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28  Highlight:
29  Combining high-throughput micro-CT-RGB phenotyping facility and genome-wide
30  association study to dissect the genetic architecture of rice tiller development by using

31 the indica subpopulation.
32

33  Abstract

34 Traditional phenotyping of rice tillers is time consuming and labor intensive and
35 lags behind the rapid development of rice functional genomics. Thus, dynamic
36 phenotyping of rice tiller traits at a high spatial resolution and high-throughput for
37 large-scale rice accessions is urgently needed. In this study, we developed a
38 high-throughput micro-CT-RGB (HCR) imaging system to non-destructively extract
39 730 traits from 234 rice accessions at 9 time points. We used these traits to predict the
40 grain yield in the early growth stage, and 30% of the grain yield variance was
41 explained by 2 tiller traits in the early growth stage. A total of 402 significantly
42  associated loci were identified by GWAS, and dynamic and static genetic components
43 were found across the nine time points. A major locus associated with tiller angle was
44  detected at nine time points, which contained a major gene TAC1. Significant variants
45  associated with tiller angle were enriched in the 3'-UTR of TAC1. Three haplotypes
46  for the gene were found and tiller angles of rice accessions containing haplotype H3
47  were much smaller. Further, we found two loci contained associations with both
48  vigor-related HCR traits and yield. The superior alleles would be beneficial for
49  breeding of high yield and dense planting.

50 Keywords: micro-CT-RGB, GWAS, high-throughput, plant phenomics, rice tiller,
51 tiller traits.

52

53  Introduction

54 Rice is one of the most important food crops both in China and worldwide (Zhang,
55  2008). Selecting plants with the ideal tiller structure is a key issue for domesticating

56 rice and improving its yield (Wang et al., 2008). With the rapid development of
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57  functional genomics and molecular breeding, rice researchers and breeders often need
58  to screen thousands of lines in a short time for the targeted phenotypic traits under
59 different growth conditions (Fiorani and Schurr, 2013). However, traditional
60  phenotyping, particularly tiller measuring, is time consuming and labor intensive and
61 lags behind the development of rice genomics (Houle et al., 2010; Furbank et al.,
62  2011). To bridge the gap, progress in high-throughput phenotyping technology is
63  required to accelerate gene discovery and rice breeding (Huang et al., 2013; Spalding
64 etal., 2013).

65 Over the past 20 years, many non-destructive and high-throughput phenotyping
66 methods have been constructed to obtain plant phenotypic data. These methods
67 include shoot phenotyping platform in greenhouse such as TraitMill (Reuzeau et al.,
68  2005), PHENOPSIS (Bacmolenaar et al., 2015), Phenoscope (Sébastien et al., 2013),
69  Scanalyzer 3D (Junker et al., 2014), root phenotyping in greenhouse such as
70  GROWSCREEN-Rhizo(Nagel et al., 2012), GiA Roots and Rootowork (Topp et al.,
71 2013), field phenotyping platform such as BreedVision (Busemeyer et al., 2013), and
72 unmanned aerial vehicles (Berni et al., 2009). With rapid progress in photonics,
73 several novel imaging techniques have been adopted in crop phenotyping. These
74  techniques include near-infrared imaging to estimate plant disease (Bock et al., 2010),
75  stereo camera systems to quantify rape leaf traits (Xiong et al., 2017), fluorescent
76  imaging to diagnose biotic or abiotic stresses in horticulture (Gorbe et al., 2004),
77 hyperspectral imaging to predict the above-ground biomass of individual rice plants
78  (Fenget al., 2013), 3D laser scanners to reconstruct and analyze deciduous saplings
79  (Delagrange et al., 2011), PET to dissect dynamic changes in plant structure and
80  function (Jahnke et al., 2009), MRI to analyze belowground damage to sugar beets
81  (Hillnhutter et al., 2012), and X-ray imaging to quantify roots in soil (Flavel et al.,
82  2012). However, little effort has been made in the dynamic phenotyping of rice tiller
83 inner structures at high spatial resolution and high-throughput.

84 The rapid development of high-throughput phenotyping technology has
85 accelerated the genetic mapping of important agronomic traits in crops. With the

86 precision field phenotyping platform, QTLs (quantitative trait loci) for controlling
3
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87 biomass were identified in triticale (Busemeyer et al., 2013). The panicle-related
88 image-analysis pipeline PANoram, promoted the genetic dissection of rice panicle
89 traits (Crowell et al., 2014). With abundant genetic variations in natural populations,
90 combinations of high-throughput phenotyping and genome-wide association studies
91 (GWAS) have been conducted to reveal the natural genetic variation and to dissect
92 the genetic architecture of complex traits, such as biomass, grain yield, leaf traits,
93 panicle, and salinity tolerance (Yang et al., 2014; Yang et al., 2015; Al-Tamimi et al.,
94 2016; Crowell et al., 2016).

95 Tiller numbers and angles are two key components of plant architecture that
96 affect rice grain yield (Springer, 2010). Tiller number largely determines panicle
97 number, a key factor in yield. Many tiller-related genes have been identified in
98 recent years, such as MOC1(Li et al., 2003), OsTB1(Takeda et al., 2003), and 1PA1
99 (Jiao et al., 2010). These genes are involved in the initiation and outgrowth of
100 axillary meristems and in the auxin and strigolactone signaling pathway that controls
101 rice tillering (Li et al., 2003; Takeda et al., 2003; Guo et al., 2013). miRNAs are also
102 involved in rice tillering by regulating the expression of target genes (Xia et al.,
103 2012; Liang et al., 2014). MOC1, which was first isolated and characterized in the
104 control of rice tillering, positively regulates tiller number by initiating axillary buds
105 and promoting their outgrowth (Li et al., 2003). Tiller angle, which determines the
106 plant density, has undergone domestication and improvement. Small tiller angles
107 make plants more efficient in photosynthesis; therefore, dense planting is needed
108 during rice cultivation (Yu et al., 2007). Several tiller-angle related genes, such as
109 TACL1, TAC3, OsLIC, and PROGL1, have been identified and characterized (Yu et al.,
110 2007; Jin et al., 2008; Wang et al., 2008; Dong et al., 2016). TAC1 is a major gene
111 that positively controls tiller angle by forward genetics (Yu et al., 2007). A variant in
112 the 3'-UTR changes the mRNA level, and higher mRNA levels contribute to a larger
113 angle. Based on previous studies, nucleotide diversities in TAC1 are low, and only
114 one SNP in the coding region was found, resulting in synonymous substitution
115 among 113 cultivated rice varieties. The small-angle allele of TAC1 only exists in the

116 japonica accessions (Jiang et al., 2012).
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117 In the present work, we developed a high-throughput micro-CT-RGB (HCR)
118  imaging system to extract tiller-related phenotypic traits with high spatial resolution
119 (97 um) and high efficiency (~310 pots per day). A rice panel containing 234
120  accessions were phenotyped non-destructively at 9 time points during the tillering
121 process, and 730 traits were extracted by HCR and used to perform GWAS. Our
122 results demonstrate that combining HCR and GWAS provides new insight into the
123 genetic basis of rice tillering and plant architecture.

124

125  Materials and Methods

126  Plant material and experimental design

127  Considering the strong population differences between indica and japonica accessions
128 and the high diversity in indica subpopulations (Huang et al., 2010), 234 indica
129  accessions were used in our study. For each accession, one rice plant was detected by
130 the HCR imaging system. The genotype information for the 234 accessions was
131 retrieved from the website "RiceVarMap™ (http://ricevarmap.ncpgr.cn/). The detailed
132 information from the 234 rice accessions was obtained via the website
133 (http://ricevarmap.ncpgr.cn/cultivars_information/). The seeds from the 234 rice
134  accessions were sown in the field on 25 May 2015 and transplanted to pots on 16 June
135 2015. Each pot was filled with 5 kg soil (pH =5.45, total nitrogen: 0.241 g/kg, total
136  potassium: 7.20 g/kg, total phosphorus: 0.74 g/kg, alkali-hydrolyzable nitrogen:
137  144.06 mg/kg, available potassium: 188.64 mg/kg, available phosphorus: 16.81 mg/kg,
138 organic matter: 46.55 g/kg). During the tillering stage (41~67 days after sowing), the
139 234 rice accessions were automatically measured every three days and measured 9
140  times using HCR. After harvest, 203 rice plants were threshed and then inspected by
141 YTS (yield traits scorer, Yanget al., 2014) to extract grain yield. Thirty-five rice plants
142 and standard plastic pipes were manually measured (Supplementary Fig. S1).

143

144  Image acquisition of HCR

145  The control flow of image acquisition included the following steps (Supplementary

146  Fig. S2): (1) the computer’s communication with the PLC and RGB camera was
5
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147  checked; (2) the X-ray flat panel detector was opened; (3) the working mode of the
148  X-ray flat panel detector was selected; (4) the link with the X-ray flat panel detector
149  was checked; (5) the mode information for the X-ray flat panel detector was retrieved,
150  (6) the X-ray flat panel detector was used to grab images; (7) X-ray images and RGB
151  images were obtained simultaneously; (8) X-ray images and RGB images were stored
152 simultaneously; (9) X-ray image acquisition was stopped; (10) the X-ray flat panel
153  detector link was closed; (11) the RGB camera and serial port were closed. The HCR
154  image acquisition was implemented with LabVIEW 8.6 (National Instruments, US).
155

156  Image analysis and traits extraction by HCR

157  Supplementary Fig. S3 and Supplementary Note S1-10 show the image analysis and
158  trait extraction by the HCR system. Before image collection, the micro-CT system
159  was off-set-calibrated and gain-calibrated. After calibration, the micro-CT system
160  acquired 380 images while the rice plant rotated 360°. One row of X-ray projected
161  images of the same height as the 380 X-ray projected images, was selected to form a
162  sinogram, covering 380 orientations (step 0.6°, entire angle 0.6°x380, ~220°). Using
163  the FBP algorithm and GPU acceleration technique, the inner structure of the rice
164  tiller was reconstructed. By removing the small areas and regions with a predefined
165  threshold, we counted 14 tiller traits, including tiller number, size and shape. Finally,
166 when 2 transverse tiller images were reconstructed at 2 different heights (row 600 and
167  row 650), 3 rice angle traits (mean, max, and standard deviation of the tiller angles)
168  was calculated using the spatial location of the central point of the rice tiller images.
169  Using the image analysis for the RGB images (Yang et al., 2014), 51 morphological
170  features, 1 color trait, and 6 histogram features were calculated.

171

172 Operation of the HCR

173 As shown in Supplementary Fig. S4 and Supplementary Fig. S5, the HCR operational
174  procedure included the following steps: (1) the chiller was turned on and the water
175  temperature maintained at 20°C; (2) offset calibration was performed; (3) gain

176  calibration was performed; (4) one pot-grown rice plant was transported to the
6
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177  rotation platform; (5) the X-ray source was turned on and the inspection was started,;
178  (6) 380 CT images and 20 RGB images were obtained; (7) the next pot-grown rice
179  plant was transported to the rotation platform; (8) when all the tasks were complete,
180  the image acquisition software designed using LabVIEW was stopped.

181

182  Growth modeling and yield predication using phenotypic traits

183  To test the prediction ability of the different models for TTA and TPA, 6 models,
184  including linear, power, exponential, logarithmic, quadratic, and logistic, were built
185  and compared. The modeling results were evaluated by comparing the R?, MAPE, and
186  SDape Values. The statistical analyses of the 6 TTA and TPA models (linear, power,
187  exponential, logarithmic, quadratic, and logistic) were developed with LabVIEW 8.6
188  (National Instruments, Inc., USA). To evaluate the variance explained by the rice
189  grain yield in the early growth stages, linear stepwise regression analysis was
190 performed with the rice tiller traits using SPSS software (Statistical Product and
191  Service Solutions, Version 13.0, SPSS Inc., USA).

192

193  Genome-wide association study

194 A total of 2,863,169 single nucleotide polymorphisms (SNPs) with a minor allele
195  frequency >0.05 were used for GWAS, and the number of accessions with minor
196  alleles for the SNPs was more than 6. Information on these SNPs can be accessed
197  from the 'RiceVarMap' database (http://ricevarmap.ncpgr.cn/). As in previous studies,
198  the genome-wide significance threshold was set at 1.66x10° to control for false
199  positives (Yang et al., 2015). A mixed-model approach with the factored spectrally
200 transformed linear mixed models (FaST-LMM) program was used for the GWAS
201 (Lippert et al., 2011). The kinship coefficient (K) values were defined as the
202  proportion of identical genotypes for the 188,165 evenly distributed random SNPs
203  (Xie et al., 2015). Lead SNPs for each trait were determined using the 'clump'
204  function of Plink (Purcell et al., 2007). Potential candidate genes were obtained using
205  the 'clump-range’ function of Plink (Purcell et al., 2007). Considering the strong LD

7
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206  (linkage disequilibrium) of rice, a region in which the distance of adjacent pairs of
207  associated SNPs was less than 300 kb was defined as the locus (Yang et al., 2015).
208  Haplotypes were determined based on the significant genetic variants.

209

210  Results

211 High-throughput micro-CT-RGB phenotyping system (HCR)

212 The bi-modal imaging system, including micro-CT and RGB imaging, was developed
213 to non-destructively extract 74 phenotypic traits synchronously. Among these 74 traits,
214  tiller number, shape, area, and angle were extracted by CT images, and plant
215  architecture, texture, and color traits, and digital biomass were extracted by RGB
216  images. The definitions and abbreviations of the phenotypic traits are shown in
217  Supplementary Table S1. The bi-modal imaging system consists of 9 main elements:
218 an X-ray source (Nova600, OXFORD, UK), an X-ray source chiller (Nova600,
219 OXFORD, UK), an X-ray flat panel detector (PaxScan 2520DX, VARIAN, USA), a
220 RGB camera (AVT Stingray F-504B, Allied Vision Technologies Corporation, GER),
221 awhite light, a rotation platform (MSMD022G1U, Panasonic, Japan), a lead chamber,
222 a computer (M6600N, Lenovo, CHN), and a PLC controller (CP1H, OMRON
223  corporation, Japan) (shown in Fig. 1A, B). The configuration of the HCR system is
224  provided in Supplementary Fig. S6, and shows that the CT system’s field of view
225  (FOV) is 149 mm (height) x 186 mm (width) and the spatial resolution is 97 um. The
226  RGB imaging system’s FOV is 1607mm (height) x 1347 mm (width) and the spatial
227  resolution is 656 um. The main specifications of the HCR inspection unit are shown
228  in Supplementary Table S2.

229 When the rice plant is rotated on the rotation platform (Fig. 1C), 20 color images
230 and 380 X-ray projected images (Fig. 1D) in different angles are acquired
231 synchronously. All phenotypic traits were obtained using the following steps: (1) one
232 row of the X-ray projected image at the same height as the 380 X-ray projected
233  images was selected to form a sonogram (Fig. 1E) covering 380 orientations (step
234 0.6°, entire angle 0.6°x380, ~220°); (2) a conventional filtered back-projection (FBP)

235  algorithm was applied to obtain the reconstructed transverse section image of the rice
8
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236 tiller (Fig. 1F); (3) after image segmentation and small particle removal (Fig. 1G),
237  tiller number, size and shape were counted (Fig. 1H); (4) when 2 transverse tiller
238  images were reconstructed at 2 different heights (row 600 and row 650), the rice angle
239  was calculated using the spatial location of the central point of the rice tiller images
240  (Fig. 11); (5) finally, 57 phenotypic traits, including plant color, plant height, digital
241  biomass, and plant compactness, were obtained from the RGB images and analyses. A
242  database, including the RGB and micro-CT images and the phenotypic traits, was set
243 up (Fig. 1J). The reconstructed images of one rice sample (C055, Sanbaili) at different
244 heights (10.7-54.3 mm distance from the soil surface) is shown in Supplementary
245 Video S1. The image acquisition and analysis pipeline were developed using
246  LabVIEW 8.6 (National Instruments, US), and the details were described in the
247  Methods section.

248 As shown in Supplementary Fig. S4, the time taken for one CT image was 0.6
249  seconds, and 380 CT images were acquired for each plant; thus, approximately 228
250 seconds (0.6 seconds x 380) were required to complete the CT inspection of one
251  pot-grown rice plant. The time taken for one RGB image was 0.6 seconds and 20
252  RGB images were acquired synchronously. The time taken for manual transfer is
253  approximately 50 seconds. Therefore, when continuously operated for 24 hours each
254  day, the HCR system’s total throughput is 310 pot-grown rice plants (~278 seconds
255  per plant).

256

257  Performance evaluation of tiller traits extraction

258  To evaluate the accuracy of the micro-CT unit, 8 plastic round pipes (fixed in one pot
259 as shown in Supplementary Fig. S7) were measured manually by two people
260  (phenotypic traits are shown in Supplementary Table S3) and automatically measured
261 10 times repeatedly by the micro-CT unit (phenotypic traits are shown in
262 Supplementary Table S4). The mean absolute percentage error (MAPE) of the
263 automatic versus manual measurements were 0.02~1.38%, 0~6.38%, and 0.12~1.87%
264  for tiller diameter, stem wall thickness, and tiller angle, respectively (Fig. 2A). The

265  computational formulas of MAPE were defined by Egs. 1.
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266 MAPE = %Z?ﬂw X 100% 1)

mi

267  To evaluate the reconstruction quality of the rice tiller, a reconstructed transverse
268  section image (spatial resolution of 30 um) using micro-CT and its actual transverse
269  section image after shearing are shown in Fig. 2B. In addition, there was a trade-off
270  between the CT image resolution and CT scan area. To scan all the rice tillers, the
271  spatial resolution was set at 97 um and the FOV of the CT system was 149 mm
272 (height) x 186 mm (width) (Supplementary Fig. S6). Next, 35 rice plants
273 (Supplementary Table S5) were measured both automatically and manually (repeat
274 twice) to verify the measuring accuracy using micro-CT. The R? values of the manual
275  measurements versus automatic measurements were 0.857, 0.959, and 0.995 for tiller
276 number, tiller diameter, and stem wall thickness, respectively (Fig. 2C-E).

277

278  Phenotyping database extracted by HCR at 9 time points

279  During the tillering stage, 234 rice plants were automatically measured by HCR at 9
280 different development time points (once every 3 d, starting from 41 ~ 67 d after
281  sowing). All the phenotypic data and images can be viewed and downloaded via the
282 link http://plantphenomics.hzau.edu.cn/checkiflogin_en.action and then following
283  these steps: (1) select ‘rice’; (2) select “2015-tiller’ in the year section; (3) select one
284  of the accession IDs in the ID section and then press ‘search images’; (4) 9 CT images
285 and 9 side-view color images can be viewed and downloaded; (5) a similar process
286  can be used to view and download phenotypic traits by pressing ‘search data’. The
287  detailed procedure for the database is shown in Supplementary Fig. S8.

288

289  Screening the dynamic process of rice growth at the tillering and jointing stages
290  After all phenotypic images and data were obtained for the 9 time points, we screened
291  the dynamic process of the rice growth and determined the most active tillering and
292 initial jointing stages. As illustrated in Fig. 3A-I, 9 side-view RGB images and 9
293  reconstructed images for each rice plant were obtained for the following image

294  analysis. The red circle in Fig. 3B-E shows the dynamic tillering and jointing

10
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295  processes. At the second time point (Fig. 3B), the first pith cavity appeared, indicating
296 that this plant progressed into the jointing stage. As illustrated in Fig. 3J, from the
297  dynamic change of the first derivative of the total tiller area, we can determine the
298  most active tillering stage, as indicated by the blue arrow with the maximum value of
299 the first derivative of the total tiller area. The tiller growth of the rice plant during the
300 first 6 periods was relatively faster than that of the later periods. Similarly, from the
301  number change of the rice accessions in the initial jointing stage, we can see that the
302 initial jointing stage was accompanied by the most active tillering stage (Fig. 3K).
303 Interestingly, the growth curve of the GCV (green color value) before the 5" time
304 point indicates that the GCV value became smaller (indicating more dark green leaves
305  with greater nitrogen content), and after the 5™ time point, the GCV value became
306 larger (indicating more light green leaves with less nitrogen) (Fig. 3L). As illustrated
307 in Fig. 3M, from the dynamic change of first derivative of the mean tiller angle, we
308  see that the tiller angle showed little change during the tillering stage.

309 In addition, the dynamic growth curves of 27 representative traits for the tiller and
310 the entire plant are presented in Supplementary Fig. S9. The first derivation of H
311 (plant height), W (plant width), and TPA (total projected area of the rice plant)
312 reached the highest value at the 5™ time point, supporting the previous result that the
313 plant growth reached the highest speed in the active tillering stage (5™ time point).
314 The dynamic growth of one rice accession (C055, Sanbaili) is shown in
315  Supplementary Video S2.

316

317  Predication of tiller growth and digital biomass accumulation

318 It would be helpful if we could design a growth model using the phenotypic data
319  obtained in the early growth stage to predict the final digital biomass. In our previous
320 study, total projected area (TPA) was correlated with actual biomass (Yang et al.,
321 2014). Beyond the manual tiller number count, the total tiller area (TTA) extracted by
322 micro-CT can quantify tiller growth more accurately than the tiller number. Fig. 4A, B
323  show the heatmaps of TTA and TPA for the 234 accessions at 9 different time points.

324  Here, we tested 6 models (linear, power, exponential, logarithm, quadratic, and
11
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325  logistic models) of TTA and TPA at the 9 points. The results were evaluated by
326 comparing R?>, MAPE, and the standard deviation of the absolute percentage error
327  values (SDapg). As shown in Supplementary Table S6, the logistic models of TTA and
328  TPA showed slightly better prediction ability (the R* was 0.969 and 0.985, the MAPE
329 and SDape Were both below 6.5%). The actual results versus predicted results of the
330 TTAand TPA are shown in Fig.4C and Fig.4D, respectively.

331

332 Predication for rice grain yield and shoot dry weight in the early growth stage
333 It would benefit rice breeding if we could use the automatically measured phenotypic
334  traits, particularly the traits measured in the early development stages, to predict the
335  final grain yield and shoot dry weight. The R value distribution for modeling grain
336 yield in the 9 different tillering stages is shown in Fig. 5A, which shows that by
337 adding the total tiller area (TTA), the R range increased from 0.30-0.41 to 0.35-0.51,
338 particularly at the 5™ time point. After the 5™ time point, nonfertile tillers began to
339  grow, providing a possible explanation why the R value decreased. Fig. 5B showed
340 that the modeling accuracy for the shoot dry weight is improved by adding total tiller
341  area. Moreover, we also compared the correlation between TN, TTA and grain yield.
342  The R value of TN_5 versus grain yield was 0.094 (Fig. 5C), and the R value of
343  TTA_5 versus grain yield was 0.512 (Fig. 5D).

344 When only 2 phenotypic traits were selected, 30% of the grain yield variance was
345  explained (Fig. 5E). The two phenotypic traits were both tiller traits, which included
346 TTA_5 (total tiller area measured at the 5™ time point) and MEANTA_8 (mean value
347  of the tiller angle measured at 8" time point). We found that the rice yield can be
348  increased by higher TTA_5 and lower MEANTA 8. Up to 48% of the grain yield
349  variance can be explained by combining 10 traits across all 9 time points (Fig. 5F). As
350  shown in Supplementary Fig. S10, the R? value range from 0.34 to 0.46 by combining
351 from 3 traits to 9 traits.

352

353  Genome-wide association study

354  We performed GWAS of 732 traits (including 730 traits measured by micro-CT-RGB,
12
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355 yield and biomass) and identified 402 significantly associated loci (Supplementary
356  Data S1). In total, 182 and 332 loci were associated with traits measured by micro-CT
357 and RGB, of which 70 and 220 were exclusively detected by micro-CT and RGB
358  respectively. The numbers of loci associated with traits of different time points were
359 different, ranging from 61 and 87. For example, the numbers of loci of time point 1, 5,
360 9 were 61, 86, 69; the numbers of overlapped loci of T1 and T5, T5 and T9, T1 and
361  T9 were 14, 17, 8; only 4 loci were detected at all the three time points (Fig. 6A). Of
362 402 loci, 353 and 135 loci were detected by the micro-CT-RGB traits of nine time
363  points and the derived growth-rate related traits, and 86 loci were simultaneously
364  detected by the two kinds of traits. Of the 353 loci, 191 loci were only detected at one
365 time point while other loci were detected at not less than two time points; only one
366  locus on chromosome 9 (locus 302) were detected at nine time points (Fig. 6B).
367  Further we found the locus were significantly associated with MEANTA (mean of
368 multiple-tiller angles for a plant) measured by micro-CT (Fig. 6C), suggesting the
369  locus could control tiller angle. These results demonstrate the existence of dynamic
370  and static genetic components during rice growth stage.

371 For the locus 302, LD decayed slowly (r’=0.57 between SNPs sf0920227209 and
372 sf0920733864) in a 500 kb-region. TACL, the cloned gene controlling tiller angle (Yu
373  etal., 2007), was located at the locus. We found 15 significant SNPs distributed in the
374  3-UTR region, coding region, and 1 kb promoter region and a significant 1-bp indel
375 inthe 3'-UTR region (Fig. 7A). All the SNPs in the coding region caused synonymous
376  mutations. Consistent to a previous study (Yu et al., 2007), the variants in the 3-UTR
377  caused the mRNA level polymorphisms, resulting in the tiller angle diversity. Three
378  haplotypes for the gene were found in our association mapping panel. Tiller angles
379  were significantly different among them (P=5.15E-07, ANOVA) and those of rice
380 accessions containing haplotype H3 were much smaller (Fig. 7B). Minghui 63 (a
381  known restorer line) and Zhenshan 97 (a known maintainer line) contained haplotype
382  H2and H3, respectively (Fig. 7C).

383 Further, we found two loci containing associations with both micro-CT-RGB

384  traits and yield. A lead SNP sf0401216812 on chromosome 4 was associated with
13


https://doi.org/10.1101/247841
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/247841; this version posted January 15, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

385 AGRTTA 5 indicating growth rate of tillering at the 5™ time point (Py_v=1.16E-05)
386 and yield (Pmv=8.40E-04), and genotype G at the SNP site corresponded to the
387  superior allele for the two traits (Fig. 8A). Another lead SNP sf0630983585 on
388 chromosome 6 was associated with AGATPA 4 indicating growth rate of shoot
389  weight at the 4™ time point (Pmum=1.14E-06) and yield (Pym=2.93E-04), and
390 genotype G at the SNP site corresponded to the superior allele for the two traits (Fig.
391  8B). The favorable alleles of the two loci were minor alleles and would be beneficial
392  for rice high-yield breeding. These results indicate that the vigor of rice plant during
393 tillering stage contributes to the final yield.

394

395  Discussion

396  The traditional methods of determining rice tiller traits are destructive, labor-intensive,
397 and time-consuming. Micro-CT, a computed tomography technique originally
398  developed for structural imaging of small animals (Yang et al., 2010), can also be an
399  option for examining the inner structure of rice plants with multiple tillers. In addition,
400 by developing an image analysis pipeline, the HCR system can non-destructively
401  extract rice phenotypic traits and provide plant growth data in vertical and horizontal
402  dimensions. Compared to traditional rice tiller phenotyping, HCR has the following
403  advantages. (1) The 3D spatial location can be obtained by CT, thus, some traits, such
404  as tiller angle, can be extracted with more accuracy rather than manually measuring
405 them with a protractor, as shown in Fig. 11. (2) The CT system can be easily
406 integrated with an RGB imaging device, allowing more traits (total of 74 traits) to be
407  extracted simultaneously. (3) The time needed for acquiring the projected CT image
408 of one plant is approximately 278 seconds, and the time required for extracting
409  subsequent traits is approximately 120 seconds combined with GPU acceleration, thus
410  improving the measuring efficiency per plant. (4) Many novel traits, such as TTA and
411 TPA, can be investigated with the bi-modal imaging system at different time points. In
412  comparing the tiller number and grain yield, the total tiller area (TTA) had a better
413  correlation with grain yield and provided a better quantification of tiller growth (Fig.

414 5C and 5D). Finally, (5) these new dynamic traits in plant growth and tiller
14
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415  development can dissect the genetic mechanisms involved in rice growth.

416 With numerous traits extracted by HCR, GWAS detected many significant
417  association signals. The number of loci detected at different time point was different.
418  Some loci were identified at a specific time point while other loci were identified at
419  multiple time points, indicating the dynamic and static genetic components during rice
420  growth stage. Only one locus on chromosome 9 related to tiller angle was scanned at
421 9 time points and a priori gene TAC1 was located at the locus. Six significant SNPs
422  and a significant INDEL were enriched in 3'-UTR region. We observed three major
423  haplotypes for the gene in our association mapping panel and significant difference of
424 tiller angle among the three haplotypes. Although most indica accessions harbored the
425  haplotype of the wider tiller angle for TAC1, some indica accessions harbored the
426  haplotype of the narrow tiller angle, which was not found in previous studies. The
427  polymorphisms in TAC1 can be further developed into markers for breeding selection
428  for density planting. Co-localized loci between HCR traits indicating vigor of rice
429  plant during growth stage and yield were found, and HCR traits had higher detection
430  power than yield. The superior alleles of the loci were minor alleles, which would be
431 used for breeding of high yield.

432

433  Conclusions

434 In this study, we developed a high-throughput micro-CT-RGB (HCR) imaging system
435  to extract tiller-related phenotypic traits with high spatial resolution (97 um) and high
436  efficiency (~310 pots per day). A rice panel containing 234 accessions was
437  phenotyped non-destructively at 9 time points during the tillering stage, and totally
438 730 traits were extracted by HCR and used to perform a GWAS. A total of 402
439  significantly associated loci were identified by GWAS, and dynamic and static genetic
440  components were found across the nine time points. A major locus associated with
441  tiller angle was detected at nine time points and a priori gene TAC1 was located at the
442  locus. Significant variants associated with tiller angle (evaluated by MEANTA) were
443  enriched in the 3'-UTR of TAC1. Three haplotypes for the gene were found and tiller

444 angles of rice accessions containing haplotype H3 were much smaller. Further, two
15


https://doi.org/10.1101/247841
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/247841; this version posted January 15, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

445  loci contained associations with both HCR traits and yield and the superior alleles
446 were minor alleles, which would be beneficial for breeding of high yield and dense
447  planting.

448

449  Supplementary Data

450  Supplementary data are available at JXB online.

451 Fig. S1. Experimental design.

452 Fig. S2. Control flow of image acquisition.

453 Fig. S3. Diagram of image processing and feature extraction.

454 Fig. S4. Sequence diagram of micro-CT-RGB phenotyping system.
455 Fig. S5. Workflow chart.

456 Fig. S6. The configuration of micro-CT-RGB system.

457 Fig. S7. Plastic round pipes.

458 Fig. S8. Workflow chart of database.

459 Fig. S9. Dynamic growth curve of rice.

460 Fig. S10. Modeling results of grain yield.

461 Note S1. The source code of sinogram.

462 Note S2. The source code of computed tomography reconstruction.
463 Note S3. The source code of particle extraction.

464 Note S4. The source code of particle rotation.

465 Note S5. The source code of tiller diameter.

466 Note S6. The source code of tiller angle.

467 Note S7. The source code of fill holes.

468 Note S8. The source code of area traits.

469 Note S9. Color component extraction.

470 Note S10. Definition of the features.

471 Table S1. Abbreviation of 17 tiller traits, 32 tiller growth traits, 1 plant color trait,

472 2 digital biomass, 33 plant architecture traits, 21 texture traits, 16 digital biomass
473 accumulation traits, 16 height accumulation traits, and 2 yield traits.

474 Table S2. Main specifications of micro-CT-RGB inspection unit.
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Table S3. Manual measurements of 8 plastic pipes with 2 workers.

Table S4. Automatic measurements of 8 plastic pipes with 10 replications.

Table S5. Comparison of rice with automatically measured and manually
measured.

Table S6. The Comparison of actual TTA/TPA and predicated TTA/TPA with 6
models.

Video S1. The reconstructed images of one rice sample at different heights.

Video S2. The dynamic growth of one rice accession.

Data S1. GWAS results.
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614  Figure 1 High-throughput micro-CT-RGB bi-modal imaging system. (A) The
615  prototype of the micro-CT-RGB system and (B) layout of the inspection unit. The 78
616  rice shoot traits and 37 tiller traits were obtained via the following steps:(C) and (D)
617 as the rice sample rotated, 20 color images and 380 X-ray projected images in
618  different angles were acquired synchronously; (E) one row of X-ray projected images
619 at the same height as the 380 X-ray projected images, which formed a sinogram,
620  covering 380 orientations was selected (step 0.6°, entire angle 0.6°x380, ~220°); (F)
621  conventional filtered back-projection (FBP) algorithm was applied to obtain the
622  reconstructed transverse section image of rice tillers; (G) and (H) after image
623  segmentation and removal of small particles, the tiller number, size and shape can be
624  counted; (1) when 2 transverse tiller images were reconstructed at 2 different heights
625  (row 600 and row 650), the rice angle was calculated using the spatial location of the

626  central point of the rice tiller images; (J) 78 rice shoot traits (plant color, plant height,
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627 digital biomass, and plant compactness) and 37 tiller traits (tiller number, shape, area,
628  and angle) were extracted and stored with the image analysis pipeline. A database was

629  set up to collect RGB images, micro-CT images and phenotypic traits.

630
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Figure 2 Comparison of results obtained via automatic measurements versus

manual measurements. (A) The absolute percentage error of automatic
measurements versus manual measurements of 8 round plastic pipes; (B) The
reconstructed transverse section image of the rice tiller versus actual transverse
section image of the rice tiller after shearing; Scatter plots of manual measurements
versus automatic measurements with micro-CT unit for the tiller number (C), tiller

diameter (D) and stem wall thickness (E).
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641  Figure 3 Screening the dynamic process of rice growth at the tillering stage and
642  jointing stage. (A-1) The RGB images and reconstructed CT images at 9 different
643  growth time points; (J) diagram of total tiller area and first derivative of total tiller
644  area; (K) diagram of sample numbers in initial jointing stage and first derivative of
645 sample numbers in jointing stage; (L) diagram of green color value and first
646  derivative of green color value; (M) diagram of mean tiller angle and first derivative
647  of mean tiller angle. The error bars represent the standard deviation between the

648  accessions.
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650  Figure 4 Heatmap and prediction of total tiller area growth and total protected
651  area growth.(A-B) Heatmap of total tiller area (TTA) and total protected area (TPA)
652  of the 234 individuals at 9 different time points; (C)comparison of actual total tiller
653  area (blue line) and predicted total tiller area (red line); (D) comparison of actual total
654  projected area (blue line) and predicted total projected area (red line).Error bars
655  represent the standard error of the TTAorTPA of 234 samples at each time point.

656
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657

658  Figure 5 Predication of grain yield and shoot dry weight. (A) the modeling
659  accuracy change for grain yield at 9 time points; (B) the modeling accuracy change
660  for shoot dry weight at 9 time points; (C) the scatter plot of tiller number versus grain

661  yield at the 5™ time point; (D) the scatter plot of total tiller area versus grain yield at
27
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the 5" time point; the scatter plot showing the relationship between the actual grain
yield and estimated grain yield using the predicted formula by (E) 2 traits and (F) 10
traits; a, b, ¢, d, e, f, g, h, i and j represent TTA 5, MEANTA 8, THR_4, FDIC 7,
MAXTAPR_7, FDIC_8, SDTTA_5, TN_3, MEANTAPR_2 and MAXTTA_2,

respectively.

28


https://doi.org/10.1101/247841
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/247841; this version posted January 15, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

o I — _G
. T1 === ||
e =1]lg
43 * iy = |8
| HEeEH 1=
' —E=EL = =
E; = z ; — o
= = =]
£ e N f — ~
§ = et
= 1EHF
ml=ISl=l=I= '8
T5 ml=I=I= =
1 miE==
£ = EEE
— =SESEHEE L.
9 5] 3 T3 T4 T5 T7 T8 T9
c Detection frequency of loci Time points
MEANTA_1 MEANTA_2 MEANTA_3
8_
& s
g g4
2
T T T T T T T T T T 1 T o_ T
1 3 5 7 9 1 1 3 5 7 91 1 3 5 7 91
Chromosome Chromosome Chromosome
MEANTA_4 MEANTA_5 MEANTA_6
10
8_
— — 8
a [T
3 30 6
g , g4 4
2- 2
: 0 0 .
1 3 5 7 9 1 1 3 5 7 9 M1 1 3 5 7 91
Chromosome Chromosome Chromosome
MEANTA_7 MEANTA_8 MEANTA_9
10 ‘ 8 10
8 8
oy g6 AT K
<6 3 i A
g g4 g
= 4 - - 4
0= . — 0 . . . 0 . .
1 3 5 7 91 1 3 5 7 9 11 1 3 5 7 9 M1
667 Chromosome Chromosome Chromosome

668  Figure 6 GWAS results of traits of nine time points measured by micro-CT-RGB.

669  (A) Venn diagram showing number of associated loci at the time point 1, 5, and 9. (B)
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The frequency and distribution of loci associated with traits at nine time points
(T1-T9). (C) GWAS plots of MEANTA (mean of tiller angles) of nine time points.
The strongest association signal on chromosome 9 corresponded to the locus of

highest detection frequency.
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676  Figure 7 Association analyses of TACland MEANTA 3. (A) Local Manhattan plots
677  and heat map showing LD level of TAC1 region. (B) Haplotype analyses of TAC1. P

678 value was calculated by ANOVA. Multiple-haplotype comparison was conducted
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679  using LSD method and different letters above box plot indicated significant difference.

680  (C) Images of two representative varieties-Minghui63 (from H2 haplotype group) and

681  Zhenshan97 (from H3 haplotype group).
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683  Figure 8 Co-localized loci associated with traits measured by micro-CT-RGB and
684  yield. (A) The locus on chromosome 4 associated with AGRTTA_5 measured by
685  micro-CT and yield. (B) The locus on chromosome 6 associated with AGRTPA_4

686  measured by RGB and yield.
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