

1 **Combining high-throughput micro-CT-RGB phenotyping and genome-wide
2 association study to dissect the genetic architecture of tiller growth in rice**

3 Di Wu^{1,3}, Zilong Guo^{1,3}, Junli Ye^{1,3}, Jianxiao Liu¹, Guoxing Chen¹, Jingshan Zheng¹,
4 Dongmei Yan², Xiaoquan Yang², Xiong Xiong², Qian Liu², Zhiyou Niu¹, Lizhong
5 Xiong¹&Wanneng Yang^{*1}

6 ¹National Key Laboratory of Crop Genetic Improvement and National Center of Plant
7 Gene Research, Agricultural Bioinformatics Key Laboratory of Hubei Province,
8 College of Informatics, and College of Engineering, Huazhong Agricultural
9 University, Wuhan 430070, PR China.

10 ²Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for
11 Optoelectronics, and Key Laboratory of Ministry of Education for Biomedical
12 Photonics, Department of Biomedical Engineering, Huazhong University of Science
13 and Technology, Wuhan 430074, PR China.

14 ³These authors contributed equally to this work.

15

16

17

18

19

20

21

22

23

24

25

26

27

*Corresponding author. Tel: +86 27 87282120; Fax: +86 27 87287092

E-mail address: ywn@mail.hzau.edu.cn

28 **Highlight:**

29 Combining high-throughput micro-CT-RGB phenotyping facility and genome-wide
30 association study to dissect the genetic architecture of rice tiller development by using
31 the *indica* subpopulation.

32

33 **Abstract**

34 Traditional phenotyping of rice tillers is time consuming and labor intensive and
35 lags behind the rapid development of rice functional genomics. Thus, dynamic
36 phenotyping of rice tiller traits at a high spatial resolution and high-throughput for
37 large-scale rice accessions is urgently needed. In this study, we developed a
38 high-throughput micro-CT-RGB (HCR) imaging system to non-destructively extract
39 730 traits from 234 rice accessions at 9 time points. We used these traits to predict the
40 grain yield in the early growth stage, and 30% of the grain yield variance was
41 explained by 2 tiller traits in the early growth stage. A total of 402 significantly
42 associated loci were identified by GWAS, and dynamic and static genetic components
43 were found across the nine time points. A major locus associated with tiller angle was
44 detected at nine time points, which contained a major gene *TAC1*. Significant variants
45 associated with tiller angle were enriched in the 3'-UTR of *TAC1*. Three haplotypes
46 for the gene were found and tiller angles of rice accessions containing haplotype H3
47 were much smaller. Further, we found two loci contained associations with both
48 vigor-related HCR traits and yield. The superior alleles would be beneficial for
49 breeding of high yield and dense planting.

50 **Keywords:** micro-CT-RGB, GWAS, high-throughput, plant phenomics, rice tiller,
51 tiller traits.

52

53 **Introduction**

54 Rice is one of the most important food crops both in China and worldwide (Zhang,
55 2008). Selecting plants with the ideal tiller structure is a key issue for domesticating
56 rice and improving its yield (Wang *et al.*, 2008). With the rapid development of

57 functional genomics and molecular breeding, rice researchers and breeders often need
58 to screen thousands of lines in a short time for the targeted phenotypic traits under
59 different growth conditions (Fiorani and Schurr, 2013). However, traditional
60 phenotyping, particularly tiller measuring, is time consuming and labor intensive and
61 lags behind the development of rice genomics (Houle *et al.*, 2010; Furbank *et al.*,
62 2011). To bridge the gap, progress in high-throughput phenotyping technology is
63 required to accelerate gene discovery and rice breeding (Huang *et al.*, 2013; Spalding
64 *et al.*, 2013).

65 Over the past 20 years, many non-destructive and high-throughput phenotyping
66 methods have been constructed to obtain plant phenotypic data. These methods
67 include shoot phenotyping platform in greenhouse such as TraitMill (Reuzeau *et al.*,
68 2005), PHENOPSIS (Bacmolenar *et al.*, 2015), Phenoscope (Sébastien *et al.*, 2013),
69 Scanalyzer 3D (Junker *et al.*, 2014), root phenotyping in greenhouse such as
70 GROWSCREEN-Rhizo(Nagel *et al.*, 2012), GiA Roots and Rootowork (Topp *et al.*,
71 2013), field phenotyping platform such as BreedVision (Busemeyer *et al.*, 2013), and
72 unmanned aerial vehicles (Berni *et al.*, 2009). With rapid progress in photonics,
73 several novel imaging techniques have been adopted in crop phenotyping. These
74 techniques include near-infrared imaging to estimate plant disease (Bock *et al.*, 2010),
75 stereo camera systems to quantify rape leaf traits (Xiong *et al.*, 2017), fluorescent
76 imaging to diagnose biotic or abiotic stresses in horticulture (Gorbe *et al.*, 2004),
77 hyperspectral imaging to predict the above-ground biomass of individual rice plants
78 (Fenget *et al.*, 2013), 3D laser scanners to reconstruct and analyze deciduous saplings
79 (Delagrange *et al.*, 2011), PET to dissect dynamic changes in plant structure and
80 function (Jahnke *et al.*, 2009), MRI to analyze belowground damage to sugar beets
81 (Hillnhutter *et al.*, 2012), and X-ray imaging to quantify roots in soil (Flavel *et al.*,
82 2012). However, little effort has been made in the dynamic phenotyping of rice tiller
83 inner structures at high spatial resolution and high-throughput.

84 The rapid development of high-throughput phenotyping technology has
85 accelerated the genetic mapping of important agronomic traits in crops. With the
86 precision field phenotyping platform, QTLs (quantitative trait loci) for controlling

87 biomass were identified in triticale (Busemeyer *et al.*, 2013). The panicle-related
88 image-analysis pipeline PANoram, promoted the genetic dissection of rice panicle
89 traits (Crowell *et al.*, 2014). With abundant genetic variations in natural populations,
90 combinations of high-throughput phenotyping and genome-wide association studies
91 (GWAS) have been conducted to reveal the natural genetic variation and to dissect
92 the genetic architecture of complex traits, such as biomass, grain yield, leaf traits,
93 panicle, and salinity tolerance (Yang *et al.*, 2014; Yang *et al.*, 2015; Al-Tamimi *et al.*,
94 2016; Crowell *et al.*, 2016).

95 Tiller numbers and angles are two key components of plant architecture that
96 affect rice grain yield (Springer, 2010). Tiller number largely determines panicle
97 number, a key factor in yield. Many tiller-related genes have been identified in
98 recent years, such as *MOC1*(Li *et al.*, 2003), *OsTBI*(Takeda *et al.*, 2003), and *IPA1*
99 (Jiao *et al.*, 2010). These genes are involved in the initiation and outgrowth of
100 axillary meristems and in the auxin and strigolactone signaling pathway that controls
101 rice tillering (Li *et al.*, 2003; Takeda *et al.*, 2003; Guo *et al.*, 2013). miRNAs are also
102 involved in rice tillering by regulating the expression of target genes (Xia *et al.*,
103 2012; Liang *et al.*, 2014). *MOC1*, which was first isolated and characterized in the
104 control of rice tillering, positively regulates tiller number by initiating axillary buds
105 and promoting their outgrowth (Li *et al.*, 2003). Tiller angle, which determines the
106 plant density, has undergone domestication and improvement. Small tiller angles
107 make plants more efficient in photosynthesis; therefore, dense planting is needed
108 during rice cultivation (Yu *et al.*, 2007). Several tiller-angle related genes, such as
109 *TAC1*, *TAC3*, *OsLIC*, and *PROG1*, have been identified and characterized (Yu *et al.*,
110 2007; Jin *et al.*, 2008; Wang *et al.*, 2008; Dong *et al.*, 2016). *TAC1* is a major gene
111 that positively controls tiller angle by forward genetics (Yu *et al.*, 2007). A variant in
112 the 3'-UTR changes the mRNA level, and higher mRNA levels contribute to a larger
113 angle. Based on previous studies, nucleotide diversities in *TAC1* are low, and only
114 one SNP in the coding region was found, resulting in synonymous substitution
115 among 113 cultivated rice varieties. The small-angle allele of *TAC1* only exists in the
116 *japonica* accessions (Jiang *et al.*, 2012).

117 In the present work, we developed a high-throughput micro-CT-RGB (HCR)
118 imaging system to extract tiller-related phenotypic traits with high spatial resolution
119 (97 μm) and high efficiency (~310 pots per day). A rice panel containing 234
120 accessions were phenotyped non-destructively at 9 time points during the tillering
121 process, and 730 traits were extracted by HCR and used to perform GWAS. Our
122 results demonstrate that combining HCR and GWAS provides new insight into the
123 genetic basis of rice tillering and plant architecture.

124

125 **Materials and Methods**

126 **Plant material and experimental design**

127 Considering the strong population differences between *indica* and *japonica* accessions
128 and the high diversity in *indica* subpopulations (Huang *et al.*, 2010), 234 *indica*
129 accessions were used in our study. For each accession, one rice plant was detected by
130 the HCR imaging system. The genotype information for the 234 accessions was
131 retrieved from the website "RiceVarMap" (<http://ricevarmap.ncpgr.cn/>). The detailed
132 information from the 234 rice accessions was obtained via the website
133 (http://ricevarmap.ncpgr.cn/cultivars_information/). The seeds from the 234 rice
134 accessions were sown in the field on 25 May 2015 and transplanted to pots on 16 June
135 2015. Each pot was filled with 5 kg soil (pH = 5.45, total nitrogen: 0.241 g/kg, total
136 potassium: 7.20 g/kg, total phosphorus: 0.74 g/kg, alkali-hydrolyzable nitrogen:
137 144.06 mg/kg, available potassium: 188.64 mg/kg, available phosphorus: 16.81 mg/kg,
138 organic matter: 46.55 g/kg). During the tillering stage (41~67 days after sowing), the
139 234 rice accessions were automatically measured every three days and measured 9
140 times using HCR. After harvest, 203 rice plants were threshed and then inspected by
141 YTS (yield traits scorer, Yan *et al.*, 2014) to extract grain yield. Thirty-five rice plants
142 and standard plastic pipes were manually measured (Supplementary Fig. S1).

143

144 **Image acquisition of HCR**

145 The control flow of image acquisition included the following steps (Supplementary
146 Fig. S2): (1) the computer's communication with the PLC and RGB camera was

147 checked; (2) the X-ray flat panel detector was opened; (3) the working mode of the
148 X-ray flat panel detector was selected; (4) the link with the X-ray flat panel detector
149 was checked; (5) the mode information for the X-ray flat panel detector was retrieved;
150 (6) the X-ray flat panel detector was used to grab images; (7) X-ray images and RGB
151 images were obtained simultaneously; (8) X-ray images and RGB images were stored
152 simultaneously; (9) X-ray image acquisition was stopped; (10) the X-ray flat panel
153 detector link was closed; (11) the RGB camera and serial port were closed. The HCR
154 image acquisition was implemented with LabVIEW 8.6 (National Instruments, US).

155

156 **Image analysis and traits extraction by HCR**

157 Supplementary Fig. S3 and Supplementary Note S1-10 show the image analysis and
158 trait extraction by the HCR system. Before image collection, the micro-CT system
159 was off-set-calibrated and gain-calibrated. After calibration, the micro-CT system
160 acquired 380 images while the rice plant rotated 360°. One row of X-ray projected
161 images of the same height as the 380 X-ray projected images, was selected to form a
162 sinogram, covering 380 orientations (step 0.6°, entire angle 0.6°×380, ~220°). Using
163 the FBP algorithm and GPU acceleration technique, the inner structure of the rice
164 tiller was reconstructed. By removing the small areas and regions with a predefined
165 threshold, we counted 14 tiller traits, including tiller number, size and shape. Finally,
166 when 2 transverse tiller images were reconstructed at 2 different heights (row 600 and
167 row 650), 3 rice angle traits (mean, max, and standard deviation of the tiller angles)
168 was calculated using the spatial location of the central point of the rice tiller images.
169 Using the image analysis for the RGB images (Yang *et al.*, 2014), 51 morphological
170 features, 1 color trait, and 6 histogram features were calculated.

171

172 **Operation of the HCR**

173 As shown in Supplementary Fig. S4 and Supplementary Fig. S5, the HCR operational
174 procedure included the following steps: (1) the chiller was turned on and the water
175 temperature maintained at 20°C; (2) offset calibration was performed; (3) gain
176 calibration was performed; (4) one pot-grown rice plant was transported to the

177 rotation platform; (5) the X-ray source was turned on and the inspection was started;
178 (6) 380 CT images and 20 RGB images were obtained; (7) the next pot-grown rice
179 plant was transported to the rotation platform; (8) when all the tasks were complete,
180 the image acquisition software designed using LabVIEW was stopped.

181

182 **Growth modeling and yield predication using phenotypic traits**

183 To test the prediction ability of the different models for TTA and TPA, 6 models,
184 including linear, power, exponential, logarithmic, quadratic, and logistic, were built
185 and compared. The modeling results were evaluated by comparing the R^2 , MAPE, and
186 SD_{APE} values. The statistical analyses of the 6 TTA and TPA models (linear, power,
187 exponential, logarithmic, quadratic, and logistic) were developed with LabVIEW 8.6
188 (National Instruments, Inc., USA). To evaluate the variance explained by the rice
189 grain yield in the early growth stages, linear stepwise regression analysis was
190 performed with the rice tiller traits using SPSS software (Statistical Product and
191 Service Solutions, Version 13.0, SPSS Inc., USA).

192

193 **Genome-wide association study**

194 A total of 2,863,169 single nucleotide polymorphisms (SNPs) with a minor allele
195 frequency ≥ 0.05 were used for GWAS, and the number of accessions with minor
196 alleles for the SNPs was more than 6. Information on these SNPs can be accessed
197 from the 'RiceVarMap' database (<http://ricevarmap.ncpgr.cn/>). As in previous studies,
198 the genome-wide significance threshold was set at 1.66×10^{-6} to control for false
199 positives (Yang *et al.*, 2015). A mixed-model approach with the factored spectrally
200 transformed linear mixed models (FaST-LMM) program was used for the GWAS
201 (Lippert *et al.*, 2011). The kinship coefficient (K) values were defined as the
202 proportion of identical genotypes for the 188,165 evenly distributed random SNPs
203 (Xie *et al.*, 2015). Lead SNPs for each trait were determined using the 'clump'
204 function of Plink (Purcell *et al.*, 2007). Potential candidate genes were obtained using
205 the 'clump-range' function of Plink (Purcell *et al.*, 2007). Considering the strong LD

206 (linkage disequilibrium) of rice, a region in which the distance of adjacent pairs of
207 associated SNPs was less than 300 kb was defined as the locus (Yang *et al.*, 2015).
208 Haplotypes were determined based on the significant genetic variants.

209

210 **Results**

211 **High-throughput micro-CT-RGB phenotyping system (HCR)**

212 The bi-modal imaging system, including micro-CT and RGB imaging, was developed
213 to non-destructively extract 74 phenotypic traits synchronously. Among these 74 traits,
214 tiller number, shape, area, and angle were extracted by CT images, and plant
215 architecture, texture, and color traits, and digital biomass were extracted by RGB
216 images. The definitions and abbreviations of the phenotypic traits are shown in
217 Supplementary Table S1. The bi-modal imaging system consists of 9 main elements:
218 an X-ray source (Nova600, OXFORD, UK), an X-ray source chiller (Nova600,
219 OXFORD, UK), an X-ray flat panel detector (PaxScan 2520DX, VARIAN, USA), a
220 RGB camera (AVT Stingray F-504B, Allied Vision Technologies Corporation, GER),
221 a white light, a rotation platform (MSMD022G1U, Panasonic, Japan), a lead chamber,
222 a computer (M6600N, Lenovo, CHN), and a PLC controller (CP1H, OMRON
223 corporation, Japan) (shown in Fig. 1A, B). The configuration of the HCR system is
224 provided in Supplementary Fig. S6, and shows that the CT system's field of view
225 (FOV) is 149 mm (height) \times 186 mm (width) and the spatial resolution is 97 μ m. The
226 RGB imaging system's FOV is 1607mm (height) \times 1347 mm (width) and the spatial
227 resolution is 656 μ m. The main specifications of the HCR inspection unit are shown
228 in Supplementary Table S2.

229 When the rice plant is rotated on the rotation platform (Fig. 1C), 20 color images
230 and 380 X-ray projected images (Fig. 1D) in different angles are acquired
231 synchronously. All phenotypic traits were obtained using the following steps: (1) one
232 row of the X-ray projected image at the same height as the 380 X-ray projected
233 images was selected to form a sonogram (Fig. 1E) covering 380 orientations (step
234 0.6°, entire angle 0.6° \times 380, ~220°); (2) a conventional filtered back-projection (FBP)
235 algorithm was applied to obtain the reconstructed transverse section image of the rice

236 tiller (Fig. 1F); (3) after image segmentation and small particle removal (Fig. 1G),
237 tiller number, size and shape were counted (Fig. 1H); (4) when 2 transverse tiller
238 images were reconstructed at 2 different heights (row 600 and row 650), the rice angle
239 was calculated using the spatial location of the central point of the rice tiller images
240 (Fig. 1I); (5) finally, 57 phenotypic traits, including plant color, plant height, digital
241 biomass, and plant compactness, were obtained from the RGB images and analyses. A
242 database, including the RGB and micro-CT images and the phenotypic traits, was set
243 up (Fig. 1J). The reconstructed images of one rice sample (C055, Sanbaili) at different
244 heights (10.7-54.3 mm distance from the soil surface) is shown in Supplementary
245 Video S1. The image acquisition and analysis pipeline were developed using
246 LabVIEW 8.6 (National Instruments, US), and the details were described in the
247 Methods section.

248 As shown in Supplementary Fig. S4, the time taken for one CT image was 0.6
249 seconds, and 380 CT images were acquired for each plant; thus, approximately 228
250 seconds (0.6 seconds \times 380) were required to complete the CT inspection of one
251 pot-grown rice plant. The time taken for one RGB image was 0.6 seconds and 20
252 RGB images were acquired synchronously. The time taken for manual transfer is
253 approximately 50 seconds. Therefore, when continuously operated for 24 hours each
254 day, the HCR system's total throughput is 310 pot-grown rice plants (~278 seconds
255 per plant).

256

257 **Performance evaluation of tiller traits extraction**

258 To evaluate the accuracy of the micro-CT unit, 8 plastic round pipes (fixed in one pot
259 as shown in Supplementary Fig. S7) were measured manually by two people
260 (phenotypic traits are shown in Supplementary Table S3) and automatically measured
261 10 times repeatedly by the micro-CT unit (phenotypic traits are shown in
262 Supplementary Table S4). The mean absolute percentage error (MAPE) of the
263 automatic versus manual measurements were 0.02~1.38%, 0~6.38%, and 0.12~1.87%
264 for tiller diameter, stem wall thickness, and tiller angle, respectively (Fig. 2A). The
265 computational formulas of MAPE were defined by Eqs. 1.

266
$$\text{MAPE} = \frac{1}{n} \sum_{i=1}^n \frac{|x_{ai} - x_{mi}|}{x_{mi}} \times 100\% \quad (1)$$

267 To evaluate the reconstruction quality of the rice tiller, a reconstructed transverse
268 section image (spatial resolution of 30 μm) using micro-CT and its actual transverse
269 section image after shearing are shown in Fig. 2B. In addition, there was a trade-off
270 between the CT image resolution and CT scan area. To scan all the rice tillers, the
271 spatial resolution was set at 97 μm and the FOV of the CT system was 149 mm
272 (height) \times 186 mm (width) (Supplementary Fig. S6). Next, 35 rice plants
273 (Supplementary Table S5) were measured both automatically and manually (repeat
274 twice) to verify the measuring accuracy using micro-CT. The R^2 values of the manual
275 measurements versus automatic measurements were 0.857, 0.959, and 0.995 for tiller
276 number, tiller diameter, and stem wall thickness, respectively (Fig. 2C-E).

277

278 **Phenotyping database extracted by HCR at 9 time points**

279 During the tillering stage, 234 rice plants were automatically measured by HCR at 9
280 different development time points (once every 3 d, starting from 41 ~ 67 d after
281 sowing). All the phenotypic data and images can be viewed and downloaded via the
282 link http://plantphenomics.hzau.edu.cn/checkiflogin_en.action and then following
283 these steps: (1) select 'rice'; (2) select '2015-tiller' in the year section; (3) select one
284 of the accession IDs in the ID section and then press 'search images'; (4) 9 CT images
285 and 9 side-view color images can be viewed and downloaded; (5) a similar process
286 can be used to view and download phenotypic traits by pressing 'search data'. The
287 detailed procedure for the database is shown in Supplementary Fig. S8.

288

289 **Screening the dynamic process of rice growth at the tillering and jointing stages**

290 After all phenotypic images and data were obtained for the 9 time points, we screened
291 the dynamic process of the rice growth and determined the most active tillering and
292 initial jointing stages. As illustrated in Fig. 3A-I, 9 side-view RGB images and 9
293 reconstructed images for each rice plant were obtained for the following image
294 analysis. The red circle in Fig. 3B-E shows the dynamic tillering and jointing

295 processes. At the second time point (Fig. 3B), the first pith cavity appeared, indicating
296 that this plant progressed into the jointing stage. As illustrated in Fig. 3J, from the
297 dynamic change of the first derivative of the total tiller area, we can determine the
298 most active tillering stage, as indicated by the blue arrow with the maximum value of
299 the first derivative of the total tiller area. The tiller growth of the rice plant during the
300 first 6 periods was relatively faster than that of the later periods. Similarly, from the
301 number change of the rice accessions in the initial jointing stage, we can see that the
302 initial jointing stage was accompanied by the most active tillering stage (Fig. 3K).
303 Interestingly, the growth curve of the GCV (green color value) before the 5th time
304 point indicates that the GCV value became smaller (indicating more dark green leaves
305 with greater nitrogen content), and after the 5th time point, the GCV value became
306 larger (indicating more light green leaves with less nitrogen) (Fig. 3L). As illustrated
307 in Fig. 3M, from the dynamic change of first derivative of the mean tiller angle, we
308 see that the tiller angle showed little change during the tillering stage.

309 In addition, the dynamic growth curves of 27 representative traits for the tiller and
310 the entire plant are presented in Supplementary Fig. S9. The first derivation of H
311 (plant height), W (plant width), and TPA (total projected area of the rice plant)
312 reached the highest value at the 5th time point, supporting the previous result that the
313 plant growth reached the highest speed in the active tillering stage (5th time point).
314 The dynamic growth of one rice accession (C055, Sanbaili) is shown in
315 Supplementary Video S2.

316

317 **Predication of tiller growth and digital biomass accumulation**

318 It would be helpful if we could design a growth model using the phenotypic data
319 obtained in the early growth stage to predict the final digital biomass. In our previous
320 study, total projected area (TPA) was correlated with actual biomass (Yang *et al.*,
321 2014). Beyond the manual tiller number count, the total tiller area (TTA) extracted by
322 micro-CT can quantify tiller growth more accurately than the tiller number. Fig. 4A, B
323 show the heatmaps of TTA and TPA for the 234 accessions at 9 different time points.
324 Here, we tested 6 models (linear, power, exponential, logarithm, quadratic, and

325 logistic models) of TTA and TPA at the 9 points. The results were evaluated by
326 comparing R^2 , MAPE, and the standard deviation of the absolute percentage error
327 values (SD_{APE}). As shown in Supplementary Table S6, the logistic models of TTA and
328 TPA showed slightly better prediction ability (the R^2 was 0.969 and 0.985, the MAPE
329 and SD_{APE} were both below 6.5%). The actual results versus predicted results of the
330 TTA and TPA are shown in Fig.4C and Fig.4D, respectively.

331

332 **Predication for rice grain yield and shoot dry weight in the early growth stage**

333 It would benefit rice breeding if we could use the automatically measured phenotypic
334 traits, particularly the traits measured in the early development stages, to predict the
335 final grain yield and shoot dry weight. The R value distribution for modeling grain
336 yield in the 9 different tillering stages is shown in Fig. 5A, which shows that by
337 adding the total tiller area (TTA), the R range increased from 0.30-0.41 to 0.35-0.51,
338 particularly at the 5th time point. After the 5th time point, nonfertile tillers began to
339 grow, providing a possible explanation why the R value decreased. Fig. 5B showed
340 that the modeling accuracy for the shoot dry weight is improved by adding total tiller
341 area. Moreover, we also compared the correlation between TN, TTA and grain yield.
342 The R value of TN_5 versus grain yield was 0.094 (Fig. 5C), and the R value of
343 TTA_5 versus grain yield was 0.512 (Fig. 5D).

344 When only 2 phenotypic traits were selected, 30% of the grain yield variance was
345 explained (Fig. 5E). The two phenotypic traits were both tiller traits, which included
346 TTA_5 (total tiller area measured at the 5th time point) and MEANTA_8 (mean value
347 of the tiller angle measured at 8th time point). We found that the rice yield can be
348 increased by higher TTA_5 and lower MEANTA_8. Up to 48% of the grain yield
349 variance can be explained by combining 10 traits across all 9 time points (Fig. 5F). As
350 shown in Supplementary Fig. S10, the R^2 value range from 0.34 to 0.46 by combining
351 from 3 traits to 9 traits.

352

353 **Genome-wide association study**

354 We performed GWAS of 732 traits (including 730 traits measured by micro-CT-RGB,

355 yield and biomass) and identified 402 significantly associated loci (Supplementary
356 Data S1). In total, 182 and 332 loci were associated with traits measured by micro-CT
357 and RGB, of which 70 and 220 were exclusively detected by micro-CT and RGB
358 respectively. The numbers of loci associated with traits of different time points were
359 different, ranging from 61 and 87. For example, the numbers of loci of time point 1, 5,
360 9 were 61, 86, 69; the numbers of overlapped loci of T1 and T5, T5 and T9, T1 and
361 T9 were 14, 17, 8; only 4 loci were detected at all the three time points (Fig. 6A). Of
362 402 loci, 353 and 135 loci were detected by the micro-CT-RGB traits of nine time
363 points and the derived growth-rate related traits, and 86 loci were simultaneously
364 detected by the two kinds of traits. Of the 353 loci, 191 loci were only detected at one
365 time point while other loci were detected at not less than two time points; only one
366 locus on chromosome 9 (locus 302) were detected at nine time points (Fig. 6B).
367 Further we found the locus were significantly associated with MEANTA (mean of
368 multiple-tiller angles for a plant) measured by micro-CT (Fig. 6C), suggesting the
369 locus could control tiller angle. These results demonstrate the existence of dynamic
370 and static genetic components during rice growth stage.

371 For the locus 302, LD decayed slowly ($r^2=0.57$ between SNPs sf0920227209 and
372 sf0920733864) in a 500 kb-region. *TAC1*, the cloned gene controlling tiller angle (Yu
373 *et al.*, 2007), was located at the locus. We found 15 significant SNPs distributed in the
374 3'-UTR region, coding region, and 1 kb promoter region and a significant 1-bp indel
375 in the 3'-UTR region (Fig. 7A). All the SNPs in the coding region caused synonymous
376 mutations. Consistent to a previous study (Yu *et al.*, 2007), the variants in the 3'-UTR
377 caused the mRNA level polymorphisms, resulting in the tiller angle diversity. Three
378 haplotypes for the gene were found in our association mapping panel. Tiller angles
379 were significantly different among them ($P=5.15E-07$, ANOVA) and those of rice
380 accessions containing haplotype H3 were much smaller (Fig. 7B). Minghui 63 (a
381 known restorer line) and Zhenshan 97 (a known maintainer line) contained haplotype
382 H2 and H3, respectively (Fig. 7C).

383 Further, we found two loci containing associations with both micro-CT-RGB
384 traits and yield. A lead SNP sf0401216812 on chromosome 4 was associated with

385 AGRTTA_5 indicating growth rate of tillering at the 5th time point ($P_{MLM}=1.16E-05$)
386 and yield ($P_{MLM}=8.40E-04$), and genotype G at the SNP site corresponded to the
387 superior allele for the two traits (Fig. 8A). Another lead SNP sf0630983585 on
388 chromosome 6 was associated with AGATPA_4 indicating growth rate of shoot
389 weight at the 4th time point ($P_{MLM}=1.14E-06$) and yield ($P_{MLM}=2.93E-04$), and
390 genotype G at the SNP site corresponded to the superior allele for the two traits (Fig.
391 8B). The favorable alleles of the two loci were minor alleles and would be beneficial
392 for rice high-yield breeding. These results indicate that the vigor of rice plant during
393 tillering stage contributes to the final yield.

394

395 **Discussion**

396 The traditional methods of determining rice tiller traits are destructive, labor-intensive,
397 and time-consuming. Micro-CT, a computed tomography technique originally
398 developed for structural imaging of small animals (Yang *et al.*, 2010), can also be an
399 option for examining the inner structure of rice plants with multiple tillers. In addition,
400 by developing an image analysis pipeline, the HCR system can non-destructively
401 extract rice phenotypic traits and provide plant growth data in vertical and horizontal
402 dimensions. Compared to traditional rice tiller phenotyping, HCR has the following
403 advantages. (1) The 3D spatial location can be obtained by CT, thus, some traits, such
404 as tiller angle, can be extracted with more accuracy rather than manually measuring
405 them with a protractor, as shown in Fig. 1I. (2) The CT system can be easily
406 integrated with an RGB imaging device, allowing more traits (total of 74 traits) to be
407 extracted simultaneously. (3) The time needed for acquiring the projected CT image
408 of one plant is approximately 278 seconds, and the time required for extracting
409 subsequent traits is approximately 120 seconds combined with GPU acceleration, thus
410 improving the measuring efficiency per plant. (4) Many novel traits, such as TTA and
411 TPA, can be investigated with the bi-modal imaging system at different time points. In
412 comparing the tiller number and grain yield, the total tiller area (TTA) had a better
413 correlation with grain yield and provided a better quantification of tiller growth (Fig.
414 5C and 5D). Finally, (5) these new dynamic traits in plant growth and tiller

415 development can dissect the genetic mechanisms involved in rice growth.

416 With numerous traits extracted by HCR, GWAS detected many significant
417 association signals. The number of loci detected at different time point was different.
418 Some loci were identified at a specific time point while other loci were identified at
419 multiple time points, indicating the dynamic and static genetic components during rice
420 growth stage. Only one locus on chromosome 9 related to tiller angle was scanned at
421 9 time points and a priori gene *TAC1* was located at the locus. Six significant SNPs
422 and a significant INDEL were enriched in 3'-UTR region. We observed three major
423 haplotypes for the gene in our association mapping panel and significant difference of
424 tiller angle among the three haplotypes. Although most *indica* accessions harbored the
425 haplotype of the wider tiller angle for *TAC1*, some *indica* accessions harbored the
426 haplotype of the narrow tiller angle, which was not found in previous studies. The
427 polymorphisms in *TAC1* can be further developed into markers for breeding selection
428 for density planting. Co-localized loci between HCR traits indicating vigor of rice
429 plant during growth stage and yield were found, and HCR traits had higher detection
430 power than yield. The superior alleles of the loci were minor alleles, which would be
431 used for breeding of high yield.

432

433 **Conclusions**

434 In this study, we developed a high-throughput micro-CT-RGB (HCR) imaging system
435 to extract tiller-related phenotypic traits with high spatial resolution (97 μm) and high
436 efficiency (~310 pots per day). A rice panel containing 234 accessions was
437 phenotyped non-destructively at 9 time points during the tillering stage, and totally
438 730 traits were extracted by HCR and used to perform a GWAS. A total of 402
439 significantly associated loci were identified by GWAS, and dynamic and static genetic
440 components were found across the nine time points. A major locus associated with
441 tiller angle was detected at nine time points and a priori gene *TAC1* was located at the
442 locus. Significant variants associated with tiller angle (evaluated by MEANTA) were
443 enriched in the 3'-UTR of *TAC1*. Three haplotypes for the gene were found and tiller
444 angles of rice accessions containing haplotype H3 were much smaller. Further, two

445 loci contained associations with both HCR traits and yield and the superior alleles
446 were minor alleles, which would be beneficial for breeding of high yield and dense
447 planting.

448

449 **Supplementary Data**

450 Supplementary data are available at *JXB* online.

451 **Fig. S1.** Experimental design.

452 **Fig. S2.** Control flow of image acquisition.

453 **Fig. S3.** Diagram of image processing and feature extraction.

454 **Fig. S4.** Sequence diagram of micro-CT-RGB phenotyping system.

455 **Fig. S5.** Workflow chart.

456 **Fig. S6.** The configuration of micro-CT-RGB system.

457 **Fig. S7.** Plastic round pipes.

458 **Fig. S8.** Workflow chart of database.

459 **Fig. S9.** Dynamic growth curve of rice.

460 **Fig. S10.** Modeling results of grain yield.

461 **Note S1.** The source code of sinogram.

462 **Note S2.** The source code of computed tomography reconstruction.

463 **Note S3.** The source code of particle extraction.

464 **Note S4.** The source code of particle rotation.

465 **Note S5.** The source code of tiller diameter.

466 **Note S6.** The source code of tiller angle.

467 **Note S7.** The source code of fill holes.

468 **Note S8.** The source code of area traits.

469 **Note S9.** Color component extraction.

470 **Note S10.** Definition of the features.

471 **Table S1.** Abbreviation of 17 tiller traits, 32 tiller growth traits, 1 plant color trait,
472 2 digital biomass, 33 plant architecture traits, 21 texture traits, 16 digital biomass
473 accumulation traits, 16 height accumulation traits, and 2 yield traits.

474 **Table S2.** Main specifications of micro-CT-RGB inspection unit.

475 **Table S3.** Manual measurements of 8 plastic pipes with 2 workers.

476 **Table S4.** Automatic measurements of 8 plastic pipes with 10 replications.

477 **Table S5.** Comparison of rice with automatically measured and manually
478 measured.

479 **Table S6.** The Comparison of actual TTA/TPA and predicated TTA/TPA with 6
480 models.

481 **Video S1.** The reconstructed images of one rice sample at different heights.

482 **Video S2.** The dynamic growth of one rice accession.

483 **Data S1.** GWAS results.

484

485 **Acknowledgements**

486 This work was supported by grants from the National Key Research and Development
487 Program of China (2016YFD0100101-18), the National Natural Science Foundation
488 of China (31770397), and the Fundamental Research Funds for the Central
489 Universities (2662017PY058).

490

491 **References**

492 **Al-Tamimi N, Brien C, Oakey H, Berger B, Saade S, Ho YS, Schmockel SM,**
493 **Tester M, Negrao S.** 2016. Salinity tolerance loci revealed in rice using
494 high-throughput non-invasive phenotyping. *Nature communications* **7**, 13342.

495 **Bacmolenaar JA, Vreugdenhil D, Granier C, et al.** 2015. Genome-wide association
496 mapping of growth dynamics detects time-specific and general quantitative trait loci.
497 *IEEE Transactions on Information Theory* **66**, 5567.

498 **Berni JAJ, Zarco-Tejada PJ, Suarez L, et al.** 2009. Thermal and Narrowband
499 Multispectral Remote Sensing for Vegetation Monitoring From an Unmanned Aerial
500 Vehicle. *IEEE Transactions on Geoscience & Remote Sensing* **47**, 722-738.

501 **Bock CH, Poole GH, Parker P E, et al.** 2010. Plant Disease Severity Estimated
502 Visually, by Digital Photography and Image Analysis, and by Hyperspectral Imaging.
503 *Critical Reviews in Plant Sciences* **29**, 59-107.

504 **Busemeyer L, Mentrup D, Möller K, et al.** 2013. BreedVision — A Multi-Sensor

505 Platform for Non-Destructive Field-Based Phenotyping in Plant Breeding. *Sensors* **13**,
506 2830-2847.

507 **Busemeyer L, Ruckelshausen A, Moller K, Melchinger AE, Alheit KV, Maurer**
508 **HP, Hahn V, Weissmann EA, Reif JC, Wurschum T.** 2013. Precision phenotyping
509 of biomass accumulation in triticale reveals temporal genetic patterns of regulation.
510 *Scientific reports* **3**, 2442.

511 **Crowell S, Falcao AX, Shah A, Wilson Z, Greenberg AJ, McCouch SR.** 2014.
512 High-Resolution Inflorescence Phenotyping Using a Novel Image-Analysis Pipeline,
513 PANorama. *Plant Physiology* **165**, 479-495.

514 **Crowell S, Korniliev P, Falcao A, Ismail A, Gregorio G, Mezey J, McCouch S.**
515 2016. Genome-wide association and high-resolution phenotyping link *Oryza sativa*
516 panicle traits to numerous trait-specific QTL clusters. *Nature communications* **7**,
517 10527.

518 **Delagrange S, Rochon P.** 2011. Reconstruction and analysis of a deciduous sapling
519 using digital photographs or terrestrial-LiDAR technology. *Annals of Botany* **108**, 991

520 **Dong H, Zhao H, Xie W, et al.** 2016. A Novel Tiller Angle Gene, TAC3, together
521 with TAC1 and D2 Largely Determine the Natural Variation of Tiller Angle in Rice
522 Cultivars. *PLoS genetics* **12**, e1006412.

523 **Fabio F, Ulrich S.** 2013. Future Scenarios for Plant Phenotyping. *Annual review of*
524 *Plant Biology* **64**, 267-91.

525 **Feng H, Jiang N, Huang C, et al.** 2013. A hyperspectral imaging system for an
526 accurate prediction of the above-ground biomass of individual rice plants. *Review of*
527 *Scientific Instruments* **84**, 095107.

528 **Flavel RJ, Guppy CN, Tighe M, et al.** 2012. Non-destructive quantification of cereal
529 roots in soil using high-resolution X-ray tomography. *Journal of Experimental Botany*
530 **63**, 2503-2511.

531 **Furbank RT, Tester M.** 2011. Phenomics-technologies to relieve the phenotyping
532 bottleneck. *Trends Plant Sci* **16**, 635–644.

533 **Gorbe E, Calatayud A.** 2013. Applications of chlorophyll fluorescence imaging
534 technique in horticultural research: A review. *Scientia Horticulturae* **138**, 24-35.

535 **Guo SY, Xu YY, Liu HH, Mao ZW, Zhang C, Ma Y, Zhang QR, Meng Z, Chong**
536 **K.** 2013. The interaction between OsMADS57 and OsTB1 modulates rice tillering via
537 DWARF14. *Nature communications* **4**, 1566.

538 **Hillnhutter C, Sikora RA, Oerke EC, et al.** 2012. Nuclear magnetic resonance: a
539 tool for imaging belowground damage caused by *Heterodera schachtii* and
540 *Rhizoctonia solani* on sugar beet. *Journal of Experimental Botany* **63**, 319-327.

541 **Houle D, Govindaraju DR, Omholt S.** 2010. Phenomics: the next challenge. *Nature*
542 *Reviews Genetics* **11**, 855–866.

543 **Huang C, Yang W, Duan L, Jiang N, Chen G, Xiong L, Liu Q.** 2013. Rice panicle
544 length measuring system based on dual-camera imaging. *Computers and Electronics*
545 in Agriculture **98**, 158-165.

546 **Huang X, Wei X, Sang T, et al.** 2010. Genome-wide association studies of 14
547 agronomic traits in rice landraces. *Nature Genetics* **42**, 961-967.

548 **Jahnke S, Menzel MI, Dusschoten DV, et al.** 2009. Combined MRI-PET dissects
549 dynamic changes in plant structures and functions. *Plant Journal for Cell &*
550 *Molecular Biology* **59**, 634–644.

551 **Jiang J, Tan L, Zhu Z, Fu Y, Liu F, Cai H, Sun C.** 2012. Molecular evolution of the
552 TAC1 gene from rice (*Oryza sativa* L.). *Journal Genetics and Genomics* **39**, 551-560.

553 **Jiao Y, Wang Y, Xue D, et al.** 2010. Regulation of OsSPL14 by OsmiR156 defines
554 ideal plant architecture in rice. *Nature Genetics* **42**, 541-544.

555 **Jin J, Huang W, Gao J, Yang J, Shi M, Zhu M, Luo D, Lin H.** 2008. Genetic
556 control of rice plant architecture under domestication. *Nature Genetics* **40**, 1365-1369.

557 **Junker A, Muraya MM, Weigelt-Fischer K, Arana-Ceballos F, Klukas C,**
558 **Melchinger AE, Mever RC, Riewe D, Altmann T.** 2014. Optimizing experimental
559 procedures for quantitative evaluation of crop plant performance in high throughput
560 phenotyping systems. *Frontiers in Plant Science* **5**, 770.

561 **Lippert C, Listgarten J, Liu Y, Kadie CM, Davidson RI, Heckerman D.** 2011.
562 FaST linear mixed models for genome-wide association studies. *Nature methods* **8**,
563 833-835.

564 **Li X, Qian Q, Fu Z, et al.** 2003. Control of tillering in rice. *Nature* **422**, 618-621.

565 **Liang WH, Shang F, Lin QT, Lou C, Zhang J.** 2014. Tillering and panicle
566 branching genes in rice. *Gene* **537**, 1-5.

567 **Nagel KA, Putz A, Gilmer F, et al.** 2012. GROWSCREEN-Rhizo is a novel
568 phenotyping robot enabling simultaneous measurements of root and shoot growth for
569 plants grown in soil-filled rhizotrons. *Functional Plant Biology* **39**, 891-904.

570 **Purcell S, Neale B, Todd-Brown K, et al.** 2007. PLINK: a tool set for whole-genome
571 association and population-based linkage analyses. *American journal of human
572 genetics* **81**, 559-575.

573 **Reuzeau C, Pen J, Frankard V, Wolf J, Peerbolte R, Broekaert W, Camp W.**
574 2005. TraitMill: a Discovery Engine for Identifying Yield-enhancement Genes in
575 Cereals. *Molecular Plant Breeding* **1**, 1-6.

576 **Sébastien T, Yann S, Liêñ B, et al.** 2013. Phenoscope: an automated large-scale
577 phenotyping platform offering high spatial homogeneity. *Plant Journal* **74**, 534-544.

578 **Spalding EP, Miller ND.** 2013. Image analysis is driving a renaissance in growth
579 measurement. *Current Opinion in Plant Biology* **16**, 100-104.

580 **Springer N.** 2010. Shaping a better rice plant. *Nature Genetics* **42**, 475-476.

581 **Takeda T, Suwa Y, Suzuki M, Kitano H, Ueguchi-Tanaka M, Ashikari M,**
582 **Matsuoka M, Ueguchi C.** 2003. The OsTB1 gene negatively regulates lateral
583 branching in rice. *Plant Journal* **33**, 513-520.

584 **Topp CN, Iyerpascuzzi AS, Anderson JT, et al.** 2013. 3D phenotyping and
585 quantitative trait locus mapping identify core regions of the rice genome controlling
586 root architecture. *Proceedings of the National Academy of Sciences of the United
587 States of America* **110**, e1695.

588 **Wang L, Xu Y, Zhang C, Ma Q, Joo SH, Kim SK, Xu Z, Chong K.** 2008. OsLIC, a
589 Novel CCCH-Type Zinc Finger Protein with Transcription Activation, Mediates Rice
590 Architecture via Brassinosteroids Signaling. *PLoS One* **3**, e3521.

591 **Xia K, Wang R, Ou X, Fang Z, Tian C, Duan J, Wang Y, Zhang M.** 2012. OsTIR1
592 and OsAFB2 Downregulation via OsmiR393 Overexpression Leads to More Tillers,
593 Early Flowering and Less Tolerance to Salt and Drought in Rice. *PLoS One* **7**,
594 364-373.

595 **Xie W, Wang G, Yuan M, et al.** 2015. Breeding signatures of rice improvement
596 revealed by a genomic variation map from a large germplasm collection. *Proceedings*
597 *of the National Academy of Sciences of the United States of America* **112**, e5411-5419.

598 **Xiong X, Yu L, Yang W, Liu M, Jiang N, Wu D, Chen G, Xiong L, Liu K, Liu Q.**
599 2017. A high-throughput stereo-imaging system for quantifying rape leaf traits during
600 the seedling stage. *Plant Methods* **13**, 7.

601 **Yang W, Guo Z, Huang C, et al.** 2014. Combining high-throughput phenotyping and
602 genome-wide association studies to reveal natural genetic variation in rice. *Nature*
603 *Communications* **5**, 5087.

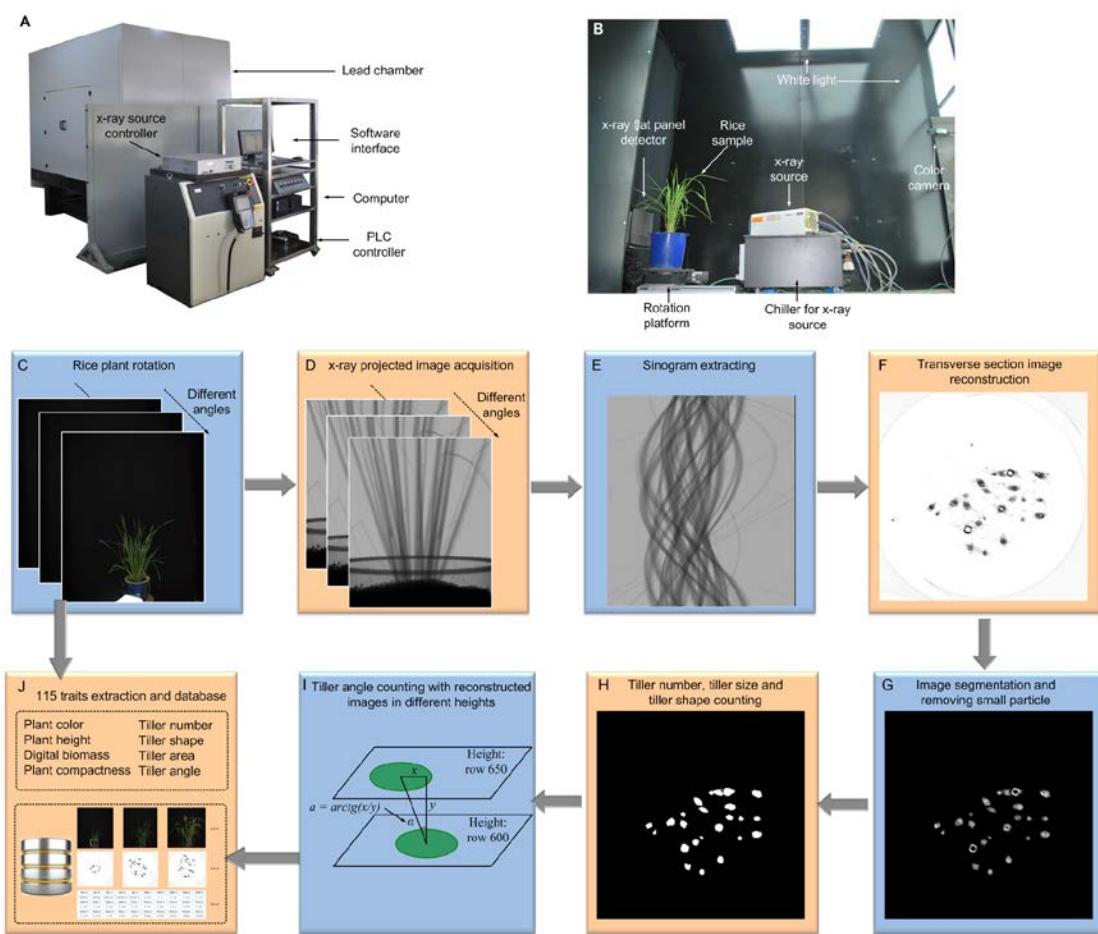
604 **Yang W, Guo Z, Huang C, Wang K, Jiang N, Feng H, Chen G, Liu Q, Xiong L.**
605 2015. Genome-wide association study of rice (*Oryza sativa* L.) leaf traits with a
606 high-throughput leaf scorer. *Journal of Experimental Botany* **66**, 5605-5615.

607 **Wang Y, Li J.** 2008. Rice, rising. *Nature Genetics* **40**, 1273-5.

608 **Yu B, Lin Z, Li H, et al.** 2007. TAC1, a major quantitative trait locus controlling
609 tiller angle in rice. *Plant Journal* **52**, 891-898.

610 **Zhang Q.** 2008. Strategies for developing green super rice. *Proceedings of the*
611 *National Academy of Sciences of the United States of America* **104**, 16402.

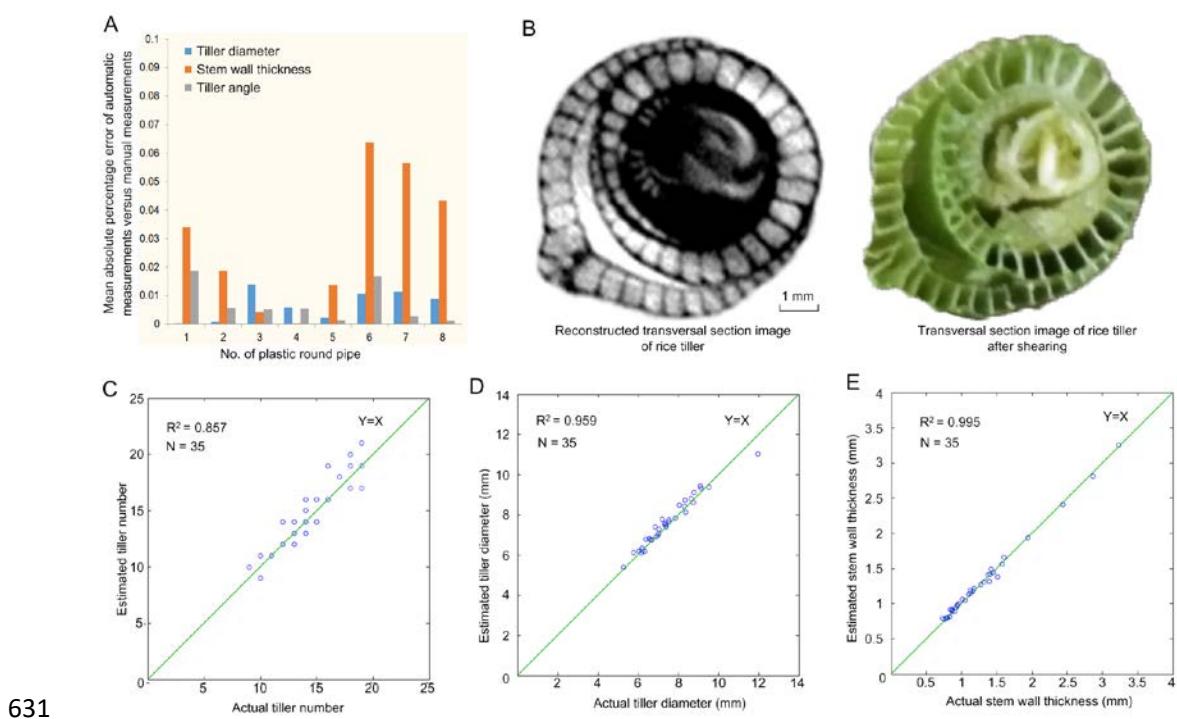
612 **Figure legends**

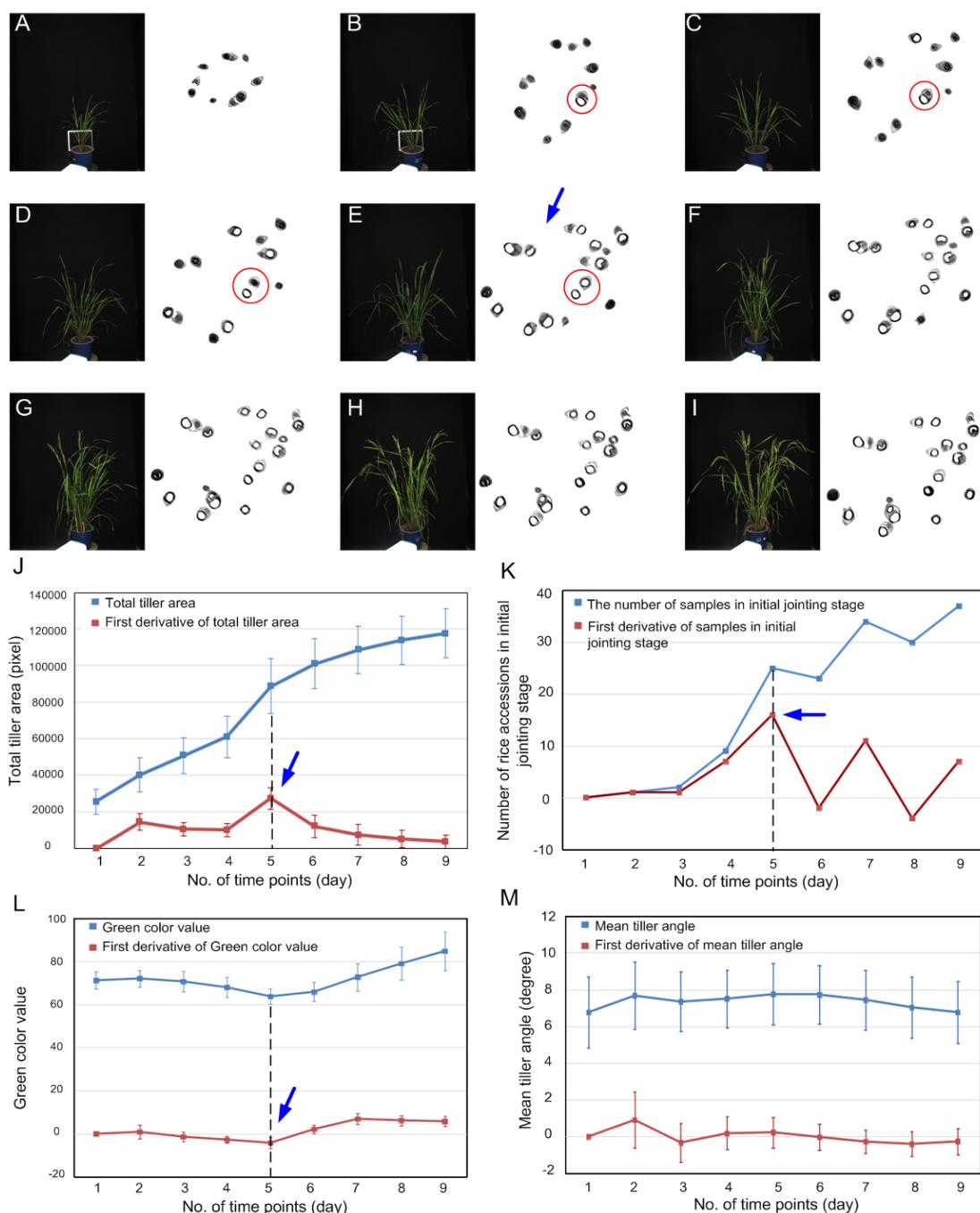


614 **Figure 1 High-throughput micro-CT-RGB bi-modal imaging system.** (A) The
615 prototype of the micro-CT-RGB system and (B) layout of the inspection unit. The 78
616 rice shoot traits and 37 tiller traits were obtained via the following steps: (C) and (D)
617 as the rice sample rotated, 20 color images and 380 X-ray projected images in
618 different angles were acquired synchronously; (E) one row of X-ray projected images,
619 at the same height as the 380 X-ray projected images, which formed a sinogram,
620 covering 380 orientations was selected (step 0.6° , entire angle $0.6^\circ \times 380, \sim 220^\circ$); (F)
621 conventional filtered back-projection (FBP) algorithm was applied to obtain the
622 reconstructed transverse section image of rice tillers; (G) and (H) after image
623 segmentation and removal of small particles, the tiller number, size and shape can be
624 counted; (I) when 2 transverse tiller images were reconstructed at 2 different heights
625 (row 600 and row 650), the rice angle was calculated using the spatial location of the
626 central point of the rice tiller images; (J) 78 rice shoot traits (plant color, plant height,

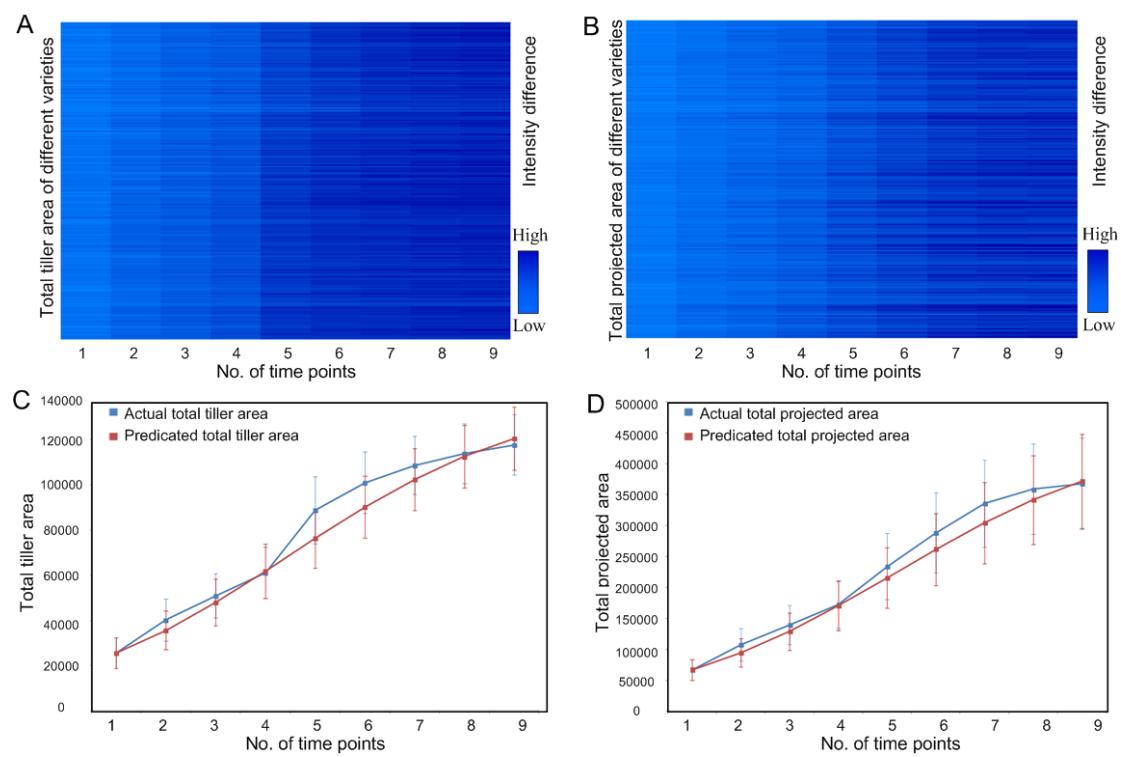
627 digital biomass, and plant compactness) and 37 tiller traits (tiller number, shape, area,
628 and angle) were extracted and stored with the image analysis pipeline. A database was
629 set up to collect RGB images, micro-CT images and phenotypic traits.

630





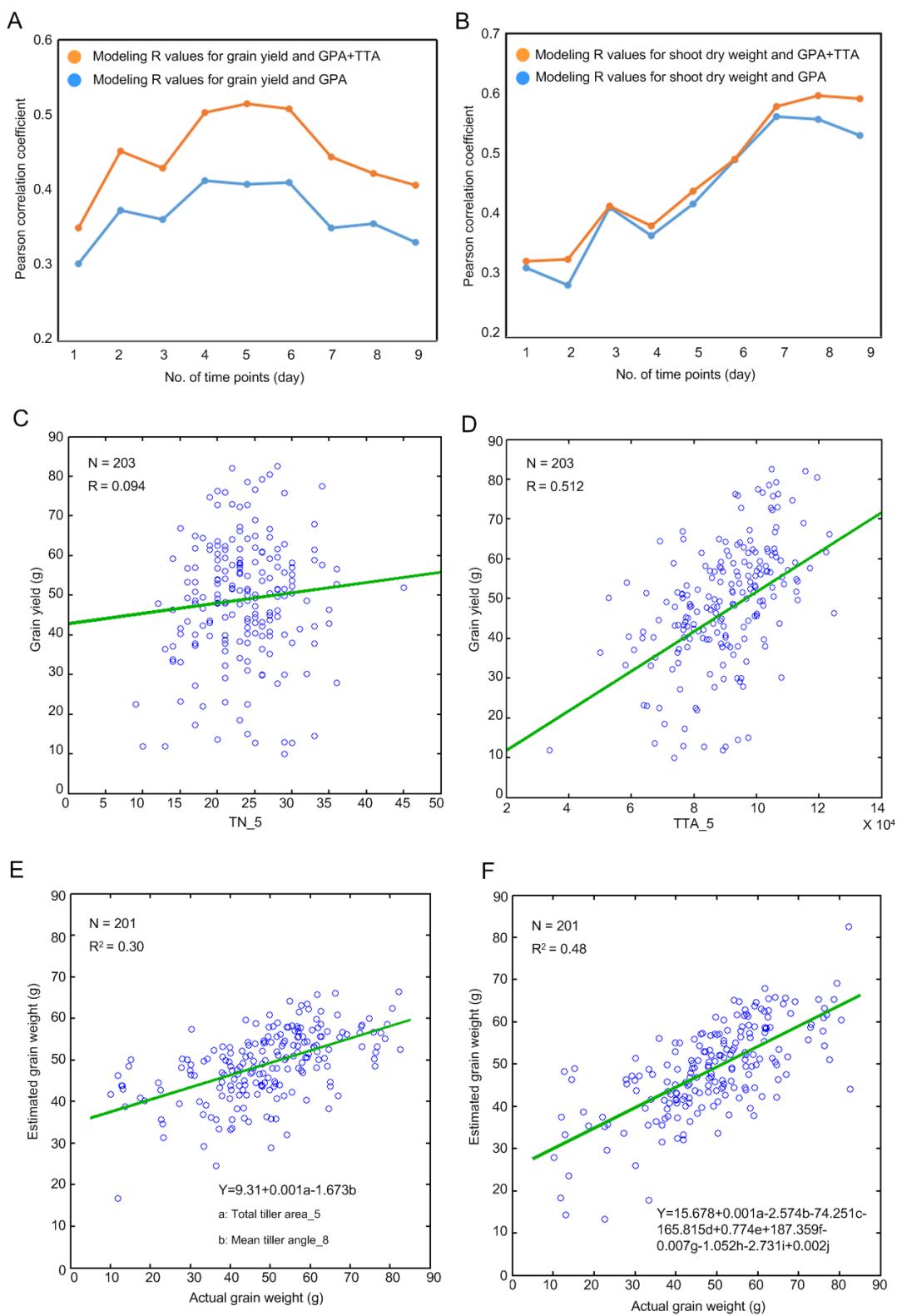
640
641 **Figure 3 Screening the dynamic process of rice growth at the tillering stage and**
642 **jointing stage.** (A-I) The RGB images and reconstructed CT images at 9 different
643 growth time points; (J) diagram of total tiller area and first derivative of total tiller
644 area; (K) diagram of sample numbers in initial jointing stage and first derivative of
645 sample numbers in jointing stage; (L) diagram of green color value and first
646 derivative of green color value; (M) diagram of mean tiller angle and first derivative
647 of mean tiller angle. The error bars represent the standard deviation between the
648 accessions.



649

650 **Figure 4 Heatmap and prediction of total tiller area growth and total protected**
651 **area growth.**(A-B) Heatmap of total tiller area (TTA) and total protected area (TPA)
652 of the 234 individuals at 9 different time points; (C)comparison of actual total tiller
653 area (blue line) and predicted total tiller area (red line); (D) comparison of actual total
654 projected area (blue line) and predicted total projected area (red line).Error bars
655 represent the standard error of the TTAorTPA of 234 samples at each time point.

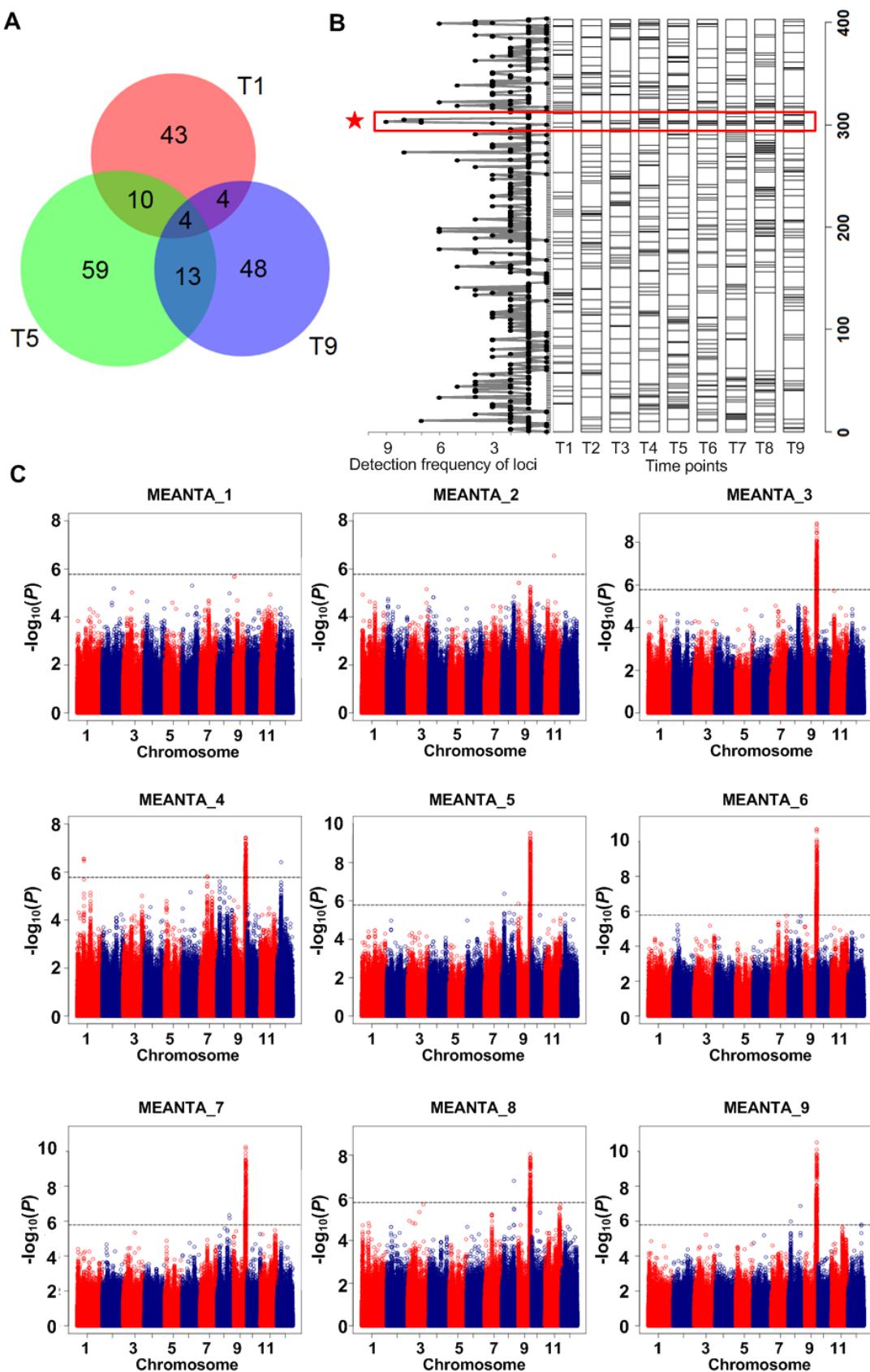
656



657

658 **Figure 5 Predication of grain yield and shoot dry weight.** (A) the modeling
 659 accuracy change for grain yield at 9 time points; (B) the modeling accuracy change
 660 for shoot dry weight at 9 time points; (C) the scatter plot of tiller number versus grain
 661 yield at the 5th time point; (D) the scatter plot of total tiller area versus grain yield at

662 the 5th time point; the scatter plot showing the relationship between the actual grain
663 yield and estimated grain yield using the predicted formula by (E) 2 traits and (F) 10
664 traits; a, b, c, d, e, f, g, h, i and j represent TTA_5, MEANTA_8, THR_4, FDIC_7,
665 MAXTAPR_7, FDIC_8, SDTTA_5, TN_3, MEANTAPR_2 and MAXTTA_2,
666 respectively.



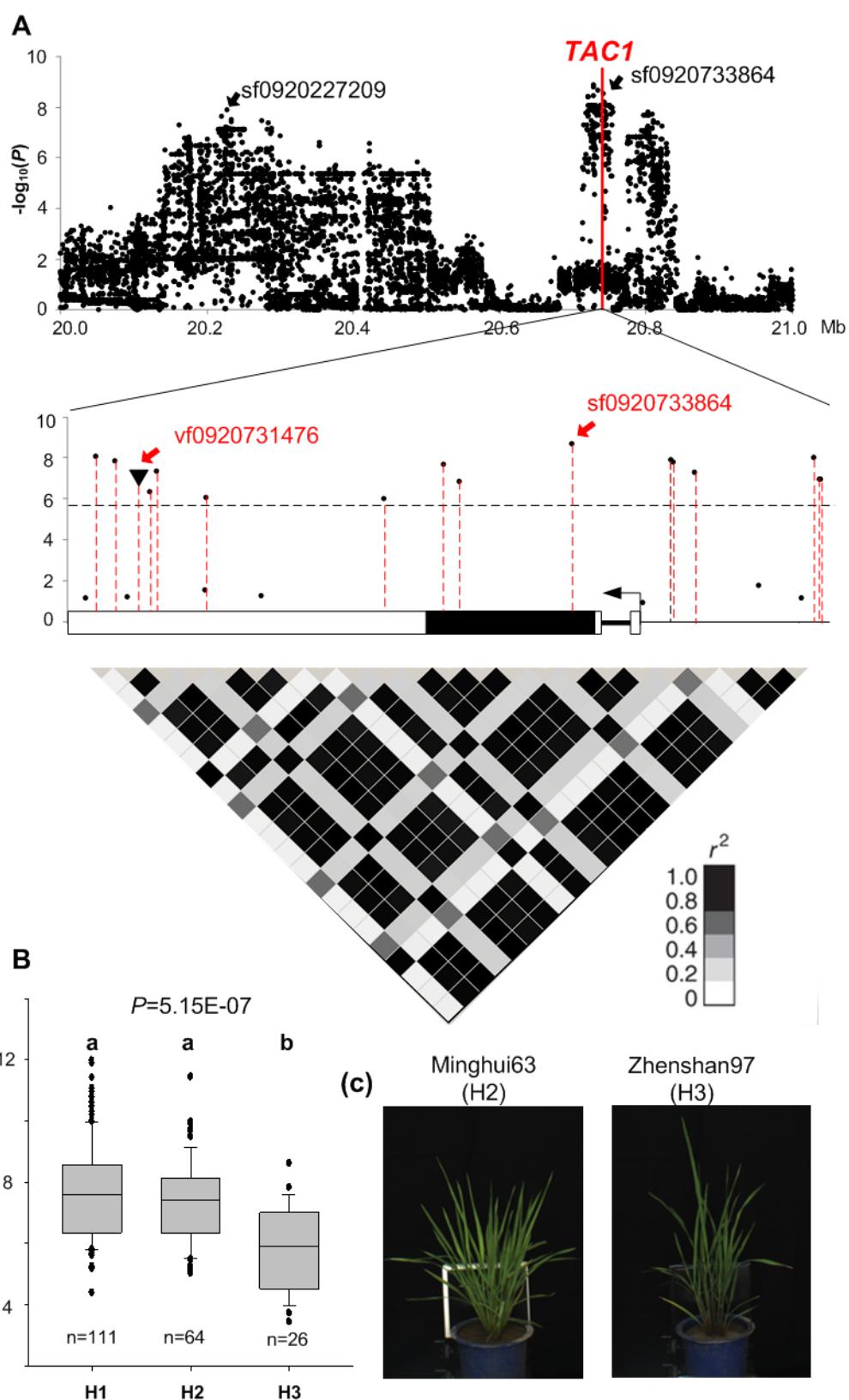
667

668 **Figure 6 GWAS results of traits of nine time points measured by micro-CT-RGB.**

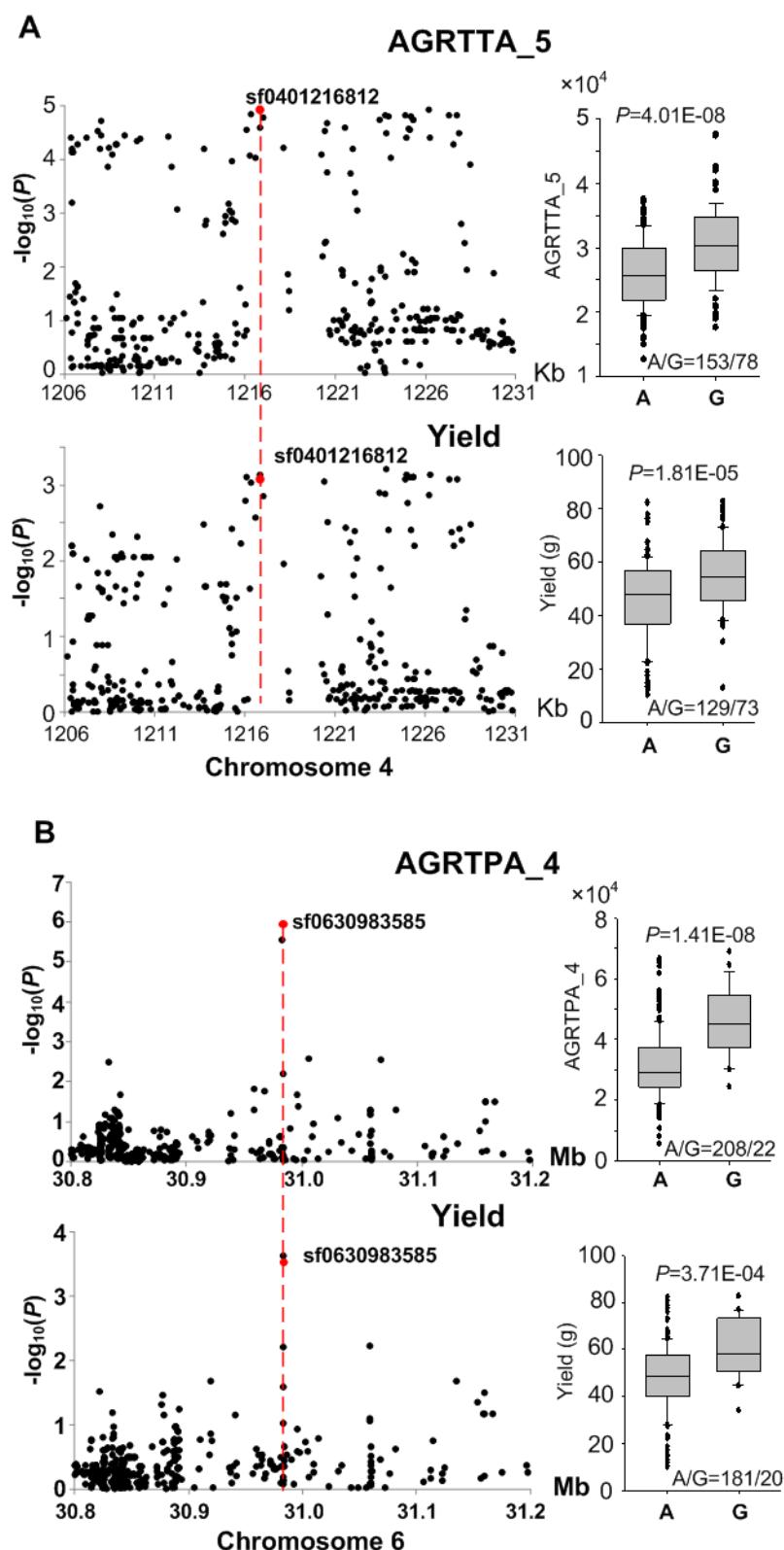
669 (A) Venn diagram showing number of associated loci at the time point 1, 5, and 9. (B)

670 The frequency and distribution of loci associated with traits at nine time points
671 (T1-T9). (C) GWAS plots of MEANTA (mean of tiller angles) of nine time points.
672 The strongest association signal on chromosome 9 corresponded to the locus of
673 highest detection frequency.

674

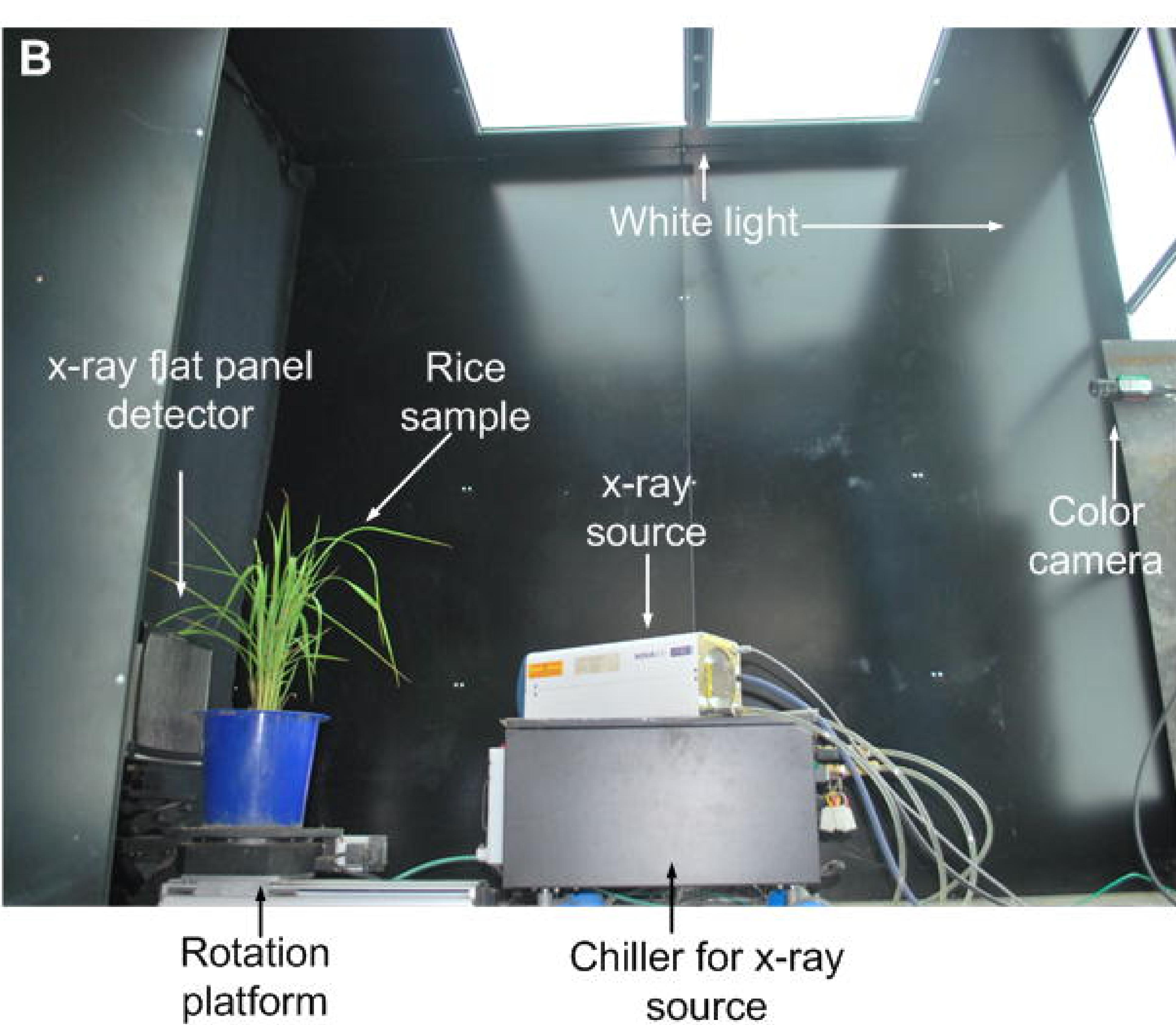
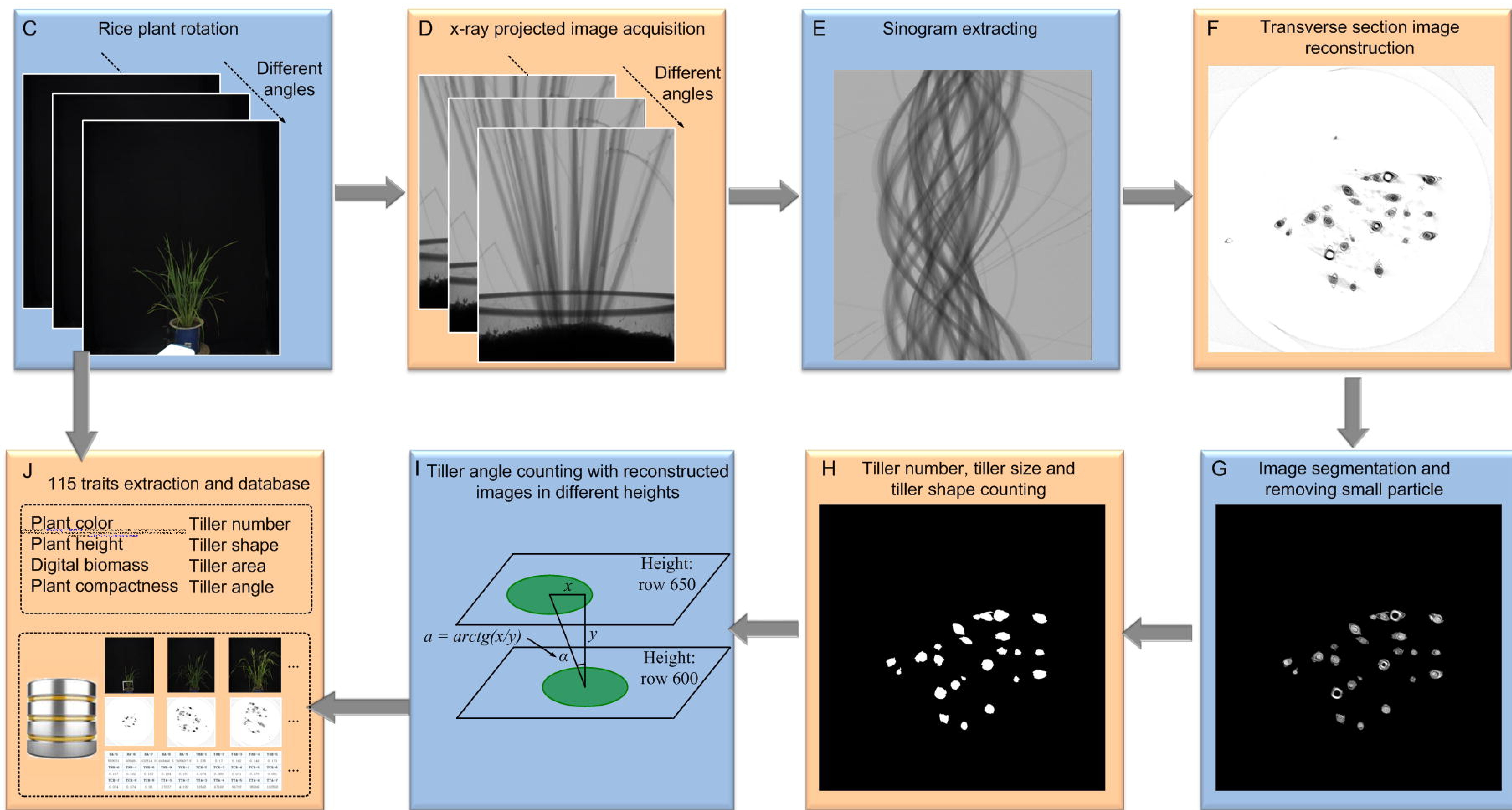


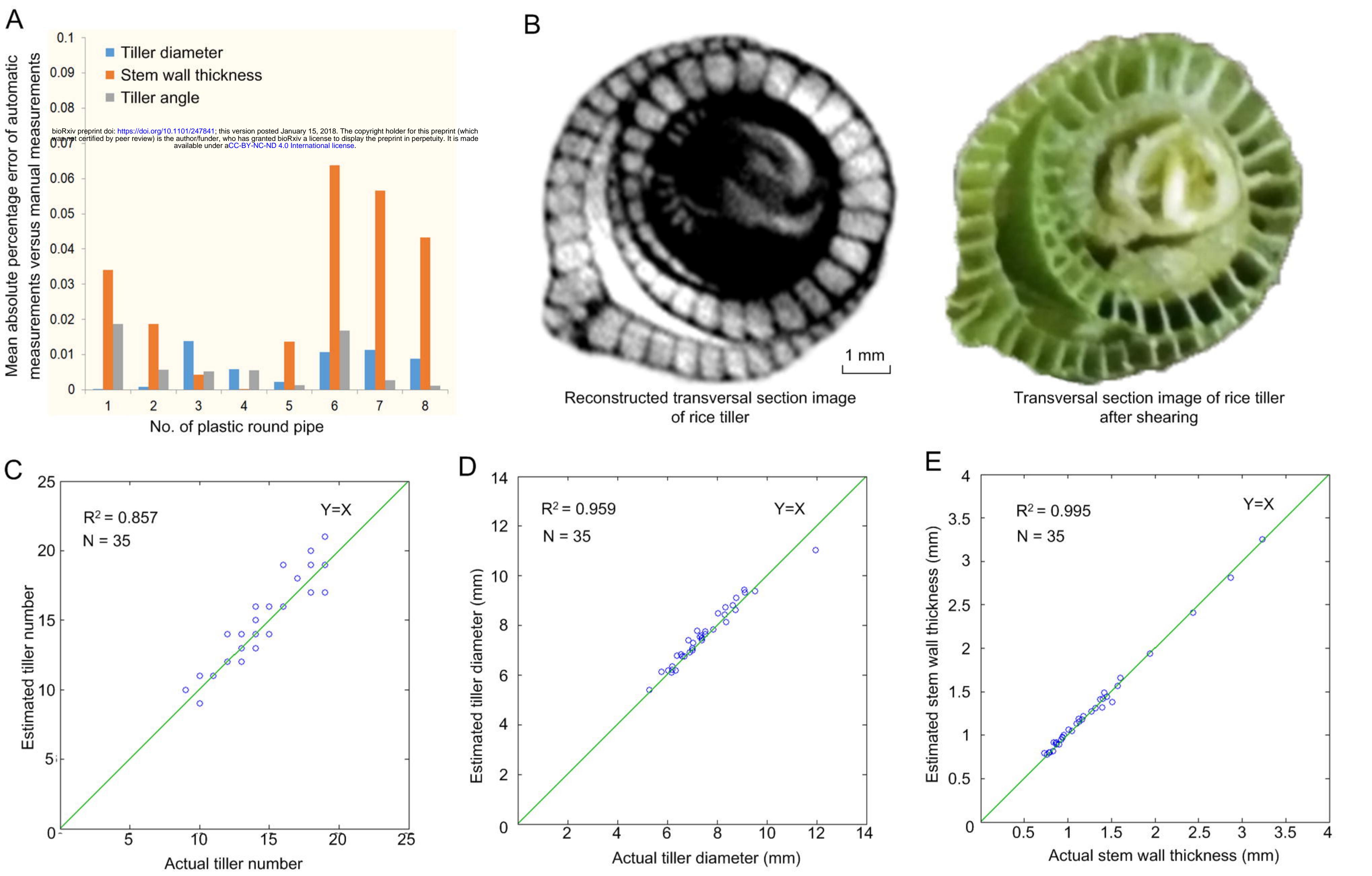
679 using LSD method and different letters above box plot indicated significant difference.
680 (C) Images of two representative varieties-Minghui63 (from H2 haplotype group) and
681 Zhenshan97 (from H3 haplotype group).

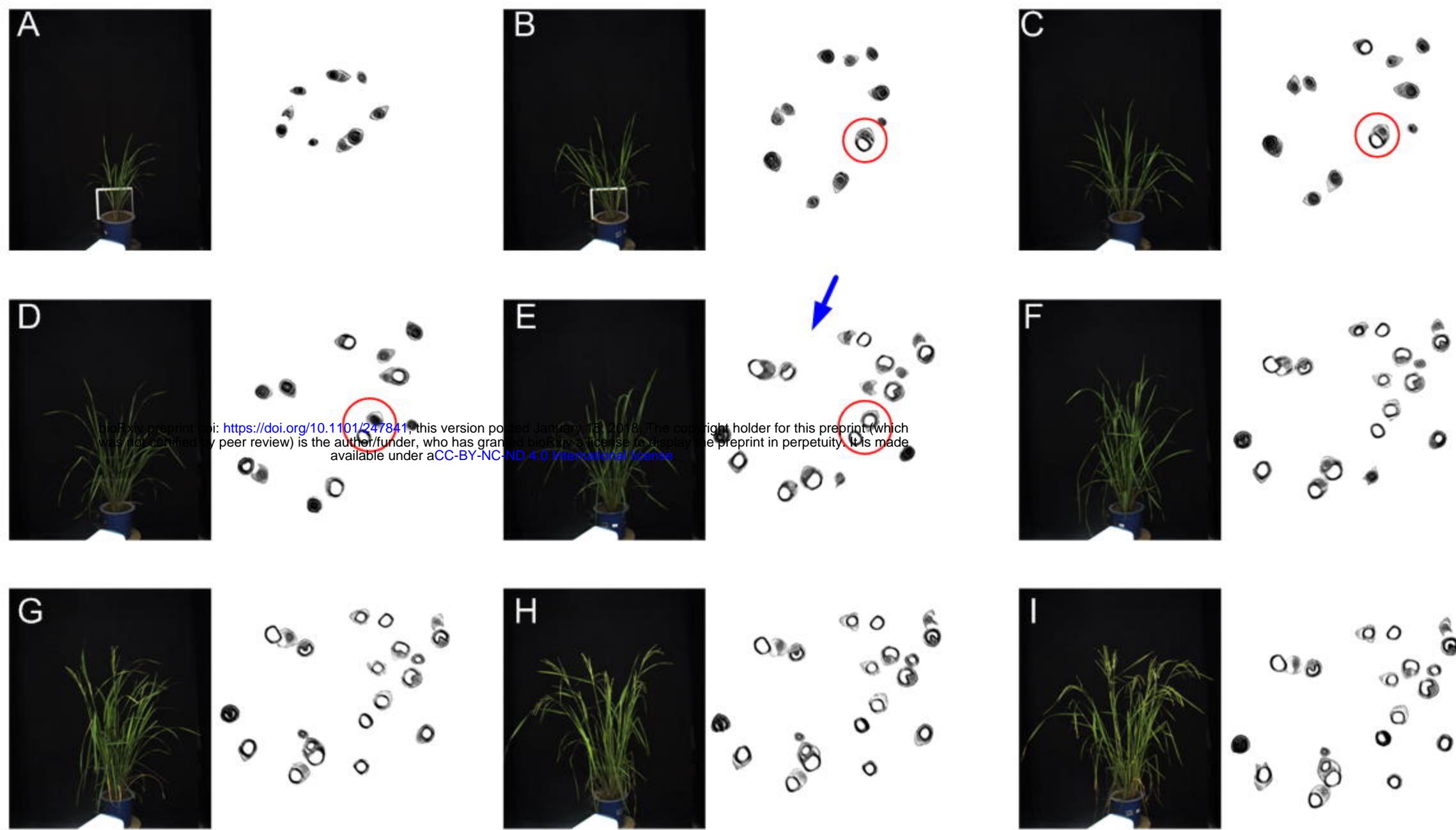
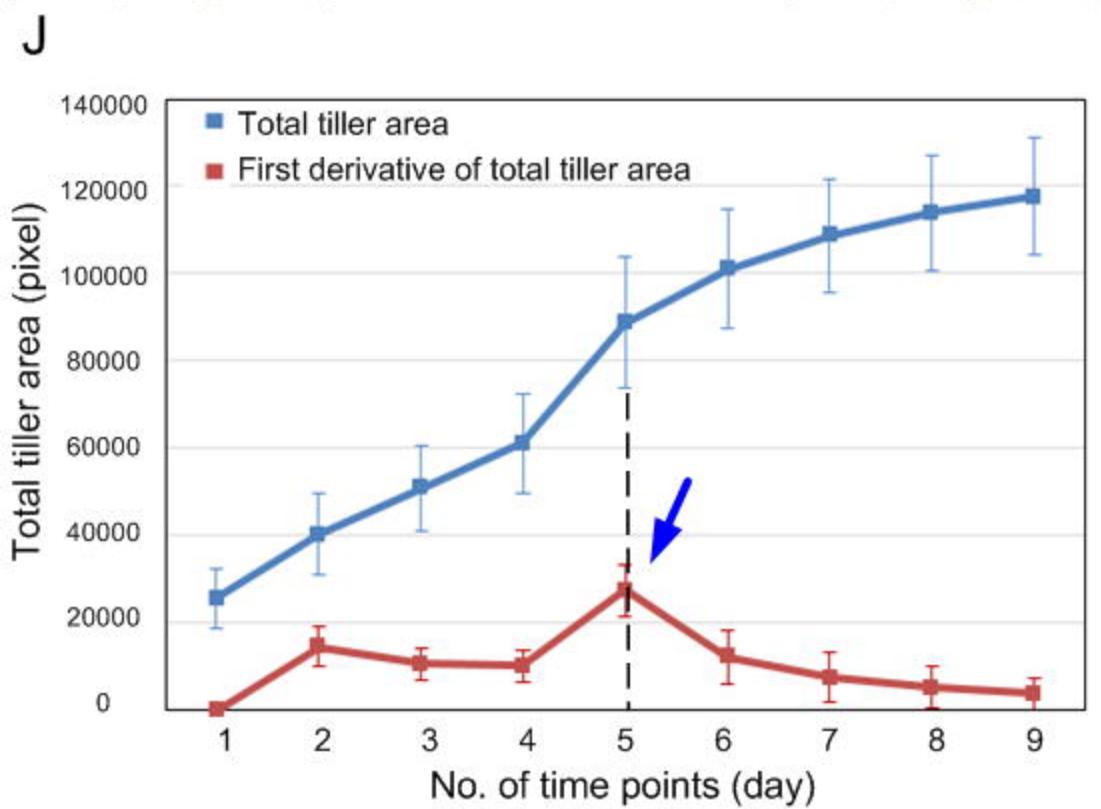
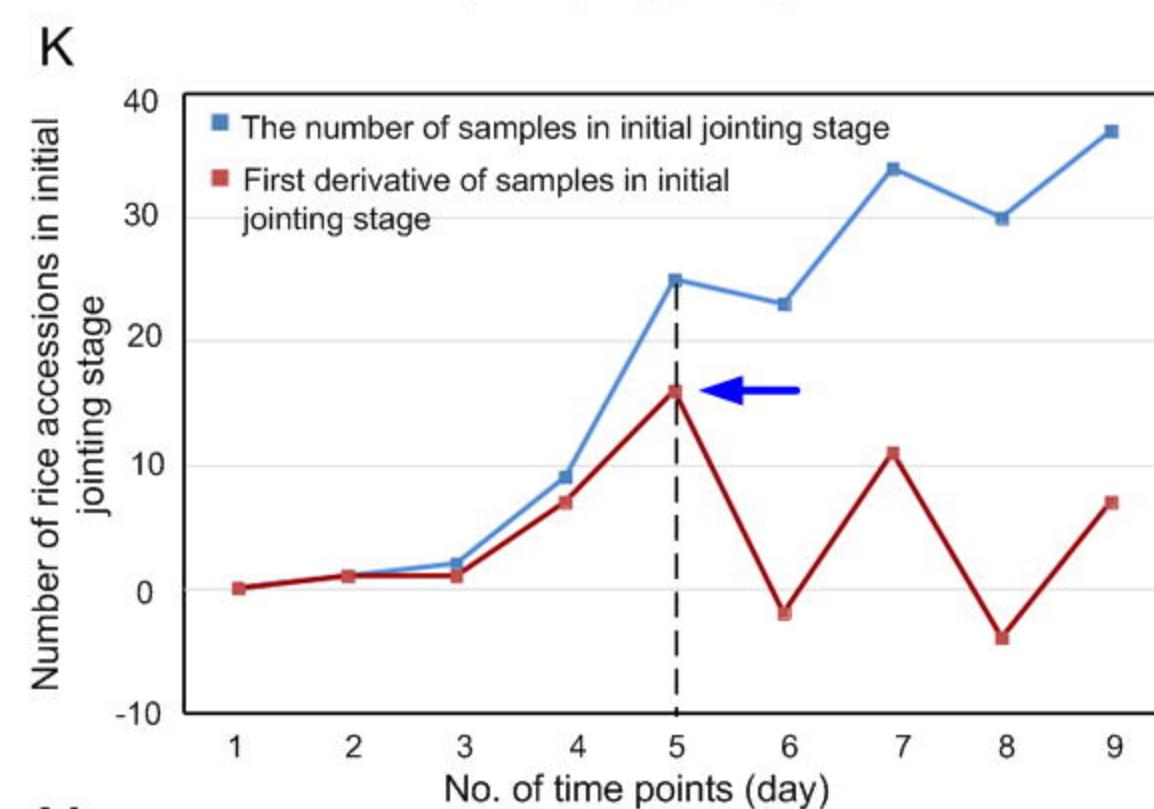
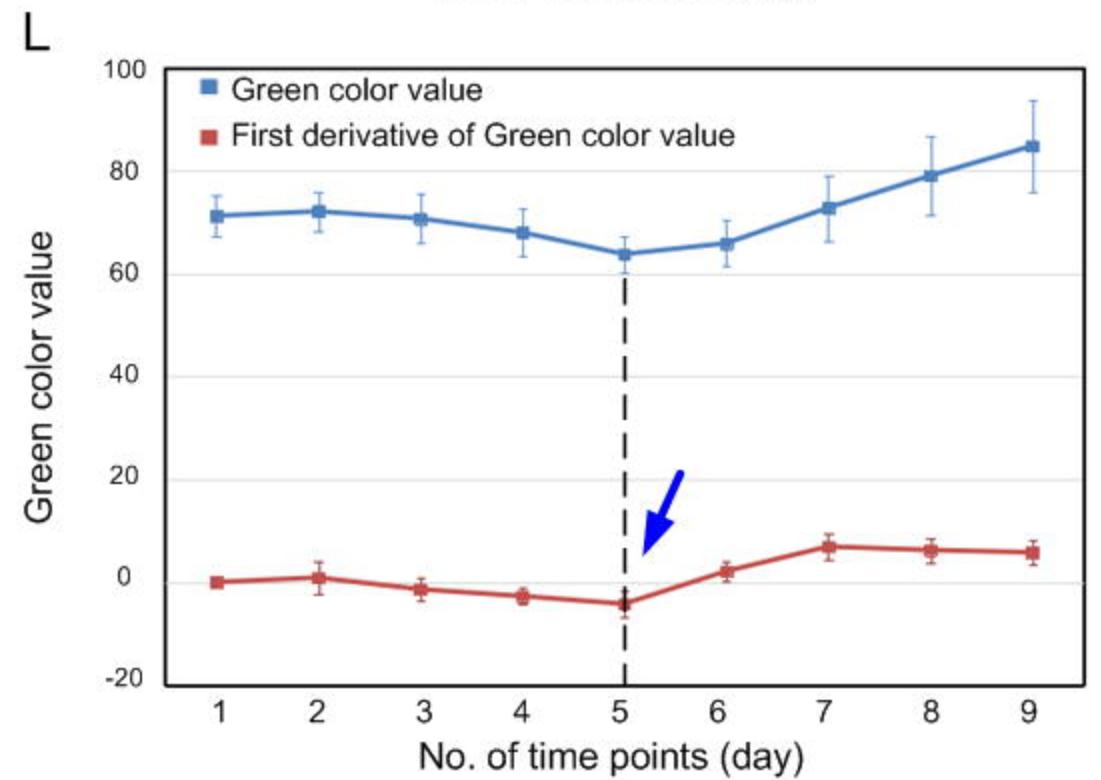
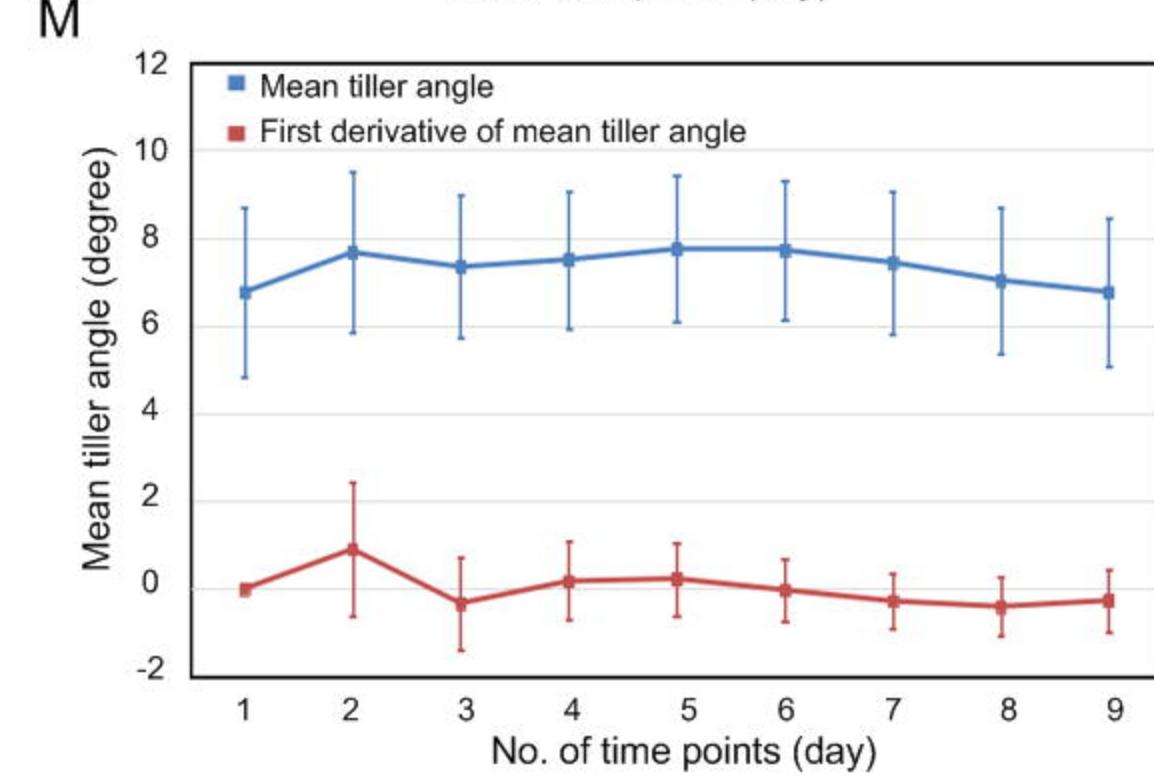


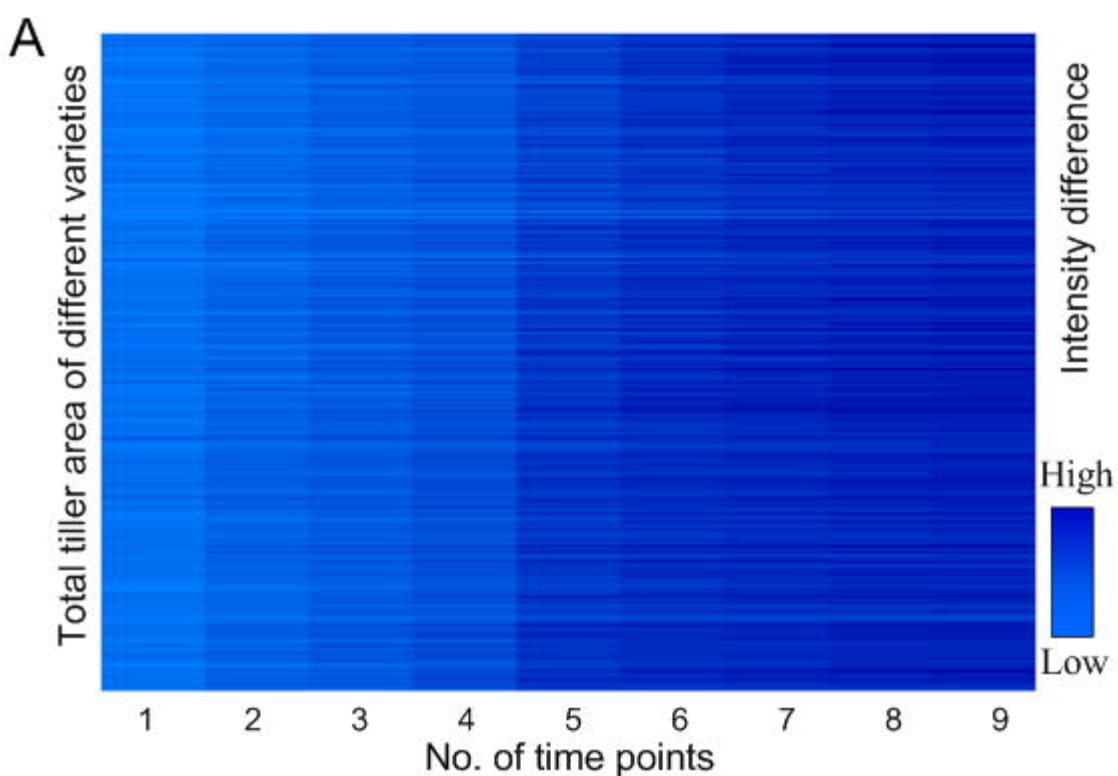
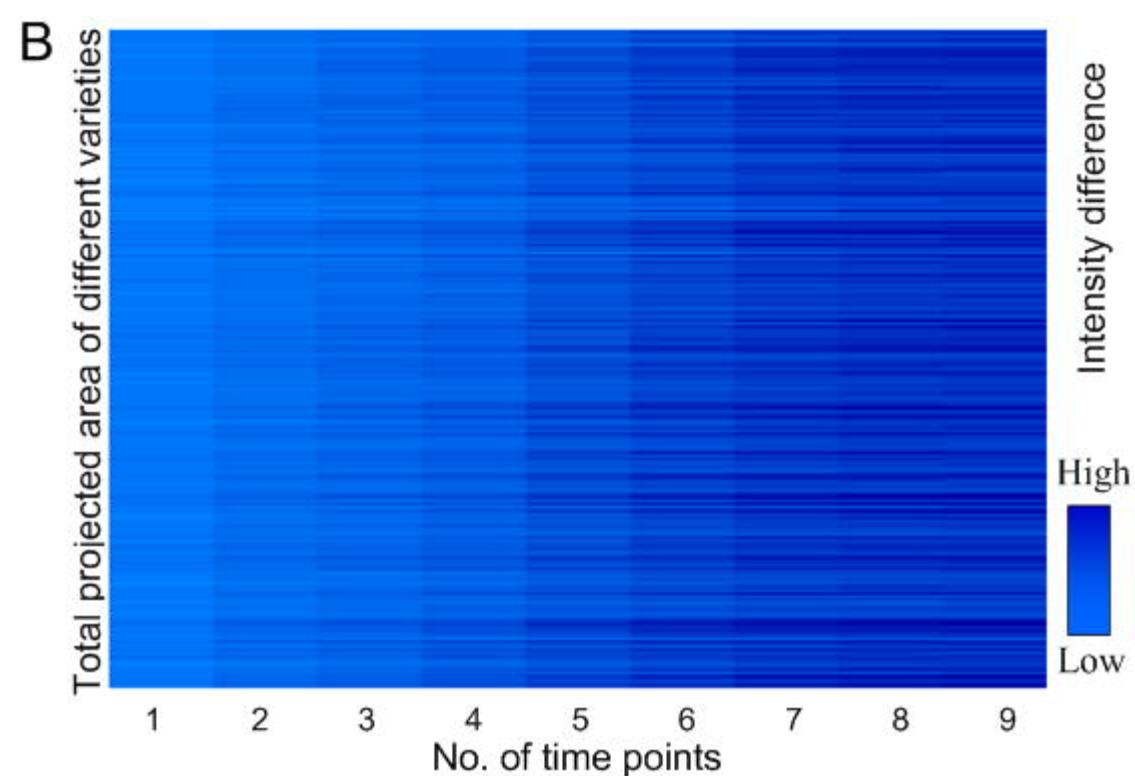
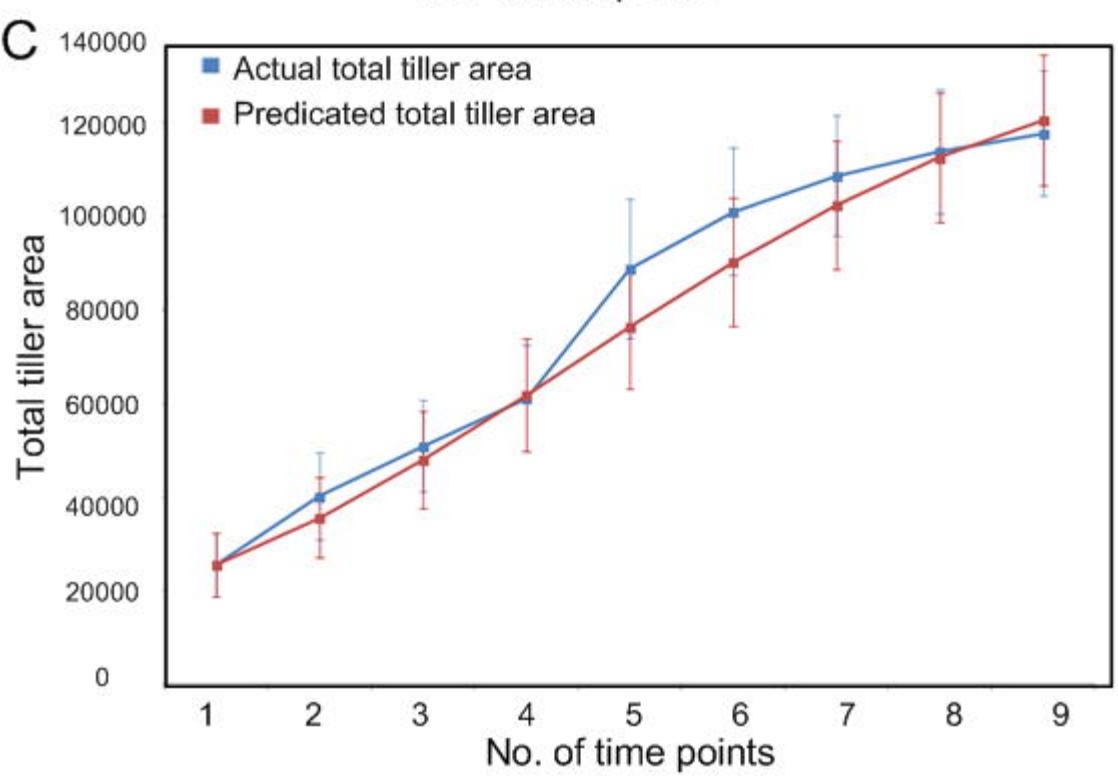
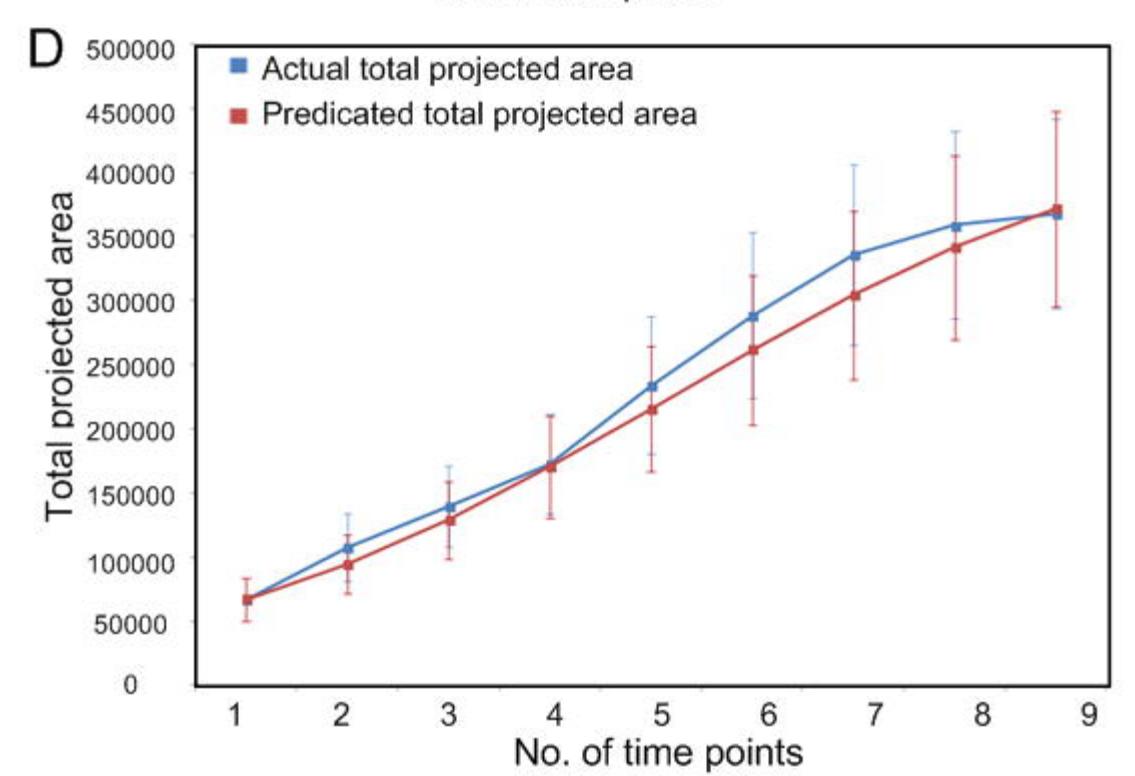
682

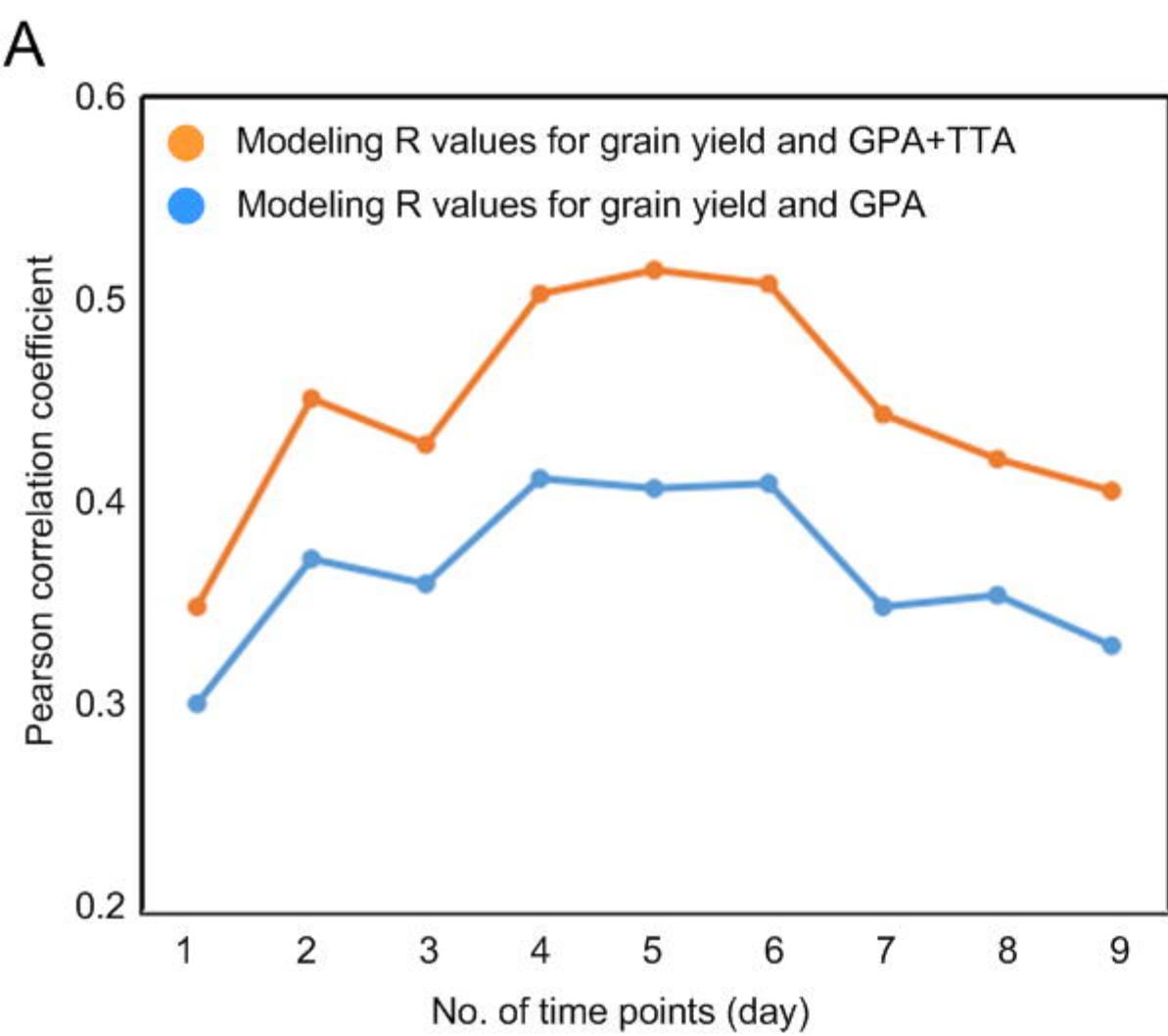
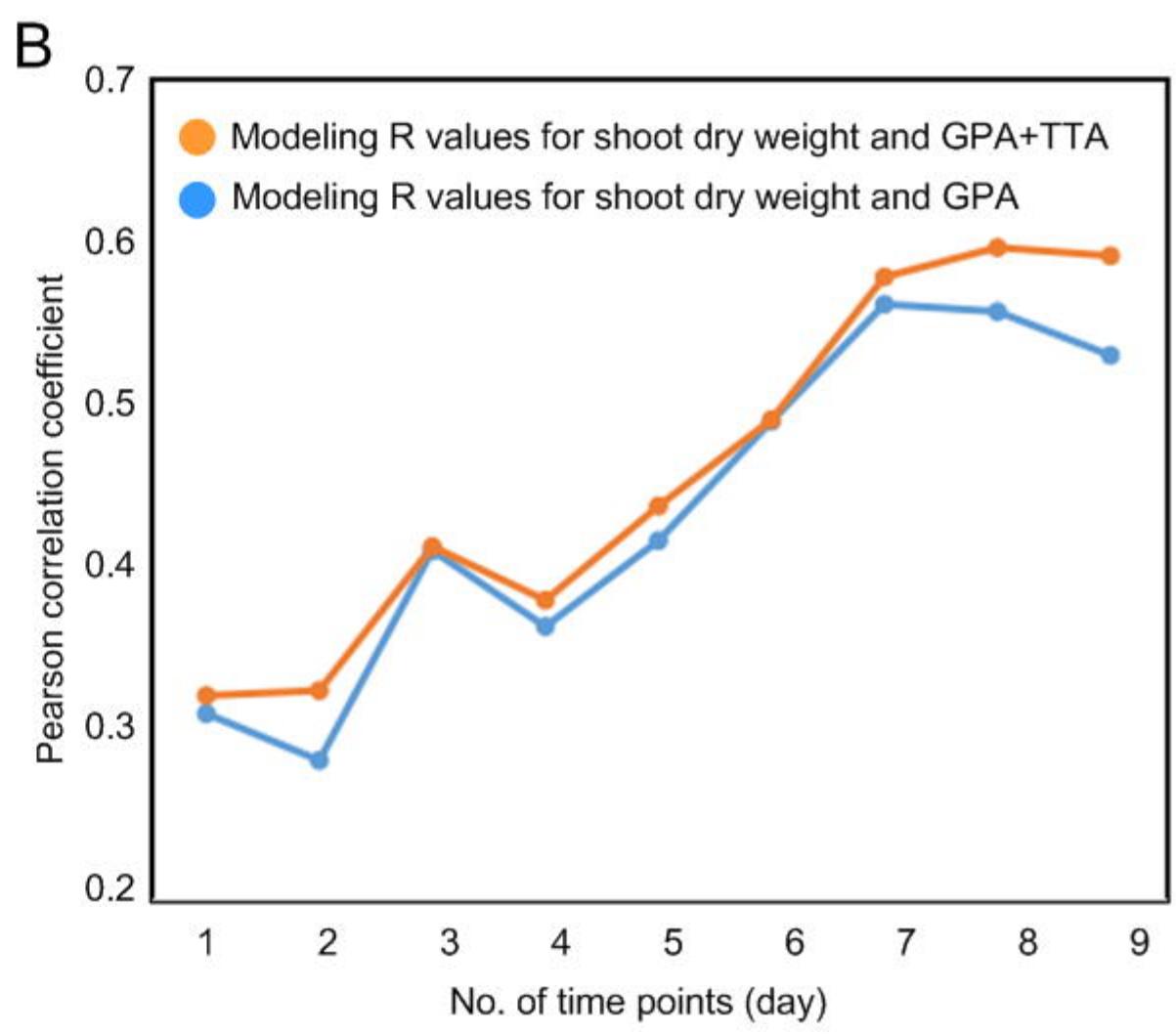
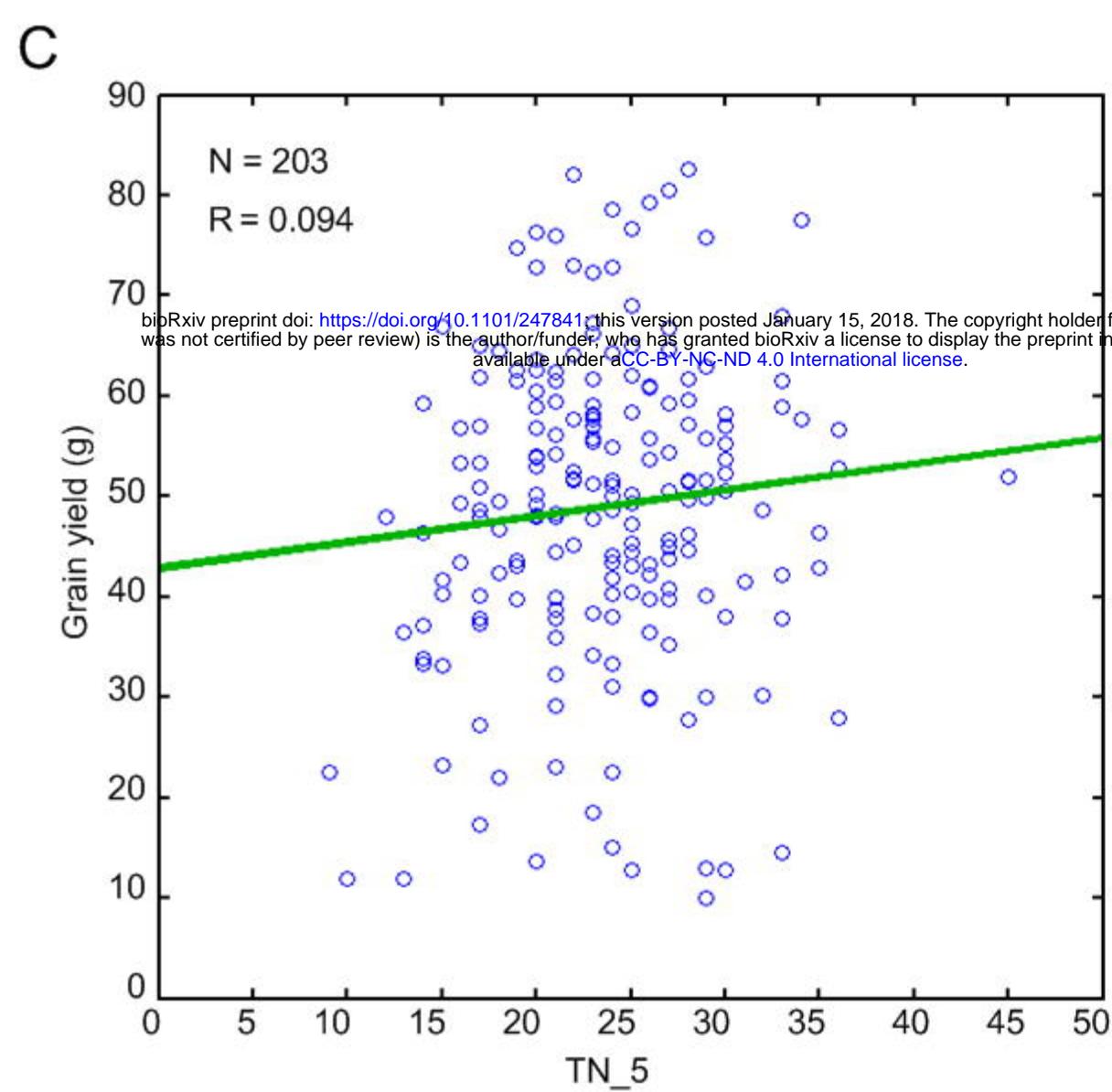
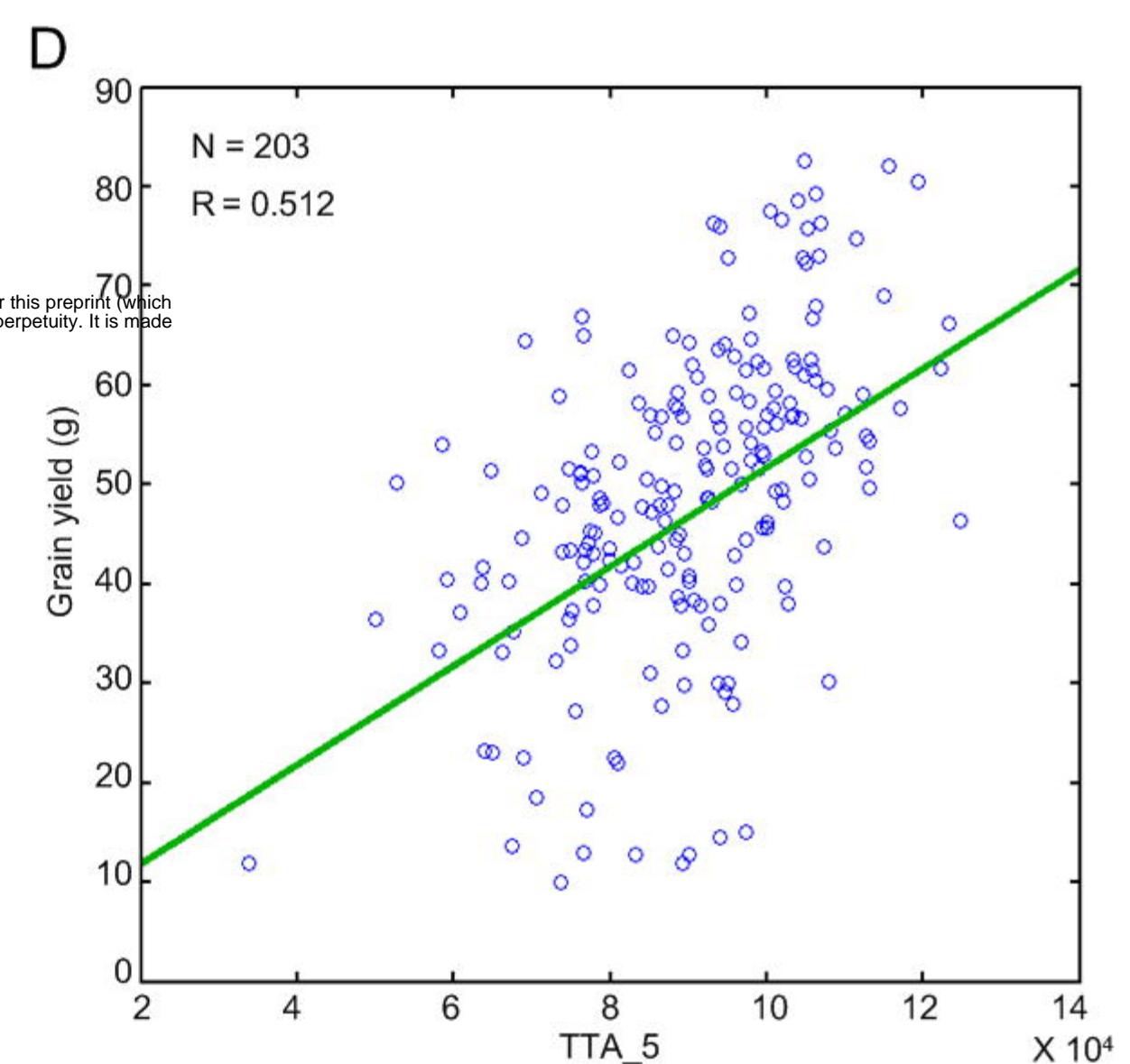
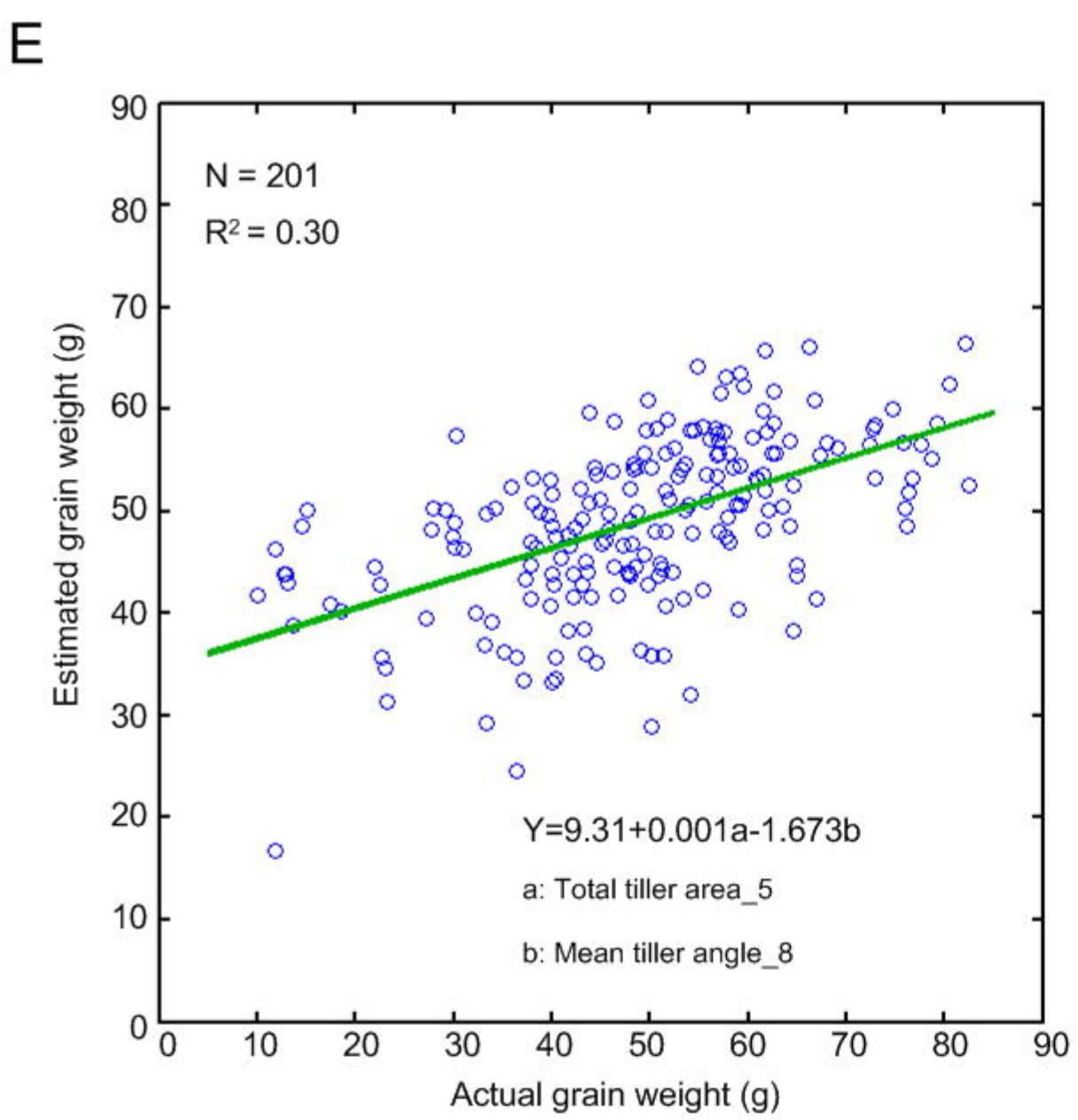
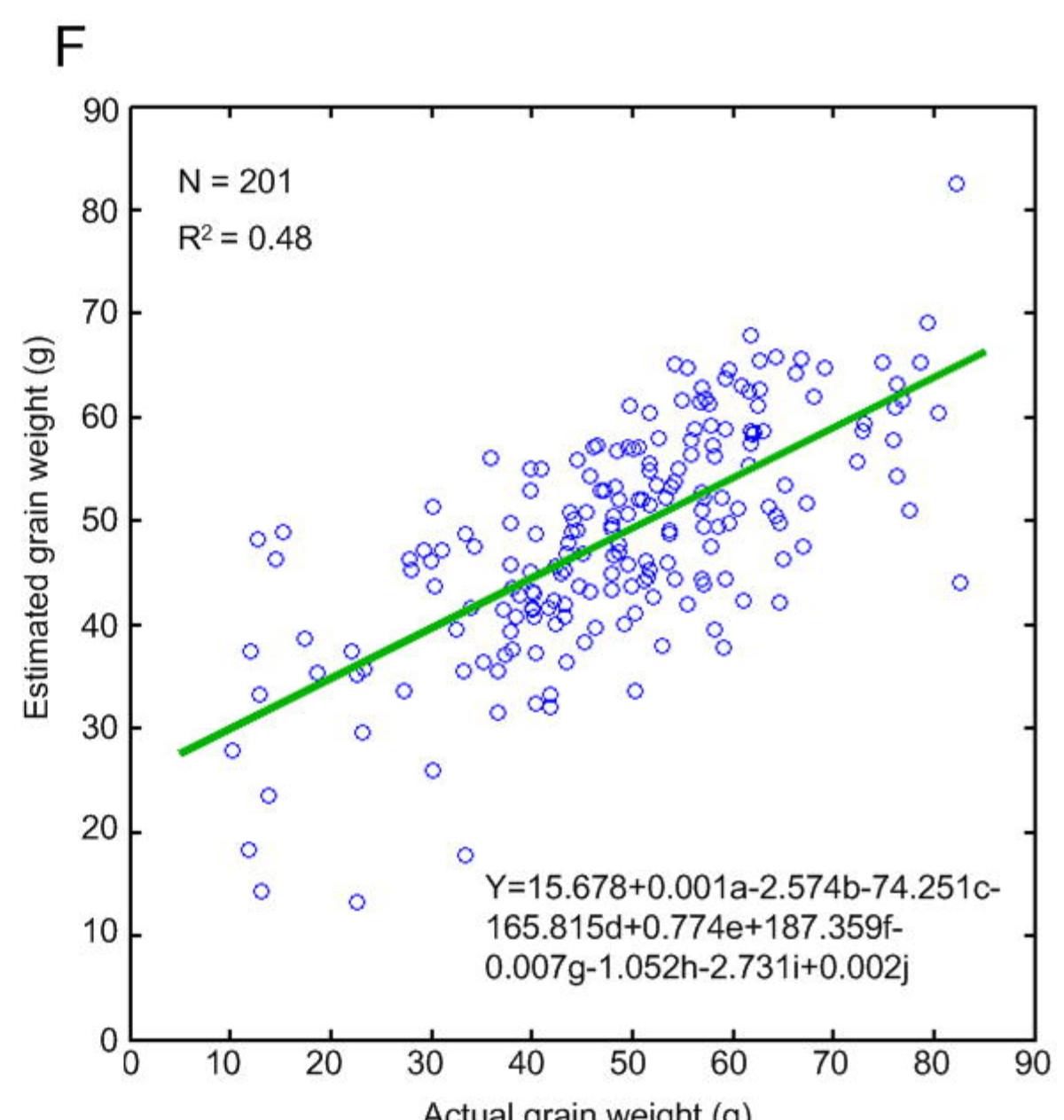
683 **Figure 8 Co-localized loci associated with traits measured by micro-CT-RGB and**
684 **yield.** (A) The locus on chromosome 4 associated with AGRTTA_5 measured by
685 micro-CT and yield. (B) The locus on chromosome 6 associated with AGRTPA_4
686 measured by RGB and yield.

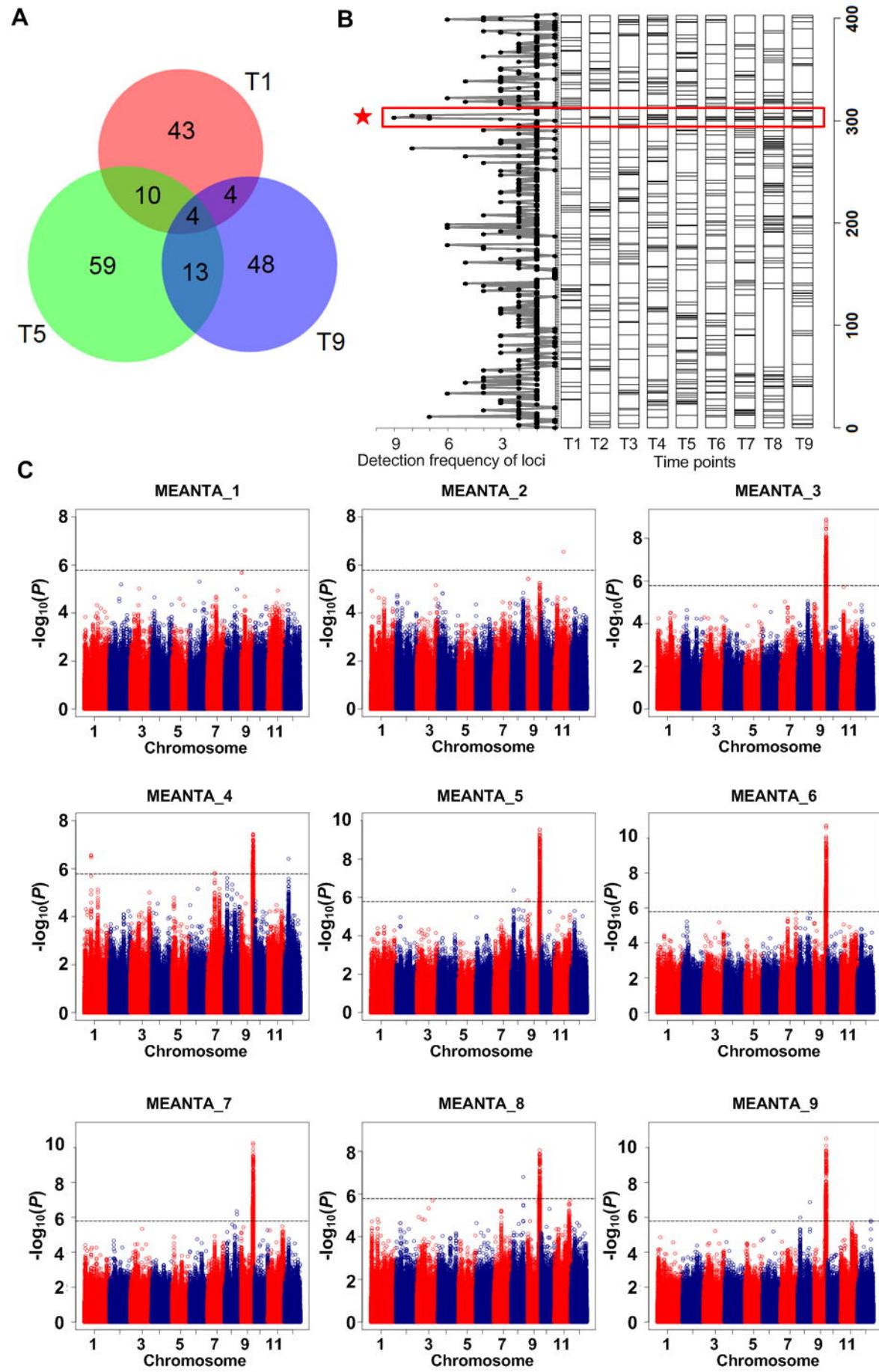


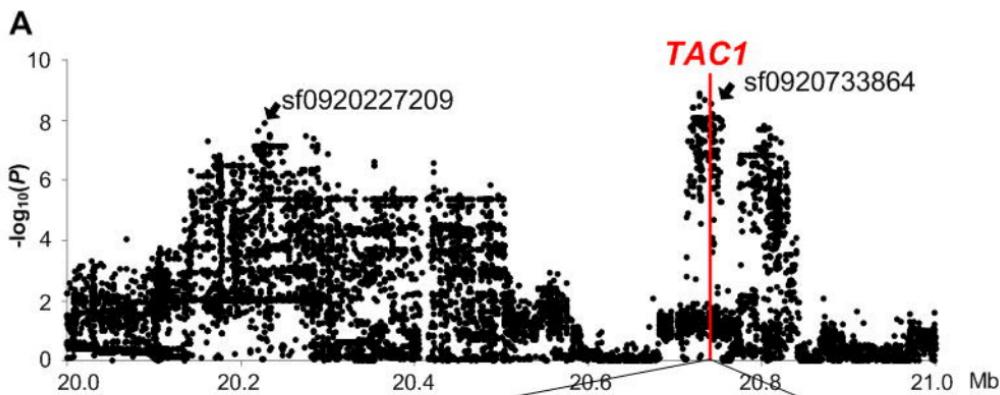
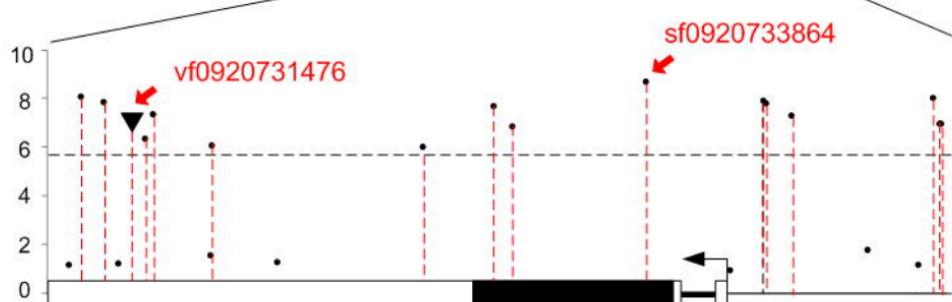
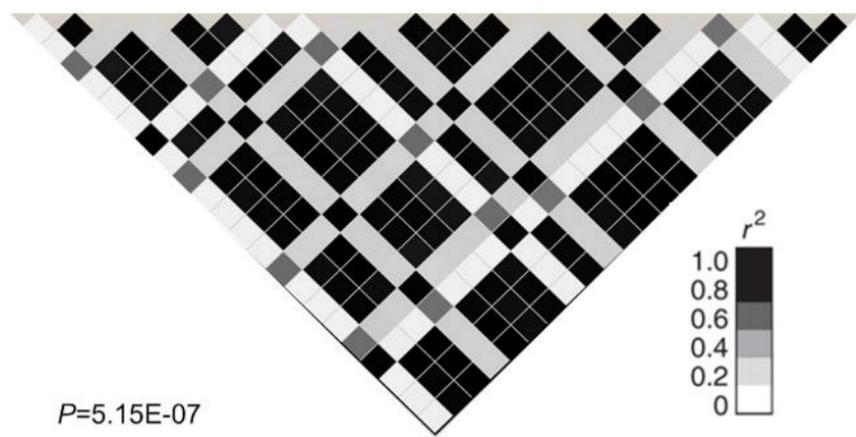
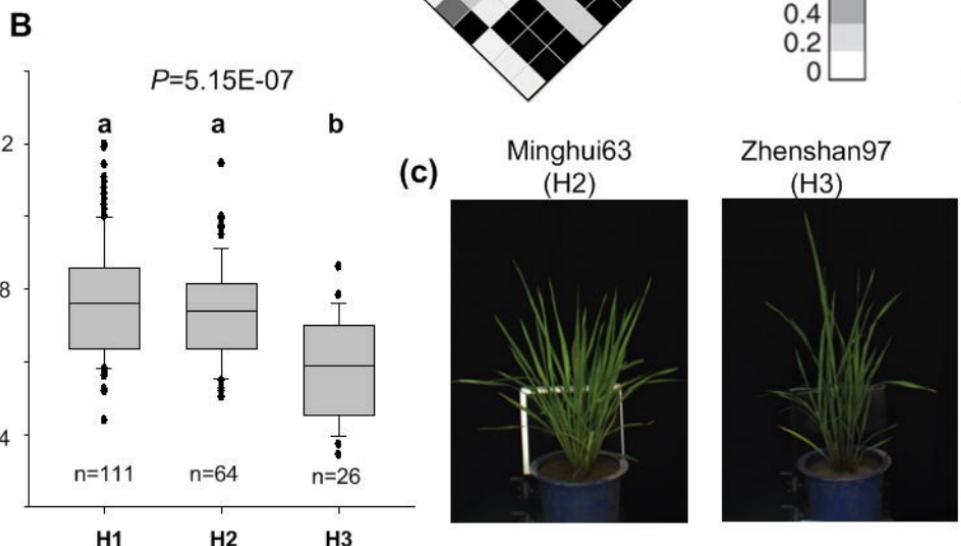


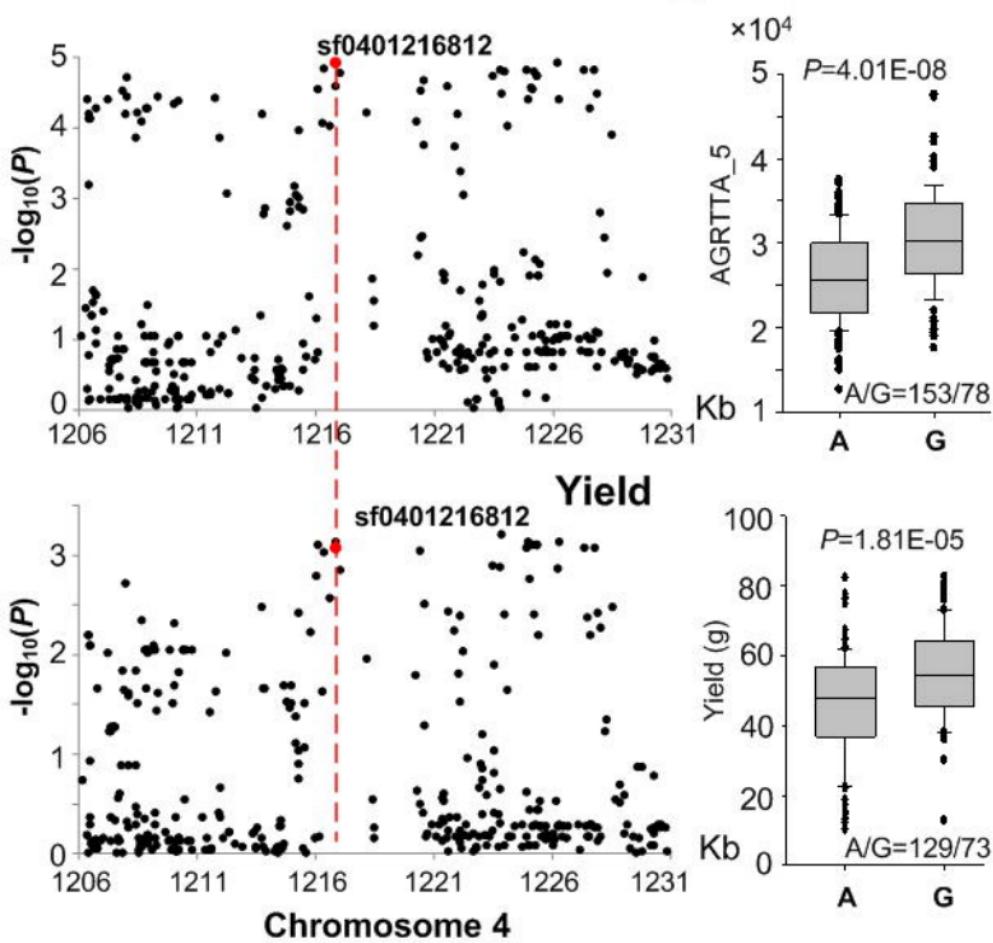










A**AGRRTA_5****B****AGRTPA_4**