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ABSTRACT:

Parasitic chytrid fungi have emerged as a significant threat to amphibian species worldwide,
necessitating the development of techniques to isolate these pathogens into sterile culture for
research purposes. However, early methods of isolating chytrids from their hosts relied on
killing amphibians. We modified a pre-existing protocol for isolating chytrids from infected
animals to use toe clips and biopsies from toe webbing rather than euthanizing hosts, and
distributed the protocol to interested researchers worldwide as part of the BiodivERsA
project RACE; here called the RML protocol. In tandem, we developed a lethal procedure for
isolating chytrids from tadpole mouthparts. Reviewing a database of use a decade after their
inception, we find that these methods have been widely applied across at least 5 continents,
23 countries and in 62 amphibian species, and have been successfully used to isolate chytrids
in remote field locations. Isolation of chytrids by the non-lethal RML protocol occured in
18% of attempts with 207 fungal isolates and three species of chytrid being recovered.
Isolation of chytrids from tadpoles occured in 43% of attempts with 334 fungal isolates of
one species (Batrachochytrium dendrobatidis) being recovered. Together, these methods

have resulted in a significant reduction and refinement of our use of threatened amphibian
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99  species and have improved our ability to work with this important group of emerging fungal

100  pathogens.

101  INTRODUCTION

102 A major consequence of globalisation has been the increase of invasive species owing to

103 trade in live animals and plants. A further outcome of this process is the concomitant rise of
104  novel emerging fungal pathogens (EFPs; (Farrer ef al. 2017)) as these infections are moved
105  within trade networks and establish in uninfected regions — an example of fungal ‘pathogen
106  pollution’ (Fisher et al. 2012). Whilst EFPs can affect humans, they have also been broadly
107  detrimental to natural populations of plants and animals, leading to worldwide losses of

108  biodiversity. This dynamic has been most apparent across amphibians, where EFPs leading to
109  population extirpation and species extinctions have contributed to amphibians now being the
110 most endangered class of vertebrate (Stuart ef al. 2004; Mendelson ef al. 2006). In particular,
111 emergence of parasitic fungi in the genus Batrachochytrium (phylum Chytridiomycota, order
112 Rhizophydiales) have played a major role in driving amphibian population and species

113 declines worldwide (Berger et al. 1998; Fisher ef al. 2009).

114 While a single species, Batrachochytrium dendrobatidis (Bd), was originally thought to have
115  caused the ongoing panzootic (James et al. 2009), we now know that amphibian

116  chytridiomycosis is caused by a much broader swathe of phylogenetic diversity than was

117  previously thought (Farrer et al. 2011; Schloegel ef al. 2012). Next-generation sequencing
118  and phylogenomic analyses have shown that Bd sensu stricto is composed of deep genetic
119  lineages which are emerging through international trade in amphibians (Fisher et al. 2007,
120 Schloegel et al. 2009; Schloegel et al. 2010). Superimposed upon this background of trade-
121  associated lineages of Bd has come the recent discovery of a new species of pathogenic

122 chytrid, also within the Rhizophydiales, B. salamandrivorans (Bsal; Martel et al. 2013). This
123 pathogen has rapidly extirpated European fire salamanders (Salamandra salamandra) in the
124 Netherlands and a broad screening of urodeles has shown that Bsa/ occurs naturally in

125  southeast Asia where it appears to asymptomatically infect salamander and newt species

126  (Laking et al. 2017).

127  The ability to isolate and culture both Bd and Bsal has played a key role in catalysing
128  research into their pathogenesis and virulence (Voyles ef al. 2007; Rosenblum et al. 2012;

129  Farrer et al. 2017), phenotypic characteristics (Piotrowski et al. 2004; Fisher et al. 2009;


https://doi.org/10.1101/246538
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/246538; this version posted January 14, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Non-lethal isolation of chytrids from amphibians

130  Becker et al. 2017) and a wealth of experimental studies on epidemiologically relevant

131  parameters (Garner ef al. 2009; Ribas et al. 2009; Rosenblum et al. 2012). Longcore et al.
132 (1999) first isolated Bd from infected amphibians by modifying techniques used to isolate

133 other chytrids (Barr 1987). Longcore cleaned small (< 0.5mm dia) pieces of Bd-infected leg
134 and foot skin by wiping them through agar and then placed skin pieces onto a clean plate of
135 nutrient agar containing penicillin G and streptomycin. This method worked well for isolating
136  from dead animals sent by courier from North and Central America. The method, however,
137  requires euthanizing potentially healthy animals if their infection status was unknown.

138  Further, it is difficult to perform this protocol in remote regions that lack suitable laboratory
139  facilities, and the lethal sampling of amphibians may be contraindicated if the species is

140  endangered, protected or located in protected areas.

141  We confronted this issue in a 2008-2014 project funded by BiodivERsA
142 (http://www.biodiversa.org) — RACE: Risk Assessment of Chytridiomycosis to European

143 amphibian biodiversity (Fisher et al. 2012). One of the objectives of this project was to adjust
144 the protocol of Longcore ef al. (1999) to (i) reduce the need to kill adult amphibians, (i1)

145  improve rates of chytrid isolation by allowing the use of more animals, (ii1) develop protocols
146  that enabled isolation in a field setting, and, (iv) integrate the data into the GPS-smartphone
147  enabled epidemiological software application Epicollect (Aanensen et al. 2009; Aanensen et
148  al. 2014). Further, ‘forewarned is forearmed’ and we wished to determine whether the

149  protocol was able to isolate other species of chytrid that are part of the amphibian skin

150  microbiota, and that may present a biosecurity risk. This need to more broadly characterise
151  global chytrid biodiversity was met by using resources from RACE to train researchers

152 worldwide in chytrid isolation techniques to provide opportunities to characterise novel

153 chytrids as they were discovered.

154  In addition to the non-lethal isolation protocol, a lethal method was developed in parallel to
155  isolate chytrids from the mouthparts of larval amphibians. We describe this method as a

156  refinement to the main isolation protocol.

157 METHODS

158  Non-lethal field isolation of chytrids
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159  Animals were captured and held in separate plastic bags or suitable containers until ready for
160  processing (Supp. Info. RML Protocol 1 and Supp. Info. Swabbing Protocol 2). Using clean
161  gloves and sterilized dissection scissors or scalpel blades, the terminal 1-2mm of the

162  phalanges of the 4™ hind toe (counting from the proximal toe) was clipped and laid on the
163 surface of an mTGhL + antibiotic (200 mg/L penicillin-G and 400 mg/L streptomycin

164  sulphate) agar plate. Alternatively, ~Imm toe-webbing biopsy punches were taken (Sklar
165  instruments, PA, USA) then laid on a plate. This allowed multiple animals to be processed
166  rapidly in the field. Subsequently, each tissue sample was transferred to a second plate with a
167  sterile needle or forceps then cleaned (as far as possible) of surface-contaminating bacteria
168  and fungi by dragging it through the agar-medium. The needle or forceps was then used to
169  place the tissue sample in a sterile 2 ml screw-cap microtube containing liquid mTGhL

170  medium with antibiotics (200 mg/L penicillin-G and 400 mg/L streptomycin sulphate), then
171  stored in a cool, dry place. While 4 °C appears optimal, we have successfully used shaded
172 regions of streams to cool cultures when refrigeration was not immediately available and

173 have even held tubes and plates for several days at > 10 °C until suitable storage conditions

174  were available.

175  Once back in the laboratory, samples in tubes were visually screened for evidence of yeast or
176  bacterial contamination (when the media takes on a ‘cloudy’ appearance), or mycelial ‘balls’
177  around the toe that are evidence of non-chytrid fungal contaminants. Visibly clear samples
178  were decanted into a single well of a sterile 12-well lidded culture plate then incubated at
179  18°C for up to 4 weeks, topping up with extra medium to counter evaporation as necessary.
180  Depending on the size of the initial tissue sample, toe clips and webbing were divided into

181  several smaller samples before transferring to liquid culture media.
182  Isolating chytrids from tadpoles

183  Tadpoles often have higher burdens of infection than adults, especially long-lived tadpoles
184  (Skerratt et al. 2008), and have higher densities and encounter rates than adults. In some

185  situations where tadpoles were large and infections heavy, tadpoles were microscopically
186  screened with a dissecting microscope or hand lens for areas of dekeratinization of the mouth
187  parts, especially the jaw sheaths, that indicates infection (Fellers ef al. 2001; Smith et al.

188  2007). Tadpoles are killed before excising their mouthparts and these preliminary

189  microscopic screens enabled us to use only a small number of animals to isolate chytrids.

190  Additionally, uninfected and naive tadpoles that were reared in captivity were used as live
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191  substrates to bait chytrids from adult amphibians with low levels of Bd infection (Bataille et
192 al 2013).

193 Susceptible tadpoles were reared until gills were resorbed and animals were free-swimming
194  and feeding (developmental Gosner stage 25), because at earlier stages they are still

195  developing the keratinized mouthparts. Each tadpole container was then immersed within a
196  similar but larger container that held at least one chytrid-infected animal. Water exchange
197  between the infected and bait animal containers occurred through small holes (< 0.3 mm)
198  drilled into the bottom of the walls of the smaller internal containers. Animals were held in
199  these conditions for between 2 and 4 weeks at species-appropriate conditions. Tadpoles were
200  periodically examined every fourth day for the presence of the depigmented areas in the jaw

201  sheaths that have been associated with chytrid infection.

202  Isolating chytrids from tadpoles first required killing by immersion in a 5 g/L solution of MS-
203 222 (Torreilles et al. 2009) or other approved method. Note that anaesthetics which contain
204  ethanol, such as phenoxyethanol (Gentz 2007), should be avoided as these will kill chytrids
205  while MS222 is not toxic (Webb et al. 2005). We then dissected out keratinized jaw sheaths
206  and cleaned the entire sheath, or sections, as above using an agar plate with antibiotics

207  ((Longcore et al. 1999); Supp. Info. RML Protocol 1). Cleaned sections were then placed

208  singly into sterile 12-well culture plates with 1 mL liquid media + antibiotics, or onto agar

209  plates with 6 — 10 sections per plate, and incubated at 10 — 20 °C.

210  Because zoospore release may occur immediately, especially from tadpole mouthparts,
211  cultures were examined with an inverted microscope for the presence of active zoospores
212 every day for up to one week following the day that they were initiated. After that, checks

213 every two days were sufficient.
214 Culture and diagnosis of chytrid isolates

215  Subsequent culture methods for Bd followed those of Longcore et al. (1999). When isolation
216  of Bsal was anticipated an incubation temperature of 15 °C was required (Blooi et al. 2015)
217  whereas a temperature of 18 — 22 °C is closer to the measured growth optimum of Bd

218  (Longcore et al. 1999; Ribas et al. 2009). Once growth of zoospores and/or zoosporangia was
219  observed, 100 — 500 uL volume of culture containing zoospores and zoosporangia was

220 transferred by pipette to a new 12-well plate with liquid medium and no antibiotics, and
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221  incubated at 15 — 20 °C. All successfully cultured isolates were subcultured into larger
222 volumes, then centrifuged at 1700 g for 10 min before cryopreservation. A portion of the
223 initial pellet was also be used for DNA extraction, while the remaining volume was

224 resuspended in 10% DMSO and 10% FCS in liquid media and transferred into six 2 mL
225  cryotubes for cryopreservation at -80 °C (Boyle et al. 2003).

226  We confirmed the identity of Bd and Bsal by quantitative PCR with an MGB Tagman probe
227  assay in either single-plex or multiplex (Boyle et al. 2004; Blooi et al. 2013). We identified
228  non-Batrachochytrium chytrids was achieved by sequencing appropriate regions of the

229  ribosomal RNA gene with universal fungal primers followed by comparison against OTUs
230  held in UNITE database (Unified system for DNA-based fungal species linked to

231  classification: https://unite.ut.ee) to establish a species-hypothesis for the chytrid isolate in

232 question (Schoch et al. 2012). If further genetic data were required, then multilocus analysis
233 or whole-genome sequencing was undertaken using chytrid-specific methods (James et al.

234 2009; Farrer et al. 2013; Farrer et al. 2017; Farrer et al. 2017).

235  Collation of data

236  To track and report chytrid isolation for the RACE project, we used a generic data collection
237  tool that allows the collection and submission of geotagged data forms from field locations,

238  Epicollect5 (https://five.epicollect.net). This software has the advantage that it can be used on

239  mobile devices with or without internet connection, and allows the immediate sharing of data
240  across the research community. Our database at

241  https:/five.epicollect.net/project/bd-global-isolation-protocol included the following data

242 fields: Date; Continent, Country, Site name; Latitude/Longitude; Wild caught or trade?;
243 Amphibian species; Life history stage; Number sampled; Chytrid isolated?; Number isolated;
244 Species of chytrid isolated; Chytrid lineage; Photograph of amphibian; Name of researchers.

245  RESULTS

246  The ‘RACE modified Longcore (RML) Protocol’ for the non-lethal isolation of chytrids from
247  amphibians is detailed in Supp. Info. 1. Ensure that you have the relevant licences, permits
248  and permissions from ethical committees to follow the RML protocol 1, swabbing protocol 2

249  and isolation from larval amphibians.
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250  Following the formalisation and distribution of the RACE protocols, our Epicollect5 project
251  summarised chytrid surveys from 2007 through to 2017 (Table 1). The Epicollect5 database
252 can be spatially visualised at

253 https:/five.epicollect.net/project/bd-global-isolation-protocol/data. Figure 1 depicts the

254  isolation of amphibian-associated chytrids using the RACE protocols from 5 continents

255  (Africa, Asia, Australia, Europe and South America), 23 countries, 239 sampling episodes,
256  and from latitudes spanning -44.1 S (Batrachyla antartandica, Chile) through to 55.6 N (Bufo
257  viridis, Sweden). Chytrids have been non-lethally isolated from 1,906 animals comprising 34
258  amphibian species, of which 28 were anuran and 5 were caudatan species. Of the Bd isolated,
259 170 (80%) were determined to be BAGPL, 5 (2%) were BACAPE, 34 (16%) were

260  BdBRAZIL, 1 (>1%) was BdCH and 3 (1%) were hybrids. The database also contains 5

261  records of chytrids that were non-lethally sampled from the amphibian trade.

262 Non-lethal isolation from adult and juvenile amphibians

263  Intotal, 1,152 animals were non-lethally sampled, recovering 207 chytrid isolates and

264  resulting in a recovery rate of 18% (~1 isolate per 5 animals sampled). Of these chytrids, 203
265  (98%) were Bd, 2 were Rhizophydium sp., 2 were Kappamyces sp. and none were Bsal (Table
266  1). Of the Bd isolated, 42 (88%) were determined to be BdGPL, 5 (10%) were BdACAPE, and
267 1(2%) was BdCH.

268  Isolation of chytrids from larval amphibians

269  In total, 784 tadpoles were sampled recovering 334 chytrid isolates and resulting in a

270  recovery rate of 43% (~1 isolate per 2 — 3 animals sampled). Isolates were recovered from 34
271  species of amphibian, all of which were anurans. These chytrid isolates were all Bd and, of
272 the lineages recorded, 128 (78%) were BAGPL, 34 (20%) were BABRAZIL and 3 (2%) were
273 hybrids.

274  Baiting chytrid isolates from live adult animals using tadpoles was used successfully in South
275  Korean Bombina orientalis as previously described (Bataille et al. 2013). Here, six tadpoles
276  were co-housed with adult B. orientalis, yielding a single isolate of Bd for each attempt

277  equating to a rate of success of ~20%.

278  DISCUSSION
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279  The RML protocol, based on the original suggestions of Joyce Longcore for the non-lethal
280  isolation of chytrids from amphibians, has been a success with isolates of chytrids recorded
281  from five continents. There are likely many other unrecorded uses of this method because this
282  protocol has been widely dispersed during the 5-year span (2008-2014) of the RACE project

283  which trained a cohort of amphibian disease researchers in these techniques.

284  In some circumstances chytrids could not be recovered from toe-clips when sampling

285  populations with persistent infection despite repeated attempts. This was particularly evident
286  when the prevalence and burden of chytrid infections in surveys was low (Swei ef al. 2011;
287  Bataille et al. 2013; Laking et al. 2017) or when host species occupied habitats with high
288  bacterial and/or non-target fungal contaminants. In these situations we isolated chytrids from
289  tadpole mouthparts as an associated method to the RML protocol. The value of the RML

290  protocol in propelling forward research on amphibian chytridiomycosis has been very clear:
291  for instance, of the 59 scientific papers produced by RACE, 15 directly used isolates of Bd
292 that were generated by this protocol for experimental trials (Supp. Info. 3). Further,

293 subsequently many more studies using these isolates have extended our knowledge of the
294 genetic diversity of Bd (James et al. 2009; Farrer et al. 2011; Farrer et al. 2013; Jenkinson et
295  al. 2016), the development of novel diagnostics (Dillon et al. 2017), the genetic repertoire
296  that underpins the virulence of these pathogens (Rosenblum et al. 2012; Farrer et al. 2017)
297  and the biogeographic distributions of Bd diversity worldwide (Farrer ef al. 2011; Jenkinson
298  etal 2016).

299  Clearly some uncontrolled biases and unanswered questions in these studies need attention.
300  First, the majority of Bd isolates belong to the BdGPL lineage. This could be because this

301  lineage is more widespread (and therefore more readily recovered) than other lineages (James
302  etal 2015), or it could be that the intensity of BdGPL infections and/or the rate of zoospore
303  production is higher than for other lineages, which would also equate to a higher rate of

304 isolation. To achieve a true and unbiased understanding of the distribution of these lineages, a
305 lineage-specific diagnostic will need to be developed and deployed. Second, if lineage-

306  specific differences in the probability of successful isolation exist, then mixed infections

307  where these lineages co-occur may not be detected. This can be controlled for by isolating
308 and genotyping many isolates from a single host and population, although this may not fully
309  account for this bias. A related bias is that not all infectious species of chytrid will respond

310  equally to culturing attempts. For instance, despite known attempts to isolate Bsal from
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311  across its endemic southeast Asian range using the protocol, to date no successful isolations
312 of Bsal have been recorded. This is likely due to a combination of the low prevalence and
313  burden of infection in salamanders and newts combined with the low initial growth-rate of
314  Bsal (Martel et al. 2013; Laking et al. 2017). With the RML protocol, however, workers have
315  Dbeen able to isolate non-Bd species of chytrid (e.g., Kappamyces spp. and Rhizophydium sp.
316  Table 1). This diversity likely represents only a fraction of the diversity of amphibian-

317  associated chytrids that occur, and non-biased estimators of this diversity by, for instance,

318  profiling the nuclear ribosomal RNA cistron (Schoch et al. 2012), are sorely needed.

319  In this age of the global amphibian crisis, research on the effects of chytrid infections is

320 transitioning to attempts to mitigate their impacts (Schmeller et al. 2014; Garner et al. 2016;
321  Canessa et al. 2018). Both of these research streams benefit from the availability of chytrid
322 isolates, but the ethics behind these research programs can be improved. To that end, our data
323  onisolation success suggest that tadpoles are a better target for isolation than metamorphosed
324  animals. This is to some degree unfortunate, because isolation from tadpoles requires killing.
325  However we have outlined one refinement where captive reared tadpoles can be used to ‘bait’
326  infections from wild-caught amphibians to isolate chytrids without killing adult amphibians.
327  Here, it is important to recognise that amphibians which have been co-housed in collections
328  should not be returned to the wild due to the danger of cross-transmission of pathogens

329  during husbandry (Walker et al. 2008). If it is necessary to isolate chytrids directly from wild
330 tadpoles without using bait animals, we suggest that researchers focus on more fecund

331  species with long larval periods as the focal species in aquatic amphibian communities.

332 Removal of small numbers of tadpoles when clutch sizes are in the hundreds or thousands
333 means that removals will have an insignificant ecological impact; for this reason sacrificing

334  tadpoles is preferable to killing adult animals.

335  The extent to which toe-clipping effects the fitness of amphibians has been much debated
336 (e.g. May (2004) but see Funk et al. (2005)). Toe-clipping has been shown to decrease

337  amphibian survival, but this effect, when present, is linearly related to the number of toes

338 removed (McCarthy ef al. 2004; Ulmar Grafe et al. 2011). For the single toe-clip that the

339  RML protocol requires, reduction in survival appears to be negligible (Ott et al. 1999; Funk et
340  al 2005), and toe clipping is certainly preferred to killing the animal. Attention should be

341  paid to this issue, however, and, where appropriate, survival estimates should be undertaken

342 to determine the health implications of this procedure. Also, antiseptic and analgesic
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343  protocols can be considered to ensure that wounds where tissue samples are excised are at

344  low risk of secondary infection (Chevalier et al. 2017).

345  In summary, modification of Longcore’s original Bd-isolation protocol (Longcore et al.

346  1999) has enabled a broad community of scientists to engage with research on emerging

347  chytrid pathogens of amphibians. This research has had an impact worldwide, and is

348  contributing to the ongoing dialogue that is occurring between scientists, conservationists and

349  policy-makers about how we might mitigate against these infections now and into the future.
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592  TABLE 1. Non-lethal isolation of chytrids from adult and juvenile amphibians
593

Continent  Country n Species' n Sampled” n Chytrid® Chytrid species

Africa Madagascar 2 145 2 Kappamyces sp.
Cameroon 1 30 1 B. dendrobatidis
Ethiopia 1 5 1 B. dendrobatidis
South 6 179 45 B. dendrobatidis
Africa

Asia South 2 28 10 B. dendrobatidis
Korea
Taiwan 3 103 13 B. dendrobatidis/

Kappamyces sp.

Australia Australia 1 2 2 B. dendrobatidis

Europe Belgium 1 11 2 B. dendrobatidis
France 2 261 70 B. dendrobatidis
Hungary 1 15 3 B. dendrobatidis
Italy 1 14 4 B. dendrobatidis
Portugal 1 5 1 Rhizophydium

sp.

Spain 4 198 37 B. dendrobatidis
Sweden 1 23 5 B. dendrobatidis
Switzerland 1 30 1 B. dendrobatidis
UK 4 50 8 B. dendrobatidis

South Chile 1 10 1 B. dendrobatidis

America
French 2 66 2 B. dendrobatidis
Guiana

Trade n/a 4 15 5 B. dendrobatidis

594

595  'Number of amphibian species sampled, “total numbers of amphibians sampled, *number of
596  chytrids isolated

597

598
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TABLE 2. Isolation of Batrachochytrium dendrobatidis from mouthparts of larval

amphibians
Continent  Country Host Larvae Bd isolates
species sampled

Africa Ethiopia 1 36 1
Uganda 1 20 1
South 2 88 11
Africa

Asia Taiwan 1 15 1

Australia Australia 8 54 33

Europe Belgium 2 2 2
Netherlands 1 1 1
France 1 138 38
Germany 1 10 4
Spain 3 19 7
Switzerland 1 42 15

South Chile 2 28 4

America
Brazil 17 353 217
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Figure 1. Worldwide distribution of sites where the RML Longcore protocol has been used to isolate
chytrids. Numbers denote the quantity of amphibian species investigated. A browseable version of this
Epicollect 5 map can be accessed at https://five.epicollect.net/project/bd-global-isolation-protocol


https://doi.org/10.1101/246538
http://creativecommons.org/licenses/by-nc-nd/4.0/

