (see
Results section) based on the percentage of bases covered by baits (X-axis). B, Proportions of
poor or good quality regions stratified by the percentage of based covered by baits.

Figure 7. Characterization of exome-wide poor quality regions. This analysis included regions
with > 70% of exon bases covered by baits and the MQ and DP cutoffs explained in Results
section. A, Distribution of poor and good quality regions based on percentage GC content
(Median GC% is 0.62 and 0.49 in poor and good quality regions, respectively, P < 2.2e-16). B,
Logl0 BLAT hit count of good quality and poor quality regions. The latter was further divided
into poorHighMQ (MQ >50) and poorLowMQ (MQ < 50). All poorLowMQ regions had at |east
2 hits (Median BLAT hitswas 2 for poorLowMQ versus 1 for either good or poorHighMQ, P <
2.2e-16). C, The 2,278 poor quality regions affected 1,615 genes including 183 OMIM genes.
They also contained 1,044 disease mutations (DMs) in the Human Gene Mutation Database
(HGMD). In addition, 277 pathogenic/likely pathogenic (P/LP) variants and 179 variants of
uncertain clinical significance (VUS) in ClinVar were identified in those regions.

Supplementary Figure 1. Gene selection strategy. Epilepsy is used as a disease example. In the
first step, genes that are non-syndromic or wherein epilepsy in the main diagnostic feature are
assessed for validity using the ClinGen framework. Only genes with strong clinical validity are
included. A list of 100 genes, included on an epilepsy exome-based clinical panel at The
Children's Hospital of Philadelphia, is shown.

Supplementary Figure 2. Coverage comparison between exome-based (Agilent CRE Kkit,
n=1932) and custom-based targeted (n=400) enrichment of 338 disease genes. Those genes were
sequenced to 100x (exome) or 400x (targeted) depth of coverage. Top, comparison of coverage
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across all 338 genes and a selection of disease panels. Bottom, comparison of coverage across
representative 22 epilepsy disease genes.
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