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Abstract

Visual signals originating in the retina pass through the dorsal geniculate nucleus
(dLGN), the visual part of thalamus, on the way to the visual cortex. This is however
not a simple feedforward flow of information: there is a significant feedback from
cortical cells back to both relay cells and interneurons in the dLGN. Despite four
decades of experimental and theoretical studies, the functional role of this feedback
is still debated. Here we use a firing-rate model, the extended difference-of-gaussians
(eDOG) model, to explore cortical feedback effects on visual responses of dLGN relay
cells. For this model the responses are found by direct evaluation of two- or three-
dimensional integrals allowing for fast and comprehensive studies of putative effects
of different candidate organizations of the cortical feedback. Our analysis identifies
a special mixed configuration of excitatory and inhibitory cortical feedback which
seems to best account for available experimental data. This configuration consists of
(i) a slow (long-delay) and spatially widespread inhibitory feedback, combined with
(ii) a fast (short-delayed) and spatially narrow excitatory feedback, where (iii) the
excitatory/inhibitory ON-ON connections are accompanied respectively by inhibito-
ry/excitatory OFF-ON connections, i.e. following a phase-reversed arrangement. The
recent development of optogenetic and pharmacogenetic methods has provided new
tools for more precise manipulation and investigation of the thalamocortical circuit,
in particular for mice. Such data will expectedly allow the eDOG model to be better
constrained by data from specific animal model systems than has been possible until
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now for cat. We have therefore made the Python tool pyLGN which allows for easy
adaptation of the eDOG model to new situations.

Author Summary

On route from the retina to primary visual cortex, visually evoked signals have to
pass through the dorsal lateral geniculate nucleus (dLGN). However, this is not an
exclusive feed forward flow of information as feedback exists from neurons in the
cortex back to both relay cells and interneurons in the dLGN. The functional role
of this feedback remains mostly unresolved. Here, we use a firing-rate model, the
extended difference-of-gaussians (eDOG) model, to explore cortical feedback effects
on visual responses of dLGN relay cells. Our analysis indicates that a particular mix
of excitatory and inhibitory cortical feedback agrees best with available experimental
observations. In this configuration ON-center relay cells receive both excitatory and
(indirect) inhibitory feedback from ON-center cortical cells (ON-ON feedback) where
the excitatory feedback is fast and spatially narrow while the inhibitory feedback is
slow and spatially widespread. In addition to the ON-ON feedback, the connections
are accompanied by OFF-ON connections following a so-called phase-reversed (push-
pull) arrangement. To facilitate further applications of the model, we have made the
Python tool pyLGN which allows for easy modification and evaluation of the a priori
quite general eDOG model to new situations.

1 Introduction

Visual signals originating in the retina pass through the dorsal geniculate nucleus
(dLGN), the visual part of thalamus, on the way to the visual cortex. This is however
not a simple feedforward flow of information, as there is a significant feedback from
primary visual cortex back to dLGN. Cortical cells feed back to both relay cells and
interneurons in the dLGN, and also to cells in the thalamic reticular nucleus (TRN)
which in turn provide feedback to dLGN cells [1,2]. In the last four decades numerous
experimental studies have provided insight into the potential roles of this feedback in
modulating the transfer of visual information in the dLGN circuit [3–19]. Cortical
feedback has been observed to switch relay cells between tonic and burst response
modes [20,21], increase the center-surround antagonism of relay cells [16,17,22,23],
and synchronize the firing patterns of groups of such cells [10, 13]. However, the
functional role of cortical feedback is still debated [1, 24–30].

Several studies have used computational modeling to investigate cortical feedback
effects on spatial and/or temporal visual response properties of dLGN cells [31–39].
These have typically involved numerically extensive dLGN network simulations based
on spiking neurons [31–33, 35, 39] or models where each neuron is represented as
individual firing-rate unit [36, 37]. This is not only computationally cumbersome,
but the typically large number of model parameters in these comprehensive network
models also makes a systematic exploration of the model behaviour very difficult.
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In the present study we instead use a firing-rate based model, the extended
difference-of-gaussians (eDOG) model [40], to explore putative cortical feedback
effects on visual responses of dLGN relay cells. A main advantage with this model is
that visual responses are found from direct evaluation of two-dimensional or three-
dimensional integrals in the case of static or dynamic (i.e., movie) stimuli, respectively.
This computational simplicity allows for fast and comprehensive study of putative
effects of different candidate organizations of the cortical feedback. Taking advantage
of the computational efficiency of the eDOG model, we here explore effects of direct
excitatory and indirect inhibitory feedback effects (via dLGN interneurons and TRN
neurons) on spatiotemporal responses of dLGN relay cells. In particular we investigate
effects of (i) different spatial spreads of corticothalamic feedback and (ii) different
corticothalamic propagation delays.

Our analysis suggests that a particular mix of excitatory and inhibitory cortical
feedback agrees best with available experimental observations. In this configuration
an ON-center relay cell receives feedback from ON-center cortical cells (ON-ON
feedback), consisting of a slow (long-delay) and spatially widespread inhibitory
feedback combined with a fast (short-delay) and spatially narrow excitatory feedback.
Here the inhibitory and excitatory ON-ON feedback connections are accompanied
by excitatory and inhibitory OFF-ON connections, respectively, following a phase-
reversed arrangement [39]. For one this feedback organization accounts for the
feedback-induced enhancement of center-surround antagonism of relay cells as observed
in experiments [16,17,22,23,39]. Further, it seems well suited to dynamically modulate
both the center-surround suppression and spatial resolution, for example, to adapt to
changing light conditions [41].

Morever, a longer thalamocortical loop time of ON-ON inhibitory feedback loop
compared to ON-ON excitatory feedback may contribute to temporal decorrelation of
natural stimuli [42], an operation that has been observed accomplished at the level of
dLGN in the early visual pathway [43]. At the same time, the rapid excitatory feedback
may contribute to linking stimulus features by synchronising firing of neighbouring
relay cells [10, 19].

Previous experimental studies have focused on cat, monkey and ferret dLGN, and
the present model was adapted to neurobiological findings from cat. However, the last
years have seen a surge of interest in mouse visual system, where new optogenetic and
pharmacogenetic methods provide new tools for precise manipulation of identified
neurons in the thalamocortical circuit [44–49]. Such data will expectedly allow
for a detailed adaptation of the eDOG model to rodent dLGN, likely much better
constrained by biological findings than what has been possible until now for cat. To
facilitate this we have made the Python tool pyLGN (http://pylgn.rtfd.io) which
allows for easy modification and evaluation of the eDOG model to new situations.
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2 Materials and Methods

2.1 Spatiotemporal receptive fields

Spike responses of neurons in the early visual pathway are most commonly described
in terms of receptive fields, the most common measure of spiking activity in the
visual system. Mathematically, the spatiotemporal receptive field is defined by an
impulse-response function W (r, t). This function describes the firing-rate response
to a tiny (δ-function) spot positioned at r = 0 which is on for a very short time
(δ-function) at t = 0. If linearity is assumed, the response to any stimulus S(r, t) can
be found by convolving the impulse-response function with the stimulus [40, 50–53]:

R(r, t) =

∫

τ

dτ

∫∫

r′
d2r′ W (r− r′, τ)S(r′, t− τ), (1)

or written more compactly

R(r, t) = W ∗ S. (2)

Here S(r, t) is a spatiotemporal stimulus function describing, e.g., the light intensity
on a screen as a function of time and position. R(r, t) is the response of a neuron
with its receptive-field center at r. The spatial integral goes over the whole visual
field, i.e., over all two-dimensional space. For mathematical convenience we have
chosen the temporal integral to go from τ = −∞ to +∞. Since a stimulus input
cannot affect the response in the past, it then follows that W (r, τ < 0) = 0.

In Fourier space the convolution in Eq. (2) corresponds to a product

R̃(k, ω) = W̃ (k, ω)S̃(k, ω), (3)

where R̃, W̃ , and S̃ are the Fourier transforms of the neural response R, the impulse-
response function W , and the stimulus S, respectively. The tilde symbol (∼) will be
used to denote the Fourier transform of any function throughout this paper. The
function argument k is the wave vector which is related to the spatial frequency ν
via |k| = 2πν. Correspondingly, the angular frequency ω is related to the temporal

frequency f via ω = 2πf . With W̃ and S̃ known, the neural response can thus
always be found by an inverse Fourier transform F−1{} , which entails an integral
over temporal and spatial frequencies

R(r, t) = F−1
{
W̃ (k, ω)S̃(k, ω)

}
. (4)

The response model in Eq. (1) is an example of a descriptive model where the
purpose is to summarize experimental data compactly in a mathematical form [52–54].
Here the aim is to find an appropriate impulse-response function, i.e., spatiotemporal
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Fig 1. Illustration of mechanistic model. A dense and evenly distributed layer
of retinal ganglion cells with identical response properties are activated by the visual
stimulus according to their receptive fields. This creates a pattern of neural activity
for the layer of ganglion cells, acting as input for a similar layer of dLGN relay cells.
Relay cells are connected to the ganglion cells via a spatiotemporal coupling-kernel
function KRG which is assumed to only depend on the relative distance between the
retinal ganglion cell and relay cell.

receptive-field function, that describes the measured neural response to different
visual stimuli [51]. With this approach, however, limited insight is gained into how
the neurons and neural circuitry in the early visual system provide such a receptive
field. To address this question a mechanistic receptive-field model is needed. (For
a discussion of the difference between descriptive and mechanistic models in visual
neuroscience, see, for example [54,55].)

2.2 Mechanistic receptive-field models

In mechanistic LGN-circuit models the input from retinal ganglion cells have been
described by descriptive models, see, e.g., [36, 37,40,53,56]. Likewise, in the present
eDOG model the input from retinal ganglion cells is represented by the descriptive
impulse-response function (Eq. (1)). Here a square grid of retinal ganglion cells with
identical, spatially-localised receptive fields are considered (see Fig. 1). The activity,
i.e., firing rates, of the neurons on the retinal ganglion cell layer then serves as input
to the dLGN relay cell layer. This is represented by a spatiotemporal coupling-kernel
function KRG, which reflects the direct synaptic input from retinal ganglion cells
to dLGN relay cells. The coupling kernel, which is analogous to the descriptive
impulse-response function in Eq. (1), is assumed to only depend on the relative
distance between the cells in the visual field [53].

The response of a relay cell located at r is then given by [40,53]:
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RR(r, t) =

∫

τ

dτ

∫∫

r′
d2r′ KRG(r− r′, τ)RG(r′, t− τ)

= KRG ∗RG, (5)

where RR and RG are the firing-rate responses of relay cells and ganglion cells,
respectively. The coupling kernel KRG(r − r′, τ) denotes the strength with which
the response of a ganglion cell, displaced by r− r′ from the relay cell, at time t− τ
influences the response of the latter at time t. Note that, KRG(r, τ < 0) = 0 due to
causality.

In Fourier space the relationship in Eq. (5) can be written as

W̃RS̃ = K̃RGW̃GS̃, (6)

where we have used the general relationship in Eq. (4). The key point here is

that a descriptive model for the relay-cell impulse-response function W̃R now has
a mechanistic interpretation. This relation is given as the product of the impulse-
response function W̃G of the retinal ganglion cells and the coupling kernel K̃RG from
the former cell type to the latter.

In the eDOG model this approach is extended to include the various feedforward
and feedback connections affecting the relay-cell response. The result is an expression
for the relay-cell impulse-response function W̃R in terms of the impulse-response
function W̃G of the retinal input and the coupling kernels connecting the neurons of
the circuit. With such a mechanistic expression for W̃R, the response to any visual
stimulus can be computed by means of the inverse Fourier transform in Eq. (4).

2.3 Extended Difference-of-Gaussians (eDOG) model

Here we derive the impulse-response function for dLGN relay cells for the mechanistic
eDOG model [40]. The complete circuit is shown in Fig. 2. In this figure each cell
type correspond to a two-dimensional layer (or population) of identical cells.

We will in the following focus on the dLGN relay cells with ON symmetry,
but a similar model can be constructed for OFF-symmetry cells. These neurons
receive feedforward excitation and indirect feedforward inhibition (via intrageniculate
interneurons) from ON-center ganglion cells in retina. The relay cells further receive
cortical feedback from both cortical ON cells and cortical OFF cells.

2.3.1 Feedforward input from retina

With indirect feedforward inhibition included in addition to the direct feedforward
excitation, the expression in Eq. (5) generalizes to

RON
R = KON

RG ∗RON
G +KON

RIG ∗RON
G . (7)
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Fig 2. Schematic overview of the present eDOG model. Cell types are:
retinal ganglion cells (G), dLGN relay cells (R), and cortical cells (C). Each cell type
corresponds to a two-dimensional layer (or population) of identical cells (see Fig. 1).
Note that only one cortical population is shown for each pathway even though an
arbitrary number of cortical populations is considered. Unlike the feedforward
projection, the feedback is cross-symmetry, i.e., the activity of ON-center relay cells
are affected both by ON and OFF-center cortical cells. The OFF-center dLGN relay
cells are assumed to receive the same input as the corresponding ON-center dLGN
relay cells with opposite sign. Solid lines represent explicitly included connections in
the eDOG model, while dashed lines represent connections included implicitly.

Here KON
RIG is a spatiotemporal coupling-kernel representing the indirect feedforward

inhibition from retinal ganglion cells onto relay cells via intrageniculate interneurons.
In Fourier space this gives a simple expression for the relay-cell impulse-response

function, i.e.,

W̃ON
R =

(
K̃ON

RG + K̃ON
RIG

)
W̃ON

G , (8)

where we have used that R̃(k, ω) = W̃ (k, ω)S̃(k, ω), cf. Eq. (3).

2.3.2 Feedback from cortex

Next we add effects from cortical feedback onto the relay cell. This cortical feedback
can be both excitatory and inhibitory. The excitatory feedback corresponds to direct
projections from cortical cells onto relay cells. The inhibitory feedback corresponds
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to indirect inhibitory action on relay cells mediated by cortical projections onto
inhibitory TRN and intrageniculate interneurons. Further, unlike the feedforward
projection, the feedback is cross-symmetry, i.e., the activity of ON relay cells are
affected both by ON and OFF cortical cells.

In the eDOG model cortical ON and OFF cells are assumed to be driven solely
by ON and OFF relay cells, respectively. As the corticogeniculate feedback comes
from orientation-tuned cells in layer 6 in cortex, we include a set of N mutually
uncoupled, orientation-selective cortical populations Cn, (n = 1, 2, . . . , N) for both
the ON and OFF pathways. Each population Cn responds preferably to stimuli (bars,
gratings) with orientation θn. In Fig. 2 only a single cortical population is shown
for each pathway even though an arbitrary number of N cortical populations can be
considered.

Cortical cells are known to exhibit substantial non-linearities when responding
to visual stimuli, and here the response is modeled via a static non-linear function
acting on a linearly filtered input [52,57]. More specifically we express the response
of the ON or OFF cortical population Cn by

R
ON/OFF
Cn

= H
[
K

ON/OFF
CnR ∗RON/OFF

R

]
, (9)

where K
ON/OFF
CnR is the feedforward kernel between the relay cells and the cortical cells

in population Cn. Further, the half-wave rectification function H[x] = xθ(x) is used
to enforce non-negative firing rates [58], where θ(x) is the Heaviside step function.

We further assume the input to cortical OFF cells to be the negative of the one
for the ON cells [54]. That is

ROFF
Cn

= H
[
−KON

CnR ∗RON
R

]
. (10)

Finally, the feedback cross-connection (OFF to ON) is assumed to be phase-reversed
compared to the same-sign feedback (ON to ON) [40]:

KOFF-X
RCn

= −KON
RCn

, (11)

where KOFF-X
RCn

is the cross-coupling feedback from cortical OFF cells onto relay ON
cells. In other words, we assume the effect of ON-center and OFF-center cortical cells
to be the opposite of each other. However, we do not make any specific assumptions
on whether, say, the excitatory or inhibitory feedback is driven by ON-center or
OFF-center cortical cells [40].

With the three assumptions in Eqs. (9)–(11), the total input to the ON dLGN
relay cell is found to be [40,54]

RON
R = KON

RG ∗RON
G +KON

RIG ∗RON
G +

∑

n

KON
RCn
∗RON

Cn
+
∑

n

KOFF-X
RCn

∗ROFF
Cn

= KON
RG ∗RON

G +KON
RIG ∗RON

G +
∑

n

KON
RCn
∗KON

CnR ∗RON
R , (12)

where we have used the mathematical identity: H[x]−H[−x] = x.
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In Fourier space we thus have

W̃ON
R S̃ =

(
K̃ON

RGW̃
ON
G + K̃ON

RIGW̃
ON
G +

∑

n

K̃ON
RCn

K̃ON
CnRW̃

ON
R

)
S̃, (13)

and in analogy with Eq. (8) we find after some simple algebra

W̃ON
R =

K̃ON
RG + K̃ON

RIG

1−∑n K̃
ON
RCn

K̃ON
CnR

W̃ON
G . (14)

In this expression the direct feedforward excitation and the indirect feedforward
inhibition via interneurons are represented by the first and second terms in the
numerator, respectively. The feedback effects are accounted for in the denominator.

The general mathematical expression in Eq. (14) for the (Fourier transformed)
impulse-response function for the relay cells is the main feature for the eDOG
model [40]. The model provides an analytical formula for (linear) impulse-response
function for relay cells, despite the non-linearity of the response of the cortical cells
providing the feedback. The simulator presented in this paper uses this expression as
basis to compute the impulse-response function and the spatiotemporal responses
for user-defined kernels and input stimuli. Once the explicit form of the kernels
in Eq. (14) are defined, the response of the relay cells to arbitrary stimuli can be
calculated using Eq. (4).

In the next subsections we describe the choices made in this paper for (i) the

descriptive spatiotemporal receptive-field function for the retinal input (W̃ON
G in

Eq. (14)), (ii) the various mechanistic coupling kernels inside the dLGN circuit (K̃

in Eq. (14)), and (iii) the visual stimulus (S̃ in Eq. (4)). The coupling kernels are
assumed to be space-time separable (e.g., K(r, t) ∼ f(r)h(t)), but space-time coupled
kernels can equally be used in the eDOG-model. The same applies to the choice of
the receptive-field function of the retinal input [59, 60]. For presentational simplicity,
we will focus on the ON-pathway and skip the ON-superscript, but an analogous
model is equally applicable for the OFF pathway.

2.3.3 Impulse-response function of input from retinal ganglion cells

The impulse-response function of the retinal input is modeled as a product of a spatial
part F (r) and temporal part H(t). The spatial part is described by means of the
difference-of-Gaussians (DOG) model [61]:

F (r; A, a,B, b) =
A

πa2
e−a

2/r2 − B

πb2
e−b

2/r2 , (15)

where the first and second term correspond to the center and surround contribution,
respectively. Further, A and B (defined to be positive) are the strengths of the center
and surround, and a and b are the corresponding width parameters. In the present
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paper we have used parameters extracted from fitting the function to retinal-input
responses to flashing circular spots [56].

The temporal part of the impulse response of the retinal input is modeled as a
biphasic temporal function [37,54]:

H(t; τ, B) =





sin(πt/τ), 0 ≤ t ≤ τ

B sin(πt/τ), τ < t ≤ 2τ

0, otherwise,

(16)

where B is the weight for the second phase, and τ is the duration of each phase. The
same parameter values as in [54] has been used, which correspond to the mean of the
range of values reported by [62].

For an illustration of the shapes of the spatial and temporal impulse-response
function, see Fig. 3.

2.3.4 Coupling kernels inside dLGN circuit

The kernels K(r, t) are considered to have separable space-time parts, i.e.,

K(r, t) = w f(r)h(t), (17)

where f and h are normalised spatial and temporal parts, respectively, and w is
the connection weight of the kernel. The latter is positive for excitatory synaptic
connections and negative for inhibitory connections. The normalization implies that∫∫

f(r)d2r =
∫
h(t)dt = 1 where the integrals go over all visual (two-dimensional)

space and all times, respectively.
The spatiotemporal coupling-kernels in the circuit, reflecting how the firing in

one type of cell affects the firing in another type of cell through their direct synaptic
connections, have not been systematically mapped out. However, a key design
principle of the early visual pathway is retinotopy, i.e., that neurons representing
neighboring positions in the visual field also are neighbors inside the retina, dLGN,
and visual cortex. This implies that the coupling kernels are spatially confined. In this
paper we describe the shape of spatial kernels using the mathematically convenient
Gaussian function:

f(r; a) =
1

πa2
e−r

2/a2 , (18)

where a is the width parameter.
The temporal part of the kernels is modeled as (delayed) exponential decay in

accordance to previous modeling studies [53, 54]:

h(t; ∆, τ) =
1

τ
e−(t−∆)/τθ(t−∆), (19)

where τ is the time constant, and ∆ corresponds to a combined axonal and synaptic
time delay. For an illustration of the shapes of spatial and temporal part of the
coupling kernels, see Fig. 3.

We next describe the kernel parameters used for the circuit coupling. A detailed
list of these parameters is given in Table 1.
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Fig 3. The shape of the spatial and temporal part of the receptive-field
function for the retinal input and the connectivity kernels. Left panel
shows the receptive-field function for the retinal input to dLGN cells and right panel
shows the connectivity kernels. The spatial functions are shown as one-dimensional
plot, although they are (circularly symmetric) two-dimensional functions.

Feedforward couplings. Relay cells in the cat appear to receive input from a
single or a few retinal ganglion cells [63–69]. Further, the relay cells receive indirect
feedforward inhibition via intrageniculate interneurons which in turn receive input
from a few retinal ganglion cells [68, 70]. Based on these observations and the known
’retionotopographical’ organization of of the early visual pathway, we here use narrow
Gaussian functions as coupling kernels between the retinal ganglion cells and dLGN
relay cells [40,53]. We assume a larger width parameter for the feedforward inhibitory
coupling kernel compared to the excitatory kernel [56], reflecting the observed larger
receptive field in intrageniculate interneurons compared to both retinal ganglion cells
and relay cells [68].

Feedback coupling. The net feedback coupling from cortex to relay cells are
determinined by two factors: (i) the spatiotemporal response of the cortical cells
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providing the feedback, and (ii) the spatiotemporal feedback coupling kernels from
cortical to LGN cells. The receptive fields of simple cortical cells arises primarily
from convergent input from ON and OFF relay cells [71–73]. In order to model

orientation-selective cortical populations, the thalamocortical kernels K
ON/OFF
CnR in

Eq. (9) must have an elongated shape. In [40] these kernels were, for example, modeled
as elliptical Gaussians.

As seen in the denominator of Eq. (14), the total effect of cortical feedback is a
sum over feedback contributions from all n populations, covering all orientation angles.
Thus, the net feedback effect is expected to be essentially circularly symmetric [40].
The net effect of the cortical feedback from all can thus be incorporated in the model
via a single circularly-symmetric coupling kernel K̃ON

RCR ≡
∑

n K̃
ON
RCn

K̃ON
CnR. As for the

feedforward couplings, we for simplicity model the feedback coupling kernels as product
of a Gaussian function of space (Eq. (18)) with a delayed exponentially-decaying
temporal function (Eq. (19)).

The structure of the eDOG model is indifferent to whether the cortical feedback
is excitatory, inhibitory, or even a mix of excitatory and inhibitory feedback. For
excitatory feedback the weight parameter w in Eq. (17) is positive, while for inhibitory

feedback it is negative. For mixed feedback the coupling kernel K̃ON
RCR consists of a

sum of excitatory and inhibitory feedback terms. Note that in all cases the ON to
ON couplings are accompanied by OFF to ON couplings with the opposite sign, i.e.,
a phase-reversed arrangement as described in Eqs. (10) and (11).

A few experiments give some hints about how the feedback may be organized.
In [3] a center-surround feedback configuration was reported in cats where feedback
was excitatory when the cortical and relay cell receptive field centers were close to
each other and inhibitory when they were further apart. This observation was later
supported by [16], where they found in primates a center-surround configuration for
feedback, with a facilitatory bias to center and inhibitory surround (but see also [18]).
Further, in [74] a particular cross-symmetry organization was observed where a
same-symmetry inhibitory feedback was accompanied by an excitatory feedback
with opposite symmetry, e.g., ON-ON inhibitory feedback accompanied by OFF-ON
excitatory feedback.

In this paper we will study three different spatial organization of the cortical
feedback as shown in the list below and illustrated in Fig. 4. In this list ON-ON refers
to feedback from ON-center cortical cells to ON-center relay cells, while OFF-ON
refers to feedback from OFF-center cortical cells to ON-center relay cells.

• ON-ON excitatory feedback (Kex
RCR) combined with OFF-ON inhibitory feed-

back.

• ON-ON inhibitory feedback (K in
RCR) combined with OFF-ON excitatory feed-

back.

• Mixed ON-ON excitatory and inhibitory feedback (Kmix
RCR). The OFF-ON

feedback is also both excitatory and inhibitory.
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Here, and in the following, the ON-superscript is skipped to simplify notation. The
superscripts ‘ex’ (excitatory) and ‘in’ (inhibitory) refer to the sign of the ON-ON
feedback, and the subscript ‘RCR’ refers to the complete thalamo-cortico-thalamic
loop (relay → cortex → relay). These three scenarios are illustrated in Fig. 4. The
second scenario corresponds to the configuration observed experimentally in [74],
while the last configuration is inspired of the center-surround configuration suggested
by data from [3,16]. For simplicity we will in the following refer to ON-ON excitatory
feedback as just excitatory feedback and ON-ON inhibitory feedback as inhibitory
feedback. It is then implicitly assumed that the influence from the OFF-ON feedback
has the opposite sign.

R

C C

R

C C

R

C C

A) ON-ON excitatory 
feedback

B) ON-ON inhibitory 
feedback

C) ON-ON mixed  excitatory 
and inhibitory feedback

+ - -- + + 
- + 

-

Fig 4. Spatial feedback configurations investigated in present study. The
ON and OFF cells are marked with red and blue color, respectively. The spatial
connectivity kernels are shown as one-dimensional plots where the fill color
corresponds to the sign of the input (excitatory: red, inhibitory: blue).

The influence of each of these feedback configurations on the relay cell responses
is investigated for a range of feedback strenghts w, width values a for the Gaussian
functions (Eq. (18)), as well to temporal delays ∆ of the delayed exponential functions
(Eq. (19)).

2.3.5 Visual stimuli

With the general eDOG relay-cell impulse-response function expression from Eq. (14),
specified by the coupling kernels above, all that is needed to compute the relay-cell
response by means of Eq. (4) is a mathematical expression for the stimulus S(r, t).
The two main visual stimuli considered in the present work are (i) circular patch
gratings and (ii) full-field gratings. For a full-field drifting grating, specified by kg

and ωg, the relay-cell response is essentially given by Fourier-transformed impulse
response in Eq. (14) [40].

For a circular patch of drifting grating, the stimulus can be described mathemati-
cally as [40,76]

S(r, t) = Cpg cos(kpgr− ωpgt) [1− θ(r − dpg/2)] , (20)

where kpg and ωpg are the wave vector and the angular frequency of the patch-grating,
respectively, dpg is the diameter of the patch-grating spot, and Cpg is a measure
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Kernel Weight Spatial Temporal

WG F (r; AG=1, aG=0.62, BG=0.85, bG=1.26) H(t; τG = 42.5, B = 0.38)

KRG wRG=1 f(r; aRG = 0.1) h(t; ∆RG = 0, τRG = 5)

KRIG wRIG=-0.5† f(r; aRIG = 0.3†) h(t; ∆RIG = 3†, τRIG = 5)

Kex
RCR wex

RCR=0.5† f(r; aex
RCR = 0.83†) h(t; ∆ex

RCR = [5, 30], τ ex
RCR = 5)

K in
RCR win

RCR=-0.5† f(r; ain
RCR = 0.83†) h(t; ∆in

RCR = [5, 30], τ in
RCR = 5)

Kmix
RCR

wex
RCR=0.3† f(r; aex

RCR = 0.1†) h(t; ∆ex
RCR = [5, 30], τ ex

RCR = 5)

win
RCR=-0.6† f(r; ain

RCR = 0.9†) h(t; ∆in
RCR = [5, 30], τ in

RCR = 5)

Table 1. List of kernel parameters. WG is the impulse-response function of
ganglion cells, KRG and KRIG are the excitatory and inhibitory feedforward kernels,
respectively. Kex

RCR and K in
RCR are ON-ON excitatory and inhibitory

thalamo-cortico-thalamic kernels, respectively. Kmix
RCR denotes the mixed ON-ON

feedback kernel, consisting of an excitatory and an inhibitory term. F represents the
DOG function, f represents the Gaussian function, H represents the biphasic
temporal function, and h represents the delayed decaying exponential function. The
width parameters in spatial functions are given in units of degree, while the temporal
parameters are in units of ms. In the present example applications we have kept the
time constant τ fixed at 5 ms (comparable to what, e.g., was found in [75]), while
the temporal delay parameters ∆ have been varied in a range of 5–30 ms. † denotes
the default values for parameters that have been varied.

for the contrast of the grating. In all calculations presented in this paper Cpg = 1.
Note that a static circular patch (spot) is obtained for kpg = ωpg = 0. In the limit
dpg →∞ the Heaviside function in Eq. (20) is always zero, and we obtain the simple
harmonic function representing a full-field grating.

In addition, natural stimulus (image and movie) is also used. The stimulus is then
given as an array of numbers, and the Fourier transform of the stimulus is calculated
numerically.

2.4 Implementation in pyLGN

In order to allow for easy exploration of the eDOG model and in particular effects of
cortical feedback on relay-cell responses, we have developed an efficient, firing-rate
based simulator of spatiotemporal responses in the early visual system. The simulator
is named pyLGN and is written in Python. The design goals for pyLGN are to provide
a software framework for studying the cortical feedback effects that is easy to use,
extensible, and open. To facilitate usability, pyLGN has its own documentation page
including installation instructions, several usage examples, and technical aspects
(http://pylgn.rtfd.io). To achieve extensibility, object-oriented programming is
used, making it possible for the user to define new connectivity kernels and input
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stimuli. Lastly, to support openness pyLGN is both open-source and multi-platform.
All calculations presented in this paper have been tracked using the Python

software Sumatra [77], which is an automated tracking tool for computational sim-
ulations and analysis. The source code for all presented simulations is available at
(https://github.com/miladh/edog-simulations).

3 Results

The result section is divided into two distinct parts. In the first part, results for
the effects of cortical feedback on the spatial response properties of relay cells are
presented (Sec. 3.1). The cortical feedback effects on temporal aspects are presented
in the second part (Sec. 3.2).

3.1 Effect of cortical feedback on spatial properties

3.1.1 Spatial receptive fields

We start our study of the dLGN network model by characterizing the effects of
cortical feedback on the spatial aspects of the relay cell’s receptive field structure.
From Eq. (14) we see that even with separable kernels the impulse-response function,
in general, remains non-separable in space and time. However, with a static stimulus,
the spatial response properties can be studied in isolation.

Mathematically, the Fourier transform S̃ for a static stimulus is ∝ δ(ω). The
convolution in the response integral in Eq. (4) is then given by

F−1
{
W̃R(k, ω)S̃(k, ω)

}
∝ F−1

spatial

{
W̃R(k, 0)S̃(k)

}
, (21)

where F−1
spatial is the spatial inverse Fourier transform, and S̃(k) is the Fourier transform

of the spatial part of the stimulus.
Using the kernels shown in Table 1 we then find that the static relay-cell impulse

response function W̃R(k, 0) is given by

W̃R(k, 0) ∝ W̃ spatial
R (k) =

f̃RG + wRIGf̃RIG

1− wex
RCRf̃

ex
RCR − win

RCRf̃
in
RCR

F̃ , (22)

where we have used that h̃(0) = 1 and that H̃(0) is a constant. For simplicity will we

hereafter refer to W̃ spatial
R (k) as the spatial impulse-response function of relay cells.

Examples of spatial receptive fields, found by an inverse Fourier transform of this
function, is shown in Fig. 5. As seen in this figure the center-surround receptive field
structure of the retinal ganglion cells is qualitatively preserved, in accordance with the
notion that cortical feedback has a mainly modulatory effect on response properties
of relay cells [78]. A close inspection of the right panel in the figure reveals that
while the response at the receptive-field center (peak value) is increased for excitatory
feedback, it is reduced for inhibitory feedback. The cortical feedback effects outside
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the receptive-field center, on the other hand, are less clear-cut for the examples in
the figure.
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Fig 5. Cortical feedback modulates the center-surround receptive fields
of relay cells. Upper left: the two dimensional spatial structure of the
impulse-response function. Bottom left: one-dimensional plot of the impulse-response
function. Center excitation and surround inhibition correspond to the maximum and

minimum value of F−1
spatial

{
W̃ spatial

R (k)
}

(r), respectively, while where the

zero-crossing occurs is used as an indication for the receptive field size. Right:
spatial impulse-response function for different circuit configurations. In each case all
other contributions are removed, except feedforward excitation. Default parameters
from Table 1 have been used.

Next, we investigate the spatial impulse-response function in more detail. In
particular we study how the spatial responses depend on the weights (w) and Gaussian
width parameters (a) of the connections, see left panel of Fig. 6. We characterize the
spatial receptive-field structure by three measures: the receptive field size (radius),
center excitation, and surround inhibition, cf. left panel of Fig. 5.

In Figs. 7 and 8 the effect of kernel parameters on the spatial impulse-response
function is shown for different circuit configurations. The effects of increasing
feedforward inhibitory weight wRIG and width aRIG are shown in the top row of Fig. 7.
The clear tendency is that narrow kernels with high weights most effectively reduce
the center excitation and surround inhibition. The largest reduction in the receptive-
field size is also observed in this situation. Another observation is that inhibitory
kernels widths aRIG similar to the width bG ∼1.3 deg of the DOG surround of the
ganglion-cell input, combined with large weights, give a large surround inhibition.
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Narrow projection Wide projection

Spatial kernel parameters

Short-delay Long-delay

Temporal kernel parameters

delaydelay

Short-duration

Long-duration

Fig 6. Illustration of spatial and temporal features of coupling kernels.
Left: Spatial connectivity patterns between presynaptic neurons in the top layer and
a single postsynaptic neuron (red circle) in the bottom layer for Gaussian width
parameters (a). The Gaussian curves superimposed on top layers illustrate the
spatial extent of the input to the neuron in the bottom layer. Right: Different
scenarios for the temporal connectivity pattern. The time constant τ in the
exponential decay function describes the duration, while ∆ is the delay parameter.
In the present example applications we have kept the time constant τ fixed at 5 ms.

For the situation with feedback inhibition only (Fig. 7, middle row) an over-
all similar tendency is observed. However, the effects of feedback inhibition are
somewhat weaker compared to feedforward inhibition for these example parameter
ranges. Finally, we see from bottom row in Fig. 7 that strong and narrow excitatory
feedback strongly increases the center excitation and surround inhibition. Larger
widths, however, reduce the surround inhibition significantly and also results in larger
receptive-field sizes.

To see the influence of a mixed cortical feedback on the spatial receptive-field
properties, we show in Fig. 8 the effects of increasing cortical feedback weights and
widths. A configuration consisting of a narrow excitatory and a broader inhibitory
feedback both increases the excitation in the center and the inhibition in the surround.
A large reduction in the receptive-field center size is also seen with this configuration,
specially for inhibitory width values ain

RCR close to one.
The bottom row of Fig. 8 shows the effect of increasing feedback weights for a

narrow excitatory central core projection and a wider inhibitory projection. Strong
excitatory feedback combined with a weak inhibitory feedback increases excitation
in the center and inhibition in the surround. In contrast, strong inhibitory feedback
combined with weak excitatory feedback, reduces the center excitation. Note however
that the effects due to strong excitatory feedback are more significant than the ones
due to the inhibitory feedback. This is specially obvious in the surround inhibition
which is nearly completely dominated by the excitatory feedback strength. The size
of the receptive field decreases with increasing excitatory and inhibitory feedback
strength.

In conclusion, these results show that the cortical feedback is well suited to
modulate the center-surround organization of relay-cell receptive fields. Excitatory
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Fig 7. Effects on relay-cell spatial impulse-response function
characteristics from excitatory and inhibitory inputs are opposite. Top
row : dependence on the feedforward inhibition weight wRIG and width aRIG. Middle
row : dependence on the feedback inhibition weight win

RCR and width ain
RCR. Bottom

row : dependence on the feedback excitation weight wex
RCR and width aex

RCR. All values
are normalized with respect to the case where relay cells only receive feedforward
excitation from retinal ganglion cells. The parameters in WG and KRG are kept fixed
(see Table 1).

and inhibitory inputs have opposite effects on a relay cell’s spatial response: while
excitatory feedback can increase the center excitation and center size, inhibitory
feedback can do the opposite. Depending on the width of the feedback projection,
both excitatory and inhibitory feedback can either increase or decrease surround
excitation. A mixed feedback configuration consisting of a combination of narrow
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Fig 8. Effects on relay-cell spatial impulse-response function from mixed
excitatory and inhibitory feedback. Top row : dependence on cortical feedback
widths aex

RCR and ain
RCR with weights kept fixed: wex

RCR = 0.3 and win
RCR = −0.6.

Bottom row : dependence on cortical feedback weights wex
RCR and win

RCR with widths
kept fixed: aex

RCR = 0.1, and ain
RCR = 0.9. All values are normalized with respect to

the case where relay cells only receive feedforward excitation from retinal ganglion
cells. The parameters in WG and KRG are kept fixed (see Table 1).

excitatory and a broader inhibitory feedback, both increases the excitation in the
center and the inhibition in the surround.

3.1.2 Area summation curves

A common way to experimentally probe the center-surround organization of cells
in the early visual pathway is to measure area-response curves, i.e., the response to
circular stimulus spots as a function of spot diameter [16, 17, 22, 56, 60, 79–81]. In
Fig. 9 we correspondingly show area-response curves for relay cells responding to
static bright-spot stimuli for different feedback configurations. Here the receptive
field of the cell is set to be concentric with the spot.

The first column in Fig. 9 shows that an increasing excitatory feedback enhance
the excitatory response to stimuli restricted to be within the receptive field center. It
also reduces the suppressive effects of stimuli in the surround area. Inhibitory cortical
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feedback, on the other hand, reduces the response to optimal patch diameter and
enhances the suppressive effects for large patch sizes (second column in Fig. 9).

In the last column of Fig. 9, the mixed feedback situation with a combination of
narrow excitatory and a broader inhibitory feedback, as suggested by experimental
findings [3,16], is considered. Here we observe that an increased feedback strength
both (i) enhances the excitatory response to stimuli restricted to be within the
receptive field center, and (ii) enhances the suppressive effects of stimuli in the
surround area. Stronger feedback also reduces the receptive-field center size, i.e., the
spot diameter giving the maximum response.
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Fig 9. Mixed feedback may enhance both excitatory response to stimuli
within the receptive-field center (unlike inhibitory feedback alone), and
suppressive effects of stimuli in the surround (unlike excitatory feedback
alone). Predicted area-response curves of relay cells for different arrangements of
cortical feedback. Bottom row shows normalized curves. Default values from Table 1
have been used for fixed parameters.

The area-response curves in Fig. 9 are for static spot stimuli, but area-response
curves are also commonly recorded for patch-grating stimuli [17, 22, 39, 80]. In our
formalism such response curves are readily obtained by use of the circular patch-
grating stimulus function S in Eq. (20). The resulting area-response curves typically
resemble the static-spot curves shown in Fig. 9, and we do not show any example
curves here.

However, in Fig. 10 we summarize results for area-response curves both for static-
spot (Fig. 9) and patch-grating stimuli. Here, the stimulus size giving the largest
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response (corresponding to the receptive-field center size for static spot stimuli) and
center-surround suppression index are shown as a function of feedback strength. This
suppression index αs is here defined as:

αs =
Rmax −Rplateau

Rmax

, (23)

where Rmax is the maximum response, and Rplateau is the response when the large-
diameter plateau is reached (see left panel in Fig. 10).

The figure shows that the suppression index for static spot stimuli (right panel,
solid lines) is increased with stronger feedback weights both for inhibitory and mixed
feedback. The same qualitative trend is also observed for patch-grating stimuli (dashed
line). Here the suppression index without feedback is fairly small (∼0.4), but increases
more strongly with feedback strength than for static-spot stimuli. This relative
difference in suppression index between spot and patch-grating stimuli is qualitatively
in agreement with experimental observations [17,22]. With excitatory feedback on
the other hand, the suppression index is reduced with increasing feedback strength.
The largest suppression indices are found for mixed feedback, again illustrating that
such feedback is particularly suited for modulating center-surround antagonism.

The optimal stimulus size (Fig. 10, middle panel) is seen to be the same for
static-spot and patch-grating stimuli. For both stimulus types this size is seen to
decrease with increasing feedback strength both for inhibitory and mixed feedback,
while the opposite is true for excitatory feedback.
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Fig 10. Optimal stimulus size and suppression index decrease and
increase with increased inhibitory and (present) mixed feedback,
respectively, while with excitatory feedback trends are opposite. Optimal
size and suppression index (αs) are shown as a function of cortical feedback weight
for different feedback configurations. These are extracted from the size tuning curve
using static spot (solid lines) and patch grating (dashed lines, |kg| ≈ 1/deg) as
stimulus (left most figure). The values on the x-axis represent factors multiplied
with the default values for win

RCR and wex
RCR listed in Table 1. Default values for fixed

parameters are also listed in this table.

21

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 10, 2018. ; https://doi.org/10.1101/246140doi: bioRxiv preprint 

https://doi.org/10.1101/246140
http://creativecommons.org/licenses/by/4.0/


Note that in experimental measurements of spot area-response curves, ’flashing’
spots rather than static spots have been used [22,60,79]. This means that the spots
were ’flashed’ on and the subsequent response, which contained both a transient and
a sustained response, were used to compute the area-response curves [79]. The static-
spot area-response curves computed here would correspond to the sustained response,
but the area-response curves based on the transient part or the sustained part are
expected to have similar shapes, see Fig. 13 in [82]. For the patch-grating experiments
in [17, 22] drifting patch gratings with a temporal frequency of only ω∼6 Hz was
used, so that the ’fast-loop limit’ (i.e., assuming sufficiently short propagation times
around the thalamocortical loop), the expression in Eq. (22) expectedly still can be
used, see discussion in [40].

3.1.3 Spatial frequency tuning curves

The spatial summation curves in Fig. 9 show that the cortical feedback modulates
the size tuning properties of relay cells. Next, we investigate the influence of cortical
feedback on spatial frequency tuning of relay cells. In Fig. 11 the tuning curves
at two different patch sizes are shown. The smaller patch is similar in size to the
receptive-field center size, while the larger patch covers both the center and surround
of the receptive field.

For the smaller patch the frequency characteristic corresponds to a low-pass filter
for all feedback configurations, cf. upper row panels in Fig. 11. Increasing feedback
strength leads as expected to higher response values for excitatory feedback, but also
for the mixed feedback. For inhibitory feedback the opposite is the case.

For the larger patch size, (effectively corresponding to a full-field grating), relay
cells have band-pass characteristics in all cases, cf. lower row panels in Fig. 11.
Excitatory feedback is seen to overall increase the response as well as shift the
frequency giving the maximum to smaller frequencies. Inhibitory feedback is seen to
have opposite effects. For mixed feedback an interesting combination of these effects
are seen, i.e., the maximum-frequency response is shifted towards higher frequencies,
but the maximum amplitude is also increased.

The shift from low-pass to bandpass characteristics when changing the grating
size can be explained by considering the center-surround organization of the receptive
field. When the stimulus only covers the center of the relay-cell receptive field, the
filtering of the circuit is effectively Gaussian-like, i.e., a low-pass filter. However
when the stimulus also covers the surround region, the circuit filter is effectively an
antagonistic center-surround filter with bandpass characteristic.

A putative benefit of the shift of the response towards higher frequencies observed
for our mixed feedback, can be alluded to in the context of information theory and
efficient coding. In natural scenes there are usually extensive spatial correlations
since neighbouring regions often have similar luminance values [29]. This leads to a
power spectrum of the input with large contributions from low spatial frequencies. An
antagonistic center-surround organization dampens the low-frequency components and
enhances the higher frequency components of the image and reduces the redundancy
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Fig 11. Shift from low-pass to band-pass characteristics is seen in spatial
frequency tuning of relay cells when increasing stimulus patch size.
Wavenumber (|kpg|) tuning of relay cells, using patch grating at two different patch
sizes (rows), is shown for different feedback configurations (columns). Default values
from Table 1 have been used for fixed parameters.

in the signal conveyed to the cortex. The shift towards higher frequencies sharpens
the spatial receptive field of the relay cells and thereby increases the saliency of edges.
To illustrate this point, we show in Fig. 12 the response map for the relay cells for
different circuit configurations with a natural image as stimulus. It is clear that in
this example the mixed cortical feedback improves the detection of edges considerably.

3.2 Effect of cortical feedback on temporal properties

3.2.1 Temporal receptive fields

We have so far focused on influence of cortical feedback on spatial response properties
of relay cells. Next, we investigate the effect of cortical feedback on temporal
properties. The relay cell impulse-response function in Fourier space in Eq. (14) can
be written as

W̃R(k, ω) =
wRGf̃RG(k)h̃RG(ω) + wRIGf̃RIG(k)h̃RIG(ω)

1− wex
RCRf̃

ex
RCR(k)h̃ex

RCR(ω)− win
RCRf̃

in
RCR(k)h̃in

RCR(ω)
F̃ (k)H̃(ω). (24)
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Fig 12. Mixed feedback has different effect on low and high frequency
components of natural scenes in contrast to pure excitatory or inhibitory
feedback. Each subfigure shows activation of a layer of relay cells in response to the
input image, shown as a heatmap from blue to red (low to high response). Default

values from Table 1 have been used except for the feedback weights w
ex/in
RCR which

have been set at 1.5 times the listed default values.

Here, F̃ and H̃ represent the assumed spatial and temporal response functions for
the retinal input, i.e., Eq. (15) and Eq. (16), respectively. Further the coupling

kernels have been expanded into products of spatial (f̃) and temporal (h̃) functions,
cf. Eq. (17).

Illustrations of the real-space version WR(r, t) of this impulse-response function is
shown in Fig. 13 using the kernel parameters listed as default parameters in Table 1.
In this figure the temporal evolution of the spatial structure of the receptive field
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is shown (top panel), in addition to an x-t plot of the impulse-response function,
summarizing how the one-dimensional spatial organization of the receptive field
changes with time. These figures illustrate the biphasic nature of the center and
surround responses, as has been observed experimentally [62, 83]. For t between 0
and 50 ms the impulse-response function exhibits a bright-excitatory center, i.e., an
increased firing to a tiny bright test spot placed in the receptive-field center. However,
for times later than 60 ms, the polarity of the center response is reversed, and becomes
dark-excitatory, i.e, increased firing-rate for dark spots. A similar behavior is observed
for the surround, but with opposite polarities.

Experimental studies have reported several distinct temporal receptive-field pro-
files among relay cells, including monophasic and triphasic responses in addition to
the more common biphasic response seen in Fig. 13 [72, 84]. To explore scenarios
where these different response profiles may arise, we next study how different model
parameters change the shape of the real-space temporal impulse response. In ac-
cordance with previous experimental and computational studies we use the biphasic
index (IBP) and peak response latency (tpeak) as measures to characterize the temporal
properties of the impulse-response function [54,62, 84]. The biphasic index is defined
as the ratio between the peak magnitude of the (negative) rebound phase and the
peak magnitude of the first (positive) phase, and thus measures how biphasic the
response is (Fig. 13, bottom right). A biphasic index equal to one means a perfect
biphasic response, while zero corresponds to a monophasic response.

Fig. 14 illustrates the dependency of the temporal part of the impulse-response
function, as well as IBP and tpeak, on various circuit configurations and model pa-
rameters. Each temporal coupling kernel is described by two parameters: the time
constant τ of the exponential decay and the parameter ∆ accounting for delay in the
propagation of the signals between the different neuronal population. In the present
examples we keep the τ fixed and instead focus on how different values of the ∆
affect the temporal impulse-response function. In Fig. 14 it is seen that the effects
of feedforward and feedback inhibition on the temporal impulse are qualitatively
similar. In both cases the depth of the second phase is increased for delayed (large ∆)
inhibitory input, i.e., the biphasic index IBP is increased. The peak response latency
tpeak is seen to be substantially reduced with feedforward inhibition, but less so for
feedback inhibition. Finally, we see from the middle left panels in Fig. 14 that for
strong delayed inhibitory inputs, a triphasic impulse-response may arise.

Focusing on the middle and bottom row of panels in Fig. 14, we see that the
effect of excitatory feedback is essentially the opposite of that for inhibitory feedback.
The biphasic index IBP is decreased by the excitatory feedback and increased by
the inhibitory feedback, in particular for delayed inputs. Further, the peak response
latency tpeak is increased with excitatory feedback, in contrast to with inhibitory
feedback.

In Fig. 15 the effect of temporal kernel parameters on the biphasic index IBP and
tpeak is shown for the more complex situation with a mixed excitatory and inhibitory
feedback. Here the spatial spread as well as the relative weight of the excitatory
and inhibitory feedback is kept fixed while the delay parameters (∆ex

RCR, ∆in
RCR) are
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Fig 13. Spatiotemporal impulse-response function of relay cell. Top:
panels showing spatial receptive field at different times. Curves below panels are
one-dimensional plots of the receptive fields as a function of x alone. Bottom left :
x-t plot of receptive field. ON regions are shown in red (solid lines) while OFF
regions are shown in blue (dashed lines). Bottom right : Curve showing temporal
evolution of ON region of the receptive field. The biphasic index IBP is defined as
the ratio between the peak magnitude of the (negative) rebound phase and the peak
magnitude of the first (positive) phase. tpeak is the peak response latency. Note that
only feedforward excitation from retinal ganglion cells to relay cells is included.

varied. With long-delay excitatory feedback and short-delay inhibitory feedback
(∆ex

RCR = 30 ms, ∆in
RCR = 5 ms), the first positive phase of the impulse-response

function is only modestly affected by the feedback. In this case the feedback mainly
affects the second negative phase, which generally is reduced in depth. Thus the
response becomes more monophasic, as reflected in smaller values for the biphasic
index (Fig. 15, rightmost panel).

In the case with long-delay inhibitory feedback and short-delay excitatory feedback
(∆ex

RCR = 5ms, ∆in
RCR = 30ms), the rapid excitatory feedback boosts the initial positive
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Fig 14. Inhibitory feedback can increase the biphasic index and reduce
the peak response latency, while the opposite is seen for excitatory
feedback. Left panels: temporal evolution of the relay-cell impulse-response
function (ON region) for different circuit configurations, i.e., feedforward inhibition
only (top), feedback inhibition only (middle), feedback excitation only (bottom).
The feedforward excitation is fixed in all cases. Right panel: parameter dependence
of two impulse-response measures tpeak and biphasic index IBP. The biphasic index is
normalized with respect to the value for the case with feedforward excitation only
(IBP = 0.35), while the tpeak plots show the difference in peak time in milliseconds
compared to the corresponding value for feedforward excitation only (tpeak = 29 ms).
Default parameters have been used for the fixed parameters (see Table 1)

peak while the former boosts the following negative peak. Further, this feedback
combination gives multiphasic responses, i.e., distinct responses also after the initial
biphasic response.

The figures in the right panel of Fig. 15 show that the peak response latency
tpeak and the biphasic index IBP are reduced for long-delayed excitatory feedback.
Long-delayed inhibitory feedback combined with short-delayed excitatory input, on
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Fig 15. Mixed feedback: delayed inhibitory feedback gives oscillatory
responses, delayed excitatory feedback more monophasic responses. Two
leftmost panels : temporal impulse-response function with mixed excitatory and
inhibitory feedback, where feedforward inhibition also is included. Two rightmost
panels : parameter dependence of two impulse-response measures tpeak and biphasic
index IBP. See Fig. 14 caption for details. Default parameters have been used for
fixed parameters (see Table 1)

the other hand, increases both tpeak and IBP.

3.2.2 Temporal frequency tuning curves

To investigate the effect of cortical feedback further, we next explore the temporal
frequency tuning of relay cells. This is done by computing the response of the relay
cells to a full-field grating stimulus for a range of different temporal frequencies [85–88].
In this case the response is given by the magnitude of the Fourier-space impulse-
response function in Eq. (24) evaluated with a varying angular frequency ωg combined
with a fixed spatial wave vector kg [76]. In the present example the wavenumber is
kept fixed at |kg| ≈ 1 deg−1.

In Fig. 16 the frequency tuning is shown for inhibitory (top) and excitatory
feedback (bottom). As expected, rapid inhibitory feedback (∆in

RCR = 5 ms) reduces
the overall response. In addition, it is also seen to shift the peak frequency to slightly
higher values. Long-delayed inhibitory feedback (∆in

RCR = 30 ms), on the other hand,
gives sharper tuning curves, enhancing the band-pass characteristics of relay cells.
In this case increased feedback weights both sharpen the resonance and shift it to
higher frequencies.

Excitatory and inhibitory feedback essentially have opposite effects on the tuning
properties of relay cells (Fig. 16, bottom row). Rapid excitatory feedback shifts the
tuning curve to higher response values, while long-delayed excitatory feedback blunts
the tuning profile. In all cases the peak frequency is shifted to lower frequencies.

In Fig. 17 we next investigate the effect of mixed cortical feedback on temporal
frequency tuning properties of relay cells. In particular, we consider three differ-
ent cases: (1) long-delay inhibitory feedback combined with short-delay excitatory
feedback, (2) long-delay excitatory feedback combined with short-delay inhibitory
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Fig 16. Delayed inhibitory feedback sharpens the temporal frequency
tuning of relay cells, while delayed excitatory feedback blunts the
temporal frequency tuning of relay cells. Effect of cortical feedback on
temporal frequency tuning of relay cells are shown for different values of
thalamocortical delay. Upper row : Inhibitory feedback only. Lower row : Excitatory
feedback only. Full-field grating is used as stimulus (|kg| ≈ 1 deg−1) and default
values from Table 1 is used for fixed parameters.

feedback, and (3) synchronized feedback where excitatory and inhibitory feedback are
received at the same time. Long-delayed inhibition (combined with rapid excitatory
feedback) leads to sharper tuning with increasing feedback. This contrasts the case
with long-delay excitation (combined with rapid inhibitory feedback), where a more
flat spectrum is observed with increasing feedback. Synchronized excitatory and
inhibitory feedback does not change the tuning properties by much when comparing
with the case without cortical feedback. This reflects that in this case the excitatory
and inhibitory effects largely cancel each other. Note that this cancellation is not
perfect since the weight and spatial properties of the two feedback types are not

29

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 10, 2018. ; https://doi.org/10.1101/246140doi: bioRxiv preprint 

https://doi.org/10.1101/246140
http://creativecommons.org/licenses/by/4.0/


100 101

Temporal frequency (Hz)

0

5

10

15
R
es
p
on
se

Delayed inhibition

0.0×w
ex/in
RCR

0.5×w
ex/in
RCR

1.0×w
ex/in
RCR

100 101

Synchronized feedback

100 101

Delayed excitation

Mixed excitatory and inhibitory feedback

Fig 17. Mixed feedback: delayed inhibitory feedback relative to
excitatory feedback sharpens the temporal frequency tuning of relay
cells, while the opposite blunts the tuning. Left: Delayed inhibition, i.e.,
rapid excitatory feedback combined with long-delay inhibitory feedback
(∆ex

RCR = 5 ms, ∆in
RCR = 30 ms). Middle: Synchronized feedback, i.e., excitatory and

inhibitory feedback arrive simultaneously (∆ex
RCR = ∆in

RCR = 15 ms). Right: Delayed
excitation, i.e., long-delay excitatory feedback combined with rapid inhibitory
feedback (∆ex

RCR = 30 ms, ∆in
RCR = 5 ms). Full-field grating is used as stimulus

(|kg| ≈ 1 deg−1) and default values from Table 1 are used for fixed parameters.

identical, cf. Table 1.
In conclusion, the tuning curves from Figs. 16 and 17 show that both temporal

low-pass filtering and band-pass filtering can arise from cortical feedback. The
detailed spectral shape will depend on both the relative weight and relative delay
of the excitatory and inhibitory feedback contributions. While long-delay inhibitory
feedback sharpens the temporal frequency tuning of relay cells giving more band-pass-
like characteristics, long-delay excitatory feedback makes the tuning more low-pass like.
These tuning behaviors can be related to the temporal impulse-response functions
depticted in Figs. 14 and 15: multiple phases in the temporal response leads to
band-pass filtering, while monophasic responses have low-pass filter characteristics.

Note, finally, that the results in Figs. 14 to 17 are all obtained with temporal
kernels with a fixed, relatively short, time constant τ of 5 ms, i.e., a relatively short
duration of the feedback, cf. Fig. 6. With a longer duration, i.e., larger value of τ ,
qualitatively similar results for both the impulse-response function and temporal
frequency tuning are found, though the curves were found to be more blunt.

3.2.3 Decorrelation of naturalistic stimuli

In natural visual scenes there are, in addition to extensive spatial correlations, also
large inter-frame correlations [42,89]. This means that pixels have a luminosity which
usually changes gradually in time. It has previously been shown that the biphasic
temporal response, seen in retina and dLGN, decorrelates the incoming signal in time,
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resulting in a more efficient representation of the information in the natural-scene
images [42, 90–92]. It has also been suggested that the cortical feedback may control
the degree of temporal decorrelation in relay cells depending on the signal to noise
ratio [37, 42].

Here we investigate the putative role of cortical feedback on the decorrelation
of visual input by calculating the temporal autocorrelation function for relay cell
responses to natural movies for different feedback arrangements. The movie was
recorded by a camera mounted on the head of a cat exploring the environment [93,94].
The average stimulus autocorrelation function in time and the averaged response
autocorrelation function for the relay cells, is shown in Fig. 18.

The correlation has been calculated for both cases with and without cortical
feedback. For the case with cortical feedback the three mixed-feedback scenarios from
Fig. 17 are considered: (1) long-delay inhibitory feedback combined with short-delay
excitatory feedback, (2) long-delay excitatory feedback combined with short-delay
inhibitory feedback, and (3) synchronized feedback where excitatory and inhibitory
feedback are received at the same time.

Fig 18. Cortical feedback may control the degree of temporal
decorrelation in relay cells. Left: Autocorrelation function of stimulus and
relay cell response for different circuit configurations: no feedback, long-delay
inhibitory feedback combined with short-delay excitatory feedback, long-delay
excitatory feedback combined with short-delay inhibitory feedback, synchronized
feedback. In each case the average autocorrelation from 40× 40 neurons at the
center is shown with corresponding standard deviation. Default values from Table 1
have been used for fixed parameters, and the temporal feedback parameters are the
same as in Fig. 17. Right: Frames from the complex naturalistic movie used as
stimulus. This movie was recorded by a camera mounted on the head of a cat
exploring the environment (forest) [93, 94]. The red circle marks the receptive-field
center size for the relay cell at the center.
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Fig. 18 shows that even without cortical feedback, the correlations in the relay-cell
response are significantly lower than the correlations in the stimulus. We observe
that the response correlations are further reduced by synchronized cortical feedback,
and even more so when the feedback inhibition is delayed. When the excitation is
delayed, the response correlations are instead increased compared to the no-feedback
case for short time lags. These results thus show that cortical feedback may influence
the temporal decorrelation of naturalistic stimuli, and that the degree of decorrelation
depends on the spatiotemporal configuration of the feedback. In particular, our mixed
feedback configuration seems to be particularly suited for reducing the temporal
information redundancy in the signal.

4 Discussion

In the present work we have developed a firing-rate based simulation tool (pyLGN) to
compute spatiotemporal responses of cells in the early visual system to visual stimuli.
The simulation tool is based on the extended difference-of-gaussians (eDOG) model.
This model provides closed-form expressions for (Fourier transformed) responses of
both dLGN cells and cortical cells, also when cortical feedback projections to dLGN
are explicitly included [40]. A main advantage of pyLGN is its computational and
conceptual ease. The computation of visual responses corresponds to direct evaluation
of two-dimensional or three-dimensional integrals in the case of static or dynamic
(i.e., movie) stimuli, respectively, contrasting numerically extensive LGN network
simulation based on spiking neurons [31,35,39,82,95] or models where each neuron is
represented as individual firing-rate unit [36,37]. This computational simplicity of
pyLGN allows, for example, for fast and comprehensive exploration of a wide range of
candidate scenarios for the organization of the cortical feedback.

4.1 Spatial effects of feedback

As a first example application we focused on the effect of cortical feedback on the
spatial response properties of dLGN cells. A specific focus was on so-called area-
response curves, i.e., responses to circular spots and patch-gratings as a function of
stimulus size, which has received substantial experimental attention. In particular,
studies have reported several effects of cortical feedback including sharpening of the
receptive field by enhancing the center-surround antagonism of relay cells, increased
receptive field center size with removal of feedback, and increased peak response to
a an optimal diameter stimulus [16, 17, 22, 23, 96, 97]. Other studies have reported
a more diverse influence from corticothalamic feedback, including both facilitatory
and suppressive effects on dLGN cell responses, and changes in the receptive-field
structure.

Our model demonstrated that cortical feedback can, depending on the feedback
configuration, both enhance and suppress center-surround antagonism and both
increase and decrease the receptive-field center size of relay cells. While the receptive-
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field center size decreases and the center-surround antagonism (as measured by the
suppression index αs) increases with increased (indirect) cortical inhibitory feedback,
the opposite is seen for excitatory feedback (Fig. 10).

These results support that a phase-reversed arrangement of the cortical feedback,
where the ON-ON feedback is inhibitory while the OFF-ON feedback is excitatory,
as suggested by data from [74], is more effective to enhance the center-surround
antagonism of relay cells as observed in experiments [16,17,22,23,39]. However, with
this arrangement a reduction in response to the optimal diameter stimulus in the size
tuning curves was observed in our model (Fig. 10), in contrast to some experimental
studies where an increase in response was reported [17,96,97]

Here we also considered the more complicated mixed phase-reversed feedback
situation with a spatially broad ON-ON inhibitory feedback (combined with a corre-
sponding OFF-ON excitatory feedback) and a spatially narrow ON-ON excitatory
feedback (combined with a corresponding OFF-ON inhbitory feedback). Such a
center-surround spatial organization of the feedback with excitatory bias to center
and an inhibitory bias to the surround has been seen experimentally [3, 16]. In our
model studies such mixed feedback was seen to give increased center-surround antag-
onism compared to the situation with ON-ON inhibitory feedback alone. Further,
this configuration could also both reduce the size of the optimal stimulus diameter,
as well as increase the magnitude of the response to the optimal stimulus diame-
ter (Fig. 10). Correspondingly, with this configuration a sharper band-pass property
of the spatial-frequency spectra was observed (Fig. 11).

4.2 Temporal effects of feedback

As for the spatial response properties, the effects of ON-ON inhibitory and ON-
ON excitatory feedback (accompanied by the corresponding phase-reversed OFF-
ON feedback) are seen to be quite distinct. While delayed inhibitory feedback
makes the impulse response more biphasic, the opposite is the case for delayed
excitatory feedback (Fig. 14). Likewise, while the temporal frequency tuning becomes
sharper with delayed inhibitory feedback, it becomes blunter with delayed excitatory
feedback (Fig. 16).

These features, i.e., increased biphasic index and sharper temporal frequency
tuning, are maintained also for the case of mixed cortical feedback as long as the
thalamocortical loop delay for the inhibitory feedback is much larger than for the
excitatory feedback (Fig. 15, Fig. 17). Such a mixed-feedback configuration is also
found to be particularly suited to remove temporal correlation in the stimulus and
thus reduce the temporal redundancy in the neural signals that are sent from dLGN
relay cells to cortex (Fig. 18).

4.3 Spatiotemporal organization of cortical feedback

Our results concerning the spatial and temporal feedback effects suggests that a
situation with a mixed organization of cortical feedback consisting of a slow (long-

33

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 10, 2018. ; https://doi.org/10.1101/246140doi: bioRxiv preprint 

https://doi.org/10.1101/246140
http://creativecommons.org/licenses/by/4.0/


delay) and spatially widespread ON-ON inhibitory feedback, combined with a fast
(short-delay) and spatially narrow ON-ON excitatory feedback may have particular
advantages. (Here the inhibitory and excitatory ON-ON feedback connections are
accompanied by excitatory and inhibitory OFF-ON connections following a phase-
reversed arrangement [39].)

This feedback organization seems well suited to dynamically modulate both the
center-surround suppression and spatial resolution, for example, to adapt to changing
light conditions where the most efficient neural representation of the stimulus is
expected to vary depending on the signal-to-noise ratio [41]. In particular, for high
light levels (i.e., high signal-to-noise) a band-pass like spatial spectrum (as obtained
with our model for certain parameter choices) is expected to provide the most efficient
coding, while for low light levels (low signal-to-noise) a low-pass spatial spectrum (as
obtained with our model for some other parameter choices) seems better (see Sec.
3.6.1 in [98])

Further, a longer thalamocortical loop time of ON-ON inhibitory feedback com-
pared to ON-ON excitatory feedback assures that temporal correlations in the natural
visual stimuli are reduced in the relay-cell responses (Fig. 18). This temporal feedback
arrangement gives a large biphasic index (Fig. 15) which previously has been shown
to provide temporal decorrelation of natural stimuli [42], a feature that has also
been seen in experiments [43]. Further, while the slow inhibitory feedback is key
for providing this decorrelation, the rapid excitatory feedback may have a role in
linking stimulus features by synchronising firing of neighbouring relay cells to provide
a strong input to cortical target cells [10, 19]. Interestingly, a recent study found
a large variation in axonal conduction times for corticothalamic axons, from a few
milliseconds to many tens of milliseconds [99]. This suggests that differences in
feedback delays indeed may have a functional role.

It should be noted that the eDOG-model [40] on which pyLGN is based, assumes that
the cortical feedback has a phase-reversed arrangement where each ON-ON feedback
connection is accompanied by a phase-reversed OFF-ON feedback connection (Eq. 11),
i.e., a push-pull arrangement as experimentally observed in [74]. An alternative is
a phase-matched arrangement where relay cells receive feedback only from cortical
cells with the same symmetry, including both the direct excitatory feedback and
the indirect inhibitory feedback. However, such an arrangement is not only at odds
with the observations in [74], but also fails to explain the experimentally observed
cortical-feedback induced increase in center-surround antagonism [39].

4.4 Outlook

Compared to the primary visual cortex (V1), i.e., the next station in the early
visual pathway, the dLGN has received relatively little attention from computational
neuroscientists [100]. From a modelling strategy point of view, this is somewhat
unnatural as progress towards a mechanistic understanding of the function of the
dLGN circuit seems more attainable given that (i) the dLGN circuit involves much
fewer neuron types and is more comprehensively mapped out [2,30], and that (ii) the
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dLGN has much fewer neurons making simulations computationally less intensive
(18000 neurons in dLGN vs. 360000 neurons in V1 in mouse [101, 102]). Further,
the strong recurrent interactions characteristic for cortical networks (which make
them difficult to understand and analyse) appear absent between the principal cells
(relay cells) in the dLGN, even if circuit network motifs such as feedforward and
feedback interactions obviously are present. Thus a focused and comprehensive effort
on mechanistic modeling of the dLGN circuit would not only be of interest in itself,
it would also likely be a very useful stepping stone for later attempts to model the
visual cortex.

While network simulations based on biophysically-detailed neuron models (e.g.,
[39, 82]) for entire dLGN nuclei are becoming computationally feasible with modern
computers, there will still be a need for conceptually and mathematically simpler
network simulation tools such as the present pyLGN tool based on the eDOG model.
Such models are important to gain intuition about how the different circuit components
may affect the overall circuit behaviour, and will also be important for guiding the
choice of the numerous, typically unknown, parameters in more comprehensive
dLGN network simulations. Thus we envision that a future mathematics-based
understanding of the dLGN circuit will be of a ’multiscale’ nature and be based on
a set of interconnected models at different levels of biophysical detail. The mouse
seems particularly suitable as model animal since construction and testing of the
multiscale models can be greatly facilitated by the ever more sophisticated techniques
for controlling gene expression in mice as well as the possibility for optogenetic
activation [101,103]).

We further envision that at a close and targeted collaboration between modellers
and experimentalist, in particular direct assessment of predictions from mechanistic
models in targeted experiments, holds great promise for unravelling mechanisms of
visual information processing at the different levels of advancements in visual infor-
mation processing from the earliest sensory systems to more complex computations
of the higher cortical areas.
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