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9 Abstract
10

11 Evolve-and-resequence (E+R) experiments leverage next-generation sequencing

12  technology to track the allele frequency dynamics of populations as they evolve. While
13  previous work has shown that adaptive alleles can be detected by comparing frequency
14  trajectories from many replicate populations, this power comes at the expense of high-
15 coverage (>100x) sequencing of many pooled samples, which can be cost-prohibitive.
16  Here, we show that accurate estimates of allele frequencies can be achieved with very
17  shallow sequencing depths (<5x) via inference of known founder haplotypes in small
18 genomic windows. This technique can be used to efficiently estimate frequencies for
19  any number of bi-allelic SNPs in populations of any model organism founded with

20 sequenced homozygous strains. Using both experimentally-pooled and simulated

21  samples of Drosophila melanogaster, we show that haplotype inference can improve
22 allele frequency accuracy by orders of magnitude for up to 50 generations of

23 recombination, and is robust to moderate levels of missing data, as well as different
24  selection regimes. Finally, we show that a simple linear model generated from these
25 simulations can predict the accuracy of haplotype-derived allele frequencies in other
26 model organisms and experimental designs. To make these results broadly accessible
27  for use in E+R experiments, we introduce HAF-pipe, an open-source software tool for
28 calculating haplotype-derived allele frequencies from raw sequencing data. Ultimately,
29 by reducing sequencing costs without sacrificing accuracy, our method facilitates E+R
30 designs with higher replication and resolution, and thereby, increased power to detect
31 adaptive alleles.

32 Introduction

33

34 A major barrier to understanding the genetic basis of rapid adaptation has been the lack
35 of robust experimental frameworks for assaying allele frequency dynamics. Recently,
36 evolve and re-sequence (E+R) experiments', which leverage next-generation

37 sequencing technology to track real-time genome-wide allele frequency changes during
38 evolution, have become a powerful step forward in studying adaptation?. In most E+R
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studies, replicate populations are evolved over tens to hundreds of generations in an
artificial or natural selection regime and allele frequency measurements from multiple
time-points are used to identify genomic targets of selection. To date, E+R approaches
have already been successfully applied in a variety of model systems, including RNA
molecules, viruses, Escherichia coli, Saccharomyces cerevisiae, C. elegans and
Drosophila melanogaster®>®. The ability to concurrently observe both phenotypic and
genomic changes across multiple systems offers the potential to answer long-standing
questions in molecular evolution. Careful analysis of the patterns and magnitude of
allele frequency change may reveal the extent of the genome that is under selection,
how interacting alleles contribute to adaptive traits, and the speed of adaptation in
different evolutionary regimes.

Crucially, however, the power to address such questions depends on the replication,
time-resolution, and accuracy of allele frequency trajectories, with tradeoffs between
these often incurred due to high sequencing costs. Recommended E+R schemes with
even minimal power to detect selection involve sampling tens to hundreds of individuals
from at least three replicate populations over a minimum of ten generations®'°. Since
individual-based, genome-wide DNA sequencing at sufficient coverages is generally
cost-prohibitive, most E+R studies rely instead on pooled sequencing''-" of all
individuals sampled from a given time-point and replicate. While this approach sacrifices
information about individual genotypes and linkage, pooled sequencing has been shown
to provide a reliable measure of population-level allele frequencies':'6. Still, forward-in-
time simulations suggest that each pooled sample must be sequenced at a minimum of
50x coverage to detect strong selection (s > 0.1) and even higher coverage to detect
weaker selection (s = 0.025)'°. Given that optimized experimental designs often involve
>100 samples, total costs for D. melanogaster E+R experiments that achieve
reasonable detection power can reach well above $25,000 at current sequencing costs.
Thus, achieving sufficient accuracy remains a major limiting factor in capitalizing on the
promise of E+R.

The short timescales for which E+R is most appropriate may, however, facilitate ways to
reduce sequencing costs without sacrificing experimental power. First, there is a
growing body of evidence that in sexual populations, the bulk of short-term adaptation,
especially in fairly small populations, relies on standing genetic variation rather than
new mutations*'3. Many E+R schemes involve experimental populations derived from a
fixed number of inbred founder lines®'7:18 | so the identity, starting frequency, and
haplotype structure of all segregating variants are often either already well-known or
can easily be obtained by sequencing each founder line. Tracking only the frequencies
of these validated variants can still provide enough power to detect selection, while no
longer requiring the high depths of sequencing needed to differentiate new mutations
from sequencing errors.

Second, at short timescales haplotype structure can be leveraged to provide more
accurate allele frequency estimates. In the time frame of most E+R experiments,
recombination does not fully break apart haplotype blocks and disrupt linkage, and thus
genomes in an evolving population are each expected to be a mosaic of founder
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haplotypes. In this scenario, recently developed haplotype inference tools'%2* can
integrate information from sequencing reads across multiple nearby sites to efficiently
infer the relative frequency of each founder haplotype within small genomic windows.
These haplotype frequencies can then be used as weights to calculate pooled allele
frequencies for local segregating variants. With this approach, the accuracy of an allele
frequency estimate depends less on the number of mapped reads at the individual site,
and instead relies on the discriminatory power of all mapped reads in the surrounding
genomic window when inferring haplotype frequencies. Haplotype inference methods
such as harp?® have been shown to accurately predict haplotype frequencies at
coverages as low as 25x, and simulations of pool-seq data from a small genomic region
at fixed read depths indicate that the use of haplotype frequency information increases
the power to detect selection compared to raw allele frequencies alone®®. However,
these tools have not yet been used to infer allele frequencies from real pooled samples
in an E+R framework, nor has a thorough analysis been performed to fully examine how
the accuracy of haplotype-derived allele frequency estimates scales with empirical
pooled coverage, across many parameters relevant for E+R.

Here, we focus on defining the accuracy of haplotype-derived allele frequencies (HAFs)
specifically in the context of E+R experiments, in which populations are generally
initiated from tens of founder lines and are evolved for tens of generations. Since
haplotype inference will be affected by 1) read depths throughout genomic windows, 2)
recombination events, and 3) missing founder genotypes, we begin by leveraging both
simulated and experimental data to assess how the accuracy of HAFs scales with each
of these parameters. To do so, we introduce a new metric, ‘effective coverage’, that
equates the error from HAF estimates to the expected error from binomial sampling
during pooled sequencing at a given read depth. We find that haplotype inference can
significantly increase the accuracy of allele frequency estimates over multiple
generations of recombination with selection and with varying completeness of founder
genotype knowledge. Finally, we extend these simulations in D.melanogaster to
accurately predict effective coverage in other model organisms, such as C.elegans. We
show as a proof of principle that a simple linear model can predict effective coverage
with an R? value of 0.875 and only requires four parameters: generations of
recombination between population founding and sampling, average recombination rate,
percent of unknown founder genotypes, and empirical read depth of the sequenced
sample. Additionally, to facilitate the use of haplotype inference in E+R experiments, we
introduce a software tool to calculate HAFs, HAF-pipe, (https://github.com/petrov-
lab/HAFpipe-line) and a shiny app for predicting HAF accuracy in any model organism
(https://ec-calculator.shinyapps.io/shinyapp/). We conclude our findings by offering
recommendations about the most powerful way to integrate haplotype inference into
E+R experimental schemes.
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Results

Overview of HAF calculation method

Using haplotype inference for E+R experiments requires a genotyped founder set of
inbred lines. Here, we begin by focusing on populations derived from a founder set of 99
sequenced D. melanogaster inbred lines (see Methods, ‘Establishing and sequencing
founder set’), and for simplicity limit our analysis to the 283,437 known segregating bi-
allelic sites on chromosome 2L. In the analyses below, we estimate raw and haplotype-
derived allele frequencies (referred to as raw AFs and HAFs, respectively) for real and
simulated pools of ~100 individuals sampled from evolved populations derived from
these founder haplotypes.

Each sample is first subjected to pooled sequencing and all reads are mapped to the D.
melanogaster reference genome. Raw AFs at each of the 283k sites are simply
calculated as the fraction of mapped reads containing the alternate allele, after
removing reads with neither the reference nor the alternate allele. To calculate HAFs,
haplotype frequency estimation is performed with harp?®, a haplotype inference tool that
uses sequence identity and base quality scores from each sequenced read in a bam
file, as well as a table of founder genotypes, to obtain maximum likelihood estimates of
haplotype frequencies in discrete chromosomal windows. We determined that missing
calls in the founder genotype table can bias haplotype frequency estimation, and
therefore, we first impute all missing genotypes before running harp (Supplemental
Text, Supp. Fig. 1). The frequency of each founder haplotype is inferred within sliding
genomic windows (Figure 1, Methods) with extensive overlap to mitigate erroneous
haplotype frequency assignments at the edges of inference windows. After inferring
founder haplotype frequencies, we calculate HAFs at each SNP site by taking the
weighted sum of local haplotype frequencies for founders containing the alternate allele
(Figure 1, Methods).

To determine the accuracy of HAFs and raw AFs, estimated allele frequencies were
compared to ‘true’ allele frequencies derived from the known composition of founder
haplotypes in the sample. Chromosome-wide accuracy of HAFs and raw AFs was
quantified using a new metric, effective coverage, which represents the theoretical
coverage at which the root-mean-square error (RMSE) from binomial read sampling
equals the RMSE from observed allele frequency estimates (Supp. Fig. 2). While
expected error from extreme allele frequencies is lower than that of intermediate allele
frequencies under a binomial model, by taking the ratio of the expected error and the
observed error for the same set of true allele frequencies, effective coverage values do
not depend on the underlying allele frequency spectrum (Methods). Note that while this
metric specifically focuses on variance from the sampling of reads from pooled
chromosomes, in practice, the ability of both HAFs and raw AFs to accurately reflect
true population-level allele frequencies will also depend on variance from the sampling
of individuals from the population. This independent source of error has however been
well-treated elsewhere?%2” and will not be impacted by haplotype inference.
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In the following sections, we explore how the accuracy of HAFs differs from raw AFs,
and how it scales with empirical coverage, number of generations of recombination, and
missing founder genotypes.
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Figure 1. Overview of HAF calculation method. In an evolve-and-resequence experiment, the evolving
population at any time point can be considered a mosaic of founder genomes. If founder genotypes are
known, the relative frequency of each founder haplotype can be inferred within small genomic windows by
leveraging pooled sequencing data and existing bioinformatic tools (i.e. harp). Allele frequencies can then
be calculated from the weighted sum of founder haplotypes, rather than directly from mapped reads at
each site.

Haplotype inference significantly increases the accuracy of allele frequency
estimations

We begin by analyzing the very simplest scenario, in which a sample consists of un-
recombined chromosomes, one from each founder line. To examine the accuracy of
HAFs and AFs in this scenario, we created two biological replicate samples of 99 D.
melanogaster individuals, each from a different homozygous inbred strain (Methods)
and performed high-coverage pooled sequencing of each sample. True allele
frequencies for each sample were then calculated, incorporating estimates of uneven
pooling during sequencing (Supp. Fig. 3, Supp. Text).

The accuracy of HAFs depends on the power to estimate haplotype frequencies, which
in turn is affected by the coverage of mapped reads throughout the genomic window
used for haplotype inference. In order to compare the accuracy of HAFs to raw AFs and
test how each scales with empirical coverage, reads from the two biological replicates
originally sequenced at ~140x were down-sampled to chromosome-wide empirical
coverages of 1x to 100x, and then used to calculate the effective coverage of estimated
allele frequencies for each replicate (Figure 2). Haplotype inference was initially
performed using 100kb sliding windows, and accuracy was assessed only at the 27k
sites with known genotype information for every founder. As expected, effective
coverage of both HAFs and raw AFs is similar within the two biological replicates, and
increases with higher chromosome-wide empirical coverage. Yet for all empirical
coverages tested, HAFs have strikingly higher effective coverages than raw AFs. This
substantial gain in accuracy from haplotype inference was most prominent at lower
empirical coverages, with a >40-fold increase in accuracy at 10x empirical coverage
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(from 10x to effectively >400x). At higher empirical coverages, haplotype inference
appears to produce diminishing returns and effective coverage begins to plateau.

We next tested the effect of using smaller (10kb) or larger (1000kb) windows for
haplotype inference at empirical coverages up to 10x. We find that as expected, larger
window sizes produce the most accurate HAFs, since more reads are available to infer
haplotype frequencies in each window. Specifically, 1000kb HAFs derived from
empirical coverages of 1x and 5x reached effective coverages of >400x and >900x,
respectively.

We also confirmed that similar results would be achieved by simulated samples with
known sources of error. To do so, we simulated pooled synthetic reads with a standard
lllumina sequencing error rate of 0.002?% and corresponding base quality scores?® from
the same proportions of the 99 founder lines included in both biological replicates, and
calculated effective coverage with the same empirical coverages and window sizes as
above. Effective coverages for these simulated samples closely mirror effective
coverages obtained from matched experimental samples (Figure 2A-B). Slight
differences at higher empirical coverages and larger window sizes are most likely
caused by compounded experimental error from DNA extractions, PCR reactions and
sequencing, as well as ambiguity in the ‘true’ genotypes estimated for individually
sequenced lines. We explore the effects of founder genotype ambiguity further below
(see “HAF accuracy is impacted by missing founder genotypes”).

Together, these results suggest that HAFs derived from multiple biological samples
sequenced at low empirical coverages can be orders of magnitude more accurate than
raw AFs, and that simulated samples capture the magnitude of this effect quite well. In
the following analyses we focus on simulated data from these 99 founder lines in order
to precisely and reliably test how recombination and missing founder genotypes affect
HAFs in realistic E+R scenarios.
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Figure 2. Accuracy of HAFs and raw AFs for biological and simulated samples. A) Effective coverage of
allele frequencies estimated with and without haplotype inference for the two biological replicates down-
sampled to empirical coverages from 1-100x. (R1=replicate 1, R2=replicate 2; HAFs calculated with
100kb inference windows) B) Effective coverages of HAFs for biological replicates (blue) and simulated
samples (red) using 10kb, 100kb, or 1000kb inference windows at empirical coverages of 1-10x. Orange
line indicates a zoomed-in section of the same biological replicate values as shown in A. In all panels, a
dashed line of 100x indicates the accuracy threshold required to detect strong selection®.

Incorporating recombination and selection over short time scales

In the first section we showed that HAFs are accurate for samples of unrecombined
chromosomes with very similar allele frequencies to the founder population. However, in
a realistic E+R scenario sampled chromosomes will be recombined mosaics of the
founders and selection may substantially shift allele frequencies over time. Thus, in the
remainder of our analyses, we incorporate selection and recombination using a forward-
in-time simulator, forqs?®. We simulated recombination for 50 generations in a
population of 1,000 randomly-mating individuals using a D. melanogaster recombination
map?°, and tracked the breakpoints and haplotype of origin for all recombined segments
at every generation. At specific generations, we randomly selected 200 recombined
chromosomes (i.e. 100 diploid individuals) from the simulated population and
reconstructed the full sequences of these ‘sampled’ chromosomes from corresponding
segments of the 99 individually sequenced founder haplotypes. Reads were simulated
from the pooled set of 200 reconstructed chromosomes.

We tested the accuracy of HAFs in three different selection regimes: 5 randomly chosen
sites with selection strength s=0.025 (i.e. weak selection), 10 randomly chosen sites
with selection strength s=0.025, and 5 randomly chosen sites with selection strength
s=0.1 (i.e. strong selection). In each case, the selected sites contributed additively to a
single quantitative trait (Methods). We ran each simulation in three rounds, picking a
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different set of selected sites in each round, and simulated 5 replicate populations for
each round. We calculated HAFs for each simulated sample, adjusting the window size
for haplotype inference each generation based on the expected length of unrecombined
haplotype blocks (Methods, Supp. Fig. 4). As recombination proceeds, these windows
become smaller, with fewer reads available to inform haplotype frequency estimation,
and thus we expect that accuracy will decline.

Our results show that while accuracy does decline over time, HAFs in general maintain
>100x effective coverage even after 50 generations in the presence of 5-10 selected
sites per chromosome (Figure 3A). We note that the three selection regimes tested all
perform comparably well, though effective coverage is slightly higher with more selected
sites (i.e. 10 vs. 5) and larger selection coefficients (i.e. s=0.1 vs. s=0.025). To assess
the utility of HAFs for longer-term experiments, we also conducted three separate
simulations with weak selection and 5 selected sites for 200 generations, and note that
effective coverage of HAFs remains above the 100x threshold for detecting strong
selection across 100-150 generations of recombination (Supp. Fig. 5). Overall, we find
that increasing empirical coverage has a diminishing returns effect on accuracy, while
decreasing the generations of recombination has an approximately linear effect on
accuracy.

A 10 sites, s=0.025 5 sites, s=0.1 5 sites, s=0.025 B Read depth=1x  Read depth=3x Read depth=5x = Read depth=7x Read depth=9x
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Figure 3. Effective coverage for recombination simulations with 99 inbred founder lines. In each
simulation, recombination was simulated for a population of 1,000 individuals initiated from a panel of 99
fully sequenced inbred D. melanogaster lines, with a randomly chosen set of selected sites from among
the 283,437 segregating sites on chromosome 2L. At multiple generations, 100 recombined individuals
were sampled in silico from each population for simulated sequencing, HAF calculation, and error
estimation. A) 5 or 10 sites were under weak or strong selection (panels), all sequencing was simulated
at 5x, and HAFs were calculated with no missing genotypes. B) 5 sites were under weak selection,
sequencing was simulated at multiple read depths (panels), and HAFs were calculated with various
fractions of missing founder genotypes (color).

HAF accuracy is impacted by missing founder genotypes

In addition to the effects of recombination and selection on HAF accuracy, ambiguity in
the genotypes of founders (either due to missing genotype information or residual

heterozygosity) can also present challenges. We tested how setting founder genotypes
to be ambiguous (i.e. from a called ‘A’ allele to an uncalled ‘N’) influences the accuracy
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of HAFs. For each simulation, 1-10% of all genotype calls in the founder table were
randomly selected to be assigned as ‘N’. Genotypes at these sites were then imputed
prior to estimating haplotype frequencies (Supplemental Text) and calculating HAFs.
For each percentage, three rounds of simulation were performed.

We find that missing genotype calls can significantly reduce effective coverage (Figure
3B). However, the vast majority of the parameter space tested — 73.3% of all
simulations — still yielded effective coverage values greater than 100x. Furthermore,
92.1% of simulations with less than 10% missing genotypes and fewer than 50
generations of recombination yielded effective coverage values greater than 100x.

Importantly, these high overall chromosome-wide effective coverages extend to the
selected sites themselves. Even with moderate levels of missing founder calls (up to 3
% of missing sites), HAFs at selected sites still track closely with true allele frequencies;
this is crucial for correctly detecting alleles under selection in E+R (Supp. Fig. 6).

Estimating effective coverage with different founders sets and other model
organisms

Finally, we explored how the utility of HAFs may extend to other founder sets with
known SNPs and known recombination rates. Specifically, we tested whether a simple
linear model based on the simulations above could accurately predict effective coverage
for other experimental designs and other model organisms. The regimes tested in the
simulations above can be collapsed into two independent parameters that affect HAF
accuracy: 1) the number of reads used for haplotype inference in each window and 2)
the percent of founder genotypes that are missing. The first parameter is a combination
of SNP density, read depth, and window size — while the window size itself is a function
of the recombination rate and the number of generations of recombination since
population initiation.

We calculated regression coefficients of a log-linear model (Supp. Fig. 7) using all
simulations described in the sections above, which focused on a single founder set
across many experimental regimes. To test whether this model could accurately predict
HAF accuracy for other founder sets, we simulated three rounds of evolutionary
trajectories (with 5 weakly selected sites in each round) for two entirely different founder
sets composed of 1) a widely-used reference panel of 205 D. melanogaster lines known
as the DGRP?', and 2) 100 genotyped C. elegans strains from a reference panel known
as CeNDR?®2. For each founder set we simulated pooled samples for various
generations and empirical coverages and calculated HAFs with various levels of
missing founder information. We then used our model (trained only on the original
simulations) to predict effective coverage for each of these new samples (Eigure 4A).

We find that across all samples tested, our simple 2-parameter model has an R? value
of 0.875. Predicted effective coverage values for simulations with the original 99-lines
founder set differ from true effective coverage values by 25% on average, with the
largest source of error due to random effects between simulation rounds. Overall
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accuracy for DGRP and CeNDR samples was slightly lower, with average deviations of
37% in both founder sets. We confirmed that the model does not systematically over- or
under- predict the effective coverage of DGRP samples or CeNDR samples nor any
other set of parameters included in our simulations (Figure 4B). This suggests this
model is broadly applicable for predicting HAF accuracy across many founder sets.
Thus, given a set sequencing budget and a founder set with known sequencing quality,
this model may be useful as a guideline for devising experimental schemes and
distribution of resources that would maximize detection power. To this end, we have
created a shiny app to help experimentalists predict effective coverage for their
particular set of parameters (freely available at https://ec-
calculator.shinyapps.io/shinyapp/), as well as a table of requirements for HAF
estimation (Figure 5).
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Figure 4. Observed effective coverage vs. effective coverage predicted by a simple 2-parameter log-
linear model. A) A model built on samples from the simulated experimental evolution of 99 inbred
Drosophila melanogaster lines described in the sections above was used to predict effective coverage in
the simulated experimental evolution of different founder panels (205 DGRP lines) and different founder
species (100 CeNDR lines). B) Effective coverage was well-predicted across a range of simulation
parameters, including read depth, number of generations, % missing founder genotypes, and selection
regimes.

Found o o .
G o mm— s Individually sequenced inbred founders \/

Assaying only standing genetic variation v

Previously identified polymorphisms

Known recombination rate map
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Short-term E + R experiment v
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Figure 5. Schematic of requirements for using HAFs to estimate allele frequencies in E+R experiments.
Recommendations of timescale are based on simulations with D. melanogaster.

Discussion

E+R experiments have become a powerful tool to assay the underpinnings of rapid
adaptation by tracking allele frequency trajectories within populations over time.
Previous studies have shown that the greatest power to detect adaptive variants comes
from an optimized experimental design that tracks allele frequencies in multiple replicate
populations, samples each replicate population at multiple timepoints, and maximizes
the coverage of each pooled sample. Incorporating all of these factors into an E+R
framework, however, can present significant financial challenges. Here, we offer a way
to mitigate these high sequencing costs without sacrificing statistical power.

Our framework uses haplotype inference to increase the accuracy of pooled allele
frequency estimates at low coverages. Since the accuracy of haplotype-derived allele
frequencies relies on the total informative value of reads across a genomic window,
rather than coverage at a single site, this approach allows us to sequence less but still
maintain high accuracy in allele frequency estimations. In this vein, the window-based
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techniques used by HAFs have an advantage over raw AFs in that the accuracy of an
individual SNP with low read depth will benefit from reads at surrounding sites in the
window. Overall, our method is capable of achieving the same accuracy as would be
expected from sequencing each sample at 100x (as recommended in order to reliably
detect strong selection), while only requiring empirical coverage of 1x or less, bringing
total sequencing costs from >$25,000 down to less than $200.

There are, however, limitations to this approach. First, as presented, this framework
requires the founder population to be derived entirely from fully-inbred lines. As a result,
the population dynamics of loci under selection may differ slightly from trajectories in
natural populations due to the genetic diversity lost in the inbreeding process (i.e.
natural haplotypes, homozygous lethal mutations, and rare variants), as well as higher
levels of linkage disequilibrium compared to non-inbred lines. Reconstituting an outbred
population using inbred lines, however, can be an effective way to mitigate the effects of
the inbreeding process, and has been experimentally shown to have negligible bias and
effect on adaptive dynamics33. Alternatively, the use of inbred lines may not be
necessary with more sophisticated founder sequencing approaches that incorporate
phasing. Newer long-read technologies may make this an achievable reality for a
number of systems in the near future.

Second, this approach requires a reliable and comprehensive account of the variants
present in each founder line. Since previous studies recommend upwards of 100
founders, sequencing each individual founder line to a sufficiently high depth (in our
work, we have found sequencing coverages >10x to be sufficient) may present a high
upfront cost. However, this cost represents a one-time investment, which can be applied
toward all future experiments using the same set of founders. Furthermore, a number of
consortiums already maintain publically available stocks of large numbers of Drosophila
lines and other model organisms with full, high-quality genome sequences 3':32:34 We
anticipate that these resources will continue to rapidly expand, facilitating experiments
with even greater haplotype diversity at minimal costs.

In addition, this approach is limited to studying short-term adaptation on the scale of
tens of generations. In fact, an assumption of our method is that within an inference
window, recombination breakpoints minimally affect the ability to accurately call
haplotype frequencies. For a given window size however, this assumption becomes less
valid as recombination proceeds and haplotypes blocks decay. Conversely however,
decreasing the window size reduces the information used for haplotype inference, which
at the extreme renders HAFs no more accurate than raw AFs. In our pipeline, we
attempt to balance these effects by scaling window sizes at any generation by the
expected average unrecombined fragment length. While our results here demonstrate
that even with this scaling procedure, recombination will limit the ability to detect
adaptation on timescales of more than tens of generations, the short-term adaptive
dynamics that best fit E+R studies fall well within this range. Furthermore, it is at these
short timescales, when large numbers of replicate populations are critical to reliably
detect selection, that the cost savings associated with haplotype inference methods will
be most beneficial.
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Finally, this approach relies on tracking the trajectories of known bi-allelic
polymorphisms derived from the founder population, and thus, de novo mutations will
not be assayed in this framework. Nonetheless our approach should sufficiently capture
the salient features of short-term adaptive dynamics, as there is a growing body of
experimental evidence suggesting that selection acts primarily on standing genetic
variation in sexual organisms, and that de novo beneficial mutations do not play a large
role in rapid adaptation 435-37. Additionally, by tracking only known well-validated
polymorphisms, the approach is largely robust to error from small non-SNP
chromosomal variants such as indels.

Despite the above limitations, collectively our results show that integrating haplotype
inference into future E+R experiments is a cost-effective way to achieve accuracy in
allele frequency estimates, which will directly improve the ability to detect genome-wide
signatures of adaptation. Consequently, we offer specific recommendations for future
E+R experimental schemes that take advantage of this approach. First, each founder
line should be initially sequenced to a sufficient depth that minimizes any missing
genotypes. If missing genotype calls do exist in founder lines, imputing sites prior to
haplotype inference can mitigate some of this error.

Together, these guidelines and the analysis above form a framework for achieving
effective coverages of close to 100x with empirical coverages as low as 1x even after
50 generations of recombination in Drosophila melanogaster, reducing sequencing
costs by 100-fold. Ultimately, these cost savings, which can be extended to experiments
with a variety of model organisms, will facilitate E+R frameworks that can incorporate
large numbers of replicate populations. These improvements may be crucial to the
statistical power to distinguish between beneficial and neutral alleles 3%3° and ultimately
the future of E+R as a practical and reliable experimental tool.
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Methods

Establishment and sequencing of founder set

207 iso-female Drosophila melanogaster lines were established from wild individuals
sampled from Maine and Pennsylvania*®, and inbred for ~20 generations of full-sibling
mating to produce viable, fertile inbred lines. 30-50 individuals from each line were
pooled for DNA extraction. Whole flies were homogenized with lysis buffer and 1mm
beads, and DNA was precipitated from the homogenate before resuspension in TE
buffer. Libraries were prepared with a modified Nextera protocol*'. All samples were
indexed with Illlumina’s TruSeq Dual Index Sequencing Primer Kit (PE-121-1003) and
pooled equimolarly into 3 sets of ~70 samples each. Each set of pooled DNA libraries
were purified using Ampure XP and size-selected to 450-500 bp with a SizeSelect E-
Gel. After an additional 5 rounds of PCR, DNA libraries were purified using Ampure XP
beads, quantified, and diluted to the appropriate concentration before sequencing on
the HiSeq 3000. All sequences were deposited in SRA (BioProject PRINA383555).
Adapter sequences were trimmed (Trimmomatic v0.33) and overlapping reads were
merged (PEAR v0.9.6), then reads were mapped (bwa v 0.7.9) to the D.melanogaster
reference genome (v5.39) using default parameters. PCR duplicates were removed
using PicardTools (v1.12). Base quality score recalibration, indel realignment, and novel
SNP discovery were carried out using GATK’s HaplotypeCaller. Only bi-allelic SNPs
segregating in the 99 lines pooled for resequencing in this study were used to generate
a founder SNP table, simulate reads, and estimate haplotype frequencies.

Generating Experimentally Pooled Samples

One male each was selected from each of 99 inbred strains, and all 99 individuals were
pooled for re-sequencing. A second biological replicate was constructed from 99
additional individuals. DNA isolation was performed as described above. Three
separate libraries were prepared from each of the two biological replicates using
different library prep methods: [1] according to protocols described in Nextera DNA
Library Prep Reference Guide (15027987 v01); [2] a modified Nextera protocol (as
described above) and [3] a Covaris shearing protocol. Final results from the 3 library
prep methods were similar. All libraries were size-selected and PCR amplified using two
replicate PCR reactions and a high volume of template DNA to prevent PCR-
jackpotting. DNA was purified, quantified, and diluted before sequencing on the HiSeq
3000. Raw, 150bp pair-end reads were trimmed for adapter sequences with Skewer
(version 0.1.127). Read merging, mapping, and PCR duplicate removal was performed
as above.
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Generating Simulated Pooled Samples

150-bp paired end pre-aligned reads were simulated from a table of founder genotypes
and the D. melanogaster reference genome with simreads, a software tool included with
the harp package?. All reads were simulated with an error rate of 0.2%?28, with
simulated sequencing errors receiving a lower simulated base quality score. No read
trimming or PCR duplicate removal was done. All SNP tables with missing genotypes
were imputed before read simulation.

Haplotype Frequency Estimation

All haplotype frequencies were estimated with harp - Haplotype Analysis of Reads in
Pools 22 in a two-step process in which 1) a likelihood model is built by probabilistically
assigning all reads to haplotypes, and 2) maximum likelihood estimates of haplotype
frequencies are calculated in discrete chromosomal windows, given local read
assignments. An assumption of this method is that there are no recombination
breakpoints within a window used for haplotype frequency estimation. However, with a
fixed window size, this assumption breaks down as the lengths of unrecombined
fragments decrease. The distribution of fragment lengths at a given generation can be
modeled with an exponential distribution with rate, 1, equal to,

_ LRG +1

A L

where R is recombination rate, L is chromosome length, and G is the number of
generations of recombination between the initiation of the founding population and
sampling. The gth quantile of this distribution can be calculated in R with the function

gexp(q.4).

We allowed window sizes to shrink over successive generations of recombination, such
that only 18% of sampled unrecombined fragment lengths were expected to be smaller
than the window length. Various quantiles from 5-25 were tested before choosing this
parameter (see Supp Fig. 4). Note that haplotype frequencies for fully unrecombined
chromosomes (Fig. 2) were evaluated in 1000kb, 100kb and 10kb windows. To further
reduce error, we used overlapping inference windows, with a step size equal to 10% of
the window size. Thus, the vast majority of sites fall within 10 separate overlapping
inference windows. Finally, in order to balance local relevance with maximal
information, we always created likelihood models in windows 10x the size of frequency
estimation windows, with a step size equal to half the likelihood window size.

For reference, inferring haplotype frequencies for 99 founder lines at 283k segregating
sites on chromosome 2L in 1000kb windows took 8 minutes and required 450Mb RAM
for samples sequenced at 5x empirical coverage and took 15 minutes and required
860Mb RAM for samples sequenced at 10x. Using 100kb windows took 9.5 minutes /
70Mb and 17.5 minutes / 132Mb for 5x and 10x samples, respectively.
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HAF Estimations

The haplotype-derived allele frequency (HAF) for a given biallelic site was calculated by
summing founder haplotypes containing the alternate allele, each weighted by their
average estimated haplotype frequency in all haplotype inference windows overlapping
the site. Founder haplotypes with missing genotypes were given a fractional alternate
allele count equal to the mean of genotyped founders with alternate alleles.

Accuracy Estimations Using Effective Coverage

Effective coverage was used as a metric to assess the accuracy of all HAFs and raw
AFs. For a given set of allele frequency estimates pestimated at n sites, for which true
frequency pruwe is known, we first calculate the root mean squared error (RMSEestimated),
where

i - 2
RMSEeSl‘imatedZ\[Z(p““mafer;i DPerue)?)

Next, we solve for the coverage Ceftective at which RMSEineoreticar from binomial sampling
would be equal to RMSEestimated, Where

RMSEtheoreticas = \[Z(p“”ue (1 = Ptrue))

Ceffective* M
Solving for Ceffective yields,
Y(Ptrue (1 — Derue))
Y (Pestimated — Ptrue)?)

Ceffective =

which is the theoretical coverage at which binomial sampling of reads would be
expected to contain the observed amount of error from estimated frequencies.

Recombination

Forward-in-time simulations of recombination were performed with the software tool
forqs?® using a D. melanogaster recombination map?°. forgs simulates recombination of
haplotype chunks for chromosomes of user-specified lengths for a randomly mating
population, using a user-supplied recombination map, and non-overlapping generations.
As a conservative metric, in our simulations we referred to the female D. meanogaster
recombination rate. Since male D melanogaster do not undergo recombination, our
estimates of the number of recombination events per generation are higher than that
expected in real populations and our estimates of effective coverage serve as a lower
bound on effective coverage expected at the same number of generations in real
populations. Three rounds of simulation were performed for each selection regime. In
each round, an initial population of 1,000 individuals was created, with each individual
assigned to a randomly selected homozygous founder strain. 5-10 sites were randomly
chosen to be under selection and the genotypes of each individual (determined by the
genotype of the corresponding founder strain) at these sites was supplied to forgs via
an ms file. Homozygous reference, heterozygous, and homozygous alternate genotypes
were assigned fitness advantages equal to 0, s, or 2s respectively, where s was a
specified selection coefficient (either s=.025 or s=.1 in our simulations). The chosen loci
each contributed independently to a single additive trait, with environmental variance
equal to 0.01. At each generation, a fitness value was calculated by forgs for each
individual based on their genotypes at the selected sites, with fithess decaying linearly

18


https://doi.org/10.1101/244004
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/244004; this version posted September 20, 2019. The copyright holder for this preprint (which was

—_—
QOO NOOOPRL,WN-=-

[ QT I G G G |
NOoO OO~ WN -

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

under aCC-BY-NC-ND 4.0 International license.

with distance from the optimum trait value of 1. Individuals were selected to contribute
to the next generation probabilistically based on their fithess value. Recombination
breakpoints were simulated for evolutionary trajectories up to 50 generations in 5
replicate populations with a constant population size of 1,000 individuals. Within each
round, each replicate contained the same selected sites and selection coefficient. At
specific generations, 100 sets of recombination breakpoints (each representing a pair of
evolved ‘chromosomes’) were randomly selected from the forgs output and were used
to reconstruct ‘sampled chromosome genotypes’ from corresponding segments of the
99 founder genotype calls. This set of sampled genotypes was used to directly calculate
‘true’ allele frequencies for the sampled pool and was also used as input for read
simulations with simreads. The resulting reads were then used for HAF calculation.

Generating a predictive model of effective coverage

While we observed non-linear relationships between effective coverage and both
parameters, the log-log relationships were fairly linear. This suggested that a
reasonable simple model would have the following format:

loglo( effectiveCoverage ) ~ a * logld( nofReadsPerWin ) + b *
logloe(pctMissingGenotypes)

We used the R function ‘nls’ to solve for the coefficients a and b in this formula, using all
Drosophila melanogaster simulations described in the sections above.

HAFs with an alternate founder set

For the DGRP founder set, SNP information was obtained for 205 strains initially
isolated from Raleigh, NC that were independently sequenced as part of freeze 2 of the
Drosophila Genetic Reference Panel (DGRP)3'. Genotype data was downloaded
directly from http://dgrp2.gnets.ncsu.edu. For the C. elegans founder set, a soft-filtered
VCF file (v. 20170531) of genotype calls for 249 sequenced strains 32 was downloaded
from the CeNDR website (https://www.elegansvariation.org/data/release/20170531),
and was converted to a SNP table including genotypes for 100 randomly selected lines
at all segregating biallelic SNP sites.

After constructing the appropriate SNP table, read simulation, haplotype inference and
effective coverage calculations were carried out as described in the sections above.

Code Accessibility

Scripts to calculate HAFs are available at https://github.com/petrov-lab/HAFpipe-line .
At minimum, the pipeline requires a) called biallelic variants from sequenced founder
lines, and b) mapped reads from one or more pool-seq samples, and uses harp for
haplotype inference.
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Statement on Data and Reagent Availability

Sequence data from seasonal strains is available at SRA (BioProject PRINA383555)
and genotype data is available at https:/github.com/petrov-lab/HAFpipe-
line/blob/master/99.clean.SNP.HARP.segregating.gz . Strains are available upon
request. Code used to generate the simulated data is provided at
https://github.com/petrov-lab/HAFpipe-line/tree/master/simulations .
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Supplemental Text

Incorporating uneven pooling of individuals produces more realistic estimates of
true allele frequencies

Our ability to measure the accuracy of HAFs and raw AFs depends on our ability to
determine the true contribution of each pooled individual. Since uneven pooling is a
source of error known to affect pool-seq samples’®, we estimated the relative
contribution of DNA from each individual by calculating the average genome-wide allele
frequency at sites private to each founder. While each founder could be detected in the
pool, we found substantial variation in their relative representation (Supp. Fig. 3). ‘True’
frequencies for the experimental pooled sample were thus calculated by weighting
founders known to contain the alternate allele by their estimated representation in the
pool. We assessed whether these ‘true’ allele frequencies were better recapitulated by
experimental reads than ‘true’ allele frequencies calculated without incorporating
uneven pooling at all fully genotyped sites (both private and common). We found that
the effective coverage using unevenly pooled weighted values (126x) was higher than
the effective coverage assuming evenly pooled individuals (120x). We used these same
estimates of uneven pooling to simulate reads in uneven proportions from different
haplotypes for the synthetic sample as well.

Imputing missing founder genotypes increases the accuracy of HAFs

While missing information can be accommodated by many haplotype inference tools
(i.e. an N in place of a missing call), it is unclear how missing calls affect inference
accuracy, and what the best practices should be when missing calls are present in the
reference founder set.

We first examined whether haplotype frequencies estimated for founders with many
missing calls or few missing calls systematically deviated from an expected haplotype
frequency of 0.101 (1/99). We found that across individual inference windows, there
was a clear negative correlation between the number of missing calls per founder, and
the haplotype frequencies estimated for that founder (Supp. Fig. 1). To determine
whether the observed skewed haplotype frequencies were directly associated with the
presence of missing sites, we tested whether imputing genotype calls for missing sites
would reduce bias in haplotype frequency assignment. While a number of sophisticated
methods for imputing rare SNPs do exist >4 and may in some cases improve HAF
accuracy, here we used a simple approach. To perform imputation, at each site we first
calculated the allele frequency among called founder genotypes and used this value as
a probability for assigning genotypes to missing calls. We found that imputation
significantly reduced the skewed haplotype frequency distribution by 4-6-fold for all
empirical coverages and window sizes tested. We expect that imputation with more
advanced tools would achieve even better results.

We next examined how imputation of haplotype frequencies can impact the overall
accuracy of HAFs. We also confirmed that haplotype inference using imputed calls
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produced more accurate HAFs than using a subset of sites with no missing calls. Thus,
we include imputation as a key step in our analysis pipeline.

5 Supplemental Figures
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9 Supplemental Figure 1. Median haplotype frequency across all windows on chromosome 2L
10  for each founder (n=99), calculated with different window sizes and empirical coverages.
Haplotype frequencies calculated before imputation (red circles) and after imputation (blue
12  circles) are plotted as a function of the log of the total number of ambiguous genotypes (aka “N-
13 count’). Best fit lines for each dataset were calculated with standard linear regression.
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Supplemental Figure 2. An example of true and predicted allele frequencies at each
segregating site on chromosome 2L, where predicted frequencies are calculated either from A)
raw mapped reads at 5x empirical coverage, B) HAFs at 5x empirical coverage, C) simulated
binomial sampling of reads at 462x coverage. Color represents density of points. RMSE for
each set of predictions is indicated in the top left of each panel. Note that RMSE for panels B
and C are very similar; this equivalence forms the basis of assigning an ‘effective coverage’ of
462x to the estimated allele frequencies in panel B.
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Supplemental Figure 3. Contribution of DNA from each pooled individual in experimental
replicate 1, estimated by average genome-wide allele frequency across all singleton sites. The
dashed line represents theoretical expectation for evenly pooled individuals. Error bars
represent total expected binomial error, given total read depth at all singleton sites for a given
founder.
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Supplemental Figure 4. Effective coverage was calculated for samples simulated at 5x
empirical coverage after 5,15, and 50 generations of weak selection, with a founder genotype
table missing 1% of calls, using various window sizes for haplotype inference. Colors
correspond to the quantiles of the expected exponential distribution of unrecombined fragment
lengths that were used as the window size for haplotype inference. Each panel (1-3) represents
results from a different simulation round, using a different set of selected sites.
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Supplemental Figure 5. Effective coverage for 3 separate simulated long-term experiments
each with 5 randomly selected sites under selection (S=0.025), simulated empirical coverage of
5x, and no missing founder genotypes.
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Supplemental Figure 6. True population-wide allele frequencies (grey lines), true sampled
chromosome allele frequencies (closed black circles) and HAFs (open circles) calculated at
sites under selection (S=0.025) from samples simulated at 5x empirical coverage after
5,10,15,25, and 50 generations of recombination, using founder information with various
fractions of missing of founder genotype calls (color).
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Supplemental Figure 7. Relationship between effective coverage, number of reads per
window, and percent of missing genotypes. he plots in the top row (A-B) indicate that the
relationships are not linear. The plots in the bottom row (C-D) (where the x- and y-axes have
been adjusted to log scale) suggest that the relationships are approximately log-linear.
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