

1 **Identification, expression analysis and molecular modeling of *Iron deficiency specific*
2 *clone 3 (Ids3)* like gene in hexaploid wheat**

3

4 Priyanka Mathpal^{1†}, Upendra Kumar^{2†} Anuj Kumar³, Sanjay Kumar⁴, Sachin Malik¹, Naveen
5 Kumar¹, H. S. Dhaliwal⁵, Sundip Kumar^{1*}

6

7 ¹Molecular Cytogenetics Laboratory, Molecular Biology & Genetic Engineering, College of
8 Basic Sciences & Humanities, GB Pant University of Agriculture & Technology, Pantnagar-
9 263145, Uttarakhand, India

10

11 ²Department of Botany & Plant Physiology, College of Basic Sciences & Humanities, Ch.
12 Charan Singh Haryana Agricultural University, Hisar-125004 Haryana India.

13

14 ³Advanced Centre for Computational & Applied Biotechnology, Uttarakhand Council for
15 Biotechnology, Dehradun-248007, Uttarakhand, India

16

17 ⁴Centre for Bioinformatics, Biotech Park, Lucknow-226021, Uttar Pradesh, India

18

19 ⁵Akal School of Biotechnology, Eternal University, Baru Sahib, Himachal Pradesh, India

20

21 * Corresponding Author

22

23 Email: malik.sundip@gmail.com

24

25 [†]These authors contributed equally to this work.

26

Abstract

27 Graminaceous plants secrete iron (Fe) chelators called mugineic acid family
28 phytosiderophores (MAs) from their roots for solubilisation and mobilization of unavailable
29 ferric (Fe³⁺) ions from the soil. The hydroxylated forms of these phytosiderophores have been
30 found more efficient in chelation and subsequent uptake of minerals from soil which are
31 available in very small quantities. The genes responsible for hydroxylation of
32 phytosiderophores have been recognized as iron deficiency-specific clone 2 (*Ids2*) and iron
33 deficiency-specific clone 3 (*Ids3*) in barley but their presence is not reported earlier in
34 hexaploid wheat. Hence, the present investigation was done with the aim:(i) to search for the
35 putative *Hordeum vulgare Ids3* (*HvIds3*) ortholog in hexaploid wheat, (ii) physical mapping
36 of *HvIds3* ortholog on wheat chromosome using cytogenetic stocks developed in the
37 background of wheat cultivar Chinese Spring and (iii) to analyze the effect of iron starvation
38 on the expression pattern of this ortholog at transcription level. In the present investigation, a
39 putative ortholog of *HvIds3* gene was identified in hexaploid wheat using different
40 bioinformatics tools. Further, protein structure of TaIDS3 was modelled using homology
41 modeling and also evaluated modelled structure behavior on nanoseconds using molecular
42 dynamics based approach. Additionally, the ProFunc results also predict the functional

43 similarity between the proteins of *HvIds3* and its wheat ortholog (*TaIds3*). The physical
44 mapping study with the use of cytogenetic stocks confines *TaIds3* in the telomeric region of
45 chromosome 7AS which supports the results obtained by bioinformatics analysis. The
46 relative expression analysis of *TaIds3* indicated that the detectable expression of *TaIds3*
47 induces after 5th day of Fe-starvation and increases gradually up to 15th day and thereafter
48 decreases till 35th day of Fe-starvation. This reflects that Fe deficiency directly regulates the
49 induction of *TaIds3* in the roots of hexaploid wheat.

50 **Keywords**

51 Phytosiderophores, *Ids3*, Hexaploid wheat, Physical mapping, Fe-deficient

52

53 **Introduction**

54 Iron (Fe) deficiency, a major abiotic stress, especially in calcareous soils (~30% of the
55 world's cultivated soils) with extremely low solubility of Fe (owing to high pH levels)
56 reduces crop yield. The low availability of Fe results into its poor uptake by plants, which
57 causes severe yield losses. Further, the poor uptake of other minerals by plants also reduces
58 the overall mineral content in grains, which are essential to meet the required human dietary
59 needs (Cakmak 2008).

60 The manifestation of Fe deficiency in calcareous soils has been recognised as Fe-
61 chlorosis and lime-induced chlorosis. Under adverse conditions of Fe deficiency,
62 graminaceous plants secrete Fe-chelators called mugineic acid family phytosiderophores
63 from their roots (Takagi 1978). Mugineic acid family phytosiderophores (MAs) are highly
64 effective in solubilisation and mobilization of Fe in calcareous soil (Treeby et al. 1989) and
65 are involved in the uptake of Fe through roots (Romeheld and Marschner 1990; vonWiren et
66 al. 1995) to acquire sparingly soluble Fe as Fe³⁺-MAs complex through the use of Fe³⁺-MA
67 transporters. The secretion of MAs increase under deficiency of Fe and is correlated with
68 plant's tolerance to Fe deficiency. The quantity and different forms of phytosiderophores
69 secreted by roots play an important role in providing tolerance to plants in Fe-deficient
70 condition. The hydroxylated forms of phytosiderophores like 3-hydroxymugineic acid
71 (HMA) and 3-epihydroxymugineic acid (epiHMA) have been found more efficient in
72 chelation and subsequent uptake of trace minerals (vonWiren et al. 2000). In *Hordeum*
73 *vulgare*, the genes responsible for hydroxylation of phytosiderophores have been recognized
74 as *iron deficiency-specific clone 2 (Ids2)* and *iron deficiency-specific clone 3 (Ids3)*
75 (Nakanishi et al. 2000). The *Ids3* gene encodes an enzyme dioxygenase which hydroxylates
76 the C-2' position of 2'-deoxymugineic acid (DMA) and 3-epihydroxy-2'-deoxymugineic acid

77 (epiHDMA) and converts DMA to MA or epiHDMA to epiHMA, while *Ids2* hydroxylates C-
78 3' position of MA and DMA and converts MA to epiHMA or DMA to epiHDMA. MA,
79 epiHDMA and epiHMA are more stable under mildly acidic conditions and might be more
80 favourable for inter mineral translocation (Kobayashi and Nishizawa 2012). As reported in
81 publicly available sequence databases, *Ids2* is having 3,411 bp long coding sequence which
82 encodes a protein of 338 amino acids (<http://www.uniprot.org/uniprot/Q40061>) while *Ids3*
83 have 4,904 bp long coding sequence which encodes a protein of 339 amino acids
84 (<http://www.uniprot.org/uniprot/Q40062>). The expression of *Ids3* is always much stronger
85 than that of *Ids2* in Fe-deficient condition, indicating that initially DMA changes into MA
86 predominantly (Nakanishi et al. 2000).

87 The biosynthetic pathway for mugineic acid production is well documented in
88 graminaceous crops (Ma and Nomoto 1993). All MAs share the pathway from methionine to
89 DMA and the DMA is then converted to other MAs like HMA, epiHMA and epiHDMA. The
90 pathway up to DMA synthesis is conserved in all graminaceous plants and the variation is in
91 the type of phytosiderophores synthesized in the further hydroxylation steps (Takahashi
92 2003). It is reported that wheat cultivar Chinese Spring used in the present study produces
93 only one phytosiderophore, namely DMA (non-hydroxylated form) whereas barley cv. Betzes
94 and rye each synthesizes four types of MAs i.e. DMA, MA, epi-HDMA and epi-HMA
95 (Nakanishi et al. 2000; Mori et al. 1990; Neelam et al. 2011). It has been reported that wheat
96 and its wild progenitors do not have the ability to secrete MA and HMA from the beginning
97 of their evolution because they lack the ability to secrete MA and HMA as a result of the
98 absence of IDS3 enzyme (Singh et al. 1973). Therefore, no efforts were made in the past to
99 study *Ids3* gene in wheat genome.

100 In view of the above, the present investigation was aimed at the identification and
101 physical mapping of the wheat ortholog of *Ids3* gene and to analyze its expression pattern
102 under Fe-deficient conditions in hexaploid wheat.

103 **Materials and Methods**

104 **Plant Growth Conditions**

105 Seeds of wheat cultivar Chinese Spring were surface sterilized and soaked on filter
106 paper with distilled water and incubated in dark at 25 °C until germination. Then the three-
107 days old seedlings were transplanted and cultured hydroponically in 2.0 litre plastic boxes
108 with continuous air flow under Fe-sufficient (+Fe) and Fe-deficient (-Fe) conditions. The 1X
109 concentration of the nutrient solution for hydroponic culture consisted of 2.0mM Ca(NO₃)₂,
110 0.7mM K₂SO₄, 0.1mM KCl, 0.1mM KH₂PO₄, 0.50mM MgSO₄, 0.15mM Fe³⁺-EDTA, 10µM

111 H_3BO_3 , 0.5 μM MnSO_4 , 0.5 μM ZnSO_4 , 0.2 μM CuSO_4 and 0.01 μM $(\text{NH}_4)_6\text{Mo}_7\text{O}_{24}$. The nutrient
112 solution was replaced once per week and its pH adjusted to 5.5 to 5.6 daily with 1N HCL. For
113 expression study under Fe starvation, wheat cultivar Chinese Spring was grown at 23-25 °C
114 under a 16/8 h light (~160 $\mu\text{mol/m}^2\text{.s}$)/dark regimen.

115

116 **Identification of *Hordeum vulgare* *Ids3* homolog through *in-silico* approach**

117 *In-silico* analysis was performed to identify the putative ortholog(s) of *HvIds3* gene in
118 hexaploid wheat. Full length genomic sequence of *HvIds3* gene (Accession Number
119 AB024058.1) was retrieved from NCBI (National Center of the Biotechnology Information)
120 (<http://www.ncbi.nlm.nih.gov/>) in FASTA format. Similarity searches were carried out using
121 genomic sequence of *HvIds3* as a query against the wheat chromosome survey sequences
122 available at <http://urgi.versailles.inra.fr/> using the BLAST (Basic Local Alignment Search
123 Tool) search engine (<http://www.ncbi.nlm.nih.gov/BLAST>). The matching wheat contigs having
124 good coverage (>85%), identity (>70%) and e-value (<e-10) were downloaded. The
125 exon/intron structure prediction in the selected wheat contigs was carried out using
126 FGENESH+ (<http://linux1.softberry.com/berry.phtml>) program. Conserved domain search
127 (CD-Search) program was used to predict functional domain(s) in the sequences of *HvIds3*
128 and its wheat ortholog *TaIds3* (<http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml>).

129 Multiple sequence alignment (MSA) between *HvIds3* and three copies of *TaIds3*
130 (*TaIds3_7AS*, *TaIds3_7BS*, and *TaIds3_7DS*) was performed by using CLUSTAL W2
131 (www.ebi.ac.uk/Tools/msa/clustalw2) available on EMBL-EBI (www.ebi.ac.uk). The 3D
132 structure of proteins (*HvIds3* and *TaIds3*) was predicted using homology modeling based
133 Swiss-Model server (<http://swissmodel.expasy.org/>). Flexible structure AlignmenT by
134 Chaining AFPs (Aligned Fragment Pairs) with Twists (FATCAT) structure alignment tool
135 (<http://fatcat.burnham.org/>) was used for the alignment of 3D structure model of proteins.
136 ProFunc (<http://www.ebi.ac.uk/thornton-srv/databases/ProFunc/>) was used to predict the
137 biochemical function of *TaIds3* based on the predicted 3D model. Sub cellular localization of
138 *HvIds3* and *TaIds3* was predicted with TargetP 1.1 (<http://www.cbs.dtu.dk/services/TargetP/>)
139 and PLANT-mPLoc (<http://www.csbio.sjtu.edu.cn/cgi-bin/PlantmPLoc.cgi>), respectively.

140 **Cytogenetic Stocks**

141 To facilitate the mapping of wheat ortholog of *Ids3* gene to the individual
142 chromosome, chromosome arm and sub chromosomal location (i.e. deletion bin), the
143 following cytogenetic stocks in the background of wheat cultivar Chinese Spring were used:
144 (i) 22 nullisomic-tetrasomic (NT) lines (Sears 1954; Sears 1964) (ii) two ditelosomic (Dt)

145 lines i.e. 7AS and 7AL (Sears and Sears 1978) and (iii) 8 homozygous deletion (Del) lines of
146 chromosome 7AS (Endo and Gill 1996). Seeds of NT, Dt and Del lines were procured from
147 the Wheat Genetic and Genomic Resources Center at the Kansas State University,
148 Manhattan, USA and multiplied in the greenhouse facility at the G. B. Pant University of
149 Agriculture & Technology at Pantnagar, India.

150 **DNA isolation and primer designing**

151 The genomic DNA from fresh leaves of cytogenetic stocks and wheat cultivar Chinese
152 Spring was extracted using CTAB (Cetyltrimethyl ammonium bromide) method with some
153 modifications (Maroof et al. 1994). To confirm the chromosomal location of *TaIds3*, a pair of
154 7AS chromosome specific primer was designed using primer blast software
155 (<http://www.ncbi.nlm.nih.gov/tools/primer-blast/>) (Table 1).

156 **Polymerase Chain Reaction**

157 Polymerase chain reaction (PCR) amplification was carried out in a volume of 20 μ l
158 in Applied Biosystems (Veriti 96 well) thermal cycler. The reaction mixture contained 80-
159 100 ng of template DNA, 1X PCR buffer, 1.5mM MgCl₂, 0.25mMdNTP, 500nM of each
160 PCR primer (forward and reverse) and 1.0 U *Taq* DNA polymerase (New England Biolabs).
161 PCR cycling conditions were as follows: 95 °C for 2.30 min followed by 35 cycles of 95 °C
162 for 50 s, 56 °C for 40 s and 68 °C for 1.0 min with a final extension of 68 °C for 5 min. The
163 PCR products were resolved using 10% polyacrylamide gel electrophoresis (PAGE) and
164 visualized with silver staining (Tegelstrom 1992).

165 **RNA extraction and real time reverse-transcription PCR (RT-PCR) analysis**

166 100 mg root samples were harvested at 5, 10, 15, 25 and 35 days after the plants were
167 exposed to +Fe and -Fe conditions and used immediately for RNA isolation. Root tissues
168 were frozen in 2 ml micro centrifuge tubes and disrupted under frozen conditions using two
169 stainless steel beads (5 mm diameter) in the Tissuelyser (Qiagen, USA). Total RNA was
170 extracted from the disrupted tissue using the GeneJET Plant RNA purification kit (Fermentas
171 Life Sciences) according to the manufacturer's protocol in duplicates. The quantity and
172 quality of the total RNA were evaluated using a nanophotometer (Nanodrop 1000, Thermo-
173 scientific) and visualized by 1% agarose gel electrophoresis. Approximately 1 μ g of total
174 RNA was reverse transcribed to cDNA in 20 μ L reaction using oligo-dT and M-MLV reverse
175 transcriptase (Fermentas Life Sciences). Real-time PCR primer was designed to amplify a
176 100–200 bp fragment in untranslated regions. The primer was designed from the conserved
177 region of mRNA of all predicted *TaIds3* orthologs using Primer Express® Software version
178 3.0 (Applied Biosystems) (Table 2).

179 Real-time RT-PCR was performed with a Step One Plus Real-Time PCR System
180 using SYBR Select Master Mix (Applied Biosystems, USA). Reactions were performed in a
181 total volume of 10 μ L with 0.2 μ M of each primer, 1 \times SYBR premix, 50ng cDNA and
182 ddH₂O. Reactions were cycled under the following conditions: initial denaturation at 95°C for
183 2 min, followed by 40 cycles composed of 15 seconds denaturation at 95°C and 1.0 min of
184 annealing/extension at 60 °C. To verify specific amplification, melting curve analysis was
185 performed at 65 °C to 95 °C with the fluorescence continuously being monitored. Data were
186 analysed via $2^{-\Delta\Delta C_T}$ method with the v2.3 Software (Applied Biosystems, USA) (Livak and
187 Schmittgen, 2001) and the expression level of housekeeping gene *TaADP* ribosylation factor
188 was used as an internal control (Poalacci et al. 2009) (Table 1). For all real-time PCR
189 analysis, two biological replicates were used and three technical replicates were performed
190 for each biological replicate.

191

192 **Molecular Dynamics simulations**

193 Molecular dynamics (MD) simulations have become one of the most important techniques in
194 biophysics and helpful to understanding the behaviour of biological macromolecules on
195 nanosecond to microsecond time scales (Gajula et al. 2017). To check the stability of
196 modelled structure of IDS3, we performed molecular dynamics (MD) simulation carried out
197 by Desmond v3.6 (Shiva Kumar et al. 2010; Guo Z et al. 2010; Kevin et al. 2006)
198 implemented in Schrodinger-maestro2017 (Schrödinger Release 2017-2). Protein model
199 preparation done by assigning bond orders, hydrogen atoms added in protein model with
200 neutral pH 7.0 applied by PROPKA (Hui et al. 2005) method. Total 5307 TIP3P (Jorgensen
201 et al. 1983) water solvent atoms were added in truncated octahedron simulation box under
202 periodic boundary conditions and shape and size was set at 10.0 \AA buffered distance. To
203 neutralize the simulation system electrically, added Na⁺/Cl⁻ ions to stabilize box charge and
204 were place to randomly in the solvated system. After preparing simulation box (Box
205 size=19882) was proceed to energy minimization by applied 800 steps of steepest descent
206 algorithm followed 2000 steps of conjugate gradient algorithm with 120.0 kcal/mol/ \AA
207 convergence threshold energy under NPT ensemble. The 300K temperature was applied
208 using Nose-Hoover (Nosé, 1984; Hoover and William, 1984) chain method and 1
209 atmospheric pressure applied by Martyna-Tobias-Klein (MTK) (Martyna et al. 1994)
210 Barostat method. For both ensemble classes (NPT and NVT) OPLS2005 (Jorgensen et

211 al.1996; Kaminski et al. 2001) force field were used. Finally, simulation system was set in
212 relaxation state and run for 20nsec.Trajectory recorded in each 4.8psec.

213 **Simulation Trajectory analysis**

214 The 20 nsec MD simulation trajectory was analyses by simulation event and
215 interaction diagram program module available in Desmond v3.6. For protein stability analysis
216 we select root-mean-square deviation (RMSD) value and root mean square fluctuation
217 (RMSF) selected for determination of fluctuation/thermal motion in protein residues during
218 simulation. We analyze the protein contribution of secondary structure elements (SSE) during
219 simulation in structure stabilization.

220

221 **Results**

222 ***In-silico* mapping and functional annotation**

223 Putative wheat ortholog of *HvIds3* gene was identified using different bioinformatics based
224 algorithms. The results suggested the presence of 2OG-FeII Oxy domain (Pfam Id-CL0029)
225 belonging to DIOX protein family (Fig. S1) in wheat ortholog of *HvIds3*.Further, *HvIds3*
226 sequence was aligned against wheat survey sequences available on IWGSC database.
227 BLASTN results showed 74% sequence similarity with IWGSC_chr7AS_ab_k71 contig of
228 chromosome 7AS, 88% sequence similarity with IWGSC_chr7BS_ab_k71 contig of
229 chromosome 7BS and 78% with IWGSC_chr7DS_ab_k71 contig of chromosome 7DS in
230 wheat genome. The predicted structure of 7AS and 7BS contained 4 exons and the structure
231 belonging to 7DS contained 3 exons. *TaIds3_7AS* and *TaIds3_7BS* coded for 339 and 309
232 amino acid long protein respectively, while *TaIds3_7DS* coded 242 amino acids length
233 protein which was comparable to the protein of the known gene *HvIds3* of barley. Further
234 MSA results predicted by CLUSTALW2 revealed that *TaIds3_7AS* shared high similarity
235 with *HvIds3* as compared to *TaIds3_7BS* and *TaIds3_7DS* (Fig. S2).With the aim to confirm
236 the chromosomal location of *TaIds3* in hexaploid wheat genome, when contig
237 IWGSC_chr7AS_ab_k71 was used to BLAST against *Triticum aestivum* DNA database in
238 Ensembl plants database, it gave a hit on telomeric region of 7AS.

239 Out of three predicted wheat orthologs, only *TaIds3* on 7AS had complete gene
240 structure (Fig. 1A).. Transcription start site (TSS) for *TaIds3* on 7BS and 7DS could not be
241 predicted. CD search for these predicted genes showed that *TaIds3_7AS* with 2OG-FeII Oxy
242 domain belonging to DIOX protein family similar to the gene *HvIds3*, while this domain was
243 not fully present in *TaIds3_7BS* and *TaIds3_7DS* (Fig. 1B).

244 **Protein Structure Modeling and Phylogeny Analysis**

245 Swiss-Model software (homology based algorithm) was used to generate 3D model wheat
246 proteins encoded by *Ids3* gene based on 1w9yA template from the Protein Data Bank (PDB)
247 at Root Mean Square Deviation (RMSD) 2.0. UCSF-CHIMERA visualized the different
248 chemical shapes of modelled *TaIDS3* (Fig. 1C). The alignment of the structure of the proteins
249 encoded by *HvIds3* and *TaIds3_7AS* using FATCAT superposition showed 57.25% similarity
250 between the *HvIds3* and *TaIds3* proteins (Fig.S3). ProFunc server was used to determine the
251 biochemical function of *Ids3* in wheat showing catalytic activity (59.07) and oxidoreductase
252 activity (49.52) (Table 1). To identify the sub cellular localization of *TaIds3* using machine-
253 learning program PLANT-mPLoc suggests the cytoplasmic localization of *HvIds3*,
254 *TaIds3_7AS*, *TaIds3_7BS*, and *TaIds3_7DS*, (Table 2).

255 The phylogenetic tree generated the individual branches for *TaIds3*, *HvIds3*, *HvIds2*,
256 and *OsIds2* (Fig.2). *TaIds3* gene clusters shared the close evolutionary relationship with
257 *HvIds3*, while *OsIds2* and *OsIds3* shared the relationship with *HvIds2*.

258 **Physical mapping of *TaIds3* on 7AS chromosome**

259 In order to confirm the chromosomal location of *TaIds3* in hexaploid wheat genome,
260 the genomic DNA of the cytogenetic stocks developed in Chinese Spring wheat background,
261 was amplified with a pair of 7AS specific primers of *TaIds3* gene. The PCR products of 22
262 NT lines and di-telocentric lines of 7A are illustrated in Figure 3. The PAGE analysis of the
263 PCR products resolved that a single fragment of *TaIds3* was amplified in 20NT lines, while
264 there was no amplification in N7A-T7B and N7A-T7D. The amplification of the fragment in
265 all 20 NT lines and absence in N7A-T7B and N7A-T7D indicates the presence of this
266 fragment on chromosome 7A (Fig.4). Further, to localize the fragment on the specific arm of
267 7A chromosome, the genomic DNA of Dt7AS and Dt7AL was amplified with the same
268 primers. The PAGE analysis of the PCR product resolved that there was no amplification in
269 Dt7AL while Dt7AS line gave the amplification with 7AS specific primers (Fig. 3). These
270 results indicate the location of the gene on short arm of 7A chromosome. Further, the
271 genomic DNA of deletion lines of 7AS didn't give any amplification. Therefore, it was
272 confirmed that *TaIds3* is located in the telomeric region of 7AS. On the basis of the above
273 results, the location of *TaIds3* gene is illustrated in Fig.4.

274
275

276 **Expression analysis under Fe-starvation**

277 The results of Real-time RT-PCR showed that the detectable expression of *TaIds3*
278 was started on 5thday (2.5 fold) after Fe-starvation. In response to Fe-deficiency, the relative
279 expression was increased gradually up to 15thday (maximum33.5 fold) afterwards decreased
280 in 25thand 35thdays analysis. However, in Fe-sufficient condition, the expressionof *TaIds3*
281 was detectable but almost constant at all stages (Fig.5). The relative expression analysis
282 reflected that Fe deficiency directly regulates the induction of *TaIds3* expression in Chinese
283 Spring roots. The expression of *TaIds3* in Fe-deficient roots was much greater than Fe-
284 sufficient roots at all stages (Fig.5).

285 **Molecular dynamics simulations**

286 The molecular dynamics simulation concerned with stability and fluctuations in protein
287 model of ids3 by analyzing 20nsec simulation trajectories. RMSD plot in Fig. 6B is show
288 protein structure has RMSD between 1.3Å – 2.7Å. From the starting point (1nsec) of
289 simulation, RMSD shows higher value between 3.4Å – 3.7Å, because protein structure has
290 large loop region residues 4-46 that's why it shows conformational changes between 1 to
291 3nsec. After 3nsec structure conformations are shows stable RMSD between 2.2Å – 2.7Å
292 (Highlighted in red line) in 4 to 13nsec simulation time. After 13nsec RMSD shows some
293 conformations changes due to second loop region 173-179 in protein and RMSD decrease
294 2.7Å to 1.6Åfor 2 nsec (13-14nsec). After 15nsec RMSD remain constant and stable between
295 1.4Å – 1.6Åto till end of the simulation time (Highlighted in red line).

296 Fluctuations in IDS3 protein residues were analyzed by backbone atoms motions and local
297 changes in secondary structure elements. RMSF plot Fig. 6C shows acceptable fluctuations
298 under 2.4Å with compare to beta factor (0.5Å – 0.8Å) aspect one large fluctuations higher
299 than 3Å between 173 – 179 residues range. This range comes in loop region of protein that's
300 why this region fluctuated during 13-14nsec simulation. Total 31.57% protein contributed in
301 secondary structure (alpha helices=19.52% and beta strands =12.05%). SSE elements
302 confirms that protein structure have stable conformations state aspect small loop (residues
303 173-179) that shows conformational changes during simulation. Based on acceptable RMSD
304 around 1.5Å – 2.7Å and fluctuations between 1.0Å – 2.4Å confirms that protein has stable
305 state during whole simulation time.

306

307 **Discussion**

308 In the present study, we reported that*Ids3* gene, which encodes a dioxygenase that
309 converts DMA to MA or MA to epiHMA, is present in hexaploid wheat. These results are

310 contrary to a number of earlier reports showing absence of the *Ids3* gene(s) or presence of a
311 mere pseudo gene in hexaploid wheat and its wild relatives (Nakanishi et al. 2000; Mori et al.
312 1990; Ma and Nomoto 1994) The bioinformatics analysis indicated that the functional wheat
313 ortholog of *Ids3* gene might be present at chromosome 7AS, which is supported by the results
314 obtained from physical mapping of the wheat ortholog in the telomeric region of
315 chromosome 7AS. In the constructed phylogenetic tree, the close evolutionary relationship of
316 *TaIds3_7AS* with *HvIds3* also supports the above results (Fig. 1). Our results are also
317 supported by the location of most of the QTLs of high grain iron and zinc contents on
318 chromosome 7A of different *Triticum* species (Tiwari et al. 2009; Peleg et al. 2009). The *Ids3*
319 gene has been mapped on long arm of chromosome 4H of barley and long arm of
320 chromosome 5R of rye using wheat-barley addition lines and wheat-rye addition lines
321 respectively (Ma and Nomoto 1994; Mori and Nishizawa 1989; Ma et al. 1999).

322 The results of real-time RT-PCR showed the expression of wheat ortholog of *Ids3*
323 gene in hexaploid wheat, which is strongly up-regulated under conditions of Fe-deficiency.
324 According to the previous studies, during 15-days of Fe starvation, the expression of *Ids3* was
325 induced after three days of Fe-starvation in barley, which was gradually increased to a
326 maximum level on the seventh day while the expression of *Ids3* gene was not observed in
327 hexaploid wheat (Nakanishi et al. 2000). However, our results showed that the detectable
328 expression of *Ids3* was observed five days after Fe-starvation and increased up to 15 days and
329 thereafter its expression declined. So, the *Ids3* expression seemed to be more sensitive to Fe-
330 deficiency in barley than in wheat. Similar expression pattern was reported for *Ids2* gene in
331 barley. The *Ids2* expression in barley was hardly detectable at least for the first 7-days after
332 the start of Fe-starved treatment (Okumura et al. 1994), while the expression of its ortholog in
333 tobacco was clearly detectable within 3 days after Fe-starved treatment (Kobayashi et al.,
334 2007). The induction of *Ids3* in barley is dependent on the availability of Fe and it is
335 negatively correlated with the induction of NAS, NAAT and IDS3 enzymes and subsequently
336 with secretion of MAs (Kobayashi and Nishizawa 2012; Higuchi et al. 1996; Kanazawa et al.
337 1998). These results strongly support the results of present investigation that the deficiency of
338 Fe directly regulates the induction of *Ids3* expression in the roots of hexaploid wheat.
339 Nakanishi et al. (1993) reported that the *Ids3* gene and its product detected only in Fe-
340 deficient barley roots. Tolay et al. (2001) reported that as compared with diploid wheat (AA)
341 and tetraploid wheat (AABB) species release higher amount of phytosiderophores under Fe
342 deficiency. However, in case of Zn deficiency, diploid wheat species release higher amount
343 of phytosiderophores than tetraploid wheat species. But in both the cases of deficiency,

344 hexaploid wheat was found to secrete highest amount of phytosiderophores than diploid and
345 tetraploid wheat species. This might be because the genes responsible for synthesis of
346 phytosiderophores are expressed predominantly and effectively when three genomes are
347 present together. On the basis of “Draft genome of the wheat A-genome progenitor “*Triticum*
348 *urartu*” (Ling et al. 2013), homology analysis of the *Hordeum vulgare* IDS3 protein as a
349 query with BLASTp exhibited 65% identity with *Triticum urartu* (Accession no. EMS
350 480341) and predicts the molecular function exactly similar as HvIDS3 protein
351 i.e. dioxygenase and oxidoreductase activity (<http://www.uniprot.org/uniprot/M7ZIY2>). These
352 results suggest the presence of IDS3 protein ortholog also in diploid wheat, which might be
353 responsible for higher secretion of phytosiderophores in Fe and Zn deficient conditions. The
354 good correlation between the protein and RNA data demonstrates that regulation of gene
355 expression by concentration of Fe is at the level of transcription or RNA stability and not at
356 the level of translation, as in the case of Fe-regulated genes in other systems. In spite of the
357 presence of *Ids3* gene and its mRNA transcripts in hexaploid wheat genome, the less RNA
358 stability might be the reason to produce the optimum amount of IDS3 peptide to be detectable
359 in the root exudates.

360 In the present study, the *HvIds3* gene sequence was aligned against wheat survey sequence.
361 BLASTn results showed 74% sequence similarity with IWGSC_chr7AS_ab_k71_contigs of
362 chromosome 7AS in wheat genome having same conserved domain. Results indicate the
363 presence of putative ortholog of *HvIds3* in the short arm of chromosome 7A of hexaploid
364 wheat genome. Further, results of structural alignment of proteins between *HvIds3* and
365 *TaIds3* ortholog by FATCAT server showing 57.25% similarity of *HvIds3* with putative
366 wheat ortholog of *Ids3* indicated significant structural similarity in the proteins of both the
367 genes which is an agreement with the observations of (Domingues et al. 2000). According to
368 Domingues et al. (2000), if a protein has more than 40% sequence identity to another protein
369 whose biochemical function is known and if the functionally important residue (for example,
370 those in the active site of an enzyme) are conserved between the two protein, a reasonable
371 working assumption can be made that the two proteins have a similar biochemical function.
372 ProFunc analysis also identified the functional motifs of TaIDS3 and showed the close
373 relationships of TaIDS3 to functionally characterized HvIDS3 protein. Even the subcellular
374 locations of the gene in both wheat and barley was found in cytoplasm also suggests the
375 presence of putative barley ortholog in wheat. Crystal structure of cereals IDS3 protein is not
376 available in PDB yet. Moreover, high-throughput protein structure methods, such as yeast X-
377 ray crystallography and NMR, cannot be easily applied to due to their high cost. Therefore,

378 homology modeling for predicting RWP-RKs protein structure and function could provide
379 alternative solutions. Homology modeling referred to as comparative or knowledge based
380 modeling method, rely on detectable significant similarity between the query amino acid
381 sequences and protein of know 3D structure (resolved by X-ray crystallography and NMR)
382 and can be used to modelled the 3D structure of all the members of a protein family using a
383 single representative 3D structure as an initiating point (Kumar et al. 2013; Kumar et al.
384 2016).The TaIDS3 sequence alignment with template is needed because Swiss-Model
385 algorithm can discover structural information based on sequence. This alignment information
386 is applied to simulation of target structure. Sequence alignment quality of target and template
387 is important to predict a good homology model. Swiss-Model algorithm was predicted the 3D
388 structure of TaIDS3 with good stero-chemical properties.

389 After protein structure modeling of ids3, we go for stability and local changes in
390 structure analysis through molecular dynamics (MD) simulation for small time scale. Ids3
391 predicted model was place into cytoplasmic condition under TIP3P water molecules (Fig
392 6A). MD results suggest that predicted Ids3 protein model have stable state during simulation
393 between 1.4Å – 2.7Åaverage rmsd (Fig. 6B). Root mean square fluctuations value between
394 1.4Å -2.4Å shows stable fluctuations in protein that compatible with experimental beta factor
395 (Fig5C). One large fluctuation in TYR177 residues that comes in loop region is reported
396 between 3.2Å-5.7ÅRMSF. This large fluctuation doesn't affect the local changes in
397 secondary structure conformations. The percentage of secondary structure elements (31%)
398 also shows that predicted model have stable conformation during simulation (Fig 6D).

399 **Conclusions**

400 The present study first time reported the *HvIds3* ortholog in the hexaploid wheat
401 genome and physically mapped on telomeric region of chromosome 7AS. The expression
402 analysis reflected that Fe deficiency directly regulates the induction of *Ids3* gene in Chinese
403 Spring roots. Modeling and MD simulations results of HvIDS3 revealed that identified IDS3
404 is stable at cell during Fee deficiency. Identified *TaIDS3* being utilizing by us in ongoing
405 marker assisted program (MAS) to develop the Fe efficient wheat cultivar and boost up the
406 biofortification program. However, extensive characterization and functional validation of
407 *IDS3* gene in other cereals is also necessary to further explore their biological roles using
408 different reverse genetics approaches like RNAi and VIGS.

409 **Author's Contribution**

410 SK and HSD designed and supervised the study. PM, UK and AK designed
411 experiment and analyzed the data as a whole and wrote the manuscript. SM and PM collected
412 samples for the analysis. AK and SK performed the molecular dynamics analysis. All authors
413 read and approved the final manuscript.

414 **Acknowledgement**

415 Thanks to Dr. B. S. Gill for providing the cytogenetic stocks for mapping.

416 **Conflict of interest**

417 The authors declare that they have no conflict of interest.

418 **References**

419 Cakmak I (2008) Enrichment of cereal grain with zinc: agronomic or genetic
420 Biofortification? *Plant Soil* 302:1-17

421 Domingues FS, Lackner P, Andreeva A, Sippl MJ (2000) Structure based evaluation of
422 sequence comparison and fold recognition alignment accuracy. *J Mol Biol* 297:1003-1013

423 Endo TR, Gill BS (1996) The deletion stock of common wheat. *J Hered* 87:295-307

424 Higuchi K, Kanazawa K, Nishizawa NK, Mori S (1996) The role of nicotianamine synthase
425 in response to Fe nutrition status in Gramineae. *Plant and Soil* 178:171-177

426 Kanazawa K, Higuchi K, Nakanishi H, Nishizawa NK, Mori S (1998) Characterizing
427 nicotianamine aminotransferase: improving its assay system and details of the regulation of
428 its activity by Fe nutrition status. *Soil Sci Plant Nutr* 44:717-721

429 Kobayashi T, Nishizawa NK (2012) Iron uptake, translocation and regulation in higher
430 plants. *Annu Rev Plant Biol* 63:131-52

431 Kobayashi T, Yoshihara T, Itai RN, Nakanishi H, Takahashi M, Mori S, Nishizawa NK
432 (2007) Promoter analysis of iron-deficiency-inducible barley IDS3 gene in *Arabidopsis* and
433 tobacco plants. *Plant Physiol Biochem* 45:262-269

434 Ling HQ, Zhao S, Liu D, Wang J, Sun H et al. (2013) Draft genome of the wheat A-genome
435 progenitor *Triticum urartu*. *Nature* 496: 87-90

436 Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time
437 quantitative PCR and the $2^{-\Delta\Delta C_t}$ method. *Methods* 25: 402-408

438 Ma JF, Nomoto K (1993) Two related biosynthetic pathway of mugineic acids in gramineous
439 plants. *Plant Physiol* 102:373-378

440 Ma JF, Nomoto K (1994) Incorporation of label form ^{13}C -, ^2H -and ^{15}N -labeled methionine
441 molecules during the biosynthesis of 2'-deoxymugineic acid in roots of wheat. *Plant Physiol*
442 105:607-610

443 Ma JF, Taketa S, Chang YC, Takeda K, Matsumoto H (1999) Biosynthesis of
444 phytosiderophores in several Triticeae species with different genomes. *J Exp Bot* 50:723-
445 726

456 Maroof MA, Biyashev RM, Yang GP, Zhang Q, Allard RW (1994) Extraordinarily
457 polymorphic microsatellite DNA in barley: species diversity, chromosomal locations and
458 population dynamics. *Pro Natl Acad Sci* 91:5466-5470

459

460 Mori S, Nishizawa N (1989) Identification of barley chromosome no. 4 possible encoder of
461 genes of mugineic acid synthesis from 2-deoxymugineic acid using wheat-barley addition
462 lines. *Plant Cell Physiol* 30:1057

463

464 Mori S, Nishizawa N, Fujigaki J (1990) Identification of rye chromosome 5R as a carrier of
465 the genes for mugineic acid synthetase and 3-hydroxymugineic acid synthetase using wheat-
466 rye addition lines. *Jpn J Genet* 65:343-352

467

468 Nakanishi H, Okumura N, Umehara Y, Nishizawa NK, Chino M, Mori S (1993) Expression
469 of a gene specific for iron deficiency (*Ids3*) in the roots of *Hordeum vulgare*. *Plant Cell*
470 *Physiol* 34:401-410

471

472 Nakanishi H, Yamaguchi H, Sasakuma T, Nishizawa NK, Mori S (2000) Two dioxygenase
473 genes, *Ids3* and *Ids2*, from *Hordeum vulgare* are involved in the biosynthesis of mugineic
474 acid family phytosiderophores. *Plant Mol Biol* 44:199-207

475

476 Neelam K, Rawat N, Tiwari VK, Tripathi SK, Randhawa GS, Dhaliwal HS (2011) Evaluation and identification of wheat-*Aegilops* addition lines controlling high grain iron
477 and zinc content and mugineic acids production. *Cereal Res Commun* 40:53-61

478

479

480 Okumura N, Nishizawa NK, Umehara Y, Ohata T, Nakanishi H, Yamaguchi H, and Chino
481 M, Mori S (1994) A dioxygenase gene (*Ids2*) expressed under iron deficiency conditions in
482 the roots of *Hordeum vulgare*. *Plant Mol Biol* 25:705-719

483

484 Paolacci RA, Oronzo AT, Porceddu E, Ciaffi M (2009) Identification and validation of
485 reference genes for quantitative RT-PCR normalization in wheat. *BMC Mol Bio* 10:1-27

486

487 Peleg Z, Cakmak I, Ozturk L, Yazici A, Jun Y, Budak H, Korol AB, Fahima T, Saranga Y
488 (2009) Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheat
489 X wild emmer wheat RIL population. *Theor Appl Genet* 119:353-369

490

491 Romheld V, Marschner H (1990) Genotypical differences among graminaceous species in
492 release of phytosiderophores and uptake of iron phytosiderophores. *Plant Soil* 123:147-153

493 Sears ER (1954) The aneuploids of common wheat. University Archives of the University of
494 Missouri-Columbia USA

495

496 Sears ER (1964) Nullisomic-tetrasomic combinations in hexaploid wheat. *Chromosome*
497 *Manipulation and Plant Genetics* 29-45

498

499 Sears ER, Sears LMS (1978, February) The telocentric chromosomes of common wheat. In
500 Proceedings of the 5th International wheat genetics symposium (Vol.1, pp. 389-407). Indian
501 Society of Genetics and Plant Breeding New Delhi

502

503 Singh K, Sasakuma T, Bughio N, Takahashi M, Nakanishi H, Yoshimura E, Nishizawa NK,
504 Mori S (2000) Ability of ancestral wheat species to secrete mugineic acid family
505 phytosiderophores in response to iron deficiency. *J Plant Nutr* 23: 1973-1981

506
507 Takagi S (1976) Naturally occurring iron-chelating compounds in oat- and rice- root
508 washings I. Activity measurement and preliminary characterization. *Soil Sci Plant Nutr*
509 22:423-433
510
511 Takahashi M (2003) Overcoming Fe deficiency by a transgenic approach in rice. *Plant Cell*
512 *Tissue Organ Culture* 72:211-220
513
514 Tegelstrom H (1992) Detection of mitochondrial DNA fragments. Molecular genetic analysis
515 of populations: a practical approach. IRL Press, Oxford, 89-114
516
517 Tiwari VK, Rawat N, Chhuneja P, Neelam K, Aggarwal R, Randhawa GS, Dhaliwal HS, Keller
518 B, Singh K (2009) Mapping of Quantitative trait loci for grain iron and zinc concentration in
519 diploid A genome wheat. *J Heredity* 100:771-776
520
521 Tolay I, Erenoglu B, Romheld V, Braun HJ, Cakmak I (2001) Phytosiderophore release In
522 *Aegilops tauschii* and *Triticum* species under zinc and iron deficiency. *J Exp Bot* 52(358):1093-
523 1099
524
525 Treeby M, Marschner H, Romheld V (1989) Mobilization of iron and other micronutrient cations
526 from calcareous soil by plant-borne, microbial, and synthetic metal chelators. *Plant Soil* 114:217-
527 226
528
529 vonWiren N, Khodr H, Hider RC (2000) Hydroxylated phytosiderophore species possess an
530 enhanced chelate stability and affinity for Iron(III). *Plant Physiol* 124:1149-1157
531
532 vonWiren N, Romheld V, Shioiri T, Marschner H (1995) Competition between microorganisms
533 and roots of barley and sorghum for iron accumulated in the root apoplasm. *New Phytol* 130:511-
534 521
535
536 Shivakumar D, Williams J, Wu Y, Damm W, Shelley J, Sherman W (2010) Prediction of
537 absolute solvation free energies using molecular dynamics free energy perturbation and the
538 OPLS force field. *J Chem Theory Comput* 6:1509–1519
539
540 Guo Z, Mohanty U, Noehre J, Sawyer TK, Sherman W, Krilov G (2010) Probing the α -
541 helical structural stability of stapled p53 peptides: molecular dynamics simulations and
541 analysis. *Chem Biol Drug Des* 75: 348-359
542
543 Bowers KJ, Chow E, Xu H, O. Dror R, Eastwood MP, Gregersen BA, Klepeis JL,
544 Kolossvary I, Moraes MA, Sacerdoti FD, Salmon JK, Shan Y, Shaw DE (2006) Scalable
545 Algorithms for Molecular Dynamics Simulations on Commodity Clusters. *Proceedings of the*
545 *ACM/IEEE Conference on Supercomputing (SC06)*, Tampa, Florida, November 11-17
546
547 Schrödinger Release 2017-2: Desmond Molecular Dynamics System, D. E. Shaw Research,
547 New York, NY, 2017
548
549 Maestro-Desmond Interoperability Tools, Schrödinger, New York, NY, 2017
550
551 Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS
550 all-atomforce field on conformational energetics and properties of organic liquids. *J Am*
551 *Chem Soc* 118: 11225

552 Kaminski G, Friesner RA, Tirado-Rives J, Jorgensen WL (2001) Evaluation and
553 reparameterization of the OPLS-AA force field for proteins via comparison with accurate
554 quantum chemical calculations on peptides. *J Phys Chem B* 105: 6474–6487

555 Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of
556 simple potential functions for simulating liquid water. *J Chem Phys* 79: 926–935

557 Hui Li, Robertson AD, Jensen JH (2005) Very fast empirical prediction and interpretation of
558 protein pKa values. *Proteins* 61: 704-721

559 Nosé, S (1984) A unified formulation of the constant temperature molecular-dynamics
560 methods. *J Chem Phys* 81: 511–519

561 Hoover WG (1985) Canonical dynamics: Equilibrium phase-space distributions. *Phys Rev A*
562 31: 1695–1697

563 Martyna GJ, Tobias DJ, Klein ML (1994) Constant pressure molecular dynamics algorithms.
564 *J Chem Phys.* 101: 4177-4189

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581 **Tables:**

582 **Table 1. Primers used for chromosomal location of *TaIds3*.**

583

584 **Table 2. Primers for relative expression analysis of *TaIds3*.**

585

586 Table 1.

Name	Primer Sequences (5'-3')
<i>TaIds3</i> 7AS F	TTGGTTACGACCTGCAAGAAA
<i>TaIds3</i> 7AS R	ACCATTACCCAAGGTGCTCG

587

588 Table 2.

Name	Primer Sequences (5'-3')	Application
<i>Ids3</i> cDNAF	CGTCGGCGACACCAAGA	For real-time RT-PCR for <i>TaIds3</i>
<i>Ids3</i> cDNA R	CACCTCGCGGAGCTTTG	
ADP rf F	GGGTTGTACGAGGGTCTTGA	Housekeeping gene for Real-time -RT PCR
ADP rf R	TCCAGCACGTTGTTCTG	

589

590 **Figures:**

591 **Fig.1 (A)** TaIDS gene structure; **(B)** representation of functional domains and their respective
592 superfamilies; **(C)** interactive ribbon view and surface representation of TaIDS3 protein:
593 Right: view from back of molecule via vertical rotation by 180°. Figure was prepared using
594 UCSF-Chimera.

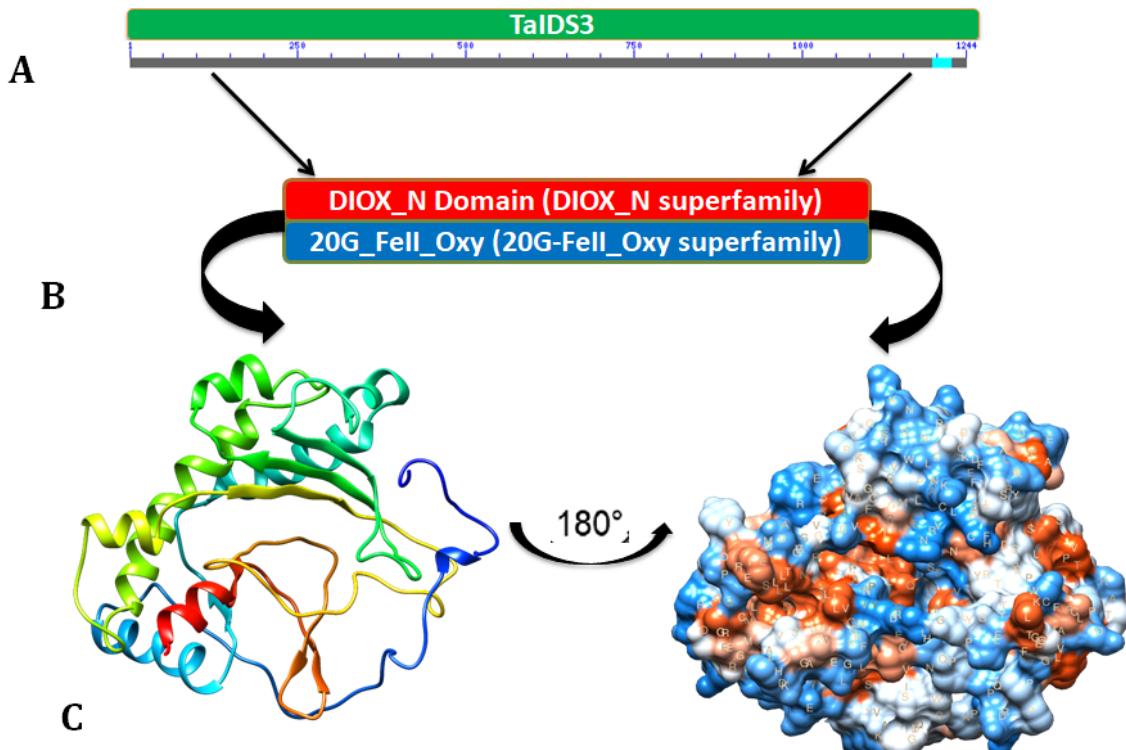
595

596 **Fig 2 Neighbour-joining phylogenetic tree of the *Ids3* and *Ids2* members;** The tree was
597 constructed with the amino acid sequences of *Ids3* and *Ids2* proteins from Barley (Hv), Rice
598 (Os) and Wheat (Ta) using the neighbour-joining method in MEGA 6.0 software. A bootstrap
599 with 1000 repetitions was included.

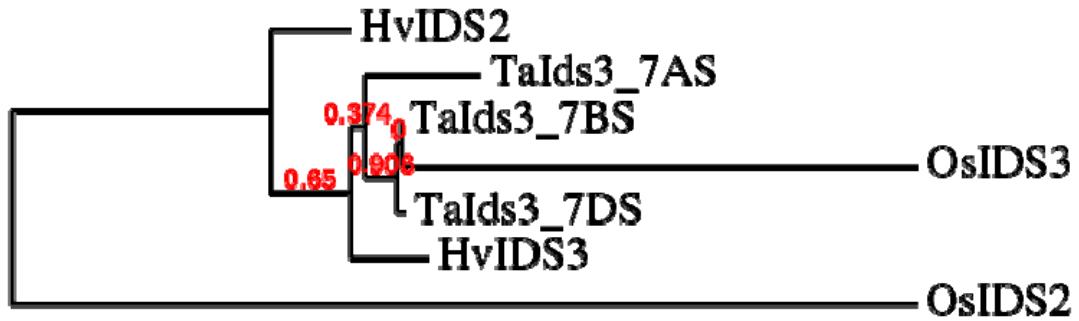
600

601 **Fig.3** Polyacrylamide gel electrophoresis analysis of the PCR products of *TaIds3* amplified
602 using nullisomic-tetrasomic and ditelosomic lines of *T. aestivum* cv. Chinese Spring.

603


604 **Fig.4 Physical map of Chinese Spring chromosome 7A;** The identification of deletion line
605 fraction arm length (FL) values breakpoints is indicated on the right in parentheses. The
606 telomeric bin of 7AS shows the putative location of the *TaIds3* gene.

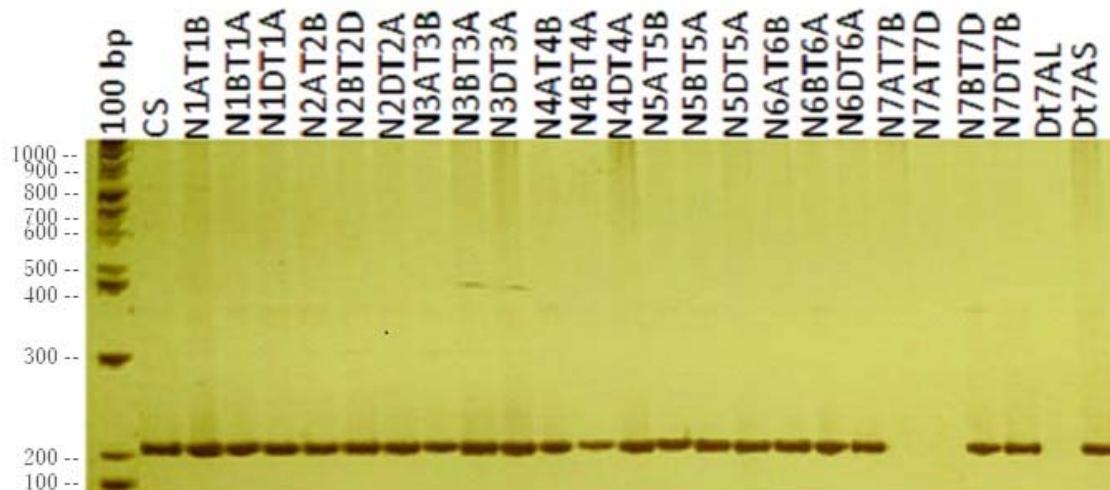
607


608 **Fig.5** Relative expression level (change in fold) of *TaIds3* gene in roots of *T. aestivum* cv.
609 **Chinese Spring**; Under Fe-sufficient and -deficient conditions at 5, 10, 15, 25 and 35 days
610 after transplantation of seedlings in hydroponic condition. The means of three independent
611 experiments are shown. Error bars indicate Standard Deviation.
612

613 **Fig. 6 Molecular dynamics simulation results of HvIDS3 protein model.** **A.** Simulation
614 box with TIP3P water model, **B.** RMSD plot of IDS3 backbone atoms, **C.** RMSF plot with
615 beta factor (experimental x-ray B-factor) of IDS3 backbone atoms and **D.** secondary structure
616 elements of IDS3 protein model during simulation.
617
618
619

620 **Figure 1.**

621
622 **Figure 2.**
623

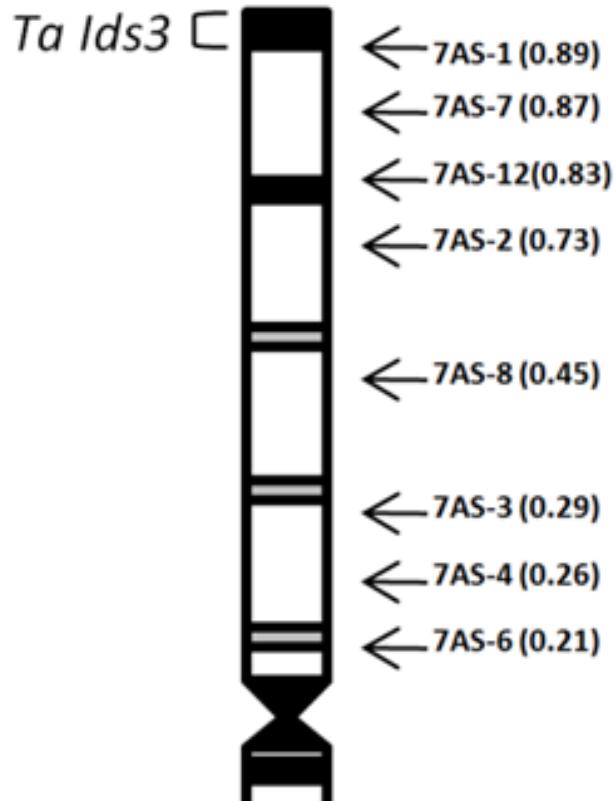


624

625

626 **Figure 3.**

627

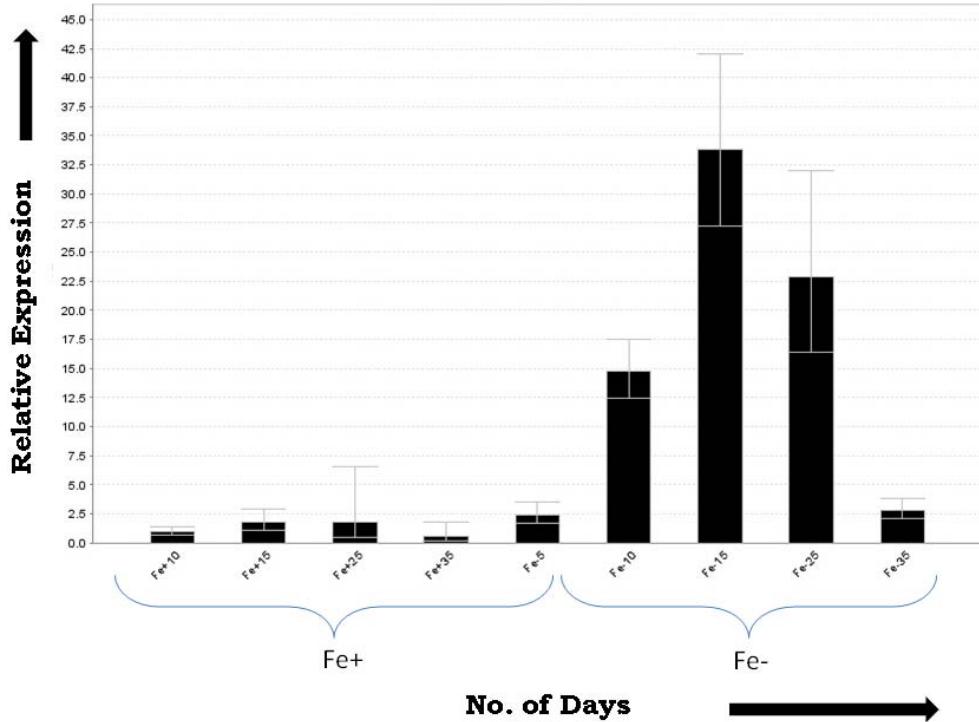


628

629

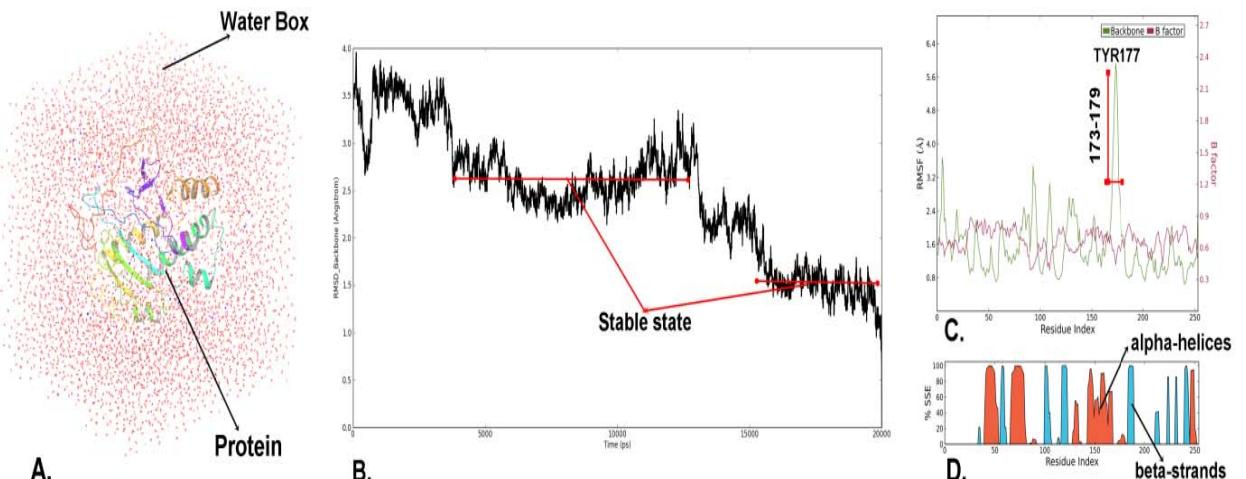
630 **Figure 4.**

631



632

633


634 **Figure 5.**

635

636

637 **Figure 6.**

638

639

640

641

642

643

644

645