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Abstract

Treatment of medically intractable focal epilepsy (MIFE) by surgical resection of the epileptogenic zone
(EZ) is often effective provided the EZ can be reliably identified. Even with the use of invasive
recordings, the clinical differentiation between the EZ and normal brain areas can be quite challenging,

mainly in patients without MRI detectable lesions. Consequently, despite relatively large brain regions
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being removed, surgical success rates barely reach 60-65%. Such variable and unfavorable outcomes
associated with high morbidity rates are often caused by imprecise and/or inaccurate EZ localization. We
developed a localization algorithm that uses network-based data analytics to process invasive EEG
recordings. This network algorithm analyzes the centrality signatures of every contact electrode within
the recording network and characterizes contacts into susceptible EZ based on the centrality trends over
time. The algorithm was tested in a retrospective study that included 42 patients from four epilepsy
centers. Our algorithm had higher agreement with EZ regions identified by clinicians for patients with
successful surgical outcomes and less agreement for patients with failed outcomes. These findings
suggest that network analytics and a network systems perspective of epilepsy may be useful in assisting

clinicians in more accurately localizing the EZ.

AUTHOR SUMMARY

Epilepsy is a disease that results in abnormal firing patterns in parts of the brain that comprise the
epileptogenic network, known as the epileptogenic zone (EZ). Current methods to localize the EZ for
surgical treatment often requires observations of hundreds of thousands of EEG data points measured
from many electrodes implanted in a patient’s brain. In this paper, we used network science to show that
EZ regions may exhibit specific network signatures before, during and after seizure events. Our
algorithm computes the likelihood of each electrode being in the EZ and tends to agree more with
clinicians during successful resections and less during failed surgeries. These results suggest that a

networked analysis approach to EZ localization may be valuable in a clinical setting.

INTRODUCTION

Epilepsy is one of the most common brain disorders, characterized by chronically recurrent seizures
resulting from excessive electrical discharges from groups of neurons (8). Epilepsy affects over 50
million people worldwide and over 30% of all individuals with epilepsy have intractable seizures, which
cannot completely be controlled by medical therapy (3; 4; 35). That is, seizures continue to occur despite
treatment with a maximally tolerated dose of at least two anti-epilepsy drugs (AEDs). The direct cost of

assessing and treating patients with medically intractable focal epilepsy (MIFE) ranges from $3-4 billion
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annually ($16 billion in direct and indirect costs) in the US (41). 80% of these costs are incurred by
patients whose seizures are not adequately controlled by AEDs (2). The burden of MIFE, however, is
much greater than heavy financial costs. MIFE is a debilitating illness where individuals lose their
independence, causing profound behavioral, psychological, social, financial and legal issues

(14; 165 17; 23; 49). Cognitive performance may be impaired by MIFE as well as by side effects of AED
therapy (14; 16; 17; 23; 49).

Despite the heavy sequelae from MIFE, there is a potentially curative procedure - surgical resection of
the epileptogenic zone (EZ), which can be defined as the minimal area of brain tissue responsible for
generating the recurrent seizure activity (36). However, to be effective, this procedure depends on correct
anatomical identification of the EZ, which is often poorly defined. A comprehensive pre-surgical
evaluation is necessary to better delineate the EZ as well as to identify the risk of neurologic morbidity
such as motor, visual, or speech impairment. Various non-invasive methods are currently applied in the
attempt of defining the EZ, the eloquent cortical and subcortical areas and, consequently, the optimal
resective surgical strategy. Non-invasive techniques include scalp EEG and video-EEG monitoring,
neuropsychological tests, speech-language studies, and brain imaging (MRI, PET, Ictal SPECT). Of these
methods, the highest predictor of surgical success is identification of a single visible MRI lesion

(9; 26; 27; 40; 50; 54).

Localization and surgical success in seizure control are even more challenging in patients with
non-lesional MRI. When the non-invasive methods of localization fail to identify the EZ, an invasive
monitoring evaluation may be indicated, involving the implantation of subdural grid electrodes (SDE)
through open craniotomies or stereo-electroencephalography (SEEG) (42; 44; 59). The process of
identifying the EZ then involves visually inspecting tens to hundreds of invasive EEG signals without
much assistance from computational tools. Epileptologists currently study the onset of seizure events that
occur over several days. Early presence of beta-band activity (beta buzz) or bursts of high frequency
oscillations (HFOs) in the 100-300 Hz range, which typically occur milliseconds before the clinical onset
of seizures are localizing of the seizure onset (15). Channels where seizure onset features first appear are
commonly defined as the seizure onset zone (SOZ), the current best estimate of the unknown EZ. This is
based on the assumption that the epileptic cortex generates epileptiform activity, which then entrains

other regions into a clinical seizure (15). Electrodecremental responses (loss of rhythmic activity) are
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Figure 1. Clinical process for implantation of SDE and seizure onset localization. Clinicians expose the brain through a craniotomy, then implant electrodes
on the cortical surface of the brain, monitor patient electrocorticography (ECoG) for days/weeks and then attempt to localize the EZ visually. Clinical teams

look at recorded data on computers and annotate signals from certain electrodes and time periods.

also often observed. In general, epileptologists look at a variety of signatures to make their decision (15).
Despite all of these possible EEG signatures, determination of the EZ may remain unclear for
non-lesional patients (20; 29; 43; 60). See Fig. | for a schematic of a current clinical process of

localizing the EZ.

Network analysis of intracranial EEG data has been heavily used to study brain activity (1; 7; 10; 13).
Networked-based analysis assumes that signals from different EEG channels are samples of activity from
brain regions that are structurally and/or functionally connected and therefore dependent (30; 46; 63).
Several important prior studies have looked at network dynamics in epileptic cortex during seizure events.
Some works investigate correlation structure over seizure events and note changes in network coherence
over events without relating metrics back to clinically annotated EZ (33; 48). Other studies apply network
methods, computing inter-electrode coherence, and relate these measures back to clinically annotated EZ
or resection regions, but on data collected from a relatively small set of patients (31; 32; 47; 51). Studies

that incorporate computational modeling to explain mechanisms of seizures and the EZ include (31; 51).
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Here, we show a novel network-based algorithm that takes advantage of a certain type of signal evolution
(ranked eigenvector centrality) and utilizes preictal, ictal and postictal data for tissue suspected to be
within the EZ. Our study combines data from 4 centers and analyzes a total of 113 seizures from 42
patients. We compute network-based statistics and relate the eigenvector centrality (EVC) patterns back
to clinically annotated EZ in patients with both successful and failed outcomes. We recently
demonstrated that intracranial EEG (iEEG) is rich in network information beyond the typical signatures
clinicians use to identify the EZ (12; 30; 46; 63). In particular, we modeled the epileptic brain as a
dynamic networked system where EEG signals are correlated both temporally and spatially. We
constructed a set of network-based statistics whose temporal evolution distinguishes the epileptic nodes
from the non-epileptic nodes within specific epileptic networks, thus defining an electrophysiological
signature of the EZ (30; 63). The electrophysiological signature of the EZ has a characteristic arch shape
when visualized in a two-dimensional principal component (2D PC) space described below. The arch
shape 1s significant because it indicates that the electrodes have lower centrality before a seizure, become
highly central during a seizure, and then become less central after seizure offset. This suggests that the
EZ is a brain region that becomes highly centralized when seizures occur, recruiting many other brain
regions to participate in epileptic activity. We used these time series network-based statistics and the
identified EZ arch signature to develop an algorithm that takes as inputs iIEEG data and the patient’s brain

image after electrode implantation and outputs the likelihood of an electrode being in the EZ.

We hypothesized that a network based-algorithm will show higher degrees of agreement with the
clinically labeled EZ for successful surgical outcomes and lower degrees of agreement with the labeled
EZ for failed surgical outcomes. Our hypothesis is based on our expectations that a network
based-algorithm will perform favorably because epilepsy is a network disease of the brain and simply
looking at biomarkers of individual electrodes ignores this fact. To test our hypothesis, we evaluated our
algorithm in a blind, retrospective study on 42 patients that had undergone invasive monitoring and in
most cases were followed by surgery. EEG data on 1-3 seizures was analyzed by our algorithm without
knowledge of the seizure outcomes. Clinically identified EZ nodes were then compared to the most
central nodes as defined by our algorithm. We found that the algorithm agreed more with clinical
annotations for patients with successful surgical outcomes and less for patients with failed surgical

outcomes. Since, HFO is considered a gold-standard for localization of high frequency power, we wanted
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to compare our results with such a method. We also applied qHFO algorithm presented in (18) to all
patients whose EEG recordings met the requirements of the gHFO algorithm. We found that there were
many patient datasets that could not be easily applied to the gHFO algorithm due to limitations on data
available and sampling rates of equipment. However, on the datasets that could be compared with our
network algorithm, there was a higher degree of agreement (DOA) with clinicians using a network

algorithm versus only the qHFO algorithm.

Localization of the EZ is currently a time-consuming process since clinicians and technicians visually
inspect fairly large data sets. In today’s data science era, it is important to develop and test computational
tools to assist in localization of the EZ. An assistive computational tool would not only likely reduce
extra-operative monitoring time in the EMU, thereby cutting medical costs and decreasing complications
associated with invasive monitoring, but could also improve seizure freedom rates, especially in the more
difficult to localize patients (i.e. non-lesional MRI patients). In addition, the underlying network-based
algorithm that performs EZ detection favorably will further our understanding of the organization and
dynamics of brain networks in epilepsy disease. Our results suggest that epilepsy changes how the
different nodes in the brain are connected, and that diseased nodes are more likely to be highly central in

the neuronal network and have a high centrality signature.

METHODS - DATA COLLECTION

Patients included in this study were surgically treated for medically intractable seizures at four different
centers: Johns Hopkins Hospital (JHH), National Institute of Health (NIH), the University of Maryland
Medical Center (UMMC) and the Cleveland Clinic (CC). All patients included in this study underwent
invasive pre-surgical monitoring with either subdural grid-and-strip arrays or stereotactic EEG depth
electrodes for seizure localization or mapping of eloquent areas. Decisions regarding the need for
invasive monitoring and the placement of electrode arrays were made independently of this work and
solely based on clinical necessity. The research protocol was reviewed by the Johns Hopkins Institutional
Review Board (IRB), the National Institute of Neurological Disorders and Stroke IRB, the University of
Maryland Medical Center IRB, and the Cleveland Clinic IRB. The acquisition of data for research

purposes was done with no impact on the clinical objectives of the patient stay. Digitized data were
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stored in a IRB-approved database compliant with Health Insurance Portability and Accountability Act

(HIPAA) regulations (e.g. server hosted behind a firewall with sftp and ssh access).

At all four centers, as part of routine clinical care, up to three board-certified epileptologists marked, by
consensus, the unequivocal electrographic onset of each seizure and the period between seizure onset and
termination. The seizure onset was indicated by a variety of stereotypical electrographic features, which
include, but were not limited to, the onset of fast rhythmic activity, an isolated spike or spike-and-wave
complex followed by rhythmic activity, or an electrodecremental response. Concurrently with the
examination of the EEG recordings, changes in the patients behavior were sought from the video segment
of video-EEG recordings. For each patient, we combined surgical notes about the electrodes
corresponding to resected regions and postoperative follow-up information about how the resection
affected the patient’s seizures. The surgery was deemed a success and the resected area determined to
include the EZ if, at least six months after surgery, a patient reported no seizures or could manage their
epilepsy with medications. Failure was defined as the inability to localize the EZ at all, or if the patient

continued to have seizures that were not manageable with medications after the resection.

1IEEG recordings were acquired through subdural grid arrays, subdural strip electrodes, or depth-electrode
arrays in various combinations as determined by clinical assessment for patients with temporal, occipital,
or frontal lobe seizures. Subdural grids have 20-64 contacts per array and were used in combination with
subdural strips with 4-8 contacts or depth arrays, thus having 80-116 recording electrodes per patient
over all. Intracranial contact locations were documented by post-operative CT co-registered with a
pre-operative MRI. Signals were acquired using continuous multi-channel iEEG recordings collected
over 5 days on average (min.: 2 days; max: 10 days). Clinical monitoring lasted 5-10 days per patient
and included 2-7 clinical seizures. Then clinicians clipped what they deemed clean sets of data and

passed it through a secure transfer for the data analysis.

There were a total of 42 subjects analyzed retrospectively in this study: 7 from NIH, 20 from JHH, 7
from UMMC, and 8 from the Cleveland Clinic. There were 26 total successful surgeries and 16 total
failed surgeries. The total number of electrodes per patient was 111.86 £ 23.89. The total number of
electrodes used in analysis per patient (after removal of noisy/faulty channels, references, EKG, etc.) was

70.82 + 24.84. The size of the clinically annotated EZ (# electrodes) was 8.05 £ 4.34. The onset age was

7


https://doi.org/10.1101/247387
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/247387;ﬂlis%(;%sgn ]PO ted January 16, 20 T#e copyright holder for this preprint (which was not
ed'b @éH’s%rt% cﬁZSp]I%H

certified by peer review) is the author/funder, who has g

178

179

176

177

180

181

182

183

184

185

186

187

188

189

190

191

ORXiv a : s e preprint in perpetuity. It is made available under
/ Title: Using Network Analysis S EGRZN ﬁiygpﬁgﬂ{ggéﬂ%'%@(f%ﬁlelnvasive EEG Recordings in Intractable Focal Epilepsy

Authors: Author Names

EEG
42 (28 successes + 14
failures)
[
I |
sEEG iIEEG
8 (6 successes + 2 34 (22 successes +
failures) 12 failures)
[
I [ |
cC 2‘2)'_1:]0 NIH uUuMMC
8 (6 successes 7 (6 successes 7 (6 successes
+ 2 failures) sucfa‘fﬁfr‘zss’)’ 10 + 1 failures) + 1 failures)

Figure 2. Patient cohort population for different recording systems, and across different hospital centers. Shows the distribution of successful and failed

outcomes for each center.

17.21 £ 13.48 years old, while all patients now are 34.68 £ 12.30 years old. The subject groups for each

center are shown in Fig 2.

NIH Intracranial EEG Monitoring Technique - ECoG

Seven patients included in this study were surgically treated for drug-resistant seizures at the NIH
NINDS and underwent invasive presurgical monitoring with subdural grids for seizure localization or
mapping of eloquent areas. Recordings were acquired with a Nihon Kohden clinical EEG system. iEEG
signals were sampled at a 1 kHz sampling rate and, filtered using a 300 Hz anti-aliasing filter. Signals
were referenced to a common contact placed subcutaneously on the scalp, on the mastoid process, or on
the subdural grid. Each data file stores continuous iIEEG data from all channels and is automatically

generated by the acquisition system.

Johns Hopkins Hospital Intracranial EEG Monitoring Technique - ECoG

Twenty patients included in this study were surgically treated for drug-resistant seizures at the Johns
Hopkins Hospital and underwent invasive presurgical monitoring with subdural grid and strip arrays for

seizure localization or mapping of eloquent areas. Recordings were acquired with a Nihon Kohden
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clinical EEG system with a 1 kHz sampling rate and a 300 Hz anti-aliasing filter, and were converted to
EDF format for storage and further processing. Each EDF file stores approximately 42 minutes of
continuous ECoG data from all channels and is automatically generated by the acquisition system.
Consecutive EDF files cover consecutive, non-overlapping, time windows with less than 5s-lag in

between. Digitized data were stored in a IRB-approved database compliant with HIPAA regulations.

UMMC Intracranial EEG Monitoring Technique - ECoG

Seven patients included in this study were surgically treated for drug-resistant seizures at the University
Maryland School of Medicine and underwent invasive presurgical monitoring with subdural grid and
strip arrays for seizure localization or mapping of eloquent areas. At the University of Maryland Medical
Center (UMMC), recordings were acquired with a Natus/XLTEK system (Natus Medical Incorporated,
Inc., Pleasanton, CA) with 250-1000 Hz sampling rate and 50-300 Hz anti-aliasing filter, and were
converted to EDF format for storage and further processing. Each EDF file stores approximately 42
minutes of continuous ECoG data from all channels and is automatically generated by the acquisition
system. Consecutive EDF files cover consecutive, non-overlapping, time windows with less than Ss-lag

in between. Digitized data were stored in a IRB-approved database compliant with HIPAA regulations.

Cleveland Clinic Stereotactic EEG Monitoring Technique - SEEG

Eight patients that underwent SEEG invasive monitoring from the Cleveland Clinic epilepsy center were
included in this study. The choice of electrode location was based on a pre-implantation patient
management conference and was made independently of the present study. Criteria for patients
undergoing SEEG implantation were reviewed by clinicians to determine patient eligibility for
enrollment in the current study. If the patient met study criteria, research staff not involved in the surgery

implantation or post-surgical care contacted the patient for potential participation in the study.

For each subject, approximately 8-13 stereotactically placed depth electrodes were implanted. The
electrode contacts were 0.8 mm in diameter, 2 mm in length, and spaced 1.5 mm apart. Depth electrodes
were inserted in either orthogonal or oblique orientations using a robotic surgical implantation platform
(ROSA, Medtech Surgical Inc., USA) allowing intracranial recording from lateral, intermediate and/or

deep cortical and subcortical structures in a three-dimensional arrangement (21). The day prior to

—9_
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surgery, volumetric pre-operative MRIs (T1, contrasted with Multihance 0.1 mmol/kg) were obtained and
used to pre-operatively plan electrode trajectories. All trajectories were evaluated for safety; any
trajectory that appeared to compromise vascular structures was adjusted appropriately without affecting

the sampling from areas of interest.

SEEG electrophysiological data was acquired using a conventional clinical electrophysiology acquisition
system (Nihon Kohden 1200, Nihon Kohden America, USA) at a sampling rate of 1 kHz and 300 Hz
anti-aliasing filter. Behavioral event data were simultaneously acquired during behavioral experiments
along with the SEEG electrophysiology and stored for subsequent analysis. All signals were referenced to

a contact affixed to the skull. Archived electrophysiological data was not filtered prior to offline analysis.

Each patient had electrode contacts characterized according to anatomical location. The anatomical
locations of all contacts were identified through inspection of post-operative imaging, requiring
agreement by two clinical experts. An example of post-operative imaging contributing toward

determining contact location is shown in |. Coronal and sagittal views were available for every contact.

METHODS - COMPUTATIONAL STEPS

In this study, our raw dataset consisted of EEG recordings of seizures with 60 seconds of data before and
after each seizure. Data was collected from 42 patients with at least two seizures per patient. We applied
network analysis techniques and considered each electrode in the iEEG array to be a node in a network.
The overall process of our algorithm is highlighted in Fig. 3. We computed the cross-power spectrum
matrix for each time window, then the corresponding EVC and then we trained a Gaussian weighting
function that assigned a likelihood to each electrode for being within the EZ. After computing the heat
map for the EZ predicted set of electrodes, we compared them to the clinical electrodes for both
successful and failed surgical outcomes. We show results for each center separately, and also all patients
grouped together. Note that we trained the Gaussian weighting function only using one center’s patients,
so that we could test our results across center. Clinical procedures can vary more from center to center
versus the variability within center, so it is a conservative approach to train using one center and then test

on all other centers to see if our analysis holds across different clinical procedures.

All Matlab (R2016b) and Python (v 2.7) code is publicly available online at:

—-10-—
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Figure 3. Computational steps for seizure onset localization: the algorithm processes raw ECoG to compute the sequence of adjacency matrix A(t). From
this sequence, A(t), it computes the sequence of leading eigenvectors, v(t), as a network centrality measure, the EVC. Algorithm then converts EVC into the
sequence of rank centrality r(t). From this sequence, r(t), algorithm computes a heatmap that generates predictions of the EZ. Yellow shading indicates the

EVC of 15t electrode evolving in time whose rank centrality, 1 (¢), is illustrated in the plot.

https://github.com/ncsl/eztrack.

Preprocessing of Data

All data underwent digital filtering with a butterworth notch filter of order 4, implemented in MATLAB
with the filt filt function (frequency ranges of 59.5 to 60.5). In general, EEG data is known to be noisy
and referencing schemes can play a significant role in downstream data analysis. We decided to apply a

common average referencing scheme to the data before analysis (37). Here, we take an average signal
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from all recording electrodes and subtract it from the electrodes. This has been shown to produce more
stable results and rejects correlated noise across many electrodes (18). We made sure to exclude any
electrodes from subsequent analysis if they were informed to have artifacts in their recording by

clinicians.

Compute and Rank Nodal Centrality Over Time

Network centrality for each node was computed every second using a 2.5 second sliding window sliding
every second 60 seconds before seizure, during seizure, and 60 seconds after seizure for at least 2 seizure
events. For each window, the brain network was first represented by a connectivity matrix (15), by
computing all pairwise cross-power spectra between the signals in the gamma frequency band (30-90

Hz), i.e.,

A, = /3 (PP 1)

0Hz
where P;, P; are the magnitudes of the Fourier transform of the time series in the window recorded from
electrodes i, 7, and A;; is the element of connectivity matrix and is the adjacency between nodes 7 and j.
We chose the gamma band because the gamma frequency band has often exhibited the most modulation
in power between non-seizure and seizure periods. It has been thought to be correlated to neuronal

spiking and fMRI activity and thus carries information in such invasive recordings (22; 61; 62).

The importance of each electrode to the network connectivity was measured by the strength and number
of connections it makes with other electrodes, referred to as centrality. We used the eigenvector centrality
(EVC) to measure the connectivity of each electrode, as EVC showed interesting repeatable patterns over
seizure events in our prior study (12). The EVC of an electrode is defined as the sum of the EVCs of all
other electrodes weighted by their connectivity, which measures the relative influence of a node within

the network. The EVC of all electrodes is computed implicitly as:

N
EVC(i) =AY _ A EVC(j) 2)

j=1
A is the leading eigenvalue of the connectivity matrix A and the EVC is then the leading eigenvector of A.

In simple terms, the EVC of a node in the network (electrode) is proportional to the sum of EVCs of its

—12—
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neighbors (nodes it is connected to). That is, a node is important if it is (1) connected to a few nodes that
are themselves very important or if it is (ii) connected to a very large number of not-so-important nodes.
The leading eigenvectors of connectivity matrices were calculated numerically at each second during the
recordings from the connectivity matrices. Finally, the EVC vector for each second was converted to a
ranked vector containing values 1 to [V, where a 1 was placed in the component of EVC that had the

smallest centrality and an NV was placed in the component of EVC that had the largest centrality.

Normalize Rank Evolution Signals

Next, we normalized the rank evolution signals (the EVC) for each electrode in the X (time) and Y (rank
centrality, i.e. number of electrodes) directions. This was done so that we can compare signals from
different patients that have varying numbers of electrodes and varying seizure durations across
individuals and within individuals. To normalize along the X -axis, we either stretched (interpolated) or
shrunk (simply downsampled at a lower sampling rate) each ranked EVC signal during a seizure epoch
such that all signals were 500 data points in length. Most ranked EVC signals were under 500 seconds in
length, so the majority of the rank centrality signals were stretched using linear interpolation (using the
interpl function in Matlab) preserving the shape of the signal during a seizure event. To normalize along
the Y-axis, we scaled the rank centrality between 0 and 1 by dividing by the number of electrodes.
Further, in order to compare the ranked EVC in a quantifiable manner, we normalized all the X, Y
normalized signals such that the centrality signal integrated to 1. We divided the normalized rank
centrality by area under the curve. This normalization converted each signal into a probability density

function,

R(t) = EVC(t)/N 3)

-~ R(1)
RO = TRo@ @

where R(?) is the normalized rank signal in time after dividing by the number of electrodes and R(Z) is

the normalized rank signal at normalized time .

Compute Feature Vector from Normalized Rank Signals

—13-—
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For each normalized signal, we extracted the deciles in time, the locations at which the signal integrates
equally to 10% of the total area under the curve, i.e. points in normalized time where the signal integrates
to 0.1, 0.2, 0.3, and so on until the end of the signal is reached. This gives a 10 dimensional vector for

each signal that serves as a feature vector.

Electrode Weight Assignment Based on Feature Vectors

Once we calculated feature vectors for each signal, we projected the features into a 2D principle
component (PC) space. This was done by assuming that each feature vector is an observation, hence the
analysis was performed in space x time. We performed PC analysis and plotted the features across all
electrodes and patients projected onto the first and second PCs. Each electrode (data point in Fig. 4A)
was labeled according to whether or not the electrode was in the clinical annotated EZ region and
whether the surgical resection was a success or a failure. We then created a weighting function over the

2D PC space, which would assign a weight to an electrode based on their location in PC space.

To generate this weighting function, we discretized it into equally sized square partitions (100 x 100
along 1°¢ and 2"? principal components). The mean normalized rank signature across all data points was
computed for each partition. The signatures for the four corner partitions are shown in Fig. 4A. The
shapes of the mean normalized rank signatures across partitions change in a somewhat continuous
manner. Moving vertically from the bottom of the PC space to the top, the rank signatures transition from
a concave to a convex shape. Moving from left to right, the signature shifts horizontally: forward (to the
right) if the partition is at the bottom of the PC space, and backwards (to the left) if at the top of the PC

space.

Our hypothesis is that the arch signature displayed in the bottom left of Fig. 4A represents the signatures
of the EZ because this is the region of the PC space that has the most isolated channels that come from
patients with successful outcomes (green + points). In fact, the bottom portion of the PC grid shows the
arch signature. Therefore, the weighting function is set to be highest in these regions and decay as a
function of distance from these regions. We defined a weighting function to be the sum of 4 bivariate
Gaussian-like functions (Eq. 5, Fig. 4B) as shown in (5). The 2D PC space is divided into 4 quadrants
defined by an origin. See Fig. 4B (left) with origin (—100, —100).
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Training Origin of Gaussian Weighting Function

In each quadrant, the bivariate Gaussian-like function were initialized with the shapes in Fig 4A. The
covariance matrix in each quadrant was computed as the sample covariance from the data points in that
quadrant. The origin of the four quadrants is the mean vector, which is trained. We followed a
leave-one-out training procedure on the sample of 20 patients collected at JHU. We chose JHU because it
had the greatest number of patients collected within center and would still account for less then 50% of
the total patients. The mean of all four quadrants is optimized for maximizing the DOA. In Fig 4B, this is
shown as (—100, 100), which was found at the end. Once the optimized mean is found, then all four
quadrant’s Gaussian functions, w;(x, y), are linearly combined with a heaviside step function to get the
final Gaussian weighting function, w(z, y). This final Gaussian weighting function, w(x, y) is used to
assign weights to all subsequent EVC of each electrode for every patient. This in turn produces the

likelihood of every electrode being within the EZ set.

w(z,y) =Y hi(z,y)wi(z,y) %)
where

- wi(z,y) = exp (—ai(x — )" X7 (x — )
» o - exponential decay factor for i’ quadrant

X

o

H o .
,and p - “| define the position and mean vector respectively
(Y Hy
= 3. - covariance matrix of i quadrant

» hi(z,y) = O(x — p,)O(y — 11y) - © is the heaviside step function

= (z,y) € i" quadrant

Computing Degree of Agreement and Statistical Analysis

For every seizure event for every patient in NIH, UMMC and CC, we generated a set of electrodes with
their heatmap (defined by electrode weights; see Fig. 3), which can be interpreted as their likelihood for
being in the EZ. For each seizure recording, we then computed the degree of agreement between the

computed EZ likelihoods and clinical annotations of the EZ. The likelihood was computed using the
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Gaussian weighting function trained as described in the previous subsection. Then, a threshold

a = 0.3,0.6,0.9 was applied to each heatmap and the set of electrodes whose likelihoods exceeded «
were defined as the algorithm’s EZ (AEZ). The AEZ was then compared to clinically annotated EZ
(CEZ) using the following degree of agreement (DOA) statistic:

(CEZNAEZ) (CEZNAEZ)

oA = CEZ CEZ

(6)

Note that S is the complement of the set S, and that D € [—1, 1], where DOA = 1 implies perfect

agreement and DOA < 0 is less agreement.

Across all patients, electrodes, and seizure events, we have a collection of DOA values. We then derive
two distributions: (i) the distribution of DOA for all electrodes implanted in patients who had successful
treatments, and (i1) the distribution of DOA for all electrodes implanted in patients who had failed
treatments. We then test whether there is a significant difference in DOA distribution between these two
patient groups using the Wilcoxon rank sum test to test for statistical differences. This non-parametric
test was selected, as the data are not guaranteed to meet the normality conditions for a Student’s t-test
(58). In addition, we also added an across-center analysis where we combine all the data and test whether

the DOA distributions for successful versus failed outcomes are significantly different.

On top of this analysis, we also add a minmax scaling to normalize the of degree of agreements within

each center, so that success and failure could be compared at the same scale.

High Frequency Oscillator - gHF O Detector

We compared our algorithm with the gHFO algorithm presented in (18), which uses a sensitive HFO
detector, then redacts HFOs that were produced by artifacts. Previous work has shown that sampling rates
of 1000 Hz are capable of recording HFOs, but only capture 60% of the events (18). Therefore, we only
analyzed patients with sampling rates > 1000 Hz and with available interictal data. This resulted in 3
patients from NIH and 2 patients from JHU, with a total of 13 separate recorded datasets. The datasets
here analyzed had an average recording of 7.1 min, 83 total electrodes analyzed, and 10 electrodes within

the clinically annotated EZ set. Using the gHFO algorithm on this data required a few minor adaptions.
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We used a single common average reference applied to all analyzed intracranial electrodes (as described
earlier), rather than separating the referencing between depth electrode channels and grid channels as was
done in (18). The popDet artifact rejection method also could not be used, as it requires sampling rates of

at least 2,000 Hz.

RESULTS

Every patient (n=42) with at least two seizures was analyzed (total of 113 seizures) with 20 of the
patients from JHU used to train the final Gaussian weighting function. The output of the process for each
seizure recording is each electrode’s likelihood of being in the EZ. These likelihood scores are in turn
used to produce a heatmap that can be overlaid on a brain MRI to show the relative predicted EZ region
for a certain patient. Figure 5 shows a few examples of heatmaps for 3 patients who had successful
outcomes and 3 patients with failed outcomes. For the 3 successful patients, the AEZ lies entirely within
the resected regions, suggesting a high DOA between the AEZ and CEZ. For one of the failed patients,
the resected region and the AEZ do not overlap, i.e. DOA is low. For the other failed patient, the AEZ is

a very small set, suggesting that the EZ may not be appropriately covered by the electrode implantation.

In our comparative HFO analysis, we analyzed 13 segments of data from 5 patients. Of the 13 files, most
patients have no HFOs, even at 1000 Hz sampling rate (see table 1). Only 3 data segments had HFO
detections, but one of them did not have an anomalous grouping suggestive of the EZ ( 30% of the total
recording time from all 13 data segments). In JH3, there were HFOs, but no channels had an anomalous
rate high enough to be predicted within the EZ set. In NIH ptlaw2 and pt3alsp3, both only had a single
channel predicted to be in the EZ. This prediction was in concordance with clinically annotated EZ in ptl

but not in pt3.

The lower sampling rate and short time segments are not ideal for automated HFO analysis, as is
apparent from these results. In our network analysis, we had a high DOA with ptl (0.62), while a
relatively lower DOA for pt3 (—0.16). It seemed that for pt3, HFO analysis completely disagreed with
clinical annotations, while the network analysis found more electrodes then the clinically annotated EZ,
which led to lower DOA. For ptl, the network analysis also highlighted the same electrode as being in

the EZ set. This shows how HFO and network analysis can complement each other in analyzing different
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SUCCESSFUL

OUTCOMES

D Resected region
. EZMap “Hot” region

FAILURE
OUTCOMES

Mis-localization? Misplacement of electrodes?

397 Figure 5. This shows an example overlay of the algorithm’s heatmap of likelihood on a brain scan for 6 patients (3 successful and 3 failed outcomes). The
398 red region shows our predicted onset zone and the black outlines represent where the clinicians performed a resection. The orange, yellow, green and blue

399 regions represent lower likelihoods for that specific electrode being within the EZ set as predicted by the algorithm.

ss sections of the data. Based on our limited comparisons due to inherent data limitations, our analysis is

«« more capable of identifying the full clinically annotated EZ then HFOs in this specific dataset.

«s In Fig. 6, we show the degree of agreement (DOA) for datasets collected from the test datasets (the three
«s clinical centers: UMMC, NIH, CC) for 3 different threshold values, «, that is placed on the likelihood

«7 distribution (electrodes with likelihood greater then threshold are placed in EZ set). The resulting DOA
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after training the Gaussian weighting function for JHU are shown in supplementary information. It also
shows the same trend as seen in Fig. 6. As illustrated in Fig. 6, the general trend is that the DOA
distributions for successes and failures separate more as « increases, and o = 0.9 appears to be an
operative threshold that shows a positive DOA for successes and a negative DOA for failed outcomes.
For a = 0.9, the statistics for DOA (mean and stdev) are given in Table 2 for each center and across all
centers together. By applying a Wilcoxon rank-sum test, we also see a significant difference at
significance level 0.05 for all centers at threshold level of 0.9. At each center, there is a trend of the DOA
that is a function of clinical outcome of the patient. This is consistently shown across recording platform
(ECoG for UMMC, NIH and SEEG for CC) and patient population. In all cases, as the threshold
increases from 0.3 to 0.9, the difference of DOA between success and failed cases increases. If there is
low DOA with the algorithms EZ and the clinically annotated EZ and the patient is a failed outcome, then
this may be a case of mislocalization. If, on the other hand, there is no visible EZ from the algorithm (all
weights are low), then the EZ may not be in the vicinity of the electrode, suggesting a possible

misplacement of electrodes.

We also show in Figure 7 that there is no bias due to center (reulsts are shown in 3). All centers, when
normalized show a significant difference between success and failures. The large variation is due to the
varying number of electrodes implanted per patient and the varying size of the clinical EZ hypothesis.

However, all centers show significant difference when compared with a Wilcoxon Ranksum test.

In the case that a patient has failed outcomes, we would not expect to see a perfect disagreement DOA
score of -1 because of the above reasons. There may have been no visible EZ recorded from the electrode
network, or the EZ may not have been fully resected (but part of it was still clinically annotated). It is
also important to note that when a patient has a successful surgical outcome, clinicians remove a large
portion of the brain, which is a superset of the clinically annotated EZ. It is not certain that all clinically
annotated EZ electrodes are actually part of the true underlying EZ, so we would expect some deviation
from perfect agreement with the clinically annotated EZ (e.g. we should not expect to see a perfect DOA

score of 1 for successful patients).
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444 Table 1. HFO results for the 2 patients with interictal data from NIH. Only 2 datasets (2 patients) showed HFO rates not identically zero. Only 1 dataset had

445 an HFO analysis with an electrode within the clinically annotated set.

Patient Duration (seconds) Identification by HFO

JH1 1800 Rates identically zero

JH3 1800 No anomalously high channels
ptlaslpl 405 Rates identically zero

ptlaslp2 498 Rates identically zero

ptlawl 425 Rates identically zero

ptlaw2 414 Prediction has been made AD1’
pt2aslpl 376 Rates identically zero

pt2aslp2 419 Rates identically zero

pt2zawl 397 Rates identically zero

pt2aw2 664 Rates identically zero

pt3aslpl 362 Rates identically zero

pt3aslp2 379 Prediction has been made *SFP6’
pt3awl 363 Rates identically zero
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Figure 7. This figure shows distributions of the degree of agreement for every center including JHU after minmax normalization to compare each center on the same

scale of success versus failure. Note that minmax normalization scales all distributions between 0 and 1.
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451 Table 2. Degree of Agreement Results for o = 0.9 with average & standard deviation from each clinical center and also the resulting p value from the
452 Wilcoxon ranked sum test. All centers show a significant difference between success and failure cases. Note JHH is used in the training of the Gaussian

453 weighting function.

Center | DOA Statistics for Success | DOA Statistics for Failure | P Value
UMMC 0.09+0.15 —0.09+£0.08 0.027
NIH 0.21+0.25 —0.32 £ 0.11 0.020
CcC 0.01 +0.38 —0.38 £0.01 0.024
*JHH 0.21 +0.23 0.08 £0.25 0.016
All 0.14 +0.27 0.00 £0.27 0.002

454  Table 3. Degree of Agreement Results for @ = 0.9 with average =+ standard deviation from each clinical center after minmax scaling and also the resulting

455 p value from the Wilcoxon ranked sum test. All centers show a significant difference between success and failure cases.

Center | DOA Statistics for Success | DOA Statistics for Failure | P Value
UMMC 0.35+0.23 0.05+0.11 0.0057
NIH 0.54 £0.23 0.08 £0.07 0.0061
CC 0.36 +0.34 0.02+0.01 0.0016
*THH 0.50 +0.23 0.36 +0.24 0.0158
All 0.45 £ 0.27 0.294+0.25 0.0005

w6 Discussion

@

»7 The definition of the EZ, including its anatomical and electrophysiological signatures, has been an

s evolving and controversial topic since the foundation of modern epilepsy surgery. The EZ, defined as the

4

@

4

5

o site of primary organization of the ictal discharge, refers to the cortical areas connected together through
w0 an excessive synchronization at seizure onset (52; 57). Fast activity (FA) at ictal onset has been clinically

4

>

1 accepted as the main feature of the EZ since the beginning of invasive monitoring era, particularly in the
w2 SEEG literature (52). Since the development of subdural ECoG recordings, much attention has also been

«s paid to the time precedence of phasic transients, especially spiking activities (5; 45). In the last fifteen

=3

4

I3

. years, identification of high frequency oscillations (HFO) during interictal and ictal periods in
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experimental models reoriented research interest towards high-gamma activities in human epilepsies as a
potential EZ marker (6; 39; 64). In parallel, DC recordings exemplified the concomitance of ultra-slow

and fast frequencies (19; 24; 53; 62).

Although clinical definitions have been explored, a network based operational definition of the EZ is
currently not well defined in the literature. Novel computational network analyses may overcome some
of the challenges associated with more conventional invasive monitoring recordings methods. In this
study, we analyze how centrality signatures of electrode recordings within an epileptic network change
over time and how they relate to clinical annotations from four different hospital centers. We take in
ECoG and SEEG data from 60 seconds before and after a seizure instance for 42 patients and produce a
frequency connectivity network over time using the cross-power spectra of the signal in the 30-90 Hz
range. Then we computed the EVC for each electrode at a time window to obtain a normalized ranked
centrality of every electrode over time. By overlaying a Gaussian weighting function that was trained
only with patients from one center, we then obtain a likelihood for each electrode of being in the EZ.
Then we computed a degree of agreement between our algorithm and clinically labeled EZ using the

DOA index for all patients by setting an arbitrary threshold.

Some previous approaches for marking the EZ included FA, signal flattening and slow potential shift.
Fast activity frequently occurs quasi-simultaneously in multiple areas so that visual discrimination can be
cumbersome and lead to subjective interpretations. A different approach, frequency localization, was
used by (19). After defining frequencies of interest (FOIs) and plotting their power change over time,
they localized the distribution of FOIs in different contacts of the depth electrodes. The EZ, defined as
the area exhibiting frequency changes at seizure onset, could then be delineated. In a retrospective and
prospective study of patients investigated using SEEG, the same method was applied to test three
potential biomarkers of EZ, namely FA, signal flattening and slow potential shift. These biomarkers

co-localized with the EZ as defined by standard SEEG criteria and postresection seizure outcome (19).

Other approaches for marking the EZ include HFO analyses. Interictal HFOs have been shown to have
some value in identifying the EZ (11; 25; 28; 38; 55; 56). In our comparative analysis, we made

modifications to the algorithm based on limitations in the data that was available at the clinical centers.
First, in the 1000 Hz sampled data, the number of HFOs is significantly reduced, although the detected

HFOs are still useful to identify the EZ (18). The lower sampling rate also required some modifications

25—
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to the algorithm: the fast-transient artifact detector could not be used (as it requires sampling rates > 2
kHz) and the upper edge on the band-pass filter needed to be reduced from 500 to 400 Hz. Second, the
limitation to interictal data restricts the identification of the full EZ: HFO results typically report a very
small number of channels involved, which are typically much smaller than the eventual resected volume
of tissue. Although HFO analyses show promise in analyzing electrophysiology of epileptic patients,
they do not take into account the network nature of epilepsy. HFO analyses are important for analyses of
interictal data, since our analysis is limited by requiring recorded seizure events. In future studies, it
would be interesting to see how network algorithms and HFO algorithms can complement each other to

improve EZ localization.

It is important to note that network-bases analyses is not new to analyzing EEG recordings from epilepsy
patients. Previous studies have shown that seizure activity is a dynamic multichannel process and the
correlation structure right around a seizure event also follows a typical evolution, similar to our ranked
EVC signal (34; 48). In (34; 48), they do not relate it back to EZ, but just look at network dynamics
during seizure events. In (47), the authors compute interelectrode synchrony using the mean phase
coherence algorithm and relate locally synchronous EEG channels back to the EZ, but only analyzed only
9 patients from a single center. A similar small-scale study was performed in (32) with six epilepsy
patients from one center. Other studies use computational models to understand the biophysical
mechanisms related to epilepsy surgery (31; 51). In (31), they applied a virtual resection model using
data from 10 patients. In (51), the authors developed patient-specific dynamical network models of
epileptogenic cortex (computational models). However, there were only 16 patients analyzed from one

center.

This manuscript describes a somewhat large-scale research study that applies network-based data
analysis tools to invasive EEG data to explore possible EEG signatures of the EZ. In no way are we
proposing that this algorithm be directly translated into the clinic. Rather, it now compares how pairwise
correlations may improve over quantifying HFOs in each channel individually, which has been the most
recently accepted approach. We present a network analysis related back to the annotated EZ, analyzing
data from before and after seizures, and analyzing data from multiple centers (with 113 seizures from 42
patients). In our study, we showed that there is a general higher degree of agreement between our

algorithm and clinically successful surgical resections of the EZ and a lower degree of agreement

26—


https://doi.org/10.1101/247387
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/247387;Lms%i%zign ]P(@Eed Januar r16,c?20]£ T#e copyright holder for this preprint (which was not
0 @éH’s% th display t

certified by peer review) is the author/funder, who has g

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

b iva : s e preprint in perpetuity. It is made available under
/ Title: Using Network Analysis S EGRZN ﬁiygpﬁgﬂ{ggéﬂ%'%@(f%ﬁlelnvasive EEG Recordings in Intractable Focal Epilepsy

Authors: Author Names

between our algorithm and clinically failed resections. By setting a simple threshold on the likelihood
maps, we can obtain a similarity measure between our algorithm and clinical labels for both successful
and failed surgeries. As the threshold increases, our algorithm becomes better at identifying if successful
resections had the correct EZ. We observed that the algorithm’s performance degraded with respect to
degree of agreement when patients were implanted sparsely with single strips across all four lobes
(UMMC patients) and sometimes in both hemispheres. The clinicians place these strips with such wide
coverage if there is no clear pre-implantation hypothesis and if seizures are thought to be starting from
multiple brain regions. Often, these patients do not have clear EZ localization and/or do not end up as
candidates for surgery. We also found that if the electrographic onset of seizure is not close to the
clinically annotated onset of seizure, then the degree of agreement with clinicians is reduced. The
electrographic onset is the start of seizure that is seen on the EEG recordings but not manifested in any
behavioral changes in the patient. The clinical onset is the time at which the patient exhibits noticeable

behavioral changes due to seizure onset (e.g. muscle twitches).

Our results suggest that network data analytics may be a useful tool to assist in localization of the
epileptogenic zone, especially when electrode implantation covers the EZ network densely. This is
expected, since the threshold on the network’s likelihood is essentially a threshold on the algorithm’s
confidence in an electrode being within the EZ set. Future work entails exploring different weighting
functions applied over the rank centrality space and possibly merging features from HFO and network
algorithms. Besides looking solely at gamma power (30-90 Hz) cross power matrices, the work could
expand to encompass more frequency bands that could contain signals of importance in EZ localization.
In addition, a more comprehensive study that compares the outcomes between SEEG and ECoG could
help understand limitations of the algorithm, and also be of clinical importance in using SEEG versus
ECoG. In addition, if we had more patient data from other centers, then it would be interesting to see how
a pooled training procedure may improve our results. This work is meant to supplement the growing
evidence in literature that epilepsy is a network phenomena and therefore also requires network

algorithms to better understand its manifestation.

SUPPORTIVE INFORMATION
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Code is open source at https://github.com/ncsl/eztrack. Since this was a retrospective data study, there is
no table of the JHU patients and their clinical operative notes because the data was not available from

JHU.
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Table 4. Table of patient data for each center describing patient characteristics and electrode statistics. Some data was not available clinically and is
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s58  Table 7. Table of clinical notes for each patient at UMMC from their clinical procedures (imaging, resection). Some data was not available clinically and is

559 represented by N/A.
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seo Table8. Table of DOA scores for each patient separately. Each patient has 2-3 seizure recordings available and a DOA score was computed for each recording

s61  instance. The JHU scores are also included after the end of the leave-one-out procedure.

Patient DOA (mean +/- std)
ptl 0.62 +/- 0.05

pt2 0.30 +/- 0.02

pt3 -0.16 +/- 0.03

pt8 0.18 +/- 0.03

pt10 0.26 +/- 0.03

ptl12 -0.32 +/- 0.11

ptl3 -0.00 +/- 0.07

UMMCO001 0.03 +/- 0.05

UMMCO002 0.05 +/-0.03

UMMCO003  0.04 +/- 0.04

UMMCO004 0.17 +/- 0.04

UMMCO005 0.41 +/-0.12

UMMCO006 -0.04 +/- 0.09

UMMCO007 -0.09 +/- 0.08

EZTO007 -0.38 +/- 0.01
EZT019 -0.33 +/- 0.04
EZT090 -0.26 +/- 0.00

EZT091 0.12 +/-0.24

EZT092 -0.37 +/- 0.03

EZT120 -0.14 +/- 0.04

EZTI121 0.66 +/- 0.03

EZT127 0.31 +/- 0.01

JHI -0.07 +/- 0.21
JH2 0.30 +/- 0.30
JH3 0.23 +/- 0.57
JH4 0-38+/-0.14

THS 027 +/-0 13
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