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Abstract

A significant portion of genes in vertebrate genomes belongs to multigene families, with each family
containing several gene copies whose presence/absence can be highly variable across individuals. For
example, each Y chromosome ampliconic gene family harbors several nearly identical (up to 99.99%)
gene copies. Existing de novo techniques for assaying the sequences of such highly-similar gene families
fall short of reconstructing end to end transcripts with nucleotide-level precision or assigning them to their
respective gene copies. We present IsoCon, a novel approach that combines experimental and
computational techniques that leverage the power of long PacBio Iso-Seq reads to determine the
full-length transcripts of highly similar multicopy gene families. IsoCon uses a cautiously iterative process
to correct errors, followed by a statistical framework that allows it to distinguish errors from true variants
with high precision. IsoCon outperforms existing methods for transcriptome analysis of Y ampliconic gene
families in both simulated and real human data and is able to detect rare transcripts that differ by as little
as one base pair from much more abundant transcripts. IsoCon has allowed us to detect an
unprecedented number of novel isoforms, as well as to derive estimates on the number of gene copies in
human Y ampliconic gene families.
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Introduction

A significant portion of genes in the human genome belongs to multigene families, with each family
containing several gene copies that have arisen via duplication, i.e. duplicate gene copies' 224 %8% Many
of these duplicate genes have been associated with important human phenotypes, including a number of
diseases’ ® °. However, the annotation of multigene families remains incomplete even in the latest human
assembly, especially due to unresolved segmental duplications with high sequence identity '®'". Duplicate
gene copies from the same family vary in sequence identity, with some of them being identical to each
other. Additionally, copy numbers within families frequently differ among individuals ' 2 3. Furthermore, an
estimated >90% of all multi-exon genes are alternatively spliced in humans 23, and different duplicate
gene copies can vary in alternatively spliced forms (i.e. isoforms) produced.

These features make deciphering the end to end transcript sequences from duplicate genes and their
various transcript isoforms a major challenge. The copy number of multigene families can be assayed
using microarrays 2, quantitative PCR ', droplet digital PCR '®, or DNA sequencing using Nanostring
Technologies 8 or lllumina platforms 3. Sequences of individual exons that are only a few hundred
nucleotides long can be obtained from individual reads of lllumina DNA or RNA-seq data'®; however, the
repetitive nature of duplicate gene copies complicates their de novo assemblies, and lllumina reads are
often unable to phase variants across the length of the full transcript '” '®. Long Pacific Biosciences
(PacBio) reads from the Iso-Seq protocol hold the potential to overcome this challenge by sequencing
many transcripts end to end. This approach has been successfully applied to reveal several complex
isoform structures resulting from alternative splicing events in, e.g., humans, plants, and fungi 1792,
None of these studies has simultaneously tackled the problems of deciphering isoform structure and of
determining which gene copies they originated from.

While PacBio error rates have decreased, many errors remain hard to correct and remain a significant
problem for downstream analyses of Iso-Seq data 2'?2'8, This is especially the case for transcripts from
gene families with high sequence identity, where teasing out errors from true variants is difficult. The use
of a reference genome 224252827 for correction is not effective in such situations, where the variability of
gene copies might not be reliably captured by the reference. ICE", a part of PacBio’s bioinformatic
pipeline to process Iso-Seq data, is the standard tool employed to correct sequencing errors without using
the reference. Though ICE has been utilized in several projects 2 2° 28 jt has been shown to generate a
large number of redundant transcripts '"2°3°. Moreover, ICE "is not currently customized to work for
differentiating highly complex gene families from polyploid species where differences are mostly
SNP-based." 3! An alternate approach -- to use lllumina reads to correct errors in PacBio reads 24272532 _.
is similarly unable to correct most errors (as we demonstrate in this paper) and is also biased by low
lllumina read depth in GC-rich regions *.

Some approaches were proposed to decipher and error correct PacBio reads from transcripts with high
sequence identity, but none is broadly applicable to determining the sequences from
high-sequence-identity multigene families without relying on the reference genome. Classification ** or
construction *® of allele-specific transcripts with Iso-Seq have been described, but these approaches
require a reference and can only separate two alleles of a single gene. Genotyping approaches for
multigene families have also been proposed *¢, but they require prior knowledge of the isoform
sequences. A de novo approach for clustering highly similar isoforms is described in ¥, but no
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implementation is provided. The problem is also related to that of viral phasing *, but the techniques
developed are not directly applicable to human multigene families.

Another consideration is the relatively high cost of PacBio. The number of reads required to recover gene
families whose expression is dwarfed by super-prevalent mRNA classes can be prohibitive. A targeted
sequencing approach can be effective at reducing the necessary amount of sequencing, where RT-PCR
primer pairs are designed to pull out transcripts of the gene family of interest *. This approach results in
sequencing depths high enough to capture most transcripts and perform downstream error correction.

To address many of these limitations, we develop IsoCon, a de novo algorithm for error-correcting and
removing redundancy of PacBio circular consensus sequence (CCS) reads generated from targeted
sequencing with the Iso-Seq protocol. Our algorithm allows one to decipher isoform sequences down to
the nucleotide level and hypothesize how they are assigned to individual, highly similar gene copies of
multigene families. IsoCon uses a cautiously iterative process to correct obvious errors, without
overcorrecting rare variants. Its statistical framework is designed to leverage the power of long reads to
link variants across the transcript. Furthermore, IsoCon statistically integrates the large variability in read
quality, which decreases as the transcript gets longer. Using simulated data, we demonstrate that IsoCon
has substantially higher precision and recall than ICE ' across a wide range of sequencing depths, as
well as of transcript lengths, similarities and abundance levels. IsoCon is able to capture transcripts that
differ by only one nucleotide in sequence and by three orders of magnitude in abundance.

We apply IsoCon to the study of Y chromosome ampliconic gene families, where the inability to study
separate gene copies and their respective transcripts has limited our understanding of the evolution of the
primate Y chromosome and the causes of male infertility disorders for which these genes are crucial 404142
43, 'Y chromosome ampliconic gene families represent a particularly interesting and challenging case to
decipher, because each of them contains several nearly identical (up to 99.99%) copies * *® with a
potentially varying number of isoforms. We use a targeted design to isolate and sequence all nine Y
chromosome ampliconic gene families from the testes of two men. Our validation shows that IsoCon
drastically increases precision compared to both ICE and lllumina-based error correction with proovread
46 and significantly higher recall than ICE. We show that IsoCon can detect rare transcripts that differ by
as little as one base pair from dominant isoforms that have two orders of magnitude higher abundance.
Using IsoCon's predicted transcripts, we are able to capture an unprecedented number of isoforms that
are absent from existing databases. We are further able to separate transcripts into putative gene copies
and derive copy-specific exon sequences and splice variants.

IsoCon is open-source and freely available at https://github.com/ksahlin/IsoCon. All analyses are
reproducible via scripts and snakemake *” workflows at https://github.com/ksahlin/IsoCon_Eval.
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Methods

IsoCon

Overview

The input to the IsoCon algorithm is a collection of PacBio circular consensus sequence (CSS) reads and
their base quality predictions. IsoCon assumes the reads have been pre-processed to remove primers,
barcodes, and reads that are chimeras or do not span the whole transcript. The pre-processing step
separates the reads according to the primer pairs used to amplify individual gene families, and IsoCon is
run separately on each gene family. The output of IsoCon is a set of transcripts which are the result of
error-correcting the reads and reporting each distinct read.

IsoCon consists of two main steps: (i) an iterative clustering algorithm to error-correct the reads and
identify candidate transcripts, and (ii) iterative removal of statistically insignificant candidates.

The clustering/correction step partitions the reads into clusters, where reads that are similar group
together into one cluster. A multiple alignment and a consensus sequence is computed for each cluster.
The reads in each cluster are then partially error-corrected to the cluster's consensus sequence; to avoid
removing true variants, only half of the potentially erroneous columns are corrected. Then, the process
iterates -- the modified reads are repartitioned into potentially different clusters and corrected again. This
process is repeated until no more differences are found within any cluster, and the distinct sequences
remaining are referred to as candidate transcripts (or simply candidates).

The clustering/correction step is designed to be sensitive and is therefore followed by the second step,
which removes candidate transcripts that are not sufficiently supported by the original (non-corrected)
reads. Initially, the original reads are assigned to one of their closest matching candidates. Then,
evaluating all pairs of close candidates, for every pair we check whether there is sufficient evidence that
their assigned reads did not in fact originate from the same transcript. To do this, we take two candidates
and their set of variant positions and formulate a hypothesis test to infer how likely it is that the reads
supporting these variants are due to sequencing errors. Since a candidate can be involved in many
pairwise tests, it is assigned the least significant p-value from all pairwise tests performed. After all pairs
of candidates have been tested, a fraction of non-significant candidates will be removed. The second step
of IsoCon is then iterated -- the original reads are assigned to the remaining candidates, which are then
statistically tested. This continues until all remaining candidates are significant. The remaining candidates
are then output as the predicted transcripts.

Clustering/correction step

First, we need to define the concept of closest neighbors and the nearest neighbor graph. Let dist(x,y)

denote the edit distance between two strings x and y . Let S be a multi-set of strings. Given a string x,

we say that a y € Sis closest neighbor of xin S if dist(x,y) = mi? dist(x,z) . That is, y has the smallest
zE

distance to x in S. The nearest neighbor graph of S is a directed graph where the vertices are the strings
of §, and there is an edge from xto y if and only if yis a closest neighbor of x but is not x.
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There are two phases to the clustering/correction step — the partitioning phase and the correction

phase — and we iterate between the phases. In the partitioning phase, we first partition the reads into
clusters, with each cluster having exactly one read denoted as the center. The idea is that each partition
contains a putative set of reads that came from the same transcript and the center is the read whose
sequence is most similar to that of the transcript. To partition, we first build a graph G which, initially, is
identical to the nearest neighbor graph built from the reads. Next, we identify a read x in G with the
highest number of vertices that can reach x. We create a new cluster with x as the center and containing
all reads in G that have a path to x, including x itself. Next, we remove the elements of the new cluster,
along with their incident edges, from G. Then, we iterate on the newly modified G : identifying the vertex
with the highest in-degree and creating a cluster centered around it. The full pseudo-code is given in the
PartitionStrings algorithm in Fig. S1.

The resulting partition has the property that each string has one of its closest neighbors (not including
itself) in its cluster. This closest neighbor may be the center but does not have to be. Thus, a cluster may
contain many strings which are closest neighbors of others but only one of them is denoted as the center.

The correction phase works independently with each cluster of reads and its corresponding center. We
first create pairwise alignments from each read to the center. We then create a multi-alignment matrix 4
using the standard progressive alignment method “¢. Each entry in 4 is either a nucleotide or the gap
character, and each row corresponds to a read. We obtain the consensus of 4 by taking the most
frequent character in each column. Every cell in 4 can then be characterized as one of four states with
respect to the consensus: a substitution, insertion, deletion, or match. Given a column j and a state ¢, we
define n; as the number of positions in column ; that have state ¢. Similarly, let »* denote the total

number of cells with state 4 in 4. The support for a state ¢ in column ; is defined as n;/n’, and the

support of a cell in4 is the support for that cell’s state in that cell’'s column. In each read, we identify the
variant positions (i.e. whose state is substitution, insertion, or deletion) and select half of these position
that have the lowest support. Then, for each of these positions, we correct it to the the most frequent
character in the column; but, if the most frequent character does not exist or is not unique, then no
correction is made.

IsoCon’s clustering/correction step combines the partitioning and correction phases in the following way.
Initially, we partition the set of reads and correct each cluster. A cluster is said to have converged if all its
strings are identical. As long as at least one cluster is not converged, we repeat the partitioning and
correction phases. To ensure that eventually all clusters converge, we heuristically undo the correction of
a string if, after correction, it has a higher edit distance to the center than it had to its center in the
previous iteration, if the string alternates between partitions in a cyclic fashion, or the same set of strings
repeatedly get assigned to the same partition where they differ only at positions where the most frequent
character is not defined. Finally, after all the partitions have converged, we designate their centers as
candidate transcripts and pass to the candidate filtering step of IsoCon. The full pseudo-code for this step
is given in the ClusterCorrect routine in Fig. S1.

Candidate filtering step

IsoCon’s second step takes as input a collection of reads X and a set of candidate transcripts
C={c,, ..., ¢} . Thefirst step is to assign reads to candidates, such that one read is assigned to exactly
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one of its closest neighbor candidates in C . Because a read may have several closest neighbor
candidates in C, there are many possible assignments. For our purposes, we use the following iterative
greedy algorithm. For each read x € X, we identify its closest neighbor candidates in C . Next, we select
a candidate ¢ € Cthat is a closest neighbor of the most reads in X. We assign all these reads to ¢, and
remove ¢ from C and all the assigned reads from X . We then repeat the process, using the reduced X
and C, until all reads have been assigned.

Now, we have an assignment of reads to the candidates. We denote by X, the reads that are assigned to
candidate c¢,. We check for evidence to support that ¢, is a true candidate as follows. We consider the
candidates who are the closest neighbors of ¢, in C — {c;} . Next, for each closest neighbor candidate ¢
we calculate the confidence that the reads in X; and in .X; originated from ¢, , i.e. ¢;is not a true
candidate. The significance value calculation is given in the next section. We compute p,, the least
significant value, amongst all ¢ We limit our comparisons of ¢, to only its closest neighbor candidates

because it keeps our algorithm efficient and it is unlikely that comparison against other more dissimilar
candidates would increase p, .

Then, we identify the candidates with p, greater than a significance threshold . This a is a parameter to
our algorithm, set by default to 0.01. These candidates are then removed from the candidate list C . Given
a parameter t, if there are more than t candidates with significance value over o, we only remove the
top t candidates with the highest values. The candidate filtering step of the algorithm then iterates: we
again assign reads to candidates and identify candidates with insufficient support. The algorithm stops
when there are no longer any candidates with p; above the significance threshold. The pseudo-code for
this algorithm, together with all of IsoCon, is given in Fig. S1.

Statistical test

We are given two candidate transcripts cand 4 and sets of reads X.and X, that have been assigned to
them. We use x; € X.UX, to denote each read and let » be the number of reads in X, UX,. We
calculate pairwise alignments from X, UX, U {c} to d . Next, we progressively combine these alignments
to construct a multi-alignment matrix 4. Each entry in 4 corresponds to either a nucleotide or the gap
character. Let V be the index of the columns of 4 where ¢ and d do not agree. We refer to these
positions as variant positions.

Let A4;; denote the character in column jof row i of 4. Rows 1<i<n correspond to reads x,, while row

n+1corresponds to c. For 1 <i<n, we define a binary variable S, that is equal to 1 if and only if
4;;,=4,,;forall j € V. Thatis, S;is 1ifand only if read x, supports all the variants V", i.e. has the
same characters as ¢ at positions 7 in 4. We make the following assumptions:

1. d, acting as the reference sequence in this test, is error-free.

2. A nucleotide in a read at a position that is not in ¥ and differs from the corresponding nucleotide
in d is due to a sequencing error. In other words, at position where ¢ and d agree, then they
cannot be both wrong.

3. The probabilities of an error at two different positions in a read are independent.

4. §,and §, are independent random variables for all i " .

Our null-hypothesis is that the variant positions in 4 are due to sequencing errors in X . To derive the

distribution of S; under the null-hypothesis, we first need a probability, denoted by P> that position jin
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read i is due to an error. This can largely be obtained from the Phred quality scores in the reads (see
section Sup. Note A for details). Under assumption 3 we have that S, follows a Bernoulli distribution with a
mean p, = [] Py -
€V
A relevant test statistic under the null-hypothesis is a quantity that models the strength (or significance) of
support for variants 7. We would like to only count reads that fully support all the variants, i.e. reads x;
with s, = 1 (s, denotes the observed value of ;). These reads may have errors in non-variant locations,
but, at the variant locations, they must agree with ¢. For each such read, we would like to weigh its
contribution by the inverse of the probability that all the characters at the variant locations are due to
sequencing errors. Intuitively, a read with a high base-quality should count as more evidence than a read
with a low base-quality. Taking these considerations together, we define our test statistic as
_ ! 1 _(under the null) " 1
= ,1]1 P ,E{ it
Notice that p, decreases with the amount of variants in V and with higher base quality scores; therefore,
T is designed to leverage linked variants across the transcript, in the sense that less reads are required to
support a transcript when the transcript has more variants. Moreover, p, decreases for reads with higher
CCS base quality at variant positions, meaning less reads are needed to support a transcript, if they have
higher quality. We observed that base quality values in the CCS was highly variable and depends on (i)
the number of number of passes in a CCS read, (ii) the mono-nucleotide length and (iii) the sequenced
base, with C and G having lower qualities associated with them (Fig. S2)

We let ¢ be the observed value of this statistic and we refer to it as the weighted support. Given ¢, we
calculate a significance value as P(T > ¢). We use a one-sided test as we are only interested in
significance values of equal or higher weighted support for 7 . We are not aware of a closed form
distribution of 7" under the null-hypothesis, and a brute-force approach to calculating P(7 > ¢) would be
infeasible. However, we can make use of the following Theorem from *°, which gives a closed formula
upper-bound on the distribution of a sum of Bernoulli random variables:

Theorem: Let a,,...,a, berealsin (0,1]and Z,, ..., Z, be Bernoulli random trials. Let Z =} 4,Z,and

§>0and u=E(Z)>0,then P(Z> (I +6)u)<((1—+%)”.

In order to apply the Theorem to T, we must first make a log transformation to convert the product into a
sum, and then normalize T so that coefficients lie in (0, 1] as needed.

n
T = log T’ _ Z —S; log p;
max(-logp) & max(log )

The expected value is

n
n__ pilogp;
E[T] - igi max(—log p;)

Note that under this transformation, P(T" > ¢)= P(T =), as the logarithm function is strictly monotone
and the normalization using the maximum is constant. Let p= E(7")and 6 = #/u. We can then apply the
Theorem to obtain the bound

)S H
P(Tz0=P(T"z0)< (75m)


https://paperpile.com/c/SwPJlM/UGfb
https://doi.org/10.1101/246066
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/246066; this version posted January 10, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

We use this upper bound as the significance value. Note that the Theorem only applies for 6 > 0. If # <p,
then this is not the case. However, it implies that the observed weighted support is below the expected
support, under the null-hypothesis. Such values are clearly insignificant, and our software defaults to a
value of 0.5.

Experimental methods

Poly(A) RNA was isolated from testis RNA of two Caucasian men (IDs: CR560016, age 59, sample 1;
CR561118, age 79, sample 2; Origene) using Poly(A) Purist MAG kit (Thermo Fisher Scientific). 500 ng of
poly(A) RNA per each sample, along with 1 ug of control liver total RNA (used for control), were used to
generate double-stranded DNA using SMARTer PCR cDNA Synthesis Kit (Clontech). PCR cycle
optimization of cDNA amplification reaction using the Clontech primer was performed and 12 cycles were
determined to be optimal for the large-scale PCR amplification. For each of nine ampliconic gene families,
we designed a pair of RT-PCR primers with one primer located in the first, and the other primer located in
the last, coding exon (Table S1). For one of these gene families (CDY), an additional primer pair was
designed to capture transcripts originating from all gene copies (Fig. S3). One of the two unique PacBio
barcodes was added to the primers in order to distinguish RT-PCR products between the two men. Next,
RT-PCR products from these two individuals were separated into two equimolar pools according to the
expected transcript sizes (<1 kb and 1-2 kb; Table S1) and purified using AMPure XP beads (Beckman
Coulter, Inc., USA). Each of the two RT-PCR pools was then used to construct a separate PacBio
Iso-Seq library that was sequenced on RSII (P6-C4 chemistry) using one SMRT cell per library.
Therefore, a total of two SMRT cells were sequenced.

Additionally, we sequenced the same RT-PCR products with lllumina technology. We constructed
separate Nextera XT library (with a unique pair of indices) for each primer pair-sample combination. A
total of nine gene families were analyzed with 10 primer pairs (as mentioned above, one gene family,
CDY, was analyzed with two primer pairs). Therefore, 10 primer pairs x 2 individuals = 20 libraries were
constructed. These libraries were normalized, pooled in equimolar ratio, and sequenced on a MiSeq
instrument using one MiSeq Reagent Nano Kit, v2 (250x250 paired-end sequencing).

Results

We evaluated IsoCon on several simulated datasets and a biological dataset of targeted sequencing from
nine Y chromosome ampliconic gene families.

Simulated data

We generated synthetic gene families using three reference genes as the starting sequence for our
simulation: TSPY, HSFY, and DAZ. We chose these because they reflect the spectrum of length, exon
number, and complexity, that is characteristic of Y ampliconic gene families (Table 1). DAZ is the hardest
case, since it has a highly repetitive exon structure®. Gene length is also important, since longer
transcripts result in fewer passes of the polymerase during sequencing and, hence, a higher error rate of
CCS reads. We simulated coverage levels in a range consistent with what we later observed in real data.
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Our main simulation focused on two scenarios. The first one (Fig. 1) reflects a typical biological scenario.
For each of the three gene families, we simulated several gene copies and, for each copy, we simulated
various isoforms by skipping different exons. There were a total of 30 simulated isoforms per family, with
relative abundances randomly assigned and ranging from 0.1% to 15%. We generate three such
replicates by varying the mutation rate used to generate duplicate gene copies. (Note that here for
simplicity we model mutation only, although other processes, e.g., gene conversion, are known to
influence evolution of duplicate gene copies *'). The second simulation (Fig. S4) is similar to the first, but,
in order to tease out the effect of mutation from that of exon skipping, we do not simulate isoforms. For
each gene family, there were a total of eight gene copies and eight transcripts (one per gene copy)
simulated, with varying sequence identity (Fig. S5) and with relative abundances ranging from 0.4% to
50%. We also repeated these two simulations but kept the isoform abundance constant (Figs. S6 and
S7). See Sup. Note B for a complete description of our simulation.

IsoCon's precision increases with increased read depth, even when the isoform coverage is as high as
1,562x (Fig. S4). Such robustness is often hard to attain because increases in coverage beyond what is
necessary for recall will only increase the number of errors in the data. The recall depends on the gene
length and, hence, error rate. For TSPY, the recall becomes perfect at 17x coverage, while for DAZ, the
recall reaches >90% at only 412x coverage (Fig S6). We expect accuracy to also be a function of gene
copy similarity, i.e. a gene family that is generated using low mutation rate, thereby producing fewer
variants between gene copies, has the potential to negatively affect IsoCon's ability to separate
transcripts. Somewhat surprisingly, accuracy decreases only slightly in these cases, and read depth has a
much more substantial effect on accuracy than mutation rate or gene length.

Our experiments clearly indicate that IsoCon's recall is strongly dependent on read depth. We
investigated this in more detail by taking every transcript simulated as part of the experiments in Figure 1.
We showed whether or not IsoCon captured a transcript as a function of the sequencing depth (i.e. total
number of reads) of its respective experiment and its own sequencing depth (i.e. the number of reads that
were sequenced from the isoform; Fig. 2). As expected, we see a strong correlation between IsoCon's
ability to capture an isoform and the isoform's sequencing depth. For TSPY, IsoCon captures most
transcripts with depth >3, while this number is approximately 10 for HSFY. Interestingly, the mutation rate
plays only a minor role compared to the transcript depth. For example, for a fixed mutation rate of DAZ,
there is a large range of transcript depths where some transcripts are captured and others are not. This
indicates that other factors likely play an important role. We also observe that for DAZ, the minimum
transcript depth required to capture an isoform increases as the total sequencing depth increases. This is
likely due to the fact that the more reads cover an abundant transcript, the more reads are needed to
recover a less abundant similar isoform. Another factor might be that the multi-alignment matrix becomes
increasingly noisy as the number of sequences grows, negatively impacting both the error correction and
the support calculation in the statistical test.

We also observe that IsoCon outperforms ICE in both precision and recall. ICE has poor precision which
decreases with increased read depth. For example, at a read depth of 500 or higher, ICE's precision is
close to 0 in all our experiments. On the other hand, IsoCon's precision is always >80% at read depths of
500 or higher. IsoCon also has higher recall in almost all cases for HSFY and DAZ. As for TSPY, the
recall advantage fluctuates between the two algorithms but is fairly similar overall. Further investigation of
IsoCon's performance is detailed in Sup. Note C.
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Data from two human testes samples

As described in the experimental methods, we generated transcript sequencing data for nine ampliconic
gene families for two human male testes samples using the Iso-Seq protocol from PacBio (Fig. S12
shows the number of passes per read) and, separately, using lllumina sequencing technology. We then
used the ToFU pipeline "7 to filter out any PacBio CCS reads that either were chimeric or did not span a
transcript from end to end. We refer to the resulting set as the original (CSS) reads. For the purposes of
comparison, we ran IsoCon and ICE"” on the CCS reads. We also evaluated the proovread “® tool, which
uses lllumina reads to correct CCS reads (referred to as lllumina-corrected CCS reads). Supplementary
Note D provides details on how these tools were run. We compared the results of the three approaches,
as well as of the approach of just using the original CCS reads. Table 2 shows the number of reads
generated and the number of transcripts called by each of these four different approaches.

Validation

To validate IsoCon and compare its accuracy against other methods we used (1) lllumina reads, (2)
internal consistency between samples, and (3) agreement with a transcript reference database.

We validated the nucleotide-level precision of IsoCon, ICE, lllumina-corrected CCS reads, and original
reads with lllumina data generated for the same two individuals. Throughout all positions in the predicted
transcripts, we classified a position as supported if it had at least two lllumina reads aligning to it with the
same nucleotide as the transcript. Since Illlumina sequencing depth was orders of magnitude higher than
that of PacBio (Table 2), we expect most correct positions to be supported. Note that the lack of lllumina
support does not always indicate an error, since lllumina's GC-bias will result in some regions being
unsequenced. However, we expect that the number of transcript errors is correlated with the number of
unsupported positions. Figure 3 shows the percentages of supported nucleotides for each approach. On
average, 99% of IsoCon transcript positions are supported, but only 93% of ICE transcript positions are
supported. Similarly,96% of lllumina-corrected read positions and 79% of original read positions are
supported. IsoCon has 70% of its transcripts fully supported (i.e. at every single position) by lllumina,
compared to 2% for ICE, 15% for lllumina-corrected reads, and 20% for uncorrected reads.

While we expect some variability in the transcripts present in the two samples, we also expect a large
fraction of them to be shared. IsoCon detected 121 transcripts that are present in both samples,
corresponding to 32% of total transcripts being shared (averaged between two samples; Figure S9). The
lllumina-corrected CCS reads shared 11%, while both ICE and the original reads shared less than 2%.
This likely indicates the higher precision of IsoCon relative to other methods.

IsoCon also did a better job at recovering known Ensembl transcripts. We downloaded annotated coding
sequences of the nine Y chromosome ampliconic gene families from the Ensembl database %2, containing
61 unique transcripts after removing redundancy (see Sup. Note E). We then identified database
transcripts that were perfectly matched by the predicted transcripts. IsoCon had 21 matches to Ensembl,
while ICE had only eight (included in those matched by IsoCon; Figure 4). IsoCon also had more matches
to the database than the original reads, despite reducing the number of sequences by a factor of >29
(Table 2). lllumina-corrected CCS reads in total had one more exact match than IsoCon, but had >14
times more predicted transcripts to IsoCon, suggesting low precision.
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Isoform diversity

To study the transcripts IsoCon found, we first filtered out transcripts that were sample-specific. While we
expect variability between the two individuals, such transcripts could also be false positives arising due to
reverse transcriptase PCR (RT-PCR) errors. These errors, if present, were introduced prior to library
construction and would be located in both Iso-Seq and Illlumina reads. They would lead to unique
sequences that would mimic true transcripts in both Iso-Seq and lllumina data. Since it is unlikely that
identical RT-PCR errors would occur in two different samples, our downstream analysis only uses the 121
transcripts that were identically predicted by IsoCon in both samples. This also reduces any false positive
IsoCon transcripts that might arise due to uncorrected sequencing errors. Table 3 shows the number of
shared transcripts separated into gene families. We note, however, that the true number of transcripts in a
sample might be higher due to sample-specific variants that we discarded. We further classified each
transcript as protein-coding or non-coding depending on whether it is in-frame or out-of-frame with the
human reference transcripts (see Sup. Note E for details). We found that 72 out of the 121 transcripts are
coding, and five of the nine families harbor a total of 49 non-coding transcripts (Table 3), the other four
families have only coding transcripts. We also found that 93 out of the 121 transcripts were not previously
known, i.e. did not have a 100% match spanning the whole transcript when aligned to NCBI's
non-redundant nucleotide database (nr/nt). The multi-alignment for IsoCon's RBMY transcripts -- the
family with the most predicted transcripts -- is shown in Figure 5.

IsoCon is sensitive to small and low-abundance variation

IsoCon was able to detect several transcripts even in the presence of an isoform with a much higher
abundance that differed by as little as 1-3 bp. For example, one recovered IsoCon RMBY transcript in
sample 2 was supported by only five reads and differed by only one nucleotide from a transcript that was
supported by 863 reads. A second example is another IsoCon RBMY transcript that was supported by
only five reads in sample 2 and differed by only one nucleotide from a transcript that was supported by
306 reads. Both of these lower-abundance transcripts were derived in both samples (the support for
these transcripts in sample 1 was 10 and 9 reads, respectively), had perfect lllumina support, and were
protein-coding. Neither of these were detected by ICE or present without errors in the original reads;
however, both of them were also derived in the lllumina-corrected CCS reads. Figure 5 shows these two
lower-abundance transcripts, indexed 3 and 1, respectively.

Separating transcripts into gene copies and comparing against known
family sizes

A gene family consists of gene copies, each of which can generate several transcripts because of
alternative splicing. In such cases, the transcripts will align to each other with large insertions/deletions
(due to missing exons) but without substitutions. We determine the minimal number of groups (i.e.
clusters) that are required so that each transcript can be assigned to at least one group and every pair of
transcripts in the same group differs only by large insertions/deletions (see Sup. Note E for details). We
refer to this as the number of groups, which is our best estimate of the number of copies, i.e. the size of
each gene family. Note that allele-specific transcripts are non-existant for Y ampliconic gene families
because of the haploid nature of the Y chromosome. We also determine the number of coding groups,
which is the number of groups computed from the coding transcripts only. A group corresponds to the
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notion of a maximal clique from graph theory %3, and, since the number of transcripts is relatively small,
the number of groups can be computed using a brute-force algorithm (Sup. Note E).

The number of groups for the nine different families are shown in Table 3, and Figure 5 illustrates the idea
of groups using the RBMY family as an example. An important distinction between a group and a gene
copy is that a transcript can belong to multiple groups. This happens if a transcript skips an exon that
contains a variant separating two gene copies. In such a case, we cannot determine which copy it
originates from, and our approach places it in both groups. The size of each group is therefore an upper
bound estimate of the number of isoforms originating from each gene copy.

We note that the true number of copies in a gene family might be higher or lower than the number of
groups determined by IsoCon, for several reasons. First, it is impossible to separate transcripts originating
from copies with identical exonic sequences. As a result, we might underestimate the true number of
copies. Second, copy number might differ between the two males analyzed *. Because we are excluding
transcripts unique to each male, we might underestimate the true copy number. Also, the copy number for
a gene family might be the same between the two men, but some of the copies might have different
sequences. Third, there may be copies that biologically differ only by the presence/absence of exons or
by other large indels -- if there are no substitutions, the resulting transcripts would be grouped together by
our approach. Since human Y chromosome ampliconic genes were formed by whole-region duplications,
as opposed to retrotransposition %, this situation should not be common. Nevertheless, if present, it would
underestimate the number of copies. Fourth, RNA editing may generate transcripts that have substitutions
but originate from the same copy, leading to overestimating the true copy number. Fifth, our approach to
group transcripts relies on accuracy of transcript-to-transcript alignments, which can sometimes be
inaccurate in the presence of repeats. With these caveats in mind, we nevertheless expect the number of
groups to be a useful proxy for the size of the gene family.

We compared our number of coding groups against the number of copies annotated on the Y
chromosome in the human reference genome (GRCh38/ hg38) and observed in previous studies of DNA
variation in human populations (Table 3). For one of the gene families (HSFY), we did not find any
transcripts shared between individuals. For four gene families (CDY, DAZ, RBMY, and TSPY), the
number of coding groups falls within the previously observed range based on DNA analysis in human
populations (Table 3). For the remaining four gene families (BPY, PRY, VCY, and XKRY), the number of
coding groups is less than the copy number reported by prior studies. Three of these families -- BPY,
VCY and XKRY -- had only one coding transcript shared between the two samples. Thus, overall, the
number of coding groups is a conservative estimate of the number of ampliconic gene copies per gene
family.

Running time and memory analysis

We compared runtime and memory of IsoCon, ICE, and proovread on our human samples (Table S2).
We used a machine with an x86_64 system running Linux v3.2.0-4-amd64 and equipped with 32
2-threaded cores and 512 GB RAM. IsoCon is roughly 2x faster than ICE when running on a single core,
and ~5x faster when running over 64 processes. A direct comparison to proovread is challenging because
it requires a minimum read length criteria that makes it unable to process the BPY and XKRY families.
With this caveat in mind, proovread run times were 12% slower than IsoCon on 1 core and >3x slower on
64 cores.
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Discussion

We have used both simulated and experimental data to evaluate the performance of IsoCon and its
alternatives. First, all approaches exhibit higher recall and precision compared to using uncorrected CCS
reads. Second, our simulations uncovered the challenges that ICE has in deriving transcripts from
high-identity gene families, as its precision deteriorates with increased read depth. On the other hand,
IsoCon behaves as expected, with precision remaining fairly stable but recall reaching 100% with
increasing read depth. On experimental data, our validations also confirm a low precision for ICE
transcripts -- they are significantly less supported by lllumina data and are less consistent between
samples, as compared with IsoCon. Similarly, the recall of ICE is lower than IsoCon's as judged by
matches to the Ensembl database. ICE transcripts only matched nine sequences from Ensembl, while
IsoCon matched 22.

Third, for high-identity gene families, error correction using lllumina reads with proovread results in
extremely low precision. This is possibly due to the challenge of multi-mapping reads, which arises when
many similar long reads serve as alignment references. Nevertheless, lllumina-corrected CCS reads do
recover an extra transcript from Ensemble, compared to IsoCon. In situations where low precision is
tolerable to achieve a slightly improved recall, proovread may still be the preferred method.

IsoCon, similarly to ICE, uses an iterative cluster and consensus approach, but the two algorithms have
fundamental differences. After clustering, IsoCon derives a weighted consensus based on the error profile
within a partition, and uses it as information to error correct the reads; ICE, on the other hand, derives a
cluster consensus using the stand alone consensus caller arrow, to be used in the next iteration without
error correction of the reads. IsoCon and ICE also differ in the graphs they use to model the relationship
between sequences and in the algorithm to partition the graph into clusters. IsoCon deterministically
creates clusters modeled as a path-traversal problem, while ICE models a cluster as a maximal clique
and uses a non-deterministic approximative maximal clique algorithm. Perhaps most importantly, IsoCon
as opposed to ICE, includes a statistical framework that allows it to distinguish errors from true variants
with high precision.

The experimental methods we use here have some potential limitations. First, very low-abundance
transcripts might not be captured by Iso-Seq, since deep PacBio sequencing can be cost-prohibitive.
Second, very short transcripts might not be captured during size selection. The size selection step of the
PacBio library preparation protocol enriches for longer transcripts and thus some shorter Y ampliconic
gene transcripts could not be captured. For example, we failed to retrieve some shorter BPY transcripts
(Fig. S10). Both of these limitations can potentially be overcome via augmenting Iso-Seq data with
lllumina RNA-seq data. Third, our approach of only sequencing the transcriptome does not provide a
definitive answer to the size of each gene family and does not allow us to conclusively assign each
transcript to a gene copy.

These limitations notwithstanding, IsoCon has allowed us to detect an unprecedented number of
isoforms, as well as to derive better estimates on the number of gene copies in Y ampliconic gene
families. Many of these isoforms are novel and need to be confirmed at the protein level. Nevertheless
they are expected to open novel avenues of Y ampliconic genes research.
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Conclusions

We plan on improving IsoCon on several fronts as we continue to apply it to other gene families and
species.

Future Improvements to IsoCon: Computational. 1soCon can be further improved by incorporating Illlumina
RNA-seq data (as opposed to just using it for validation, as we have done here). If IsoCon is adopted to
cautiously make use of such data, it can further reduce false positives. Another avenue for improvement
is to use data from the genome assembly or from known transcripts in the database; however, relying on
such a priori information may be of limited use as we move towards deciphering transcripts from
non-model organisms.

Future Improvements to IsoCon: Experimental. Several experimental improvements can be incorporated
into IsoCon as well. First, to eliminate reverse transcriptase and sequencing errors, two replicate cDNA
libraries can be prepared from the same sample %. Any differences in transcript sequences between the
two libraries will be consistent with such errors. Second, to identify sites with RNA-editing, one can
amplify and sequence exons from the same individual, and compare RNA- and DNA-derived sequences.
This will also assist in more conclusively determining the number and sequences of individual gene
copies. Third, a PCR-based target enrichment approach, which we utilized here, might not have captured
transcripts of gene copies with mutations at PCR primer sites. An alternative to this approach is to use a
probe-based capture technique (e.g., °’), which does not depend on PCR primers.

Future Improvements to IsoCon: Non-targeted approach. Our ultimate goal is to develop a method that
will allow one to decipher all the transcripts for a given sample and to apportion them to single-copy
genes and individual copies of multigene families in the genome. A non-targeted Iso-Seq, i.e. sequencing
of the whole transcriptome with PacBio technology, combined with IsoCon, can be employed to achieve
this goal. A direct genome-wide application of Iso-Seq for this purpose is currently expensive and will
result in predominant sequencing of highly abundant transcripts of housekeeping genes, leaving
tissue-specific transcripts, frequently expressed at lower levels, undeciphered. Library normalization,
applied to genome-wide, non-targeted transcripts, can overcome this limitation. While here we
demonstrate an application of IsoCon to PacBio Iso-Seq data, in the future a similar approach can be
applied to derive transcripts from direct sequencing of RNA with Oxford Nanopore technology *.
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TABLES & FIGURES

Table 1. Gene sequences (taken from the corresponding reference gene in Ensembl) and their
corresponding PacBio CCS error rates used for simulation. We simulated multigene families by using
these gene sequences at the root. We refer to the resulting gene families by using the name of the
reference gene, sometimes dropping the last modifier (i.e. TSPY instead of TSPY13P).

Simulated error profile

Reference Sum of exon Number of

gene lengths (nt) exons Overall error rate Median errors per Median n. of Passes
transcript

TSPY13P 914 6 0.5% 2 18

HSFY2 2,668 6 2.6% 41 6

DAZ2 5,904 28 6.1% 276 2
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Table 2. The number of reads and of predicted transcripts. We show: (1) maximum RT-PCR product
length per family (including primers), (2) the number of original PacBio CCS reads, with the number of
distinct read sequences in parenthesis, (3) the number of lllumina reads, (4) the number of distinct

proovread lllumina-corrected CCS reads, (5) the number of ICE predicted transcripts, and 6) the number
of IsoCon predicted transcripts.

sample1 sample2
max Original PacBio lllumina  Illumina-corr Original PacBio lllumina lllumina-corre IsoCo

family len(nt) CCS reads reads ected CCS ICE IsoCon |CCS reads reads cted CCS ICE n

BPY 321 36(22) 6,854 22+ 1 2 37 (15) 9,916 15 1 1
CDY_1** 1660| 1,110(1,090) 55,228 508 72 28 453 (439) 41,434 184 18 5
CDY 2% 1,623 442 (440) 75,862 322 19 11 1,766 (1,670) 74,080 630 28 28
DAZ 2235 495 (487) 49,500 208 14 34 530 (519) 39,318 291 16 34
HSFY 1,163 933 (877) 14,832 350 26 25 205 (181) 26,408 59 5 2
PRY 421 177 (126) 40,904 121 8 8 25 (20) 6,864 20 4 3
RBMY 1483| 6,615(6,365) 85,068 3,698 105 162 6,939 (6,284) 65,284 2,840 90 181
TSPY 916| 2,121(1,955) 27,428 903 32 133 1,418 (1,249) 8,756 772 36 80
vecy 378 50 (23) 11,820 23 2 2 53 (47) 3,328 47 1 7
XKRY 340 53 (28) 15,722 28* 2 1 55 (39) 2,890 39 1 3
Total N/A (12,032 (11,413) 383,218 6,183 281 406 11,481 (10,463) 278,278 4,807 200 344

* proovread exited with an error that the sequences are too short and was not able to correct any reads.
** CDY transcripts captured using the first primer pair (see Fig. S3 for details)
*** CDY transcripts captured using the second primer pair (see Fig. S3 for details).
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categorized as coding or non-coding. The calculated number of groups is shown, in comparison to known
copy numbers from the reference genome and observed in human populations. Novel transcripts are
those that do not have a perfect alignment to the NCBI transcript reference database, the numbers in
parentheses indicate additional transcripts that have a perfect alignment only to ESTs, synthetic

constructs, or in silico predicted transcripts.

Gene family Number of Range of IsoCon transcripts shared Inferred group sizes Novel
coding copy between samples transcripts
members numbers
annotated in  observed in Num Num Number of  Number of
the human coding non-coding groups (all) coding
reference®  populations® groups
.61
BPY 3 2-3 1 0 1 1 0(0)
CcDY 4 2-4 3 2 2 2 1(1)
DAZ 4 2-5 5 1 3 3 5(0)
HSFY 2 2 0 0 - - -
PRY 2 2-3 1 2 1 1 1(0)
RBMY 6 6-18 26 35 18 14 49(3)
TSPY 35 12-38 34 9 20 14 37(3)
VCY 2 2-3 1 0 1 1 0(0)
XKRY 2 2-3 1* 0 1 1 0(0)
Total 32 32-79 72 49 51 38 93

*The XKRY transcript shared by two samples for XKRY-based primers had a better alignment to XKR3
than to XKRY and thus might not be Y -specific, but we did find a Y-specific transcript unique to sample 2.
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Figure 1. Violin plots showing the recall (panel A) and precision (panel B) of IsoCon and ICE on
simulated families of transcripts with different exon structure and unequal abundance rates. In each
panel, the rows correspond to different families and, hence, different error rates. The shortest gene family
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(TSPY, labeled by the name of the reference gene copy used to generate it, TSPY713P), with
correspondingly lower read error rates, is shown in the top panel rows while the longest gene family
(DAZ, labeled as DAZ2), with correspondingly higher read error rates, is shown in the bottom rows. The
columns correspond to different mutation rates () used in simulating the gene copies (see Sup. Note B).
A lower mutation rate implies more similar gene copies. Each plot shows results for a total of 30 isoforms
with abundances randomly assigned and ranging from 0.1% to 15%. Within each plot, the x-axis
corresponds to the number of simulated reads, while the y-axis shows the recall/precision of the methods.
Each "violin" is generated using ten simulated sequencing replicates. The white dot shows median, the
thick black line is the interquartile range (middle 50%), the thinner black line is the 95% confidence
interval, and the colored area is the density plot. We note that the density plot is cut at the most extreme
data points.
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Figure 2. Power of IsoCon to separate transcripts with similar sequences as a function of
coverage. Each isoform from the experiments in Figure 1 (including the ten simulated replicates)
corresponds to a marker in this plot which is marked according to whether it is captured by IsoCon. This is
a swarmplot generated with the seaborn package 2, which is a special kind of dotplot where the x-axis is
categorical (total number of reads of the corresponding experiment) and points are spread out horizontally
so as to not overlap each other. The y-axis shows the number of reads that were sequenced from the
isoform, on a log scale. Isoforms that have no reads are not shown.
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least two Illlumina alignments with the same nucleotide.
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(no coding sequences are present for XKRY). The numbers in parentheses next to the gene family name
in the x-axis indicate the number of unique transcripts in the database.
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Figure 5. lllustration of the relationship between the 61 RBMY transcripts predicted by IsoCon and shared
by both samples. Transcripts are indexed from 1 to 61. The left part of the figure uses IGV %% to visualize
a multiple-alignment of the transcripts. Colored positions are positions with variability in the transcripts
while grey regions depict conserved positions. Deletions are shown with a horizontal line, with a number
indicating their length. The right part of the figure illustrates the relationship between the 61 transcripts as
a graph. Vertices are transcripts (labelled with their indices). A vertex is boldfaced if it is predicted to be
protein-coding. An edge between two transcripts means that they are potential isoforms from the same
gene copy, i.e., they have only exon presence/absence differences. To simplify the visualization, some of
the vertices are surrounded by boxes, and a double-edge between two boxes indicates that all pairs of
transcripts, between the two boxes, are potential isoforms from the same gene copy. Each maximal clique
(i.e. group of vertices) greater than four vertices is shown as a colored circle. The colors of the circles
correspond to the rows in the multiple-alignment that are marked with a similarly-colored vertical bar. A
maximal clique should be interpreted as all transcripts that potentially originate from the same gene copy.
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SUPPLEMENTARY TABLES & FIGURES

Table S1 (SupTableS1.csv). RT-PCR primers designed in the first and last coding exons of the nine Y
ampliconic gene families. Each primer starts with a 21 bp-long PacBio barcode that is unique for each
sample.

Table S2. Runtime and peak memory usage of IsoCon, ICE, and proovread to process the whole
biological dataset. Note that proovread did not perform any correction of reads from the BPY and XKRY

families, due to their short size.

IsoCon ICE proovread
1 thread 64 threads 1 thread 64 threads 1 thread 64 threads
Wall clock time (hh:mm) 08:02 00:41 15:52 03:32 9:02* 2:07*
Peak memory (GB) 0.72 0.73 1.75 1.77 4.57* 5.85*
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1 PartitionStrings(S)
Input: A set of strings S.

Qutput: A partition of § into £ clusters S,..., S, and designated central elements
Cly...,Cp.

2 Let G be the nearest neighbor graph of §

3 Set £ = 0. // Number of clusters created
4 while G is non-empty do

5 Let s be a read with the most nodes that can reach s in G.

6 Let R be the reads from which s is reachable in G.

4 Let f =¢+1. // Create a new cluster
8 Set Sg = {S} UR.

9 Set ¢y = s.
10 Remove Sy from G.
11 end
12 return Sy,.... Sy and ¢1....,¢q.

Algorithm 1: PartitionStrings routine

1 ClusterCorrect(S)
Input: & — a set of strings which are the Pacbio reads
QOutput: a collection of strings that are candidate transcripts.
S1,...,8¢¢1,...,c = PartitionStrings(S).
while not all parts are converged do
for each non-converged cluster S; do
Compute multiple alignment from reads in S; and ¢;.
Compute consensus.
for s € S; do
‘ Correct some positions in s, as described in the text.
end
end
S1,...,80,¢1,...,c, = PartitionStrings(S).
end
return c,..., ¢

© ® N kW oN

=
=]

-
W W

Algorithm 2: ClusterCorrect routine

1 IsoCon(XY)
Input: X', 7, — A is a multiset of PacBio reads, 7 is the maximum number of insignificant
candidates to be removed during an iteration, and « is a significance threshold.
Output: A set of final predicted transcripts.

2 Let S=X& // Make a copy of the reads that we can modify
3 Let C = {ey1...., ¢} = ClusterCorrect(S)

4 do

5 Assign reads to candidates as described in the text.

6 Let X; denote the reads assigned to ¢;.

7 Let p1,...,0¢=0,...,0 // Initialize storage of significance values.
8 Let GG be the nearest neighbor graph of C.

9 for each edge (ci,c;) in G do
10 p = SignificanceTest(c;, ¢;, Xi, X;)
11 if p > p; then
12 | pi=p
13 end
14 Let D= {¢; € C| p; > o and p; is in the highest 7 values of {p1,...,p¢e}}
15 C=C\D
16 while D #

17 return C
Algorithm 3: The IsoCon algorithm

Figure S1. Pseudo-code for IsoCon algorithm.
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Figure S2. Quality predictions from PacBio’s base calling algorithm Arrow ©° for CCS reads based on a
subsample of 5,000 CCS reads. Each panel shows Arrow’s prediction that the called base is wrong
(y-axis) as a function of the homopolymer length in a CCS read (x-axis). The predictions are split by the
four different bases. Each point within a line is the mean probability of error for a given nucleotide and the
length of the homopolymer that contains it. Vertical lines for each point are the 95% confidence interval of
the mean. Each of the panels correspond to the shown number of passes over the read.
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Figure S3. Alignment of two CDY primer pairs (CDY1/2_F and CDY1/2_R1;CDY1/2_F and CDY1/2_R2)
to transcripts from Ensembl database showing the necessity of designing two alternative reverse primers
to capture all protein-coding transcripts for this ampliconic gene family.
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Figure S4. Violin plots showing the recall (panel A) and precision (panel B) of IsoCon and ICE on
simulated families of transcripts with the same exon structure and unequal abundance rates.

Each plot shows results for a total of 8 isoforms with abundances randomly assigned and ranging from
0.4% to 50%.
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Figure S5. Edit distance between gene copies for simulated data sets of 8 gene copies. Each matrix
shows edit distances between the 8 simulated copies for a specific gene family and mutation rate. The x
and y axis show the abundance level of the copy in the unequal abundance experiment. The number in
each block shows the edit distance between copies. Numbers on or above the diagonal are masked. Also
masked are any blocks with edit distance >99.
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Figure S6. Violin plots showing the recall (panel A) and precision (panel B) of IsoCon and ICE on
simulated families of transcripts with different exon structure and equal abundance rates. Each plot shows

results for a total of 30 isoforms with equal abundances.
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Figure S7. Violin plots showing the recall (panel A) and precision (panel B) of IsoCon and ICE on
simulated families of transcripts with the same exon structure and equal abundance rates. Each plot
shows results for a total of 8 isoforms.
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Figure S8. Violin plots showing the recall (panel A-B) and precision (panel C-D) of IsoCon and ICE on a
single gene copy with eight different isoforms with equal abundance rates (left) and unequal abundance
rates (right).
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Figure S9. Venn diagram of the number of predicted transcripts shared between two samples for (A)
IsoCon, (B) ICE, (C) original reads, and (D) lllumina corrected CCS reads. A transcript is shared if it has a
perfect match between samples (edit distance of 0). Identical sequences within one sample are collapsed.
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Figure S10. Coverage of CCS reads along the first 50 bp of the BPY consensus. To have the most
complete set of reads, we combined the original CCS reads together with those that did not completely
span a transcript from end to end. None of the reads includes the first 26 bp from the 5' end (including the
17 bp-long forward primer). This might be due to a limitation on the fragment size for library construction
for PacBio sequencing.
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Figure S11. Biological data processing workflow with snakemake. bax2bam, ccs, and classify are tools
included in the PacBio smrtlink v4.0 tool suite. The rule “split_by_primers” splits the reads into batches for

each given primer.
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Figure S12. Histogram showing the number of polymerase passes in the CCS reads for both samples.
The average number of passes is 16 and the median is 13.
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