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Abstract

More than 70,000 short-read RNA-sequencing samples are publicly available through
the recount2 project, a curated database of summary coverage data. However, no current
methods can be directly applied to the reduced-representation information stored in this
database to estimate transcript-level abundances. Here we present a linear model taking as
input summary coverage of junctions and subdivided exons to output estimated abundances
and associated uncertainty. We evaluate the performance of our model on simulated and real
data, and provide a procedure to construct confidence intervals for estimates.
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Background

RNA sequencing (RNA-seq) can be used to measure gene (and transcript) expression levels
genome-wide. Large-scale RNA-seq datasets have been produced by studies such as the GTEx
(Genotype-Tissue Expression) consortium [I], which comprises 9,662 samples from 551 individu-
als and 54 body sites (under version 6), and the Cancer Genome Atlas (TCGA) study [2], which
comprises 11,350 samples from 10,340 individuals and 33 cancer types. Furthermore, public data
repositories such as the Sequence Read Archive (SRA) host tens of thousands of human RNA-seq
samples [3]. These data collectively provide a rich resource which researchers can use for discovery,
validation, replication, or methods development.

These data are even more valuable when processed in a consistent manner and presented in
an accessible format. Researchers can query the database to test any relevant hypotheses they
may have. The recently published recount2 project [4] is the result of such an undertaking. All
raw data from the thousands of sequencing studies were aligned to a common reference genome
using a scalable and reproducible aligner Rail-RNA [5]. Summary measures (gene, exon, junction,
and base-pair level coverage) were derived from the Rail-RNA output and made available in an R
package and through a web portal (https://jhubiostatistics.shinyapps.io/recount/). The
over 70,000 curated samples have reads whose lengths fall within approximately 5 distinct peaks
and were either paired or unpaired (see Table

Currently, recount?2 provides summary measures that directly allow for analyses like annotation-
agnostic base-pair level and annotation-specific gene/exon/junction differential expression. How-
ever, transcript-level abundance estimates are missing from recount2, preventing subsequent
transcript-level analyses. Despite the existence of many successful transcript quantification pro-
grams (such as Cufflinks [6], Kallisto [7], Salmon [8], and RSEM [9]), this deficiency persists
because methods capable of estimating transcript abundances using the summarized output col-
lected in recount2 do not exist. Here, we present a linear model-based method to accomplish this
estimation task.

Previous linear model-based transcript abundance estimation techniques include IsoformEx
[10], MultiSplice [11], and CIDANE [12]. IsoformEx transforms aligned reads into RPKM (reads
per kilobase of transcript, per million mapped reads) of splice junctions and disjoined exons

to apply a length-weighted non-negative least squares regression for abundance estimation. In
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addition to the basic exon and junction counts, MultiSplice and CIDANE account for reads that
are more identifiable to a unique transcript - such as reads that span multiple junctions, or a
read-pair that uniquely links multiple exons. Since our model does not have access to the highly
discriminating read-level information leveraged by MultiSplice and CIDANE, we were restricted
to maximizing the summary coverage statistics accessed by IsoformEx. Toward that goal, our
model further subdivides exonic segments and introduces an aligner-estimated model matrix. Our
objective in developing this method was not to be faster or more accurate than existing methods
operating on raw sequencing data, but to provide more full utilization of the data in the recount2

project through transcript-level abundance estimates.

Results

Overview of method

recount? includes a repository of coverage summary measures, including coverage of exon-exon
splice junctions, produced by a uniform application of the aligner Rail-RNA to more than 70,000
publicly available RNA-seq samples. For a given read length and a reference transcriptome,
we determine a set of sufficient features comprised of subdivided exonic segments and exon-
exon junctions, such that the coverage of these features adequately summarizes the transcript
quantification encoded in the raw reads. Counts of reads overlapping the features are the sufficient
statistics of our linear model, which we denote as feature counts (see Figure (1)).

Using these feature counts as the dependent variable, we fit a non-negative least squares
regression model to estimate the underlying transcript abundances. The independent variables in
our model are transcriptome annotation-specific, and are denoted as feature probabilities. A
feature probability encodes the chance that a random read from a transcript will contribute an
observed count to the corresponding feature. Standard error estimates are reported that reflect
our model’s confidence in abundance assignment. Lastly, our method also reports a uniqueness
score for each transcript that reflects how distinguishable each transcript is compared to other
transcripts during quantification. Further details about our methods are described in
and are implemented in the R package recountNNLS available from https://github.com/JMF47/

recountNNLS.
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Performance on Dirichlet-negative binomial simulated data

Using simulated data based on a Dirichlet-negative binomial specification described in [Methods]
we evaluated the performance of our model and the commonly-used pipelines HISAT2-Cufflinks
[13, 6], Kallisto [7], Salmon [8], and RSEM [9]. We simulated reads from 18,303 transcripts
using all annotated features on chromosomes 1 and 14, including 10 scenarios of varying read-
length and paired-end status, using the polyester R package [14]. Our method was run on the
reduced-representation output from applying the aligner Rail-RNA [5] to the simulated FASTA
files. All other methods extracted information from the full simulated FASTA files. The accuracy
of all methods across the range of simulated scenarios is measured in mean absolute error of
estimated abundance compared to the truth, and is visualized in Figure |2| with numbers reported
in Supplementary Table 1.

Figure [3| shows results from the 75bp, paired-end simulation scenario described in
and helps illustrate the utility of the uniqueness score produced by our model. The distribution of
uniqueness scores is visualized in Figure |3| (A). Figure |3| (B) indicates that bias in transcript
estimates decreases as uniqueness scores increases. In Figure (3| (C), we observe that as uniqueness
scores decrease, the standard errors reported by our model increase to reflect the uncertainty

caused by similarity between transcripts.

Performance of confidence intervals

To assess confidence interval coverage probabilities, for a random subset of 2000 transcripts from
chromosome 1, we simulated 100 datasets for each of the 10 Dirichlet-negative binomial scenarios.
For each dataset, we constructed 95% confidence intervals and evaluated whether those intervals
overlapped the truth. We observe that as uniqueness score of a transcript increases, confidence
intervals constructed for that transcript are more likely to capture the truth at least 95 times
out of the 100 repeats. For example, for 75bp single-end reads, around 85% of transcripts in the
lowest uniqueness category achieve nominal significance, compared to around 96.5% in the highest
uniqueness category. We also observe that as read length increases, the proportion of transcripts
with 95% confidence intervals that overlap the truth in at least 95 out of the 100 repeats generally
increases. (Figure [4] (B, C)).
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Performance on hybrid simulated data

To assess performance on simulated data that might more accurately reflect biology than the
Dirichlet-negative binomial scenario described above, we also simulated a 75bp, paired-end dataset
using the RSEM estimated transcript abundances for the ERR188410 sample of the GEUVADIS
Consortium data as ground truth expression levels. RSEM was excluded from this comparison.
Our method’s performance relative to the others is consistent with our above Dirichlet-negative
binomial simulation of 75bp, paired-end reads (Supplementary Table 1, last row). The dis-
tribution of uniqueness scores is seen in Figure |5/ (A). Our method again shows decreasing mean
absolute error accompanying a rise in uniqueness score Figure |5/ (B). The median standard error

decreases with increasing uniqueness scores in Figure (5| (C).

Performance on GEUVADIS Consortium data

Using recount?2 feature counts of sample ERR188410 (a 75bp paired-end sample) from the GEU-
VADIS dataset [15], we ran recountNNLS to estimate transcript abundance levels. We also down-
loaded the FASTQ files for this sample and applied the 4 other methods mentioned above to
estimate transcript abundances. Pair-wise comparisons of the estimates were carried out to eval-
uate Spearman’s correlation and concordance of transcripts assigned non-zero expression.

For this sample, the Spearman correlations between the other methods are high, at greater than
0.85. recountNNLS achieves much more moderate correlation of approximately 0.65 with the other
methods. The lower triangle of Table |2| presents the number of transcripts that the corresponding
methods both assigned non-zero expression to. Salmon [8] detected the most transcripts with non-

zero expression at 83,733, while our method reported the least with 68,568 transcripts.

Discussion

We have presented here a method to provide transcript-level abundance estimates on the reduced-
representation expression data available in recount2. Our model’s performance most closely
approximates other methods in the 37bp single end read setting. All methods are able to improve
as read lengths increase (Figure , likely because longer reads have a higher probability of being

uniquely attributable to a single transcript. However, our method is not able to leverage the
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full information of longer reads, such as reads that span a unique sequence of junctions, and
showed more modest improvements. Similarly, for paired-end scenarios, the insert length works
in conjunction with the read length to dramatically increase the probability of uniquely assigning
a read for those methods who have access to such information. Still, given the unique resource
that recount?2 represents, including transcript-level abundances will greatly increase the potential
downstream uses of the data in this repository.

In order to examine loci where our model achieves higher or lower accuracy, we develped a
measure of transcript uniqueness. Many loci have annotated transcripts that are structurally very
similar. Unsurprisingly, expression levels for transcripts that are highly similar are difficult to
tease apart. To identify how structurally similar one transcript is among a set of transcripts, in
the context of linear estimation, we calculate a uniqueness score that represents the proportion of
variability in feature probabilities of a transcript that can be explained by the other transcripts.
This score ranges from 0 to 1, with 0 indicating that a transcript’s feature probabilities can be
perfectly recapitulated by other transcripts and 1 indicating that a transcript is wholly unique. As
noted above, we see a clear relationship between the uniqueness score and the estimated accuracy
of our method in both Figure 3| (B) and Figure |5| (B). The other methods evaluated also tend
to show a trend in decreasing bias with increasing uniqueness score from our model.

Our model’s standard error estimates are also related to the uniqueness score of a transcript.
Under our Dirichlet-negative binomial and hybrid simulations, we observe an increase in median
standard errors as uniqueness decreases in Figure |3| (C) and Figure (5 (C). Similarly, in Figure
[6] we observe the structure and estimates of 2 selected genes from sample ERR188410 of the
GEUVADIS Consortium dataset. For the gene KLHL17, all 5 transcripts have unique features
that make the transcripts highly distinct. Our method shows that the standard errors are rela-
tively low (Figure @, top). In the gene G6PD, there are strong structural similarities between
some of the transcripts. The difference in the identifiability of the transcripts is clearly reflected
in our reported standard errors: transcripts that are difficult to distinguish from others are as-
signed higher standard errors (Figure @, bottom). In particular, the top two transcripts are
almost identical, with uniqueness scores of far less than 0.01 and inferred standard errors orders
of magnitude larger than other transcripts at this locus.

The more uniquely identifiable a transcript is, the more likely that transcript will have confi-
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dence intervals that cover the truth in greater than 95 out of 100 repeated simulations (Figure
(B,C)). Transcripts of low uniqueness tend to have higher bias and less-than-nominal confidence
interval coverage. Similarly, as read length increases, uniqueness scores of all transcripts tend
to improve overall. Thus the validity of our confidence intervals also improves as read length
increases.

We have already run our model on all data currently in the recount2 database and have up-
loaded the results for public access. Working with the transcript abundances produced by our
method is straightforward. For a given SRA project id (x) currently curated in recount2, one
can access the transcript quantification stored as a RSE object by installing the recountNNLS
R package and calling a single function, getRseTx(x). We also include an example differential
transcript expression analysis of healthy versus cancer TCGA breast samples in the Supplemen-
tary Materials. We input our model estimates into a popular differential expression pipeline
using the R packages 1imma [16] and edgeR [17] to produce estimates of transcript-level differential
expression between these groups of samples.

Our model is readily able to adjust for factors that might affect quantification (such as GC
content, mappability, and transcript location bias) by adjusting the feature probability matrices.
For example, to adjust for GC content, we could learn the GC content bias of the sample by
selecting for the subset of 1-transcript genes and assessing GC bias using their sequence compo-
sition and expression levels. The selected transcripts can be broken down into the set of features
and feature counts that they are comprised of. Using a loess smoother, one could model the
relationship between the GC content of those features and the feature counts. This relationship
could then be used on multi-transcript genes to up-weight or down-weight the feature probability
matrix entries. Substituting the adjusted matrices into NNLS estimation would yield GC-adjusted
estimates. Similar processes can be carried out for any kind of adjustment for which one could

attain feature-level characteristics, such as mappability, positional biases, etc.

Conclusion

We have presented a method for estimating transcript-level abundances and standard errors, as
well as a procedure to construct confidence intervals, based on a set of reduced representation data

on more than 70,000 RNA-seq samples in recount2. The quantified transcript abundances for the


https://doi.org/10.1101/247346
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/247346; this version posted May 25, 2018. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

more than 70,000 samples of recount2 are now available for direct access and download via both
the R package recount and the recount2 website https://jhubiostatistics.shinyapps.io/

recount/.

Methods

recount? sumimary measures

recount? includes a repository of coverage summary measures produced by a uniform application
of the aligner Rail-RNA to more than 70,000 publicly available RN A-seq samples. For each sample,
recount?2 contains two primary files necessary for our linear modeling approach. First, each sample
has a BigWig-format file [I8] containing the number of reads that overlap each genomic position
of the hg38 assembly. Secondly, each sample has a file containing the number of reads spanning
observed exon-exon splice junctions. Other useful summarizations are also available directly from
recount2, like pre-computed exon-level and gene-level coverages based upon the GencodeV25

reference transcriptome using the above mentioned BigWig files.

Sufficient statistics for transcript quantification

Given the read length of a particular experiment and a reference transcriptome, we determine
a set of sufficient features such that the coverage of these features adequately summarizes the
transcript quantification encoded in the raw reads. For simplicity, we illustrate our definition of
features with an example gene containing two transcripts, and with an example data-generating
experiment with read lengths of 100 base pairs, but our method generalizes to arbitrary transcript
structure and different read lengths.

Consider the gene portrayed in Figure [I which is composed of 2 transcripts, 3 distinct exons,
and 1 exon-exon junction, and suppose that the experiment produces reads of length 100bp. We
first disjoin the annotation into unique, non-overlapping sub-exonic segments, similar to the scheme
that IsoformEx [10] employs. However, in a process unique to our model, any bins longer than
200bp (twice the experiment read length) are then further evenly subdivided so that the largest

resulting piece is less than 100bp. This process increases the identifiability of the transcripts. For
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our example, the final product is a set of 7 features, of which 6 are sub-exonic segments while 1 is
an exon-exon splice junction.

The sufficient statistics for our linear model are the counts of reads that overlap each feature,
which we will denote as feature counts. To extract the feature counts given a set of features, we
query the BigWig files for the coverage of sub-exonic sections, and the junction file for the junction
equivalent. The values in the BigWig files are stored as the number of reads overlapping each base
pair so for each feature, we take the sum of these values and then divide by the read-length of
the experiment to determine the equivalent number of reads overlapping each feature. No such

normalization is necessary for the values from the junction coverage file.

Deriving model inputs

Our goal is to derive transcript abundances given the known gene structure and feature counts
summarized above. Continuing with the example gene from Figure [1] transcript 1 is composed
of all 7 features, while transcript 2 is composed of features 1 and 2 only. Based on this structure,
reads aligning to features 3-7 should have originated from transcript 1 and not transcript 2. We
use this structure to set up the design matrix for our linear model.

We name our independent variables feature probability vectors, and denote them as X!
and X? respectively for each transcript. Each vector is of length 7, corresponding to the number
of features. Each element X ]’“ encodes the probability a random read from transcript k overlaps
feature j of our gene, where £ = 1...2 and 7 = 1...7. The column-wise collection of feature
probability vectors for our example gene is denoted as X with dimension [7x2] and is referred to
as the feature probability matrix for this gene. Note that the values in this matrix depend on
both the calculated features and the length of the reads of the sequencing experiment (100bp in
this example).

The true X is not known, but it can be estimated based on sequence content of the transcripts
and the read length of the experiment. To estimate X!, sliding segments of 100bp from transcript
1 are aligned to the GRCh38 reference using the aligner HISAT2 [I3]. The number of aligned
segments overlapping each feature is summed and divided by the number of total 100bp segments
to produce the estimate of X!, denoted by X!, The estimated feature probability matrix X is

the column-wise collection of such estimated feature probability vectors for all transcripts in the
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gene. More complex implementations can readily include adjustments for GC content, 5 bias,

and mappability differences by weighting each row of X appropriately.

Non-negative linear model

For our gene, we denote the observed feature counts vector Y. The underlying assumed data
generation process is illustrated in Figure [7] We are interested in estimating the true transcript

abundances (8 using our estimated X by solving for:

arg min HY — X3
50

2

subject to the constraint that each element of B is non-negative. Many existing algorithms
and implementations exist for finding the solution. For recountNNLS, we used the function nnls

found in the R package nnls [19] for ease of implementation.

Standard error calculation

Our model is amenable to standard error estimation of B using a heteroscadastic consistent sand-
wich estimator proposed and referred to as HC4 by Cribari-Neto [20]. The covariance matrix of

~

[ is estimated using our feature probability matrix X as:

2
X'X) " X' diag | — | X(X'X)"L
X'X) X diag | 5| X0

where ¢; is the residual from the i-th feature, and h;; is the i-th diagonal of the projection

(“hat”) matrix H calculated as:

H = X(X'X)'X'.

We define 6; = min(4, n*h;; /p), with n the number of transcripts and p the number of features
at a given locus. hy; is capped to be at most 0.99 to ensure division by 0 does not occur for points
with h;; computationally equal to 1.

For transcripts that only have 1 feature while being quantified, the reported standard error is

0 and reflects that one is unable to quantify the variability of the estimate.

10
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Confidence interval construction

The construction of confidence intervals is based on a t-statistic approach, where the critical value
depends on a degree of freedom equal to n —p. n is the number of features and p is the number of
transcripts being estimated at once. If we let SE denote the diagonal of the estimated covariance

matrix for B , the a-level confidence intervals are:

A

ﬂ + t(a/Qm_p) * SE

Uniqueness score

Our method also produces a uniqueness score for transcript i, defined as rss;/tss;. rss; is the
residual sum of squares for transcript ¢ after fitting NN LS(X;, X_;), where X is the ith column
of our feature probability matrix X and X_; is X with the ith column removed. tss; is the sum

of the squares of each term of X;.

Quantification compilation for recount2

To quantify the entire transcriptome for a given sample, we execute separate linear models on each
of what we refer to as “bundles” of genes. We define a single bundle as all genes that share any
non-zero entries in the feature probabilities of transcripts associated with those genes. As different
read lengths affect the multi-mapping of sequencing reads, we calculate the set of bundles for each
read length, by examining all feature probability matrices. However, for read lengths of 37bp and
50bp, this results in the creation of a bundle encompassing 1966 and 4953 genes respectively -
too large to handle in computation at once. As such, for 37bp and 50bp datasets, we resort to
approximating the bundles with the bundles built for 75bp, resulting in some increase in bias,
but allowing for computational tractability. As an addition to the recountNNLS package, we offer
precomputed features, feature probability matrices, and bundles reflecting read lengths of 37, 50,
75, 100, and 150bp in the package recountNNLSdata.

Our method produces a Ranged Summarized Experiment (RSE) object per project - mirroring
the structure of recount2. For each sample of a project, we utilize the set of feature probability
matrices that match the read length of the sample most closely. If the match is not exact, we

adjust the estimated abundances and standard errors by the ratio of feature probability matrix

11
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read length over actual sample read length.

For each project, the RSE object contains the estimated fragment counts, standard errors,
uniqueness scores, and degrees of freedom, accessible via the function assays as fragments, ses,
scores, and df respectively. Each row of the fragments, ses, scores, and df matrices represents
a transcript, and each column represents a sample. The corresponding transcripts are stored as
a GRangesList accessible via the rowRanges function, and meta information such as length and
number of exons is stored in a table accessible by the function rowData. Transcripts that introduce
colinearity (either perfect or computational) in the model matrix X are reported as NA in counts

and ses. Transcripts are deemed too colinear by default behavior of the Im() function in R.

Performance evaluation

Using our linear model on real and simulated data, we compare our estimates to those from the

established methods Kallisto [7], Cufflinks [13], RSEM [9], and Salmon [§].

Dirichlet-negative binomial simulation scenarios

We simulated RNA-seq data using the R package polyester [14] under 10 scenarios: read lengths
of 37, 50, 75, 100 and 150bp with either single-end or paired-end FASTA reads. For the sake
of simulation expediency, we selected all coding transcripts from chrl and chrl4 from the Gen-
codeV25 transcriptome annotation, which comprises 12.5% of the entire annotation (18,303 total
transcripts). The reads are generated via polyester [14] with a Gaussian fragment length distri-
bution with mean 250 and standard deviation 25. The number of reads to simulate was determined
on a gene-by-gene basis, with most genes having a dominant transcript that produces over 50%
of the sequencing reads. The relative abundances of the transcripts are chosen via a Dirichlet
distribution with o = 1/f, where f is the number of transcripts in the gene. The total number
of reads at a gene is chosen as a negative binomial with size=4 and p=0.01. The number of
reads of each transcript is the product of the outcomes of the Dirichlet and the negative binomial.
These parameters produce on average 400 fragments for each of the 2,675 genes, distributed to
approximately 60 fragments per transcript.

We created alignment indices for the subset of the transcriptome from chrl and chr 14 for use

with Kallisto [7] and Salmon [§]. The simulated FASTA files were fed to Kallisto [7], HISAT2-

12


https://doi.org/10.1101/247346
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/247346; this version posted May 25, 2018. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Cufflinks [13, 6], RSEM [9], and Salmon [8] with default parameters where applicable. Methods
were only asked to quantify the abundances of the subset of transcripts from protein-coding
genes on chrl and chrl4. For single end simulations, Salmon [§] and Kallisto [7] require in-
put of the fragment length distribution, for which the true parameters of (250, 25) were used.
For Cufflinks [6], we provided the fragment length ditsribution, and used --total-hits-norm
--no-effective-length-correction --no-length-correction options. For our linear model,
we utilized Rail-RNA [5] to process the FASTA files in the same manner as in recount2 [4]. For
evaluation, each method’s abundance estimates (est) were compared to the true number (truth)

using mean absolute error (MAE):

MAE = (Z lest; — truthﬂ) /n

i=1
where ¢ denotes a transcript out of the n = 18,303 transcripts selected from chrl and chrl4. For

each scenario, approximately 51% of the 18,303 transcripts had true non-zero expression.

Confidence interval coverage by transcript

We randomly sampled 2000 transcripts from the set of transcripts belonging to protein-coding
genes from chrl. We simulated 100 repeated datasets for each Dirichlet-negative binomial scenario
described above, with each selected transcript receiving 20x coverage. The simulated fasta files
were aligned via Rail-RNA, and the output BigWig and junction files were passed to our model for
quantification. Confidence intervals were constructed using the t-statistic-based method described
above. For a given transcript, the number of simulations in which the confidence interval for that

transcript covered the truth was recorded.

Hybrid simulation scenario

Using polyester, we also simulated a dataset with 75bp read length and paired-end reads
to mimic the expression levels observed in sample ERR188410 of the GEUVADIS Consortium
dataset. The ground truth number of counts generated for each transcript was taken from the
estimated counts from applying RSEM to transcripts that are a part of protein-coding genes
in the GencodeV25 annotation. Approximately 50% of the 144,729 transcripts reported by
RSEM received a positive count. Although these counts may not be the truth, they might
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better capture patterns of correlation and variability present in real data than the simulation
scenario described above did. The insert length was again set to have a mean of 250 and
a standard deviation of 25. The simulated FASTA files were used as input for Salmon [§],
Kallisto [7], and HISAT2-Cufflinks [I3| 6], while the Rail-RNA output BigWig and junction files
were used as input for out method. We asked each method to quantify all transcripts from
protein-coding genes of the GencodeV25 annotation, using suitable indices for each method built
on the entire GencodeV25 annotation. Cufflinks [6] was again used with --total-hits-norm
--no-effective-length-correction --no-length-correction options. For evaluation, each
method’s estimates were again measured using MAE for the full set of transcripts belonging to

protein-coding genes across all chromosomes.

GEUVADIS Consortium

We downloaded the raw paired-end FASTQ files for sample ERR188410 of the GEUVADIS Con-
sortium dataset. The FASTQ files were used directly as input for Kallisto [0.43.0] [7], HISAT?2
2.0.5]-Cufflinks [2.2.1] [I3] 6], RSEM [1.3.0, bowtie 1.1.1] [9], and Salmon [0.8.2] [8] using default
parameters. The recount2 summary measures for the GEUVADIS project samples were used
as inputs for our linear model. We were only interested in estimating the abundances of the
transcripts belonging to protein-coding genes in the GencodeV25 annotation. Indices were built
for the GencodeV25 transcriptome where needed. Cufflinks [6] was run with --total-hits-norm
--no-effective-length-correction --no-length-correction. Abundance estimations on the
transcript- and gene-level were compared pair-wise between methods using Spearman’s correla-
tion. We also examined pair-wise the number of transcripts that were assigned non-zero expression

by both methods.
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The following code will estimate transcript level abundances and associated standard errors for a
given project in the recount2 repository) (if R has access to sufficient resources) for a given project
id. An example case is demonstrated below for project DRP000366, and additional commands

are located in the supplement.

devtools::install_github(’ JMF47/recountNNLSdata’, ref=’4202515")
devtools::install_github(’ JMF47/recountNNLS’, ref=’9acadOb’)

library(recountNNLS)
pheno = processPheno(’DRP000366’)

rse_tx = recountNNLS(pheno)

The scripts to reproduce the analyses and plots in this manuscript are available at

https://github.com/JMF47/recountNNLSpaper
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Annotated Features - Gene i
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Figure 1: Given the read length of a particular experiment and a reference transcriptome, we
determine a set of sufficient features such that the coverage of these features adequately summa-
rizes the transcript quantification encoded in the raw reads. This figure illustrates the process to
determine the set of features for an example gene with 2 transcripts and 100bp reads. We first
disjoin the annotated exons into non-overlapping bins. Any remaining exonic segments longer
than twice the read length are further evenly subdivided to be below 100bp. Each unique splice
junction is included without modification as a feature. The number of reads overlapping the final
set of features are the sufficient statistics for 0111r811near model and serve as a compression of the

raw read-level data.
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Figure 2: The mean absolute error (MAE) of each method’s performance plotted over read length
in Dirichlet-negative binomial simulations, separated into panels by paired-end status. Colors
correspond to method. In both single and paired-end simulations, all methods were able to
improve performance as read length increases. Kallisto (kl), HISAT2-Cufflinks (cl), Salmon (sl),
and RSEM (rsem) are able to leverage information encoded by the pairs of reads to further reduce
error, whereas our method (nnls) is not. The effective read length under paired-end reads is a

combination of the insert size and sequencing read length.
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Figure 7: For one example gene, an illustration of our model formulation of the relationship
between transcript abundances and observed feature counts. A column of the feature probability
matrix represents the expected contribution to the observed feature counts by a random read
from the corresponding transcript. Our model estimates [ using a non-negative linear model.
Furthermore, since the true feature probability matrix is unknown, we estimate it by applying the

aligner HISAT2 to possible reads from each transcript.

Single end 5,714 10,557 2,395 3,459 232 22,357
Paired end 1,953 14,123 14,965 16,725 874 48,640
7667 24,680 17,360 20,184 1,106 70,997

Table 1: The number of samples in recount?2 that fall closest to each read length by paired-status
category. 5 distinct peaks of read lengths (37, 50, 75, 100, and 150bp) were observed in recount?2,

and samples are assigned to the closest matching read length out of the 5 above categories.
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recount HISAT?2
Salmon
NNLS Cufflinks
recount
68,568  0.64 0.65 0.63 0.64
NNLS
‘Kallisto | 55,201 82,742 0.86 001  0.99
HISAT?2
54921 69,404 79442 090  0.86
Cufflinks

50,864 70,239 67,562 73,075 0.91
Salmon 55,697 82,300 70,215 70,761 83,733

Table 2: Pair-wise comparison of the evaluated methods on example ERR188410 of the GEU-
VADIS consortium dataset. The upper half shows pair-wise Spearman’s correlation. The lower
half shows the number of transcripts that both methods assigned non-zero expression to. The di-
agonal shows the number of transcripts that each individual method assigned non-zero expression

to.
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