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Highlight: 28 

Combining high-throughput micro-CT-RGB phenotyping facility and genome-wide 29 

association study to dissect the genetic architecture of rice tiller development by using 30 

the indica subpopulation. 31 

 32 

Abstract 33 

  Traditional phenotyping of rice tillers is time consuming and labor intensive and 34 

lags behind the rapid development of rice functional genomics. Thus, dynamic 35 

phenotyping of rice tiller traits at a high spatial resolution and high-throughput for 36 

large-scale rice accessions is urgently needed. In this study, we developed a 37 

high-throughput micro-CT-RGB (HCR) imaging system to non-destructively extract 38 

730 traits from 234 rice accessions at 9 time points. We used these traits to predict the 39 

grain yield in the early growth stage, and 30% of the grain yield variance was 40 

explained by 2 tiller traits in the early growth stage. A total of 402 significantly 41 

associated loci were identified by GWAS, and dynamic and static genetic components 42 

were found across the nine time points. A major locus associated with tiller angle was 43 

detected at nine time points, which contained a major gene TAC1. Significant variants 44 

associated with tiller angle were enriched in the 3'-UTR of TAC1. Three haplotypes 45 

for the gene were found and tiller angles of rice accessions containing haplotype H3 46 

were much smaller. Further, we found two loci contained associations with both 47 

vigor-related HCR traits and yield. The superior alleles would be beneficial for 48 

breeding of high yield and dense planting. 49 

Keywords: micro-CT-RGB, GWAS, high-throughput, plant phenomics, rice tiller, 50 

tiller traits. 51 

 52 

Introduction 53 

  Rice is one of the most important food crops both in China and worldwide (Zhang, 54 

2008). Selecting plants with the ideal tiller structure is a key issue for domesticating 55 

rice and improving its yield (Wang et al., 2008). With the rapid development of 56 
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functional genomics and molecular breeding, rice researchers and breeders often need 57 

to screen thousands of lines in a short time for the targeted phenotypic traits under 58 

different growth conditions (Fiorani and Schurr, 2013). However, traditional 59 

phenotyping, particularly tiller measuring, is time consuming and labor intensive and 60 

lags behind the development of rice genomics (Houle et al., 2010; Furbank et al., 61 

2011). To bridge the gap, progress in high-throughput phenotyping technology is 62 

required to accelerate gene discovery and rice breeding (Huang et al., 2013; Spalding 63 

et al., 2013). 64 

  Over the past 20 years, many non-destructive and high-throughput phenotyping 65 

methods have been constructed to obtain plant phenotypic data. These methods 66 

include shoot phenotyping platform in greenhouse such as TraitMill (Reuzeau et al., 67 

2005), PHENOPSIS (Bacmolenaar et al., 2015), Phenoscope (Sébastien et al., 2013), 68 

Scanalyzer 3D (Junker et al., 2014), root phenotyping in greenhouse such as 69 

GROWSCREEN-Rhizo(Nagel et al., 2012), GiA Roots and Rootowork (Topp et al., 70 

2013), field phenotyping platform such as BreedVision (Busemeyer et al., 2013), and 71 

unmanned aerial vehicles (Berni et al., 2009). With rapid progress in photonics, 72 

several novel imaging techniques have been adopted in crop phenotyping. These 73 

techniques include near-infrared imaging to estimate plant disease (Bock et al., 2010), 74 

stereo camera systems to quantify rape leaf traits (Xiong et al., 2017), fluorescent 75 

imaging to diagnose biotic or abiotic stresses in horticulture (Gorbe et al., 2004), 76 

hyperspectral imaging to predict the above-ground biomass of individual rice plants 77 

(Fenget al., 2013), 3D laser scanners to reconstruct and analyze deciduous saplings 78 

(Delagrange et al., 2011), PET to dissect dynamic changes in plant structure and 79 

function (Jahnke et al., 2009), MRI to analyze belowground damage to sugar beets 80 

(Hillnhutter et al., 2012), and X-ray imaging to quantify roots in soil (Flavel et al., 81 

2012). However, little effort has been made in the dynamic phenotyping of rice tiller 82 

inner structures at high spatial resolution and high-throughput. 83 

The rapid development of high-throughput phenotyping technology has 84 

accelerated the genetic mapping of important agronomic traits in crops. With the 85 

precision field phenotyping platform, QTLs (quantitative trait loci) for controlling 86 
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biomass were identified in triticale (Busemeyer et al., 2013). The panicle-related 87 

image-analysis pipeline PANoram，promoted the genetic dissection of rice panicle 88 

traits (Crowell et al., 2014). With abundant genetic variations in natural populations, 89 

combinations of high-throughput phenotyping and genome-wide association studies 90 

(GWAS) have been conducted to reveal the natural genetic variation and to dissect 91 

the genetic architecture of complex traits, such as biomass, grain yield, leaf traits, 92 

panicle, and salinity tolerance (Yang et al., 2014; Yang et al., 2015; Al-Tamimi et al., 93 

2016; Crowell et al., 2016).  94 

Tiller numbers and angles are two key components of plant architecture that 95 

affect rice grain yield (Springer, 2010). Tiller number largely determines panicle 96 

number, a key factor in yield. Many tiller-related genes have been identified in 97 

recent years, such as MOC1(Li et al., 2003), OsTB1(Takeda et al., 2003), and IPA1 98 

(Jiao et al., 2010). These genes are involved in the initiation and outgrowth of 99 

axillary meristems and in the auxin and strigolactone signaling pathway that controls 100 

rice tillering (Li et al., 2003; Takeda et al., 2003; Guo et al., 2013). miRNAs are also 101 

involved in rice tillering by regulating the expression of target genes (Xia et al., 102 

2012; Liang et al., 2014). MOC1, which was first isolated and characterized in the 103 

control of rice tillering, positively regulates tiller number by initiating axillary buds 104 

and promoting their outgrowth (Li et al., 2003). Tiller angle, which determines the 105 

plant density, has undergone domestication and improvement. Small tiller angles 106 

make plants more efficient in photosynthesis; therefore, dense planting is needed 107 

during rice cultivation (Yu et al., 2007). Several tiller-angle related genes, such as 108 

TAC1, TAC3, OsLIC, and PROG1, have been identified and characterized (Yu et al., 109 

2007; Jin et al., 2008; Wang et al., 2008; Dong et al., 2016). TAC1 is a major gene 110 

that positively controls tiller angle by forward genetics (Yu et al., 2007). A variant in 111 

the 3'-UTR changes the mRNA level, and higher mRNA levels contribute to a larger 112 

angle. Based on previous studies, nucleotide diversities in TAC1 are low, and only 113 

one SNP in the coding region was found, resulting in synonymous substitution 114 

among 113 cultivated rice varieties. The small-angle allele of TAC1 only exists in the 115 

japonica accessions (Jiang et al., 2012). 116 
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  In the present work, we developed a high-throughput micro-CT-RGB (HCR) 117 

imaging system to extract tiller-related phenotypic traits with high spatial resolution 118 

(97 μm) and high efficiency (~310 pots per day). A rice panel containing 234 119 

accessions were phenotyped non-destructively at 9 time points during the tillering 120 

process, and 730 traits were extracted by HCR and used to perform GWAS. Our 121 

results demonstrate that combining HCR and GWAS provides new insight into the 122 

genetic basis of rice tillering and plant architecture. 123 

 124 

Materials and Methods 125 

Plant material and experimental design 126 

Considering the strong population differences between indica and japonica accessions 127 

and the high diversity in indica subpopulations (Huang et al., 2010), 234 indica 128 

accessions were used in our study. For each accession, one rice plant was detected by 129 

the HCR imaging system. The genotype information for the 234 accessions was 130 

retrieved from the website "RiceVarMap" (http://ricevarmap.ncpgr.cn/). The detailed 131 

information from the 234 rice accessions was obtained via the website 132 

(http://ricevarmap.ncpgr.cn/cultivars_information/). The seeds from the 234 rice 133 

accessions were sown in the field on 25 May 2015 and transplanted to pots on 16 June 134 

2015. Each pot was filled with 5 kg soil (pH =5.45, total nitrogen: 0.241 g/kg, total 135 

potassium: 7.20 g/kg, total phosphorus: 0.74 g/kg, alkali-hydrolyzable nitrogen: 136 

144.06 mg/kg, available potassium: 188.64 mg/kg, available phosphorus: 16.81 mg/kg, 137 

organic matter: 46.55 g/kg). During the tillering stage (41~67 days after sowing), the 138 

234 rice accessions were automatically measured every three days and measured 9 139 

times using HCR. After harvest, 203 rice plants were threshed and then inspected by 140 

YTS (yield traits scorer, Yanget al., 2014) to extract grain yield. Thirty-five rice plants 141 

and standard plastic pipes were manually measured (Supplementary Fig. S1). 142 

 143 

Image acquisition of HCR 144 

The control flow of image acquisition included the following steps (Supplementary 145 

Fig. S2): (1) the computer’s communication with the PLC and RGB camera was 146 
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checked; (2) the X-ray flat panel detector was opened; (3) the working mode of the 147 

X-ray flat panel detector was selected; (4) the link with the X-ray flat panel detector 148 

was checked; (5) the mode information for the X-ray flat panel detector was retrieved; 149 

(6) the X-ray flat panel detector was used to grab images; (7) X-ray images and RGB 150 

images were obtained simultaneously; (8) X-ray images and RGB images were stored 151 

simultaneously; (9) X-ray image acquisition was stopped; (10) the X-ray flat panel 152 

detector link was closed; (11) the RGB camera and serial port were closed. The HCR 153 

image acquisition was implemented with LabVIEW 8.6 (National Instruments, US). 154 

 155 

Image analysis and traits extraction by HCR 156 

Supplementary Fig. S3 and Supplementary Note S1-10 show the image analysis and 157 

trait extraction by the HCR system. Before image collection, the micro-CT system 158 

was off-set-calibrated and gain-calibrated. After calibration, the micro-CT system 159 

acquired 380 images while the rice plant rotated 360°. One row of X-ray projected 160 

images of the same height as the 380 X-ray projected images, was selected to form a 161 

sinogram, covering 380 orientations (step 0.6°, entire angle 0.6°×380, ~220°). Using 162 

the FBP algorithm and GPU acceleration technique, the inner structure of the rice 163 

tiller was reconstructed. By removing the small areas and regions with a predefined 164 

threshold, we counted 14 tiller traits, including tiller number, size and shape. Finally, 165 

when 2 transverse tiller images were reconstructed at 2 different heights (row 600 and 166 

row 650), 3 rice angle traits (mean, max, and standard deviation of the tiller angles) 167 

was calculated using the spatial location of the central point of the rice tiller images. 168 

Using the image analysis for the RGB images (Yang et al., 2014), 51 morphological 169 

features, 1 color trait, and 6 histogram features were calculated. 170 

 171 

Operation of the HCR 172 

As shown in Supplementary Fig. S4 and Supplementary Fig. S5, the HCR operational 173 

procedure included the following steps: (1) the chiller was turned on and the water 174 

temperature maintained at 20℃; (2) offset calibration was performed; (3) gain 175 

calibration was performed; (4) one pot-grown rice plant was transported to the 176 
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rotation platform; (5) the X-ray source was turned on and the inspection was started; 177 

(6) 380 CT images and 20 RGB images were obtained; (7) the next pot-grown rice 178 

plant was transported to the rotation platform; (8) when all the tasks were complete, 179 

the image acquisition software designed using LabVIEW was stopped. 180 

 181 

Growth modeling and yield predication using phenotypic traits 182 

To test the prediction ability of the different models for TTA and TPA, 6 models, 183 

including linear, power, exponential, logarithmic, quadratic, and logistic, were built 184 

and compared. The modeling results were evaluated by comparing the R2, MAPE, and 185 

SDAPE values. The statistical analyses of the 6 TTA and TPA models (linear, power, 186 

exponential, logarithmic, quadratic, and logistic) were developed with LabVIEW 8.6 187 

(National Instruments, Inc., USA). To evaluate the variance explained by the rice 188 

grain yield in the early growth stages, linear stepwise regression analysis was 189 

performed with the rice tiller traits using SPSS software (Statistical Product and 190 

Service Solutions, Version 13.0, SPSS Inc., USA). 191 

 192 

Genome-wide association study 193 

A total of 2,863,169 single nucleotide polymorphisms (SNPs) with a minor allele 194 

frequency ≥0.05 were used for GWAS, and the number of accessions with minor 195 

alleles for the SNPs was more than 6. Information on these SNPs can be accessed 196 

from the 'RiceVarMap' database (http://ricevarmap.ncpgr.cn/). As in previous studies, 197 

the genome-wide significance threshold was set at 1.66×10-6 to control for false 198 

positives (Yang et al., 2015). A mixed-model approach with the factored spectrally 199 

transformed linear mixed models (FaST-LMM) program was used for the GWAS 200 

(Lippert et al., 2011). The kinship coefficient (K) values were defined as the 201 

proportion of identical genotypes for the 188,165 evenly distributed random SNPs 202 

(Xie et al., 2015). Lead SNPs for each trait were determined using the 'clump' 203 

function of Plink (Purcell et al., 2007). Potential candidate genes were obtained using 204 

the 'clump-range' function of Plink (Purcell et al., 2007). Considering the strong LD 205 
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(linkage disequilibrium) of rice, a region in which the distance of adjacent pairs of 206 

associated SNPs was less than 300 kb was defined as the locus (Yang et al., 2015). 207 

Haplotypes were determined based on the significant genetic variants.  208 

 209 

Results 210 

High-throughput micro-CT-RGB phenotyping system (HCR) 211 

The bi-modal imaging system, including micro-CT and RGB imaging, was developed 212 

to non-destructively extract 74 phenotypic traits synchronously. Among these 74 traits, 213 

tiller number, shape, area, and angle were extracted by CT images, and plant 214 

architecture, texture, and color traits, and digital biomass were extracted by RGB 215 

images. The definitions and abbreviations of the phenotypic traits are shown in 216 

Supplementary Table S1. The bi-modal imaging system consists of 9 main elements: 217 

an X-ray source (Nova600, OXFORD, UK), an X-ray source chiller (Nova600, 218 

OXFORD, UK), an X-ray flat panel detector (PaxScan 2520DX, VARIAN, USA), a 219 

RGB camera (AVT Stingray F-504B, Allied Vision Technologies Corporation, GER), 220 

a white light, a rotation platform (MSMD022G1U, Panasonic, Japan), a lead chamber, 221 

a computer (M6600N, Lenovo, CHN), and a PLC controller (CP1H, OMRON 222 

corporation, Japan) (shown in Fig. 1A, B). The configuration of the HCR system is 223 

provided in Supplementary Fig. S6, and shows that the CT system’s field of view 224 

(FOV) is 149 mm (height) × 186 mm (width) and the spatial resolution is 97 μm. The 225 

RGB imaging system’s FOV is 1607mm (height) × 1347 mm (width) and the spatial 226 

resolution is 656 μm. The main specifications of the HCR inspection unit are shown 227 

in Supplementary Table S2. 228 

  When the rice plant is rotated on the rotation platform (Fig. 1C), 20 color images 229 

and 380 X-ray projected images (Fig. 1D) in different angles are acquired 230 

synchronously. All phenotypic traits were obtained using the following steps: (1) one 231 

row of the X-ray projected image at the same height as the 380 X-ray projected 232 

images was selected to form a sonogram (Fig. 1E) covering 380 orientations (step 233 

0.6°, entire angle 0.6°×380, ~220°); (2) a conventional filtered back-projection (FBP) 234 

algorithm was applied to obtain the reconstructed transverse section image of the rice 235 
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tiller (Fig. 1F); (3) after image segmentation and small particle removal (Fig. 1G), 236 

tiller number, size and shape were counted (Fig. 1H); (4) when 2 transverse tiller 237 

images were reconstructed at 2 different heights (row 600 and row 650), the rice angle 238 

was calculated using the spatial location of the central point of the rice tiller images 239 

(Fig. 1I); (5) finally, 57 phenotypic traits, including plant color, plant height, digital 240 

biomass, and plant compactness, were obtained from the RGB images and analyses. A 241 

database, including the RGB and micro-CT images and the phenotypic traits, was set 242 

up (Fig. 1J). The reconstructed images of one rice sample (C055, Sanbaili) at different 243 

heights (10.7-54.3 mm distance from the soil surface) is shown in Supplementary 244 

Video S1. The image acquisition and analysis pipeline were developed using 245 

LabVIEW 8.6 (National Instruments, US), and the details were described in the 246 

Methods section. 247 

  As shown in Supplementary Fig. S4, the time taken for one CT image was 0.6 248 

seconds, and 380 CT images were acquired for each plant; thus, approximately 228 249 

seconds (0.6 seconds × 380) were required to complete the CT inspection of one 250 

pot-grown rice plant. The time taken for one RGB image was 0.6 seconds and 20 251 

RGB images were acquired synchronously. The time taken for manual transfer is 252 

approximately 50 seconds. Therefore, when continuously operated for 24 hours each 253 

day, the HCR system’s total throughput is 310 pot-grown rice plants (~278 seconds 254 

per plant). 255 

 256 

Performance evaluation of tiller traits extraction 257 

To evaluate the accuracy of the micro-CT unit, 8 plastic round pipes (fixed in one pot 258 

as shown in Supplementary Fig. S7) were measured manually by two people 259 

(phenotypic traits are shown in Supplementary Table S3) and automatically measured 260 

10 times repeatedly by the micro-CT unit (phenotypic traits are shown in 261 

Supplementary Table S4). The mean absolute percentage error (MAPE) of the 262 

automatic versus manual measurements were 0.02~1.38%, 0~6.38%, and 0.12~1.87% 263 

for tiller diameter, stem wall thickness, and tiller angle, respectively (Fig. 2A). The 264 

computational formulas of MAPE were defined by Eqs. 1. 265 
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 MAPE = 1
n
∑ |xai −xmi |

xmi
× 100%n

i=1                                        (1) 266 

To evaluate the reconstruction quality of the rice tiller, a reconstructed transverse 267 

section image (spatial resolution of 30 μm) using micro-CT and its actual transverse 268 

section image after shearing are shown in Fig. 2B. In addition, there was a trade-off 269 

between the CT image resolution and CT scan area. To scan all the rice tillers, the 270 

spatial resolution was set at 97 μm and the FOV of the CT system was 149 mm 271 

(height) × 186 mm (width) (Supplementary Fig. S6). Next, 35 rice plants 272 

(Supplementary Table S5) were measured both automatically and manually (repeat 273 

twice) to verify the measuring accuracy using micro-CT. The R2 values of the manual 274 

measurements versus automatic measurements were 0.857, 0.959, and 0.995 for tiller 275 

number, tiller diameter, and stem wall thickness, respectively (Fig. 2C-E).  276 

 277 

Phenotyping database extracted by HCR at 9 time points 278 

During the tillering stage, 234 rice plants were automatically measured by HCR at 9 279 

different development time points (once every 3 d, starting from 41 ~ 67 d after 280 

sowing). All the phenotypic data and images can be viewed and downloaded via the 281 

link http://plantphenomics.hzau.edu.cn/checkiflogin_en.action and then following 282 

these steps: (1) select ‘rice’; (2) select ‘2015-tiller’ in the year section; (3) select one 283 

of the accession IDs in the ID section and then press ‘search images’; (4) 9 CT images 284 

and 9 side-view color images can be viewed and downloaded; (5) a similar process 285 

can be used to view and download phenotypic traits by pressing ‘search data’. The 286 

detailed procedure for the database is shown in Supplementary Fig. S8. 287 

 288 

Screening the dynamic process of rice growth at the tillering and jointing stages 289 

After all phenotypic images and data were obtained for the 9 time points, we screened 290 

the dynamic process of the rice growth and determined the most active tillering and 291 

initial jointing stages. As illustrated in Fig. 3A-I, 9 side-view RGB images and 9 292 

reconstructed images for each rice plant were obtained for the following image 293 

analysis. The red circle in Fig. 3B-E shows the dynamic tillering and jointing 294 
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processes. At the second time point (Fig. 3B), the first pith cavity appeared, indicating 295 

that this plant progressed into the jointing stage. As illustrated in Fig. 3J, from the 296 

dynamic change of the first derivative of the total tiller area, we can determine the 297 

most active tillering stage, as indicated by the blue arrow with the maximum value of 298 

the first derivative of the total tiller area. The tiller growth of the rice plant during the 299 

first 6 periods was relatively faster than that of the later periods. Similarly, from the 300 

number change of the rice accessions in the initial jointing stage, we can see that the 301 

initial jointing stage was accompanied by the most active tillering stage (Fig. 3K). 302 

Interestingly, the growth curve of the GCV (green color value) before the 5th time 303 

point indicates that the GCV value became smaller (indicating more dark green leaves 304 

with greater nitrogen content), and after the 5th time point, the GCV value became 305 

larger (indicating more light green leaves with less nitrogen) (Fig. 3L). As illustrated 306 

in Fig. 3M, from the dynamic change of first derivative of the mean tiller angle, we 307 

see that the tiller angle showed little change during the tillering stage. 308 

In addition, the dynamic growth curves of 27 representative traits for the tiller and 309 

the entire plant are presented in Supplementary Fig. S9. The first derivation of H 310 

(plant height), W (plant width), and TPA (total projected area of the rice plant) 311 

reached the highest value at the 5th time point, supporting the previous result that the 312 

plant growth reached the highest speed in the active tillering stage (5th time point). 313 

The dynamic growth of one rice accession (C055, Sanbaili) is shown in 314 

Supplementary Video S2. 315 

 316 

Predication of tiller growth and digital biomass accumulation 317 

It would be helpful if we could design a growth model using the phenotypic data 318 

obtained in the early growth stage to predict the final digital biomass. In our previous 319 

study, total projected area (TPA) was correlated with actual biomass (Yang et al., 320 

2014). Beyond the manual tiller number count, the total tiller area (TTA) extracted by 321 

micro-CT can quantify tiller growth more accurately than the tiller number. Fig. 4A, B 322 

show the heatmaps of TTA and TPA for the 234 accessions at 9 different time points. 323 

Here, we tested 6 models (linear, power, exponential, logarithm, quadratic, and 324 
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logistic models) of TTA and TPA at the 9 points. The results were evaluated by 325 

comparing R2, MAPE, and the standard deviation of the absolute percentage error 326 

values (SDAPE). As shown in Supplementary Table S6, the logistic models of TTA and 327 

TPA showed slightly better prediction ability (the R2 was 0.969 and 0.985, the MAPE 328 

and SDAPE were both below 6.5%). The actual results versus predicted results of the 329 

TTA and TPA are shown in Fig.4C and Fig.4D, respectively. 330 

 331 

Predication for rice grain yield and shoot dry weight in the early growth stage 332 

It would benefit rice breeding if we could use the automatically measured phenotypic 333 

traits, particularly the traits measured in the early development stages, to predict the 334 

final grain yield and shoot dry weight. The R value distribution for modeling grain 335 

yield in the 9 different tillering stages is shown in Fig. 5A, which shows that by 336 

adding the total tiller area (TTA), the R range increased from 0.30-0.41 to 0.35-0.51, 337 

particularly at the 5th time point. After the 5th time point, nonfertile tillers began to 338 

grow, providing a possible explanation why the R value decreased. Fig. 5B showed 339 

that the modeling accuracy for the shoot dry weight is improved by adding total tiller 340 

area. Moreover, we also compared the correlation between TN, TTA and grain yield. 341 

The R value of TN_5 versus grain yield was 0.094 (Fig. 5C), and the R value of 342 

TTA_5 versus grain yield was 0.512 (Fig. 5D).  343 

When only 2 phenotypic traits were selected, 30% of the grain yield variance was 344 

explained (Fig. 5E). The two phenotypic traits were both tiller traits, which included 345 

TTA_5 (total tiller area measured at the 5th time point) and MEANTA_8 (mean value 346 

of the tiller angle measured at 8th time point). We found that the rice yield can be 347 

increased by higher TTA_5 and lower MEANTA_8. Up to 48% of the grain yield 348 

variance can be explained by combining 10 traits across all 9 time points (Fig. 5F). As 349 

shown in Supplementary Fig. S10, the R2 value range from 0.34 to 0.46 by combining 350 

from 3 traits to 9 traits.  351 

 352 

Genome-wide association study 353 

We performed GWAS of 732 traits (including 730 traits measured by micro-CT-RGB, 354 
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yield and biomass) and identified 402 significantly associated loci (Supplementary 355 

Data S1). In total, 182 and 332 loci were associated with traits measured by micro-CT 356 

and RGB, of which 70 and 220 were exclusively detected by micro-CT and RGB 357 

respectively. The numbers of loci associated with traits of different time points were 358 

different, ranging from 61 and 87. For example, the numbers of loci of time point 1, 5, 359 

9 were 61, 86, 69; the numbers of overlapped loci of T1 and T5, T5 and T9, T1 and 360 

T9 were 14, 17, 8; only 4 loci were detected at all the three time points (Fig. 6A). Of 361 

402 loci, 353 and 135 loci were detected by the micro-CT-RGB traits of nine time 362 

points and the derived growth-rate related traits, and 86 loci were simultaneously 363 

detected by the two kinds of traits. Of the 353 loci, 191 loci were only detected at one 364 

time point while other loci were detected at not less than two time points; only one 365 

locus on chromosome 9 (locus 302) were detected at nine time points (Fig. 6B). 366 

Further we found the locus were significantly associated with MEANTA (mean of 367 

multiple-tiller angles for a plant) measured by micro-CT (Fig. 6C), suggesting the 368 

locus could control tiller angle. These results demonstrate the existence of dynamic 369 

and static genetic components during rice growth stage.  370 

  For the locus 302, LD decayed slowly (r2=0.57 between SNPs sf0920227209 and 371 

sf0920733864) in a 500 kb-region. TAC1, the cloned gene controlling tiller angle (Yu 372 

et al., 2007), was located at the locus. We found 15 significant SNPs distributed in the 373 

3'-UTR region, coding region, and 1 kb promoter region and a significant 1-bp indel 374 

in the 3'-UTR region (Fig. 7A). All the SNPs in the coding region caused synonymous 375 

mutations. Consistent to a previous study (Yu et al., 2007), the variants in the 3'-UTR 376 

caused the mRNA level polymorphisms, resulting in the tiller angle diversity. Three 377 

haplotypes for the gene were found in our association mapping panel. Tiller angles 378 

were significantly different among them (P=5.15E-07, ANOVA) and those of rice 379 

accessions containing haplotype H3 were much smaller (Fig. 7B). Minghui 63 (a 380 

known restorer line) and Zhenshan 97 (a known maintainer line) contained haplotype 381 

H2 and H3, respectively (Fig. 7C). 382 

Further, we found two loci containing associations with both micro-CT-RGB 383 

traits and yield. A lead SNP sf0401216812 on chromosome 4 was associated with 384 
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AGRTTA_5 indicating growth rate of tillering at the 5th time point (PMLM=1.16E-05) 385 

and yield (PMLM=8.40E-04), and genotype G at the SNP site corresponded to the 386 

superior allele for the two traits (Fig. 8A). Another lead SNP sf0630983585 on 387 

chromosome 6 was associated with AGATPA_4 indicating growth rate of shoot 388 

weight at the 4th time point (PMLM=1.14E-06) and yield (PMLM=2.93E-04), and 389 

genotype G at the SNP site corresponded to the superior allele for the two traits (Fig. 390 

8B). The favorable alleles of the two loci were minor alleles and would be beneficial 391 

for rice high-yield breeding. These results indicate that the vigor of rice plant during 392 

tillering stage contributes to the final yield. 393 

 394 

Discussion 395 

The traditional methods of determining rice tiller traits are destructive, labor-intensive, 396 

and time-consuming. Micro-CT, a computed tomography technique originally 397 

developed for structural imaging of small animals (Yang et al., 2010), can also be an 398 

option for examining the inner structure of rice plants with multiple tillers. In addition, 399 

by developing an image analysis pipeline, the HCR system can non-destructively 400 

extract rice phenotypic traits and provide plant growth data in vertical and horizontal 401 

dimensions. Compared to traditional rice tiller phenotyping, HCR has the following 402 

advantages. (1) The 3D spatial location can be obtained by CT, thus, some traits, such 403 

as tiller angle, can be extracted with more accuracy rather than manually measuring 404 

them with a protractor, as shown in Fig. 1I. (2) The CT system can be easily 405 

integrated with an RGB imaging device, allowing more traits (total of 74 traits) to be 406 

extracted simultaneously. (3) The time needed for acquiring the projected CT image 407 

of one plant is approximately 278 seconds, and the time required for extracting 408 

subsequent traits is approximately 120 seconds combined with GPU acceleration, thus 409 

improving the measuring efficiency per plant. (4) Many novel traits, such as TTA and 410 

TPA, can be investigated with the bi-modal imaging system at different time points. In 411 

comparing the tiller number and grain yield, the total tiller area (TTA) had a better 412 

correlation with grain yield and provided a better quantification of tiller growth (Fig. 413 

5C and 5D). Finally, (5) these new dynamic traits in plant growth and tiller 414 
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development can dissect the genetic mechanisms involved in rice growth. 415 

  With numerous traits extracted by HCR, GWAS detected many significant 416 

association signals. The number of loci detected at different time point was different. 417 

Some loci were identified at a specific time point while other loci were identified at 418 

multiple time points, indicating the dynamic and static genetic components during rice 419 

growth stage. Only one locus on chromosome 9 related to tiller angle was scanned at 420 

9 time points and a priori gene TAC1 was located at the locus. Six significant SNPs 421 

and a significant INDEL were enriched in 3'-UTR region. We observed three major 422 

haplotypes for the gene in our association mapping panel and significant difference of 423 

tiller angle among the three haplotypes. Although most indica accessions harbored the 424 

haplotype of the wider tiller angle for TAC1, some indica accessions harbored the 425 

haplotype of the narrow tiller angle, which was not found in previous studies. The 426 

polymorphisms in TAC1 can be further developed into markers for breeding selection 427 

for density planting. Co-localized loci between HCR traits indicating vigor of rice 428 

plant during growth stage and yield were found, and HCR traits had higher detection 429 

power than yield. The superior alleles of the loci were minor alleles, which would be 430 

used for breeding of high yield. 431 

 432 

Conclusions 433 

In this study, we developed a high-throughput micro-CT-RGB (HCR) imaging system 434 

to extract tiller-related phenotypic traits with high spatial resolution (97 μm) and high 435 

efficiency (~310 pots per day). A rice panel containing 234 accessions was 436 

phenotyped non-destructively at 9 time points during the tillering stage, and totally 437 

730 traits were extracted by HCR and used to perform a GWAS. A total of 402 438 

significantly associated loci were identified by GWAS, and dynamic and static genetic 439 

components were found across the nine time points. A major locus associated with 440 

tiller angle was detected at nine time points and a priori gene TAC1 was located at the 441 

locus. Significant variants associated with tiller angle (evaluated by MEANTA) were 442 

enriched in the 3'-UTR of TAC1. Three haplotypes for the gene were found and tiller 443 

angles of rice accessions containing haplotype H3 were much smaller. Further, two 444 
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loci contained associations with both HCR traits and yield and the superior alleles 445 

were minor alleles, which would be beneficial for breeding of high yield and dense 446 

planting. 447 

 448 

Supplementary Data 449 

Supplementary data are available at JXB online. 450 

Fig. S1. Experimental design. 451 

Fig. S2. Control flow of image acquisition. 452 

Fig. S3. Diagram of image processing and feature extraction. 453 

Fig. S4. Sequence diagram of micro-CT-RGB phenotyping system. 454 

Fig. S5. Workflow chart. 455 

Fig. S6. The configuration of micro-CT-RGB system. 456 

Fig. S7. Plastic round pipes. 457 

Fig. S8. Workflow chart of database. 458 

Fig. S9. Dynamic growth curve of rice. 459 

Fig. S10. Modeling results of grain yield. 460 

Note S1. The source code of sinogram. 461 

Note S2. The source code of computed tomography reconstruction. 462 

Note S3. The source code of particle extraction. 463 

Note S4. The source code of particle rotation. 464 

Note S5. The source code of tiller diameter. 465 

Note S6. The source code of tiller angle. 466 

Note S7. The source code of fill holes. 467 

Note S8. The source code of area traits. 468 

Note S9. Color component extraction. 469 

Note S10. Definition of the features. 470 

Table S1. Abbreviation of 17 tiller traits, 32 tiller growth traits, 1 plant color trait, 471 

2 digital biomass, 33 plant architecture traits, 21 texture traits, 16 digital biomass 472 

accumulation traits, 16 height accumulation traits, and 2 yield traits. 473 

Table S2. Main specifications of micro-CT-RGB inspection unit. 474 
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Table S3. Manual measurements of 8 plastic pipes with 2 workers. 475 

Table S4. Automatic measurements of 8 plastic pipes with 10 replications. 476 

Table S5. Comparison of rice with automatically measured and manually 477 

measured. 478 

Table S6. The Comparison of actual TTA/TPA and predicated TTA/TPA with 6 479 

models. 480 

Video S1. The reconstructed images of one rice sample at different heights. 481 

Video S2. The dynamic growth of one rice accession. 482 

Data S1. GWAS results. 483 
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Figure legends 612 

613 

Figure 1 High-throughput micro-CT-RGB bi-modal imaging system. (A) The 614 

prototype of the micro-CT-RGB system and (B) layout of the inspection unit. The 78 615 

rice shoot traits and 37 tiller traits were obtained via the following steps:(C) and (D) 616 

as the rice sample rotated, 20 color images and 380 X-ray projected images in 617 

different angles were acquired synchronously; (E) one row of X-ray projected images 618 

at the same height as the 380 X-ray projected images, which formed a sinogram, 619 

covering 380 orientations was selected (step 0.6°, entire angle 0.6°×380, ~220°); (F) 620 

conventional filtered back-projection (FBP) algorithm was applied to obtain the 621 

reconstructed transverse section image of rice tillers; (G) and (H) after image 622 

segmentation and removal of small particles, the tiller number, size and shape can be 623 

counted; (I) when 2 transverse tiller images were reconstructed at 2 different heights 624 

(row 600 and row 650), the rice angle was calculated using the spatial location of the 625 

central point of the rice tiller images; (J) 78 rice shoot traits (plant color, plant height, 626 
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digital biomass, and plant compactness) and 37 tiller traits (tiller number, shape, area, 627 

and angle) were extracted and stored with the image analysis pipeline. A database was 628 

set up to collect RGB images, micro-CT images and phenotypic traits.  629 

  630 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 15, 2018. ; https://doi.org/10.1101/247841doi: bioRxiv preprint 

https://doi.org/10.1101/247841
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 
 

631 

Figure 2 Comparison of results obtained via automatic measurements versus 632 

manual measurements. (A) The absolute percentage error of automatic 633 

measurements versus manual measurements of 8 round plastic pipes; (B) The 634 

reconstructed transverse section image of the rice tiller versus actual transverse 635 

section image of the rice tiller after shearing; Scatter plots of manual measurements 636 

versus automatic measurements with micro-CT unit for the tiller number (C), tiller 637 

diameter (D) and stem wall thickness (E). 638 

 639 
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640 

Figure 3 Screening the dynamic process of rice growth at the tillering stage and 641 

jointing stage. (A-I) The RGB images and reconstructed CT images at 9 different 642 

growth time points; (J) diagram of total tiller area and first derivative of total tiller 643 

area; (K) diagram of sample numbers in initial jointing stage and first derivative of 644 

sample numbers in jointing stage; (L) diagram of green color value and first 645 

derivative of green color value; (M) diagram of mean tiller angle and first derivative 646 

of mean tiller angle. The error bars represent the standard deviation between the 647 

accessions. 648 
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649 
Figure 4 Heatmap and prediction of total tiller area growth and total protected 650 

area growth.(A-B) Heatmap of total tiller area (TTA) and total protected area (TPA) 651 

of the 234 individuals at 9 different time points; (C)comparison of actual total tiller 652 

area (blue line) and predicted total tiller area (red line); (D) comparison of actual total 653 

projected area (blue line) and predicted total projected area (red line).Error bars 654 

represent the standard error of the TTAorTPA of 234 samples at each time point. 655 

 656 
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 657 

Figure 5 Predication of grain yield and shoot dry weight. (A) the modeling 658 

accuracy change for grain yield at 9 time points; (B) the modeling accuracy change 659 

for shoot dry weight at 9 time points; (C) the scatter plot of tiller number versus grain 660 

yield at the 5th time point; (D) the scatter plot of total tiller area versus grain yield at 661 
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the 5th time point; the scatter plot showing the relationship between the actual grain 662 

yield and estimated grain yield using the predicted formula by (E) 2 traits and (F) 10 663 

traits; a, b, c, d, e, f, g, h, i and j represent TTA_5, MEANTA_8, THR_4, FDIC_7, 664 

MAXTAPR_7, FDIC_8, SDTTA_5, TN_3, MEANTAPR_2 and MAXTTA_2, 665 

respectively. 666 
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 667 

Figure 6 GWAS results of traits of nine time points measured by micro-CT-RGB. 668 

(A) Venn diagram showing number of associated loci at the time point 1, 5, and 9. (B) 669 
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The frequency and distribution of loci associated with traits at nine time points 670 

(T1-T9). (C) GWAS plots of MEANTA (mean of tiller angles) of nine time points. 671 

The strongest association signal on chromosome 9 corresponded to the locus of 672 

highest detection frequency. 673 

   674 
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 675 

Figure 7 Association analyses of TAC1and MEANTA_3. (A) Local Manhattan plots 676 

and heat map showing LD level of TAC1 region. (B) Haplotype analyses of TAC1. P 677 

value was calculated by ANOVA. Multiple-haplotype comparison was conducted 678 
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using LSD method and different letters above box plot indicated significant difference. 679 

(C) Images of two representative varieties-Minghui63 (from H2 haplotype group) and 680 

Zhenshan97 (from H3 haplotype group).  681 
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 682 

Figure 8 Co-localized loci associated with traits measured by micro-CT-RGB and 683 

yield. (A) The locus on chromosome 4 associated with AGRTTA_5 measured by 684 

micro-CT and yield. (B) The locus on chromosome 6 associated with AGRTPA_4 685 

measured by RGB and yield. 686 
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