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Abstract19

Treatment of medically intractable focal epilepsy (MIFE) by surgical resection of the epileptogenic zone20

(EZ) is often effective provided the EZ can be reliably identified. Even with the use of invasive21

recordings, the clinical differentiation between the EZ and normal brain areas can be quite challenging,22

mainly in patients without MRI detectable lesions. Consequently, despite relatively large brain regions23
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being removed, surgical success rates barely reach 60-65%. Such variable and unfavorable outcomes24

associated with high morbidity rates are often caused by imprecise and/or inaccurate EZ localization. We25

developed a localization algorithm that uses network-based data analytics to process invasive EEG26

recordings. This network algorithm analyzes the centrality signatures of every contact electrode within27

the recording network and characterizes contacts into susceptible EZ based on the centrality trends over28

time. The algorithm was tested in a retrospective study that included 42 patients from four epilepsy29

centers. Our algorithm had higher agreement with EZ regions identified by clinicians for patients with30

successful surgical outcomes and less agreement for patients with failed outcomes. These findings31

suggest that network analytics and a network systems perspective of epilepsy may be useful in assisting32

clinicians in more accurately localizing the EZ.33

AUTHOR SUMMARY

Epilepsy is a disease that results in abnormal firing patterns in parts of the brain that comprise the34

epileptogenic network, known as the epileptogenic zone (EZ). Current methods to localize the EZ for35

surgical treatment often requires observations of hundreds of thousands of EEG data points measured36

from many electrodes implanted in a patient’s brain. In this paper, we used network science to show that37

EZ regions may exhibit specific network signatures before, during and after seizure events. Our38

algorithm computes the likelihood of each electrode being in the EZ and tends to agree more with39

clinicians during successful resections and less during failed surgeries. These results suggest that a40

networked analysis approach to EZ localization may be valuable in a clinical setting.41

INTRODUCTION

Epilepsy is one of the most common brain disorders, characterized by chronically recurrent seizures42

resulting from excessive electrical discharges from groups of neurons (8). Epilepsy affects over 5043

million people worldwide and over 30% of all individuals with epilepsy have intractable seizures, which44

cannot completely be controlled by medical therapy (3; 4; 35). That is, seizures continue to occur despite45

treatment with a maximally tolerated dose of at least two anti-epilepsy drugs (AEDs). The direct cost of46

assessing and treating patients with medically intractable focal epilepsy (MIFE) ranges from $3-4 billion47
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annually ($16 billion in direct and indirect costs) in the US (41). 80% of these costs are incurred by48

patients whose seizures are not adequately controlled by AEDs (2). The burden of MIFE, however, is49

much greater than heavy financial costs. MIFE is a debilitating illness where individuals lose their50

independence, causing profound behavioral, psychological, social, financial and legal issues51

(14; 16; 17; 23; 49). Cognitive performance may be impaired by MIFE as well as by side effects of AED52

therapy (14; 16; 17; 23; 49).53

Despite the heavy sequelae from MIFE, there is a potentially curative procedure - surgical resection of54

the epileptogenic zone (EZ), which can be defined as the minimal area of brain tissue responsible for55

generating the recurrent seizure activity (36). However, to be effective, this procedure depends on correct56

anatomical identification of the EZ, which is often poorly defined. A comprehensive pre-surgical57

evaluation is necessary to better delineate the EZ as well as to identify the risk of neurologic morbidity58

such as motor, visual, or speech impairment. Various non-invasive methods are currently applied in the59

attempt of defining the EZ, the eloquent cortical and subcortical areas and, consequently, the optimal60

resective surgical strategy. Non-invasive techniques include scalp EEG and video-EEG monitoring,61

neuropsychological tests, speech-language studies, and brain imaging (MRI, PET, Ictal SPECT). Of these62

methods, the highest predictor of surgical success is identification of a single visible MRI lesion63

(9; 26; 27; 40; 50; 54).64

Localization and surgical success in seizure control are even more challenging in patients with65

non-lesional MRI. When the non-invasive methods of localization fail to identify the EZ, an invasive66

monitoring evaluation may be indicated, involving the implantation of subdural grid electrodes (SDE)67

through open craniotomies or stereo-electroencephalography (SEEG) (42; 44; 59). The process of68

identifying the EZ then involves visually inspecting tens to hundreds of invasive EEG signals without69

much assistance from computational tools. Epileptologists currently study the onset of seizure events that70

occur over several days. Early presence of beta-band activity (beta buzz) or bursts of high frequency71

oscillations (HFOs) in the 100-300 Hz range, which typically occur milliseconds before the clinical onset72

of seizures are localizing of the seizure onset (15). Channels where seizure onset features first appear are73

commonly defined as the seizure onset zone (SOZ), the current best estimate of the unknown EZ. This is74

based on the assumption that the epileptic cortex generates epileptiform activity, which then entrains75

other regions into a clinical seizure (15). Electrodecremental responses (loss of rhythmic activity) are76
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Figure 1. Clinical process for implantation of SDE and seizure onset localization. Clinicians expose the brain through a craniotomy, then implant electrodes

on the cortical surface of the brain, monitor patient electrocorticography (ECoG) for days/weeks and then attempt to localize the EZ visually. Clinical teams

look at recorded data on computers and annotate signals from certain electrodes and time periods.

81

82

83

also often observed. In general, epileptologists look at a variety of signatures to make their decision (15).77

Despite all of these possible EEG signatures, determination of the EZ may remain unclear for78

non-lesional patients (20; 29; 43; 60). See Fig. 1 for a schematic of a current clinical process of79

localizing the EZ.80

Network analysis of intracranial EEG data has been heavily used to study brain activity (1; 7; 10; 13).84

Networked-based analysis assumes that signals from different EEG channels are samples of activity from85

brain regions that are structurally and/or functionally connected and therefore dependent (30; 46; 63).86

Several important prior studies have looked at network dynamics in epileptic cortex during seizure events.87

Some works investigate correlation structure over seizure events and note changes in network coherence88

over events without relating metrics back to clinically annotated EZ (33; 48). Other studies apply network89

methods, computing inter-electrode coherence, and relate these measures back to clinically annotated EZ90

or resection regions, but on data collected from a relatively small set of patients (31; 32; 47; 51). Studies91

that incorporate computational modeling to explain mechanisms of seizures and the EZ include (31; 51).92
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Here, we show a novel network-based algorithm that takes advantage of a certain type of signal evolution93

(ranked eigenvector centrality) and utilizes preictal, ictal and postictal data for tissue suspected to be94

within the EZ. Our study combines data from 4 centers and analyzes a total of 113 seizures from 4295

patients. We compute network-based statistics and relate the eigenvector centrality (EVC) patterns back96

to clinically annotated EZ in patients with both successful and failed outcomes. We recently97

demonstrated that intracranial EEG (iEEG) is rich in network information beyond the typical signatures98

clinicians use to identify the EZ (12; 30; 46; 63). In particular, we modeled the epileptic brain as a99

dynamic networked system where EEG signals are correlated both temporally and spatially. We100

constructed a set of network-based statistics whose temporal evolution distinguishes the epileptic nodes101

from the non-epileptic nodes within specific epileptic networks, thus defining an electrophysiological102

signature of the EZ (30; 63). The electrophysiological signature of the EZ has a characteristic arch shape103

when visualized in a two-dimensional principal component (2D PC) space described below. The arch104

shape is significant because it indicates that the electrodes have lower centrality before a seizure, become105

highly central during a seizure, and then become less central after seizure offset. This suggests that the106

EZ is a brain region that becomes highly centralized when seizures occur, recruiting many other brain107

regions to participate in epileptic activity. We used these time series network-based statistics and the108

identified EZ arch signature to develop an algorithm that takes as inputs iEEG data and the patient’s brain109

image after electrode implantation and outputs the likelihood of an electrode being in the EZ.110

We hypothesized that a network based-algorithm will show higher degrees of agreement with the111

clinically labeled EZ for successful surgical outcomes and lower degrees of agreement with the labeled112

EZ for failed surgical outcomes. Our hypothesis is based on our expectations that a network113

based-algorithm will perform favorably because epilepsy is a network disease of the brain and simply114

looking at biomarkers of individual electrodes ignores this fact. To test our hypothesis, we evaluated our115

algorithm in a blind, retrospective study on 42 patients that had undergone invasive monitoring and in116

most cases were followed by surgery. EEG data on 1-3 seizures was analyzed by our algorithm without117

knowledge of the seizure outcomes. Clinically identified EZ nodes were then compared to the most118

central nodes as defined by our algorithm. We found that the algorithm agreed more with clinical119

annotations for patients with successful surgical outcomes and less for patients with failed surgical120

outcomes. Since, HFO is considered a gold-standard for localization of high frequency power, we wanted121
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to compare our results with such a method. We also applied qHFO algorithm presented in (18) to all122

patients whose EEG recordings met the requirements of the qHFO algorithm. We found that there were123

many patient datasets that could not be easily applied to the qHFO algorithm due to limitations on data124

available and sampling rates of equipment. However, on the datasets that could be compared with our125

network algorithm, there was a higher degree of agreement (DOA) with clinicians using a network126

algorithm versus only the qHFO algorithm.127

Localization of the EZ is currently a time-consuming process since clinicians and technicians visually128

inspect fairly large data sets. In today’s data science era, it is important to develop and test computational129

tools to assist in localization of the EZ. An assistive computational tool would not only likely reduce130

extra-operative monitoring time in the EMU, thereby cutting medical costs and decreasing complications131

associated with invasive monitoring, but could also improve seizure freedom rates, especially in the more132

difficult to localize patients (i.e. non-lesional MRI patients). In addition, the underlying network-based133

algorithm that performs EZ detection favorably will further our understanding of the organization and134

dynamics of brain networks in epilepsy disease. Our results suggest that epilepsy changes how the135

different nodes in the brain are connected, and that diseased nodes are more likely to be highly central in136

the neuronal network and have a high centrality signature.137

METHODS - DATA COLLECTION

Patients included in this study were surgically treated for medically intractable seizures at four different138

centers: Johns Hopkins Hospital (JHH), National Institute of Health (NIH), the University of Maryland139

Medical Center (UMMC) and the Cleveland Clinic (CC). All patients included in this study underwent140

invasive pre-surgical monitoring with either subdural grid-and-strip arrays or stereotactic EEG depth141

electrodes for seizure localization or mapping of eloquent areas. Decisions regarding the need for142

invasive monitoring and the placement of electrode arrays were made independently of this work and143

solely based on clinical necessity. The research protocol was reviewed by the Johns Hopkins Institutional144

Review Board (IRB), the National Institute of Neurological Disorders and Stroke IRB, the University of145

Maryland Medical Center IRB, and the Cleveland Clinic IRB. The acquisition of data for research146

purposes was done with no impact on the clinical objectives of the patient stay. Digitized data were147
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stored in a IRB-approved database compliant with Health Insurance Portability and Accountability Act148

(HIPAA) regulations (e.g. server hosted behind a firewall with sftp and ssh access).149

At all four centers, as part of routine clinical care, up to three board-certified epileptologists marked, by150

consensus, the unequivocal electrographic onset of each seizure and the period between seizure onset and151

termination. The seizure onset was indicated by a variety of stereotypical electrographic features, which152

include, but were not limited to, the onset of fast rhythmic activity, an isolated spike or spike-and-wave153

complex followed by rhythmic activity, or an electrodecremental response. Concurrently with the154

examination of the EEG recordings, changes in the patients behavior were sought from the video segment155

of video-EEG recordings. For each patient, we combined surgical notes about the electrodes156

corresponding to resected regions and postoperative follow-up information about how the resection157

affected the patient’s seizures. The surgery was deemed a success and the resected area determined to158

include the EZ if, at least six months after surgery, a patient reported no seizures or could manage their159

epilepsy with medications. Failure was defined as the inability to localize the EZ at all, or if the patient160

continued to have seizures that were not manageable with medications after the resection.161

iEEG recordings were acquired through subdural grid arrays, subdural strip electrodes, or depth-electrode162

arrays in various combinations as determined by clinical assessment for patients with temporal, occipital,163

or frontal lobe seizures. Subdural grids have 20-64 contacts per array and were used in combination with164

subdural strips with 4-8 contacts or depth arrays, thus having 80-116 recording electrodes per patient165

over all. Intracranial contact locations were documented by post-operative CT co-registered with a166

pre-operative MRI. Signals were acquired using continuous multi-channel iEEG recordings collected167

over 5 days on average (min.: 2 days; max: 10 days). Clinical monitoring lasted 5-10 days per patient168

and included 2-7 clinical seizures. Then clinicians clipped what they deemed clean sets of data and169

passed it through a secure transfer for the data analysis.170

There were a total of 42 subjects analyzed retrospectively in this study: 7 from NIH, 20 from JHH, 7171

from UMMC, and 8 from the Cleveland Clinic. There were 26 total successful surgeries and 16 total172

failed surgeries. The total number of electrodes per patient was 111.86 ± 23.89. The total number of173

electrodes used in analysis per patient (after removal of noisy/faulty channels, references, EKG, etc.) was174

70.82 ± 24.84. The size of the clinically annotated EZ (# electrodes) was 8.05 ± 4.34. The onset age was175
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EEG
42 (28 successes + 14

failures)

sEEG
8 (6 successes + 2 

failures)

CC
8 (6 successes 

+ 2 failures)

iEEG
34 (22 successes + 

12 failures)

JHU
20 (10 

successes + 10 
failures )

NIH
7 (6 successes 

+ 1 failures)

UMMC
7 (6 successes 

+ 1 failures)

Figure 2. Patient cohort population for different recording systems, and across different hospital centers. Shows the distribution of successful and failed

outcomes for each center.

178

179

17.21 ± 13.48 years old, while all patients now are 34.68 ± 12.30 years old. The subject groups for each176

center are shown in Fig 2.177

NIH Intracranial EEG Monitoring Technique - ECoG180

Seven patients included in this study were surgically treated for drug-resistant seizures at the NIH181

NINDS and underwent invasive presurgical monitoring with subdural grids for seizure localization or182

mapping of eloquent areas. Recordings were acquired with a Nihon Kohden clinical EEG system. iEEG183

signals were sampled at a 1 kHz sampling rate and, filtered using a 300 Hz anti-aliasing filter. Signals184

were referenced to a common contact placed subcutaneously on the scalp, on the mastoid process, or on185

the subdural grid. Each data file stores continuous iEEG data from all channels and is automatically186

generated by the acquisition system.187

Johns Hopkins Hospital Intracranial EEG Monitoring Technique - ECoG188

Twenty patients included in this study were surgically treated for drug-resistant seizures at the Johns189

Hopkins Hospital and underwent invasive presurgical monitoring with subdural grid and strip arrays for190

seizure localization or mapping of eloquent areas. Recordings were acquired with a Nihon Kohden191
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clinical EEG system with a 1 kHz sampling rate and a 300 Hz anti-aliasing filter, and were converted to192

EDF format for storage and further processing. Each EDF file stores approximately 42 minutes of193

continuous ECoG data from all channels and is automatically generated by the acquisition system.194

Consecutive EDF files cover consecutive, non-overlapping, time windows with less than 5s-lag in195

between. Digitized data were stored in a IRB-approved database compliant with HIPAA regulations.196

UMMC Intracranial EEG Monitoring Technique - ECoG197

Seven patients included in this study were surgically treated for drug-resistant seizures at the University198

Maryland School of Medicine and underwent invasive presurgical monitoring with subdural grid and199

strip arrays for seizure localization or mapping of eloquent areas. At the University of Maryland Medical200

Center (UMMC), recordings were acquired with a Natus/XLTEK system (Natus Medical Incorporated,201

Inc., Pleasanton, CA) with 250-1000 Hz sampling rate and 50-300 Hz anti-aliasing filter, and were202

converted to EDF format for storage and further processing. Each EDF file stores approximately 42203

minutes of continuous ECoG data from all channels and is automatically generated by the acquisition204

system. Consecutive EDF files cover consecutive, non-overlapping, time windows with less than 5s-lag205

in between. Digitized data were stored in a IRB-approved database compliant with HIPAA regulations.206

Cleveland Clinic Stereotactic EEG Monitoring Technique - SEEG207

Eight patients that underwent SEEG invasive monitoring from the Cleveland Clinic epilepsy center were208

included in this study. The choice of electrode location was based on a pre-implantation patient209

management conference and was made independently of the present study. Criteria for patients210

undergoing SEEG implantation were reviewed by clinicians to determine patient eligibility for211

enrollment in the current study. If the patient met study criteria, research staff not involved in the surgery212

implantation or post-surgical care contacted the patient for potential participation in the study.213

For each subject, approximately 8-13 stereotactically placed depth electrodes were implanted. The214

electrode contacts were 0.8 mm in diameter, 2 mm in length, and spaced 1.5 mm apart. Depth electrodes215

were inserted in either orthogonal or oblique orientations using a robotic surgical implantation platform216

(ROSA, Medtech Surgical Inc., USA) allowing intracranial recording from lateral, intermediate and/or217

deep cortical and subcortical structures in a three-dimensional arrangement (21). The day prior to218
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surgery, volumetric pre-operative MRIs (T1, contrasted with Multihance 0.1 mmol/kg) were obtained and219

used to pre-operatively plan electrode trajectories. All trajectories were evaluated for safety; any220

trajectory that appeared to compromise vascular structures was adjusted appropriately without affecting221

the sampling from areas of interest.222

SEEG electrophysiological data was acquired using a conventional clinical electrophysiology acquisition223

system (Nihon Kohden 1200, Nihon Kohden America, USA) at a sampling rate of 1 kHz and 300 Hz224

anti-aliasing filter. Behavioral event data were simultaneously acquired during behavioral experiments225

along with the SEEG electrophysiology and stored for subsequent analysis. All signals were referenced to226

a contact affixed to the skull. Archived electrophysiological data was not filtered prior to offline analysis.227

Each patient had electrode contacts characterized according to anatomical location. The anatomical228

locations of all contacts were identified through inspection of post-operative imaging, requiring229

agreement by two clinical experts. An example of post-operative imaging contributing toward230

determining contact location is shown in 1. Coronal and sagittal views were available for every contact.231

METHODS - COMPUTATIONAL STEPS

In this study, our raw dataset consisted of EEG recordings of seizures with 60 seconds of data before and232

after each seizure. Data was collected from 42 patients with at least two seizures per patient. We applied233

network analysis techniques and considered each electrode in the iEEG array to be a node in a network.234

The overall process of our algorithm is highlighted in Fig. 3. We computed the cross-power spectrum235

matrix for each time window, then the corresponding EVC and then we trained a Gaussian weighting236

function that assigned a likelihood to each electrode for being within the EZ. After computing the heat237

map for the EZ predicted set of electrodes, we compared them to the clinical electrodes for both238

successful and failed surgical outcomes. We show results for each center separately, and also all patients239

grouped together. Note that we trained the Gaussian weighting function only using one center’s patients,240

so that we could test our results across center. Clinical procedures can vary more from center to center241

versus the variability within center, so it is a conservative approach to train using one center and then test242

on all other centers to see if our analysis holds across different clinical procedures.243

All Matlab (R2016b) and Python (v 2.7) code is publicly available online at:244
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Raw iEEG Sequence of matrices A(t)

Sequence of centrality 
vectors v(t)

Rank centrality ri(t)Heat Map

2.5 s

Figure 3. Computational steps for seizure onset localization: the algorithm processes raw ECoG to compute the sequence of adjacency matrix A(t). From

this sequence, A(t), it computes the sequence of leading eigenvectors, v(t), as a network centrality measure, the EVC. Algorithm then converts EVC into the

sequence of rank centrality r(t). From this sequence, r(t), algorithm computes a heatmap that generates predictions of the EZ. Yellow shading indicates the

EVC of 1st electrode evolving in time whose rank centrality, r1(t), is illustrated in the plot.

246

247

248

249

https://github.com/ncsl/eztrack.245

Preprocessing of Data250

All data underwent digital filtering with a butterworth notch filter of order 4, implemented in MATLAB251

with the filtfilt function (frequency ranges of 59.5 to 60.5). In general, EEG data is known to be noisy252

and referencing schemes can play a significant role in downstream data analysis. We decided to apply a253

common average referencing scheme to the data before analysis (37). Here, we take an average signal254
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from all recording electrodes and subtract it from the electrodes. This has been shown to produce more255

stable results and rejects correlated noise across many electrodes (18). We made sure to exclude any256

electrodes from subsequent analysis if they were informed to have artifacts in their recording by257

clinicians.258

Compute and Rank Nodal Centrality Over Time259

Network centrality for each node was computed every second using a 2.5 second sliding window sliding260

every second 60 seconds before seizure, during seizure, and 60 seconds after seizure for at least 2 seizure261

events. For each window, the brain network was first represented by a connectivity matrix (15), by262

computing all pairwise cross-power spectra between the signals in the gamma frequency band (30-90263

Hz), i.e.,264

Aij =

∫ 90Hz

30Hz

(Pi(f)Pj(f))df (1)

where Pi, Pj are the magnitudes of the Fourier transform of the time series in the window recorded from265

electrodes i, j, and Aij is the element of connectivity matrix and is the adjacency between nodes i and j.266

We chose the gamma band because the gamma frequency band has often exhibited the most modulation267

in power between non-seizure and seizure periods. It has been thought to be correlated to neuronal268

spiking and fMRI activity and thus carries information in such invasive recordings (22; 61; 62).269

The importance of each electrode to the network connectivity was measured by the strength and number270

of connections it makes with other electrodes, referred to as centrality. We used the eigenvector centrality271

(EVC) to measure the connectivity of each electrode, as EVC showed interesting repeatable patterns over272

seizure events in our prior study (12). The EVC of an electrode is defined as the sum of the EVCs of all273

other electrodes weighted by their connectivity, which measures the relative influence of a node within274

the network. The EVC of all electrodes is computed implicitly as:275

EV C(i) = λ
N∑
j=1

AijEV C(j) (2)

λ is the leading eigenvalue of the connectivity matrix A and the EVC is then the leading eigenvector of A.276

In simple terms, the EVC of a node in the network (electrode) is proportional to the sum of EVCs of its277
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neighbors (nodes it is connected to). That is, a node is important if it is (i) connected to a few nodes that278

are themselves very important or if it is (ii) connected to a very large number of not-so-important nodes.279

The leading eigenvectors of connectivity matrices were calculated numerically at each second during the280

recordings from the connectivity matrices. Finally, the EVC vector for each second was converted to a281

ranked vector containing values 1 to N , where a 1 was placed in the component of EVC that had the282

smallest centrality and an N was placed in the component of EVC that had the largest centrality.283

Normalize Rank Evolution Signals284

Next, we normalized the rank evolution signals (the EVC) for each electrode in the X (time) and Y (rank285

centrality, i.e. number of electrodes) directions. This was done so that we can compare signals from286

different patients that have varying numbers of electrodes and varying seizure durations across287

individuals and within individuals. To normalize along the X-axis, we either stretched (interpolated) or288

shrunk (simply downsampled at a lower sampling rate) each ranked EVC signal during a seizure epoch289

such that all signals were 500 data points in length. Most ranked EVC signals were under 500 seconds in290

length, so the majority of the rank centrality signals were stretched using linear interpolation (using the291

interp1 function in Matlab) preserving the shape of the signal during a seizure event. To normalize along292

the Y -axis, we scaled the rank centrality between 0 and 1 by dividing by the number of electrodes.293

Further, in order to compare the ranked EVC in a quantifiable manner, we normalized all the X, Y294

normalized signals such that the centrality signal integrated to 1. We divided the normalized rank295

centrality by area under the curve. This normalization converted each signal into a probability density296

function,297

R(t̄) = EV C(t)/N (3)

R̄(t̄) =
R(t̄)∫
t̄
R(t̄)d̄t

(4)

where R(t̄) is the normalized rank signal in time after dividing by the number of electrodes and R̄(t̄) is298

the normalized rank signal at normalized time t̄.299

Compute Feature Vector from Normalized Rank Signals300
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For each normalized signal, we extracted the deciles in time, the locations at which the signal integrates301

equally to 10% of the total area under the curve, i.e. points in normalized time where the signal integrates302

to 0.1, 0.2, 0.3, and so on until the end of the signal is reached. This gives a 10 dimensional vector for303

each signal that serves as a feature vector.304

Electrode Weight Assignment Based on Feature Vectors305

Once we calculated feature vectors for each signal, we projected the features into a 2D principle306

component (PC) space. This was done by assuming that each feature vector is an observation, hence the307

analysis was performed in space x time. We performed PC analysis and plotted the features across all308

electrodes and patients projected onto the first and second PCs. Each electrode (data point in Fig. 4A)309

was labeled according to whether or not the electrode was in the clinical annotated EZ region and310

whether the surgical resection was a success or a failure. We then created a weighting function over the311

2D PC space, which would assign a weight to an electrode based on their location in PC space.312

To generate this weighting function, we discretized it into equally sized square partitions (100× 100313

along 1st and 2nd principal components). The mean normalized rank signature across all data points was314

computed for each partition. The signatures for the four corner partitions are shown in Fig. 4A. The315

shapes of the mean normalized rank signatures across partitions change in a somewhat continuous316

manner. Moving vertically from the bottom of the PC space to the top, the rank signatures transition from317

a concave to a convex shape. Moving from left to right, the signature shifts horizontally: forward (to the318

right) if the partition is at the bottom of the PC space, and backwards (to the left) if at the top of the PC319

space.320

Our hypothesis is that the arch signature displayed in the bottom left of Fig. 4A represents the signatures321

of the EZ because this is the region of the PC space that has the most isolated channels that come from322

patients with successful outcomes (green + points). In fact, the bottom portion of the PC grid shows the323

arch signature. Therefore, the weighting function is set to be highest in these regions and decay as a324

function of distance from these regions. We defined a weighting function to be the sum of 4 bivariate325

Gaussian-like functions (Eq. 5, Fig. 4B) as shown in (5). The 2D PC space is divided into 4 quadrants326

defined by an origin. See Fig. 4B (left) with origin (−100,−100).327

–14–

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 16, 2018. ; https://doi.org/10.1101/247387doi: bioRxiv preprint 

https://doi.org/10.1101/247387
http://creativecommons.org/licenses/by-nc-nd/4.0/


== D R A F T January 9, 2018 ==

/ Title: Using Network Analysis to Localize the Epileptogenic Zone from Invasive EEG Recordings in Intractable Focal Epilepsy

Authors: Author Names

Se
co

nd
 p

rin
ci

pa
l c

om
po

ne
nt

 (A
U

)

-500 -400 -300 -200 -100 0 100 200 300 400 500
First principal component (AU)

-400

-300

-200

-100

0

100

200

300

400

Se
co

nd
 p

rin
ci

pa
l c

om
po

ne
nt

 (A
U

)

0 100 200 300 400 500 600
Normalized Time

0

1

2

3

4

5

N
or

m
al

iz
ed

 R
an

k 
C

en
tra

lit
y ×10-3

0 100 200 300 400 500 600
Normalized Time

0

1

2

3

4

5

N
or

m
al

iz
ed

 R
an

k 
C

en
tra

lit
y ×10-3

0 100 200 300 400 500 600
Normalized Time

0

1

2

3

4

5

N
or

m
al

iz
ed

 R
an

k 
C

en
tra

lit
y ×10-3

0 100 200 300 400 500 600
Normalized Time

0

1

2

3

4

5

N
or

m
al

iz
ed

 R
an

k 
C

en
tra

lit
y ×10-3

A

B

First principal component (AU) First principal component (AU)

Figure 4. A: First and second PCA component distribution.

Points in PC space: 1. +: Resected Electrodes in Successful Outcomes, 2. •: Non-Resected Electrodes in Successful Outcomes, 3. +: Resected Electrodes in

Failed Outcomes, and 4. •: Non-Resected Electrodes in Failed Outcomes. The plots in each of the 4 insets show the mean normalized rank centrality signal

for points in the regions bounded by orange rectangles. The shaded region in the plots indicate the 1 standard deviation bounds. The green and red line in the

plots indicate the start and end of a seizure episode respectively. The yellow circle highlights the region of interest, where there are many green markers.

B: An example of the Gaussian weighting function, where the color represents the weight of an electrode being within the EZ. The four plots in the left hand

side represent the Gaussian weighting function for each quadrant, respectively. The right hand plot is the sum of the 4 Gaussian functions, which gives the final

Gaussian weighting function.
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Training Origin of Gaussian Weighting Function336

In each quadrant, the bivariate Gaussian-like function were initialized with the shapes in Fig 4A. The337

covariance matrix in each quadrant was computed as the sample covariance from the data points in that338

quadrant. The origin of the four quadrants is the mean vector, which is trained. We followed a339

leave-one-out training procedure on the sample of 20 patients collected at JHU. We chose JHU because it340

had the greatest number of patients collected within center and would still account for less then 50% of341

the total patients. The mean of all four quadrants is optimized for maximizing the DOA. In Fig 4B, this is342

shown as (−100, 100), which was found at the end. Once the optimized mean is found, then all four343

quadrant’s Gaussian functions, wi(x, y), are linearly combined with a heaviside step function to get the344

final Gaussian weighting function, w(x, y). This final Gaussian weighting function, w(x, y) is used to345

assign weights to all subsequent EVC of each electrode for every patient. This in turn produces the346

likelihood of every electrode being within the EZ set.347

w(x, y) =
4∑
i=1

hi(x, y)wi(x, y) (5)

where348

wi(x, y) = exp
(
−αi(x− µµµ)T

∑−1
i (x− µµµ)

)
349

αi - exponential decay factor for ith quadrant350

x -

x
y

, and µµµ -

µx
µy

 define the position and mean vector respectively351

∑
i - covariance matrix of ith quadrant352

hi(x, y) = Θ(x− µx)Θ(y − µy) - Θ is the heaviside step function353

(x, y) ∈ ith quadrant354

Computing Degree of Agreement and Statistical Analysis355

For every seizure event for every patient in NIH, UMMC and CC, we generated a set of electrodes with356

their heatmap (defined by electrode weights; see Fig. 3), which can be interpreted as their likelihood for357

being in the EZ. For each seizure recording, we then computed the degree of agreement between the358

computed EZ likelihoods and clinical annotations of the EZ. The likelihood was computed using the359
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Gaussian weighting function trained as described in the previous subsection. Then, a threshold360

α = 0.3, 0.6, 0.9 was applied to each heatmap and the set of electrodes whose likelihoods exceeded α361

were defined as the algorithm’s EZ (AEZ). The AEZ was then compared to clinically annotated EZ362

(CEZ) using the following degree of agreement (DOA) statistic:363

DOA =
(CEZ ∩ AEZ)

CEZ
− ( ¯CEZ ∩ AEZ)

¯CEZ
. (6)

Note that S̄ is the complement of the set S, and that D ∈ [−1, 1], where DOA = 1 implies perfect364

agreement and DOA < 0 is less agreement.365

Across all patients, electrodes, and seizure events, we have a collection of DOA values. We then derive366

two distributions: (i) the distribution of DOA for all electrodes implanted in patients who had successful367

treatments, and (ii) the distribution of DOA for all electrodes implanted in patients who had failed368

treatments. We then test whether there is a significant difference in DOA distribution between these two369

patient groups using the Wilcoxon rank sum test to test for statistical differences. This non-parametric370

test was selected, as the data are not guaranteed to meet the normality conditions for a Student’s t-test371

(58). In addition, we also added an across-center analysis where we combine all the data and test whether372

the DOA distributions for successful versus failed outcomes are significantly different.373

On top of this analysis, we also add a minmax scaling to normalize the of degree of agreements within374

each center, so that success and failure could be compared at the same scale.375

High Frequency Oscillator - qHFO Detector376

We compared our algorithm with the qHFO algorithm presented in (18), which uses a sensitive HFO377

detector, then redacts HFOs that were produced by artifacts. Previous work has shown that sampling rates378

of 1000 Hz are capable of recording HFOs, but only capture 60% of the events (18). Therefore, we only379

analyzed patients with sampling rates ≥ 1000 Hz and with available interictal data. This resulted in 3380

patients from NIH and 2 patients from JHU, with a total of 13 separate recorded datasets. The datasets381

here analyzed had an average recording of 7.1 min, 83 total electrodes analyzed, and 10 electrodes within382

the clinically annotated EZ set. Using the qHFO algorithm on this data required a few minor adaptions.383
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We used a single common average reference applied to all analyzed intracranial electrodes (as described384

earlier), rather than separating the referencing between depth electrode channels and grid channels as was385

done in (18). The popDet artifact rejection method also could not be used, as it requires sampling rates of386

at least 2,000 Hz.387

RESULTS

Every patient (n=42) with at least two seizures was analyzed (total of 113 seizures) with 20 of the388

patients from JHU used to train the final Gaussian weighting function. The output of the process for each389

seizure recording is each electrode’s likelihood of being in the EZ. These likelihood scores are in turn390

used to produce a heatmap that can be overlaid on a brain MRI to show the relative predicted EZ region391

for a certain patient. Figure 5 shows a few examples of heatmaps for 3 patients who had successful392

outcomes and 3 patients with failed outcomes. For the 3 successful patients, the AEZ lies entirely within393

the resected regions, suggesting a high DOA between the AEZ and CEZ. For one of the failed patients,394

the resected region and the AEZ do not overlap, i.e. DOA is low. For the other failed patient, the AEZ is395

a very small set, suggesting that the EZ may not be appropriately covered by the electrode implantation.396

In our comparative HFO analysis, we analyzed 13 segments of data from 5 patients. Of the 13 files, most400

patients have no HFOs, even at 1000 Hz sampling rate (see table 1). Only 3 data segments had HFO401

detections, but one of them did not have an anomalous grouping suggestive of the EZ ( 30% of the total402

recording time from all 13 data segments). In JH3, there were HFOs, but no channels had an anomalous403

rate high enough to be predicted within the EZ set. In NIH pt1aw2 and pt3alsp3, both only had a single404

channel predicted to be in the EZ. This prediction was in concordance with clinically annotated EZ in pt1405

but not in pt3.406

The lower sampling rate and short time segments are not ideal for automated HFO analysis, as is407

apparent from these results. In our network analysis, we had a high DOA with pt1 (0.62), while a408

relatively lower DOA for pt3 (−0.16). It seemed that for pt3, HFO analysis completely disagreed with409

clinical annotations, while the network analysis found more electrodes then the clinically annotated EZ,410

which led to lower DOA. For pt1, the network analysis also highlighted the same electrode as being in411

the EZ set. This shows how HFO and network analysis can complement each other in analyzing different412
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This information is confidential and may not be reproduced or distributed in any format 
1 

Resected region 

EZMap “Hot” region 

SUCCESSFUL 
OUTCOMES 

FAILURE 
OUTCOMES 

Misplacement of electrodes? Mis-localization? 

Figure 5. This shows an example overlay of the algorithm’s heatmap of likelihood on a brain scan for 6 patients (3 successful and 3 failed outcomes). The

red region shows our predicted onset zone and the black outlines represent where the clinicians performed a resection. The orange, yellow, green and blue

regions represent lower likelihoods for that specific electrode being within the EZ set as predicted by the algorithm.

397

398

399

sections of the data. Based on our limited comparisons due to inherent data limitations, our analysis is413

more capable of identifying the full clinically annotated EZ then HFOs in this specific dataset.414

In Fig. 6, we show the degree of agreement (DOA) for datasets collected from the test datasets (the three415

clinical centers: UMMC, NIH, CC) for 3 different threshold values, α, that is placed on the likelihood416

distribution (electrodes with likelihood greater then threshold are placed in EZ set). The resulting DOA417
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after training the Gaussian weighting function for JHU are shown in supplementary information. It also418

shows the same trend as seen in Fig. 6. As illustrated in Fig. 6, the general trend is that the DOA419

distributions for successes and failures separate more as α increases, and α = 0.9 appears to be an420

operative threshold that shows a positive DOA for successes and a negative DOA for failed outcomes.421

For α = 0.9, the statistics for DOA (mean and stdev) are given in Table 2 for each center and across all422

centers together. By applying a Wilcoxon rank-sum test, we also see a significant difference at423

significance level 0.05 for all centers at threshold level of 0.9. At each center, there is a trend of the DOA424

that is a function of clinical outcome of the patient. This is consistently shown across recording platform425

(ECoG for UMMC, NIH and SEEG for CC) and patient population. In all cases, as the threshold426

increases from 0.3 to 0.9, the difference of DOA between success and failed cases increases. If there is427

low DOA with the algorithms EZ and the clinically annotated EZ and the patient is a failed outcome, then428

this may be a case of mislocalization. If, on the other hand, there is no visible EZ from the algorithm (all429

weights are low), then the EZ may not be in the vicinity of the electrode, suggesting a possible430

misplacement of electrodes.431

We also show in Figure 7 that there is no bias due to center (reulsts are shown in 3). All centers, when432

normalized show a significant difference between success and failures. The large variation is due to the433

varying number of electrodes implanted per patient and the varying size of the clinical EZ hypothesis.434

However, all centers show significant difference when compared with a Wilcoxon Ranksum test.435

In the case that a patient has failed outcomes, we would not expect to see a perfect disagreement DOA436

score of -1 because of the above reasons. There may have been no visible EZ recorded from the electrode437

network, or the EZ may not have been fully resected (but part of it was still clinically annotated). It is438

also important to note that when a patient has a successful surgical outcome, clinicians remove a large439

portion of the brain, which is a superset of the clinically annotated EZ. It is not certain that all clinically440

annotated EZ electrodes are actually part of the true underlying EZ, so we would expect some deviation441

from perfect agreement with the clinically annotated EZ (e.g. we should not expect to see a perfect DOA442

score of 1 for successful patients).443
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Table 1. HFO results for the 2 patients with interictal data from NIH. Only 2 datasets (2 patients) showed HFO rates not identically zero. Only 1 dataset had

an HFO analysis with an electrode within the clinically annotated set.

444

445

Patient Duration (seconds) Identification by HFO

JH1 1800 Rates identically zero

JH3 1800 No anomalously high channels

pt1aslp1 405 Rates identically zero

pt1aslp2 498 Rates identically zero

pt1aw1 425 Rates identically zero

pt1aw2 414 Prediction has been made ’AD1’

pt2aslp1 376 Rates identically zero

pt2aslp2 419 Rates identically zero

pt2aw1 397 Rates identically zero

pt2aw2 664 Rates identically zero

pt3aslp1 362 Rates identically zero

pt3aslp2 379 Prediction has been made ’SFP6’

pt3aw1 363 Rates identically zero
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University of Maryland Medical Center DOA Distributions  N=7

Cleveland Clinic DOA Distributions N=8

National Institute of Health DOA Distributions N=7

Figure 6. This figure shows degrees of agreement using the degree of agreement index between our algorithm and clinical annotations for successful and

failed surgical resections. The dashed line at DOA = 0 represents neither agreement, or disagreement. The red line is the average DOA, and the blue box is the

box plot of the DOA. -1 is a perfect disagreement between the algorithm and clinical set, while 1 is a perfect agreement between the algorithm and clinical set.

446

447

448
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Cleveland Clinic MinMax DOA DistributionsNational Institute of Health MinMax DOA 

University of Maryland Medical Center MinMax DOA Distributions
 Johns Hopkins MinMax DOA Distributions


Figure 7. This figure shows distributions of the degree of agreement for every center including JHU after minmax normalization to compare each center on the same

scale of success versus failure. Note that minmax normalization scales all distributions between 0 and 1.

449

450
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Table 2. Degree of Agreement Results for α = 0.9 with average ± standard deviation from each clinical center and also the resulting p value from the

Wilcoxon ranked sum test. All centers show a significant difference between success and failure cases. Note JHH is used in the training of the Gaussian

weighting function.

451

452

453

Center DOA Statistics for Success DOA Statistics for Failure P Value

UMMC 0.09± 0.15 −0.09± 0.08 0.027

NIH 0.21± 0.25 −0.32± 0.11 0.020

CC 0.01± 0.38 −0.38± 0.01 0.024

*JHH 0.21± 0.23 0.08± 0.25 0.016

All 0.14± 0.27 0.00± 0.27 0.002

Table 3. Degree of Agreement Results for α = 0.9 with average ± standard deviation from each clinical center after minmax scaling and also the resulting

p value from the Wilcoxon ranked sum test. All centers show a significant difference between success and failure cases.

454

455

Center DOA Statistics for Success DOA Statistics for Failure P Value

UMMC 0.35± 0.23 0.05± 0.11 0.0057

NIH 0.54± 0.23 0.08± 0.07 0.0061

CC 0.36± 0.34 0.02± 0.01 0.0016

*JHH 0.50± 0.23 0.36± 0.24 0.0158

All 0.45± 0.27 0.29± 0.25 0.0005

Discussion456

The definition of the EZ, including its anatomical and electrophysiological signatures, has been an457

evolving and controversial topic since the foundation of modern epilepsy surgery. The EZ, defined as the458

site of primary organization of the ictal discharge, refers to the cortical areas connected together through459

an excessive synchronization at seizure onset (52; 57). Fast activity (FA) at ictal onset has been clinically460

accepted as the main feature of the EZ since the beginning of invasive monitoring era, particularly in the461

SEEG literature (52). Since the development of subdural ECoG recordings, much attention has also been462

paid to the time precedence of phasic transients, especially spiking activities (5; 45). In the last fifteen463

years, identification of high frequency oscillations (HFO) during interictal and ictal periods in464
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experimental models reoriented research interest towards high-gamma activities in human epilepsies as a465

potential EZ marker (6; 39; 64). In parallel, DC recordings exemplified the concomitance of ultra-slow466

and fast frequencies (19; 24; 53; 62).467

Although clinical definitions have been explored, a network based operational definition of the EZ is468

currently not well defined in the literature. Novel computational network analyses may overcome some469

of the challenges associated with more conventional invasive monitoring recordings methods. In this470

study, we analyze how centrality signatures of electrode recordings within an epileptic network change471

over time and how they relate to clinical annotations from four different hospital centers. We take in472

ECoG and SEEG data from 60 seconds before and after a seizure instance for 42 patients and produce a473

frequency connectivity network over time using the cross-power spectra of the signal in the 30-90 Hz474

range. Then we computed the EVC for each electrode at a time window to obtain a normalized ranked475

centrality of every electrode over time. By overlaying a Gaussian weighting function that was trained476

only with patients from one center, we then obtain a likelihood for each electrode of being in the EZ.477

Then we computed a degree of agreement between our algorithm and clinically labeled EZ using the478

DOA index for all patients by setting an arbitrary threshold.479

Some previous approaches for marking the EZ included FA, signal flattening and slow potential shift.480

Fast activity frequently occurs quasi-simultaneously in multiple areas so that visual discrimination can be481

cumbersome and lead to subjective interpretations. A different approach, frequency localization, was482

used by (19). After defining frequencies of interest (FOIs) and plotting their power change over time,483

they localized the distribution of FOIs in different contacts of the depth electrodes. The EZ, defined as484

the area exhibiting frequency changes at seizure onset, could then be delineated. In a retrospective and485

prospective study of patients investigated using SEEG, the same method was applied to test three486

potential biomarkers of EZ, namely FA, signal flattening and slow potential shift. These biomarkers487

co-localized with the EZ as defined by standard SEEG criteria and postresection seizure outcome (19).488

Other approaches for marking the EZ include HFO analyses. Interictal HFOs have been shown to have489

some value in identifying the EZ (11; 25; 28; 38; 55; 56). In our comparative analysis, we made490

modifications to the algorithm based on limitations in the data that was available at the clinical centers.491

First, in the 1000 Hz sampled data, the number of HFOs is significantly reduced, although the detected492

HFOs are still useful to identify the EZ (18). The lower sampling rate also required some modifications493
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to the algorithm: the fast-transient artifact detector could not be used (as it requires sampling rates > 2494

kHz) and the upper edge on the band-pass filter needed to be reduced from 500 to 400 Hz. Second, the495

limitation to interictal data restricts the identification of the full EZ: HFO results typically report a very496

small number of channels involved, which are typically much smaller than the eventual resected volume497

of tissue. Although HFO analyses show promise in analyzing electrophysiology of epileptic patients,498

they do not take into account the network nature of epilepsy. HFO analyses are important for analyses of499

interictal data, since our analysis is limited by requiring recorded seizure events. In future studies, it500

would be interesting to see how network algorithms and HFO algorithms can complement each other to501

improve EZ localization.502

It is important to note that network-bases analyses is not new to analyzing EEG recordings from epilepsy503

patients. Previous studies have shown that seizure activity is a dynamic multichannel process and the504

correlation structure right around a seizure event also follows a typical evolution, similar to our ranked505

EVC signal (34; 48). In (34; 48), they do not relate it back to EZ, but just look at network dynamics506

during seizure events. In (47), the authors compute interelectrode synchrony using the mean phase507

coherence algorithm and relate locally synchronous EEG channels back to the EZ, but only analyzed only508

9 patients from a single center. A similar small-scale study was performed in (32) with six epilepsy509

patients from one center. Other studies use computational models to understand the biophysical510

mechanisms related to epilepsy surgery (31; 51). In (31), they applied a virtual resection model using511

data from 10 patients. In (51), the authors developed patient-specific dynamical network models of512

epileptogenic cortex (computational models). However, there were only 16 patients analyzed from one513

center.514

This manuscript describes a somewhat large-scale research study that applies network-based data515

analysis tools to invasive EEG data to explore possible EEG signatures of the EZ. In no way are we516

proposing that this algorithm be directly translated into the clinic. Rather, it now compares how pairwise517

correlations may improve over quantifying HFOs in each channel individually, which has been the most518

recently accepted approach. We present a network analysis related back to the annotated EZ, analyzing519

data from before and after seizures, and analyzing data from multiple centers (with 113 seizures from 42520

patients). In our study, we showed that there is a general higher degree of agreement between our521

algorithm and clinically successful surgical resections of the EZ and a lower degree of agreement522
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between our algorithm and clinically failed resections. By setting a simple threshold on the likelihood523

maps, we can obtain a similarity measure between our algorithm and clinical labels for both successful524

and failed surgeries. As the threshold increases, our algorithm becomes better at identifying if successful525

resections had the correct EZ. We observed that the algorithm’s performance degraded with respect to526

degree of agreement when patients were implanted sparsely with single strips across all four lobes527

(UMMC patients) and sometimes in both hemispheres. The clinicians place these strips with such wide528

coverage if there is no clear pre-implantation hypothesis and if seizures are thought to be starting from529

multiple brain regions. Often, these patients do not have clear EZ localization and/or do not end up as530

candidates for surgery. We also found that if the electrographic onset of seizure is not close to the531

clinically annotated onset of seizure, then the degree of agreement with clinicians is reduced. The532

electrographic onset is the start of seizure that is seen on the EEG recordings but not manifested in any533

behavioral changes in the patient. The clinical onset is the time at which the patient exhibits noticeable534

behavioral changes due to seizure onset (e.g. muscle twitches).535

Our results suggest that network data analytics may be a useful tool to assist in localization of the536

epileptogenic zone, especially when electrode implantation covers the EZ network densely. This is537

expected, since the threshold on the network’s likelihood is essentially a threshold on the algorithm’s538

confidence in an electrode being within the EZ set. Future work entails exploring different weighting539

functions applied over the rank centrality space and possibly merging features from HFO and network540

algorithms. Besides looking solely at gamma power (30-90 Hz) cross power matrices, the work could541

expand to encompass more frequency bands that could contain signals of importance in EZ localization.542

In addition, a more comprehensive study that compares the outcomes between SEEG and ECoG could543

help understand limitations of the algorithm, and also be of clinical importance in using SEEG versus544

ECoG. In addition, if we had more patient data from other centers, then it would be interesting to see how545

a pooled training procedure may improve our results. This work is meant to supplement the growing546

evidence in literature that epilepsy is a network phenomena and therefore also requires network547

algorithms to better understand its manifestation.548

SUPPORTIVE INFORMATION
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Code is open source at https://github.com/ncsl/eztrack. Since this was a retrospective data study, there is549

no table of the JHU patients and their clinical operative notes because the data was not available from550

JHU.551
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Table 4. Table of patient data for each center describing patient characteristics and electrode statistics. Some data was not available clinically and is

represented by N/A.
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Table 5. Table of clinical notes for each patient at Cleveland Clinic from their clinical procedures (imaging, resection). Some data was not available clinically

and is represented by N/A.
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Table 6. Table of clinical notes for each patient at NIH from their clinical procedures (imaging, resection). Some data was not available clinically and is

represented by N/A.
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Table 7. Table of clinical notes for each patient at UMMC from their clinical procedures (imaging, resection). Some data was not available clinically and is

represented by N/A.

558

559

Pa
tie

nt

ID

L
oc

at
io

n
of

Su
rg

er
y/

A
bl

at
io

n
Im

ag
in

g
L

oc
al

iz
at

io
n

of
E

E
G

Po
st

-o
p

Pr
og

re
ss

In
fo

(F
ro

m
C

lin
ic

ia
ns

)

U
M

M
C

00
1

N
o

re
se

ct
io

n
M

R
I,

PE
T

L
ef

tt
em

po
ra

l
Se

iz
ur

e
fr

ee

U
M

M
C

00
2

L
ef

t
te

m
po

ra
l;

4.
5c

m
(l

at
er

al
-

in
fe

ri
or

)/
3.

5c
m

(l
at

er
al

su
pe

-

ri
or

)H
ip

oc
am

pu
s

2-
2.

5
cm

M
R

I,

PE
T

R
ig

ht
te

m
po

ra
l

Se
iz

ur
e

fr
ee

U
M

M
C

00
3

L
ef

t
te

m
po

ra
l;

4.
5

cm
la

te
ra

lly
-

H
ip

po
ca

m
pu

s
ve

rs
us

po
re

nc
ep

ha
lic

cy
st

;4
.5

cm

M
R

I,

PE
T

R
ig

ht
te

m
po

ra
l

Se
iz

ur
e

fr
ee

U
M

M
C

00
4

R
ig

ht
te

m
po

ra
l;

5
cm

la
te

ra
lly

H
ip

-

po
ca

m
pu

s
(u

ns
pe

ci
fie

d
am

ou
nt

)

M
R

I,

PE
T

R
ig

ht
te

m
po

ra
l

2
au

ra
s

in
20

14

U
M

M
C

00
5

R
ig

ht
te

m
po

ra
l;

4.
5

cm
la

te
ra

lly
,2

.5

cm
m

es
ia

lly
;3

of
hi

pp
oc

am
pu

s

M
R

I,

PE
T

In
de

pe
nd

en
tb

ila
te

ra
lt

em
po

ra
l

(R
N

S
pa

tie
nt

)

U
M

M
C

00
6

R
ig

ht
te

m
po

ra
l;

la
te

ra
l

su
rf

ac
e

of

co
rt

ex
(4

.5
cm

fr
om

tip
);

2.
5

cm
of

hi
pp

oc
am

pu
sV

ei
n

of
L

ab
be

4.
5

-
5

cm
fr

om
tip

M
R

I,

PE
T

R
ig

ht
te

m
po

ra
l

Se
iz

ur
e

fr
ee

U
M

M
C

00
7

N
o

re
se

ct
io

n
M

R
I

R
ig

ht
te

m
po

ra
l

Se
iz

ur
e

fr
ee

–32–

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 16, 2018. ; https://doi.org/10.1101/247387doi: bioRxiv preprint 

https://doi.org/10.1101/247387
http://creativecommons.org/licenses/by-nc-nd/4.0/


== D R A F T January 9, 2018 ==

/ Title: Using Network Analysis to Localize the Epileptogenic Zone from Invasive EEG Recordings in Intractable Focal Epilepsy

Authors: Author Names

Table 8. Table of DOA scores for each patient separately. Each patient has 2-3 seizure recordings available and a DOA score was computed for each recording

instance. The JHU scores are also included after the end of the leave-one-out procedure.

560

561

Patient DOA (mean +/- std)

pt1 0.62 +/- 0.05

pt2 0.30 +/- 0.02

pt3 -0.16 +/- 0.03

pt8 0.18 +/- 0.03

pt10 0.26 +/- 0.03

pt12 -0.32 +/- 0.11

pt13 -0.00 +/- 0.07

UMMC001 0.03 +/- 0.05

UMMC002 0.05 +/- 0.03

UMMC003 0.04 +/- 0.04

UMMC004 0.17 +/- 0.04

UMMC005 0.41 +/- 0.12

UMMC006 -0.04 +/- 0.09

UMMC007 -0.09 +/- 0.08

EZT007 -0.38 +/- 0.01

EZT019 -0.33 +/- 0.04

EZT090 -0.26 +/- 0.00

EZT091 0.12 +/- 0.24

EZT092 -0.37 +/- 0.03

EZT120 -0.14 +/- 0.04

EZT121 0.66 +/- 0.03

EZT127 0.31 +/- 0.01

JH1 -0.07 +/- 0.21

JH2 0.30 +/- 0.30

JH3 0.23 +/- 0.57

JH4 0.14 +/- 0.14

JH5 0.27 +/- 0.13

JH6 0.55 +/- 0.09

JH7 -0.05 +/- 0.10

JH8 -0.03 +/- 0.11

JH9 0.31 +/- 0.13

JH10 0.57 +/- 0.17

JH11 0.10 +/- 0.09

JH12 0.01 +/- 0.15

JH13 0.09 +/- 0.17

JH14 0.04 +/- 0.10

JH15 0.07 +/- 0.21

JH16 0.05 +/- 0.09

JH17 -0.02 +/- 0.19

JH18 0.09 +/- 0.03

JH19 0.17 +/- 0.22

JH20 0.07 +/- 0.13
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