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Abstract 9 
 10 
Evolve-and-resequence (E+R) experiments leverage next-generation sequencing 11 
technology to track the allele frequency dynamics of populations as they evolve. While 12 
previous work has shown that adaptive alleles can be detected by comparing frequency 13 
trajectories from many replicate populations, this power comes at the expense of high-14 
coverage (>100x) sequencing of many pooled samples, which can be cost-prohibitive. 15 
Here, we show that accurate estimates of allele frequencies can be achieved with very 16 
shallow sequencing depths (<5x) via inference of known founder haplotypes in small 17 
genomic windows. This technique can be used to efficiently estimate frequencies for 18 
any number of bi-allelic SNPs in populations of any model organism founded with 19 
sequenced homozygous strains. Using both experimentally-pooled and simulated 20 
samples of Drosophila melanogaster, we show that haplotype inference can improve 21 
allele frequency accuracy by orders of magnitude for up to 50 generations of 22 
recombination, and is robust to moderate levels of missing data, as well as different 23 
selection regimes. Finally, we show that a simple linear model generated from these 24 
simulations can predict the accuracy of haplotype-derived allele frequencies in other 25 
model organisms and experimental designs. To make these results broadly accessible 26 
for use in E+R experiments, we introduce HAF-pipe, an open-source software tool for 27 
calculating haplotype-derived allele frequencies from raw sequencing data. Ultimately, 28 
by reducing sequencing costs without sacrificing accuracy, our method facilitates E+R 29 
designs with higher replication and resolution, and thereby, increased power to detect 30 
adaptive alleles. 31 

Introduction 32 
 33 
A major barrier to understanding the genetic basis of rapid adaptation has been the lack 34 
of robust experimental frameworks for assaying allele frequency dynamics. Recently, 35 
evolve and re-sequence (E+R) experiments1, which leverage next-generation 36 
sequencing technology to track real-time genome-wide allele frequency changes during 37 
evolution, have become a powerful step forward in studying adaptation2. In most E+R 38 
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studies, replicate populations are evolved over tens to hundreds of generations in an 1 
artificial or natural selection regime and allele frequency measurements from multiple 2 
time-points are used to identify genomic targets of selection. To date, E+R approaches 3 
have already been successfully applied in a variety of model systems, including RNA 4 
molecules, viruses, Escherichia coli, Saccharomyces cerevisiae, C. elegans and 5 
Drosophila melanogaster3–8. The ability to concurrently observe both phenotypic and 6 
genomic changes across multiple systems offers the potential to answer long-standing 7 
questions in molecular evolution. Careful analysis of the patterns and magnitude of 8 
allele frequency change may reveal the extent of the genome that is under selection, 9 
how interacting alleles contribute to adaptive traits, and the speed of adaptation in 10 
different evolutionary regimes.  11 
 12 
Crucially, however, the power to address such questions depends on the replication, 13 
time-resolution, and accuracy of allele frequency trajectories, with tradeoffs between 14 
these often incurred due to high sequencing costs. Recommended E+R schemes with 15 
even minimal power to detect selection involve sampling tens to hundreds of individuals 16 
from at least three replicate populations over a minimum of ten generations9,10. Since 17 
individual-based, genome-wide DNA sequencing at sufficient coverages is generally 18 
cost-prohibitive, most E+R studies rely instead on pooled sequencing11–14 of all 19 
individuals sampled from a given time-point and replicate. While this approach sacrifices 20 
information about individual genotypes and linkage, pooled sequencing has been shown 21 
to provide a reliable measure of population-level allele frequencies15,16. Still, forward-in-22 
time simulations suggest that each pooled sample must be sequenced at a minimum of 23 
50x coverage to detect strong selection (s > 0.1) and even higher coverage to detect 24 
weaker selection (s = 0.025)10. Given that optimized experimental designs often involve 25 
>100 samples, total costs for D. melanogaster E+R experiments that achieve 26 
reasonable detection power can reach well above $25,000 at current sequencing costs. 27 
Thus, achieving sufficient accuracy remains a major limiting factor in capitalizing on the 28 
promise of E+R.  29 
 30 
The short timescales for which E+R is most appropriate may, however, facilitate ways to 31 
reduce sequencing costs without sacrificing experimental power. First, there is a 32 
growing body of evidence that in sexual populations, the bulk of short-term adaptation, 33 
especially in fairly small populations, relies on standing genetic variation rather than 34 
new mutations4,13. Many E+R schemes involve experimental populations derived from a 35 
fixed number of inbred founder lines6,17,18 , so the identity, starting frequency, and 36 
haplotype structure of all segregating variants are often either already well-known or 37 
can easily be obtained by sequencing each founder line. Tracking only the frequencies 38 
of these validated variants can still provide enough power to detect selection, while no 39 
longer requiring the high depths of sequencing needed to differentiate new mutations 40 
from sequencing errors.  41 
 42 
Second, at short timescales haplotype structure can be leveraged to provide more 43 
accurate allele frequency estimates. In the time frame of most E+R experiments, 44 
recombination does not fully break apart haplotype blocks and disrupt linkage, and thus 45 
genomes in an evolving population are each expected to be a mosaic of founder 46 
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haplotypes. In this scenario, recently developed haplotype inference tools19–24  can 1 
integrate information from sequencing reads across multiple nearby sites to efficiently 2 
infer the relative frequency of each founder haplotype within small genomic windows. 3 
These haplotype frequencies can then be used as weights to calculate pooled allele 4 
frequencies for local segregating variants. With this approach, the accuracy of an allele 5 
frequency estimate depends less on the number of mapped reads at the individual site, 6 
and instead relies on the discriminatory power of all mapped reads in the surrounding 7 
genomic window when inferring haplotype frequencies. Haplotype inference methods 8 
such as harp23  have been shown to accurately predict haplotype frequencies at 9 
coverages as low as 25x, and simulations of pool-seq data from a small genomic region 10 
at fixed read depths indicate that the use of haplotype frequency information increases 11 
the power to detect selection compared to raw allele frequencies alone25. However, 12 
these tools have not yet been used to infer allele frequencies from real pooled samples 13 
in an E+R framework, nor has a thorough analysis been performed to fully examine how 14 
the accuracy of haplotype-derived allele frequency estimates scales with empirical 15 
pooled coverage, across many parameters relevant for E+R.  16 
 17 
Here, we focus on defining the accuracy of haplotype-derived allele frequencies (HAFs) 18 
specifically in the context of E+R experiments, in which populations are generally 19 
initiated from tens of founder lines and are evolved for tens of generations. Since 20 
haplotype inference will be affected by 1) read depths throughout genomic windows, 2) 21 
recombination events, and 3) missing founder genotypes, we begin by leveraging both 22 
simulated and experimental data to assess how the accuracy of HAFs scales with each 23 
of these parameters. To do so, we introduce a new metric, ‘effective coverage’, that 24 
equates the error from HAF estimates to the expected error from binomial sampling 25 
during pooled sequencing at a given read depth. We find that haplotype inference can 26 
significantly increase the accuracy of allele frequency estimates over multiple 27 
generations of recombination with selection and with varying completeness of founder 28 
genotype knowledge. Finally, we extend these simulations in D.melanogaster to 29 
accurately predict effective coverage in other model organisms, such as C.elegans. We 30 
show as a proof of principle that a simple linear model can predict effective coverage 31 
with an R2 value of 0.875 and only requires four parameters: generations of 32 
recombination between population founding and sampling, average recombination rate, 33 
percent of unknown founder genotypes, and empirical read depth of the sequenced 34 
sample. Additionally, to facilitate the use of haplotype inference in E+R experiments, we 35 
introduce a software tool to calculate HAFs, HAF-pipe, (https://github.com/petrov-36 
lab/HAFpipe-line) and a shiny app for predicting HAF accuracy in any model organism 37 
(https://ec-calculator.shinyapps.io/shinyapp/). We conclude our findings by offering 38 
recommendations about the most powerful way to integrate haplotype inference into 39 
E+R experimental schemes. 40 
  41 
   42 
 43 
 44 
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Results 1 
 2 
Overview of HAF calculation method 3 
 4 
Using haplotype inference for E+R experiments requires a genotyped founder set of 5 
inbred lines. Here, we begin by focusing on populations derived from a founder set of 99 6 
sequenced D. melanogaster inbred lines (see Methods, ‘Establishing and sequencing 7 
founder set’), and for simplicity limit our analysis to the 283,437 known segregating bi-8 
allelic sites on chromosome 2L. In the analyses below, we estimate raw and haplotype-9 
derived allele frequencies (referred to as raw AFs and HAFs, respectively) for real and 10 
simulated pools of ~100 individuals sampled from evolved populations derived from 11 
these founder haplotypes. 12 
 13 
Each sample is first subjected to pooled sequencing and all reads are mapped to the D. 14 
melanogaster reference genome. Raw AFs at each of the 283k sites are simply 15 
calculated as the fraction of mapped reads containing the alternate allele, after 16 
removing reads with neither the reference nor the alternate allele. To calculate HAFs, 17 
haplotype frequency estimation is performed with harp23, a haplotype inference tool that 18 
uses sequence identity and base quality scores from each sequenced read in a bam 19 
file, as well as a table of founder genotypes, to obtain maximum likelihood estimates of 20 
haplotype frequencies in discrete chromosomal windows. We determined that missing 21 
calls in the founder genotype table can bias haplotype frequency estimation, and 22 
therefore, we first impute all missing genotypes before running harp (Supplemental 23 
Text, Supp. Fig. 1). The frequency of each founder haplotype is inferred within sliding 24 
genomic windows (Figure 1, Methods) with extensive overlap to mitigate erroneous 25 
haplotype frequency assignments at the edges of inference windows. After inferring 26 
founder haplotype frequencies, we calculate HAFs at each SNP site by taking the 27 
weighted sum of local haplotype frequencies for founders containing the alternate allele 28 
(Figure 1, Methods). 29 
 30 
To determine the accuracy of HAFs and raw AFs, estimated allele frequencies were 31 
compared to ‘true’ allele frequencies derived from the known composition of founder 32 
haplotypes in the sample. Chromosome-wide accuracy of HAFs and raw AFs was 33 
quantified using a new metric, effective coverage, which represents the theoretical 34 
coverage at which the root-mean-square error (RMSE) from binomial read sampling 35 
equals the RMSE from observed allele frequency estimates (Supp. Fig. 2). While 36 
expected error from extreme allele frequencies is lower than that of intermediate allele 37 
frequencies under a binomial model, by taking the ratio of the expected error and the 38 
observed error for the same set of true allele frequencies, effective coverage values do 39 
not depend on the underlying allele frequency spectrum (Methods). Note that while this 40 
metric specifically focuses on variance from the sampling of reads from pooled 41 
chromosomes, in practice, the ability of both HAFs and raw AFs to accurately reflect 42 
true population-level allele frequencies will also depend on variance from the sampling 43 
of individuals from the population. This independent source of error has however been 44 
well-treated elsewhere26,27  and will not be impacted by haplotype inference.  45 
 46 
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In the following sections, we explore how the accuracy of HAFs differs from raw AFs, 1 
and how it scales with empirical coverage, number of generations of recombination, and 2 
missing founder genotypes.  3 
 4 

 5 
Figure 1. Overview of HAF calculation method. In an evolve-and-resequence experiment, the evolving 6 
population at any time point can be considered a mosaic of founder genomes. If founder genotypes are 7 
known, the relative frequency of each founder haplotype can be inferred within small genomic windows by 8 
leveraging pooled sequencing data and existing bioinformatic tools (i.e. harp). Allele frequencies can then 9 
be calculated from the weighted sum of founder haplotypes, rather than directly from mapped reads at 10 
each site.  11 
 12 
Haplotype inference significantly increases the accuracy of allele frequency 13 
estimations 14 
 15 
We begin by analyzing the very simplest scenario, in which a sample consists of un-16 
recombined chromosomes, one from each founder line. To examine the accuracy of 17 
HAFs and AFs in this scenario, we created two biological replicate samples of 99 D. 18 
melanogaster individuals, each from a different homozygous inbred strain (Methods) 19 
and performed high-coverage pooled sequencing of each sample. True allele 20 
frequencies for each sample were then calculated, incorporating estimates of uneven 21 
pooling during sequencing (Supp. Fig. 3, Supp. Text). 22 
 23 
The accuracy of HAFs depends on the power to estimate haplotype frequencies, which 24 
in turn is affected by the coverage of mapped reads throughout the genomic window 25 
used for haplotype inference. In order to compare the accuracy of HAFs to raw AFs and 26 
test how each scales with empirical coverage, reads from the two biological replicates 27 
originally sequenced at ~140x were down-sampled to chromosome-wide empirical 28 
coverages of 1x to 100x, and then used to calculate the effective coverage of estimated 29 
allele frequencies for each replicate (Figure 2). Haplotype inference was initially 30 
performed using 100kb sliding windows, and accuracy was assessed only at the 27k 31 
sites with known genotype information for every founder. As expected, effective 32 
coverage of both HAFs and raw AFs is similar within the two biological replicates, and 33 
increases with higher chromosome-wide empirical coverage. Yet for all empirical 34 
coverages tested, HAFs have strikingly higher effective coverages than raw AFs. This 35 
substantial gain in accuracy from haplotype inference was most prominent at lower 36 
empirical coverages, with a >40-fold increase in accuracy at 10x empirical coverage 37 
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(from 10x to effectively >400x). At higher empirical coverages, haplotype inference 1 
appears to produce diminishing returns and effective coverage begins to plateau. 2 
 3 
We next tested the effect of using smaller (10kb) or larger (1000kb) windows for 4 
haplotype inference at empirical coverages up to 10x. We find that as expected, larger 5 
window sizes produce the most accurate HAFs, since more reads are available to infer 6 
haplotype frequencies in each window. Specifically, 1000kb HAFs derived from 7 
empirical coverages of 1x and 5x reached effective coverages of >400x and >900x, 8 
respectively.  9 
 10 
We also confirmed that similar results would be achieved by simulated samples with 11 
known sources of error. To do so, we simulated pooled synthetic reads with a standard 12 
Illumina sequencing error rate of 0.00228  and corresponding base quality scores23  from 13 
the same proportions of the 99 founder lines included in both biological replicates, and 14 
calculated effective coverage with the same empirical coverages and window sizes as 15 
above. Effective coverages for these simulated samples closely mirror effective 16 
coverages obtained from matched experimental samples (Figure 2A-B). Slight 17 
differences at higher empirical coverages and larger window sizes are most likely 18 
caused by compounded experimental error from DNA extractions, PCR reactions and 19 
sequencing, as well as ambiguity in the ‘true’ genotypes estimated for individually 20 
sequenced lines. We explore the effects of founder genotype ambiguity further below 21 
(see “HAF accuracy is impacted by missing founder genotypes”). 22 
 23 
Together, these results suggest that HAFs derived from multiple biological samples 24 
sequenced at low empirical coverages can be orders of magnitude more accurate than 25 
raw AFs, and that simulated samples capture the magnitude of this effect quite well. In 26 
the following analyses we focus on simulated data from these 99 founder lines in order 27 
to precisely and reliably test how recombination and missing founder genotypes affect 28 
HAFs in realistic E+R scenarios.  29 

 30 
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 1 
Figure 2. Accuracy of HAFs and raw AFs for biological and simulated samples. A) Effective coverage of 2 
allele frequencies estimated with and without haplotype inference for the two biological replicates down-3 
sampled to empirical coverages from 1-100x. (R1=replicate 1, R2=replicate 2; HAFs calculated with 4 
100kb inference windows) B) Effective coverages of HAFs for biological replicates (blue) and simulated 5 
samples (red) using 10kb, 100kb, or 1000kb inference windows at empirical coverages of 1-10x. Orange 6 
line indicates a zoomed-in section of the same biological replicate values as shown in A. In all panels, a 7 
dashed line of 100x indicates the accuracy threshold required to detect strong selection9. 8 
 9 
Incorporating recombination and selection over short time scales 10 
 11 
In the first section we showed that HAFs are accurate for samples of unrecombined 12 
chromosomes with very similar allele frequencies to the founder population. However, in 13 
a realistic E+R scenario sampled chromosomes will be recombined mosaics of the 14 
founders and selection may substantially shift allele frequencies over time. Thus, in the 15 
remainder of our analyses, we incorporate selection and recombination using a forward-16 
in-time simulator, forqs29. We simulated recombination for 50 generations in a 17 
population of 1,000 randomly-mating individuals using a D. melanogaster recombination 18 
map30, and tracked the breakpoints and haplotype of origin for all recombined segments 19 
at every generation. At specific generations, we randomly selected 200 recombined 20 
chromosomes (i.e. 100 diploid individuals) from the simulated population and 21 
reconstructed the full sequences of these ‘sampled’ chromosomes from corresponding 22 
segments of the 99 individually sequenced founder haplotypes. Reads were simulated 23 
from the pooled set of 200 reconstructed chromosomes.  24 
 25 
We tested the accuracy of HAFs in three different selection regimes: 5 randomly chosen 26 
sites with selection strength s=0.025 (i.e. weak selection), 10 randomly chosen sites 27 
with selection strength s=0.025, and 5 randomly chosen sites with selection strength 28 
s=0.1 (i.e. strong selection).  In each case, the selected sites contributed additively to a 29 
single quantitative trait (Methods). We ran each simulation in three rounds, picking a 30 
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different set of selected sites in each round, and simulated 5 replicate populations for 1 
each round. We calculated HAFs for each simulated sample, adjusting the window size 2 
for haplotype inference each generation based on the expected length of unrecombined 3 
haplotype blocks (Methods, Supp. Fig. 4). As recombination proceeds, these windows 4 
become smaller, with fewer reads available to inform haplotype frequency estimation, 5 
and thus we expect that accuracy will decline. 6 
 7 
Our results show that while accuracy does decline over time, HAFs in general maintain 8 
>100x effective coverage even after 50 generations in the presence of 5-10 selected 9 
sites per chromosome (Figure 3A). We note that the three selection regimes tested all 10 
perform comparably well, though effective coverage is slightly higher with more selected 11 
sites (i.e. 10 vs. 5) and larger selection coefficients (i.e. s=0.1 vs. s=0.025). To assess 12 
the utility of HAFs for longer-term experiments, we also conducted three separate 13 
simulations with weak selection and 5 selected sites for 200 generations, and note that 14 
effective coverage of HAFs remains above the 100x threshold for detecting strong 15 
selection across 100-150 generations of recombination (Supp. Fig. 5). Overall, we find 16 
that increasing empirical coverage has a diminishing returns effect on accuracy, while 17 
decreasing the generations of recombination has an approximately linear effect on 18 
accuracy.  19 
 20 
 21 

 22 
 23 
Figure 3. Effective coverage for recombination simulations with 99 inbred founder lines. In each 24 
simulation, recombination was simulated for a population of 1,000 individuals initiated from a panel of 99 25 
fully sequenced inbred D. melanogaster lines, with a randomly chosen set of selected sites from among 26 
the 283,437 segregating sites on chromosome 2L. At multiple generations, 100 recombined individuals 27 
were sampled in silico from each population for simulated sequencing, HAF calculation, and error 28 
estimation. A) 5 or 10 sites were under weak or strong selection (panels), all sequencing was simulated 29 
at 5x, and HAFs were calculated with no missing genotypes. B) 5 sites were under weak selection, 30 
sequencing was simulated at multiple read depths (panels), and HAFs were calculated with various 31 
fractions of missing founder genotypes (color).  32 
 33 
HAF accuracy is impacted by missing founder genotypes  34 
 35 
In addition to the effects of recombination and selection on HAF accuracy, ambiguity in 36 
the genotypes of founders (either due to missing genotype information or residual 37 
heterozygosity) can also present challenges. We tested how setting founder genotypes 38 
to be ambiguous (i.e. from a called ‘A’ allele to an uncalled ‘N’) influences the accuracy 39 
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of HAFs. For each simulation, 1-10% of all genotype calls in the founder table were 1 
randomly selected to be assigned as ‘N’. Genotypes at these sites were then imputed 2 
prior to estimating haplotype frequencies (Supplemental Text) and calculating HAFs. 3 
For each percentage, three rounds of simulation were performed.    4 
 5 
We find that missing genotype calls can significantly reduce effective coverage (Figure 6 
3B). However, the vast majority of the parameter space tested — 73.3% of all 7 
simulations — still yielded effective coverage values greater than 100x. Furthermore, 8 
92.1% of simulations with less than 10% missing genotypes and fewer than 50 9 
generations of recombination yielded effective coverage values greater than 100x. 10 
 11 
Importantly, these high overall chromosome-wide effective coverages extend to the 12 
selected sites themselves. Even with moderate levels of missing founder calls (up to 3 13 
% of missing sites), HAFs at selected sites still track closely with true allele frequencies; 14 
this is crucial for correctly detecting alleles under selection in E+R (Supp. Fig. 6). 15 
 16 
Estimating effective coverage with different founders sets and other model 17 
organisms 18 
 19 
Finally, we explored how the utility of HAFs may extend to other founder sets with 20 
known SNPs and known recombination rates. Specifically, we tested whether a simple 21 
linear model based on the simulations above could accurately predict effective coverage 22 
for other experimental designs and other model organisms. The regimes tested in the 23 
simulations above can be collapsed into two independent parameters that affect HAF 24 
accuracy: 1) the number of reads used for haplotype inference in each window and 2) 25 
the percent of founder genotypes that are missing. The first parameter is a combination 26 
of SNP density, read depth, and window size – while the window size itself is a function 27 
of the recombination rate and the number of generations of recombination since 28 
population initiation.  29 

 30 
We calculated regression coefficients of a log-linear model (Supp. Fig. 7) using all 31 
simulations described in the sections above, which focused on a single founder set 32 
across many experimental regimes. To test whether this model could accurately predict 33 
HAF accuracy for other founder sets, we simulated three rounds of evolutionary 34 
trajectories (with 5 weakly selected sites in each round) for two entirely different founder 35 
sets composed of 1) a widely-used reference panel of 205 D. melanogaster lines known 36 
as the DGRP31, and 2) 100 genotyped C. elegans strains from a reference panel known 37 
as CeNDR32. For each founder set we simulated pooled samples for various 38 
generations and empirical coverages and calculated HAFs with various levels of 39 
missing founder information. We then used our model (trained only on the original 40 
simulations) to predict effective coverage for each of these new samples (Figure 4A). 41 
 42 
We find that across all samples tested, our simple 2-parameter model has an R2 value 43 
of 0.875. Predicted effective coverage values for simulations with the original 99-lines 44 
founder set differ from true effective coverage values by 25% on average, with the 45 
largest source of error due to random effects between simulation rounds. Overall 46 
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accuracy for DGRP and CeNDR samples was slightly lower, with average deviations of 1 
37% in both founder sets. We confirmed that the model does not systematically over- or 2 
under- predict the effective coverage of DGRP samples or CeNDR samples nor any 3 
other set of parameters included in our simulations (Figure 4B). This suggests this 4 
model is broadly applicable for predicting HAF accuracy across many founder sets. 5 
Thus, given a set sequencing budget and a founder set with known sequencing quality, 6 
this model may be useful as a guideline for devising experimental schemes and 7 
distribution of resources that would maximize detection power. To this end, we have 8 
created a shiny app to help experimentalists predict effective coverage for their 9 
particular set of parameters (freely available at https://ec-10 
calculator.shinyapps.io/shinyapp/), as well as a table of requirements for HAF 11 
estimation (Figure 5). 12 

 13 
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 1 
 2 
Figure 4. Observed effective coverage vs. effective coverage predicted by a simple 2-parameter log-3 
linear model. A) A model built on samples from the simulated experimental evolution of 99 inbred 4 
Drosophila melanogaster lines described in the sections above was used to predict effective coverage in 5 
the simulated experimental evolution of different founder panels (205 DGRP lines) and different founder 6 
species (100 CeNDR lines). B) Effective coverage was well-predicted across a range of simulation 7 
parameters, including read depth, number of generations, % missing founder genotypes, and selection 8 
regimes.  9 
 10 

 11 
Figure 5. Schematic of requirements for using HAFs to estimate allele frequencies in E+R experiments. 12 
Recommendations of timescale are based on simulations with D. melanogaster. 13 

Discussion 14 
 15 
E+R experiments have become a powerful tool to assay the underpinnings of rapid 16 
adaptation by tracking allele frequency trajectories within populations over time. 17 
Previous studies have shown that the greatest power to detect adaptive variants comes 18 
from an optimized experimental design that tracks allele frequencies in multiple replicate 19 
populations, samples each replicate population at multiple timepoints, and maximizes 20 
the coverage of each pooled sample. Incorporating all of these factors into an E+R 21 
framework, however, can present significant financial challenges. Here, we offer a way 22 
to mitigate these high sequencing costs without sacrificing statistical power.  23 
 24 
Our framework uses haplotype inference to increase the accuracy of pooled allele 25 
frequency estimates at low coverages. Since the accuracy of haplotype-derived allele 26 
frequencies relies on the total informative value of reads across a genomic window, 27 
rather than coverage at a single site, this approach allows us to sequence less but still 28 
maintain high accuracy in allele frequency estimations. In this vein, the window-based 29 
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techniques used by HAFs have an advantage over raw AFs in that the accuracy of an 1 
individual SNP with low read depth will benefit from reads at surrounding sites in the 2 
window. Overall, our method is capable of achieving the same accuracy as would be 3 
expected from sequencing each sample at 100x (as recommended in order to reliably 4 
detect strong selection), while only requiring empirical coverage of 1x or less, bringing 5 
total sequencing costs from >$25,000 down to less than $200.  6 
 7 
There are, however, limitations to this approach. First, as presented, this framework 8 
requires the founder population to be derived entirely from fully-inbred lines. As a result, 9 
the population dynamics of loci under selection may differ slightly from trajectories in 10 
natural populations due to the genetic diversity lost in the inbreeding process (i.e. 11 
natural haplotypes, homozygous lethal mutations, and rare variants), as well as higher 12 
levels of linkage disequilibrium compared to non-inbred lines. Reconstituting an outbred 13 
population using inbred lines, however, can be an effective way to mitigate the effects of 14 
the inbreeding process, and has been experimentally shown to have negligible bias and 15 
effect on adaptive dynamics33. Alternatively, the use of inbred lines may not be 16 
necessary with more sophisticated founder sequencing approaches that incorporate 17 
phasing.  Newer long-read technologies may make this an achievable reality for a 18 
number of systems in the near future.  19 
 20 
Second, this approach requires a reliable and comprehensive account of the variants 21 
present in each founder line. Since previous studies recommend upwards of 100 22 
founders, sequencing each individual founder line to a sufficiently high depth (in our 23 
work, we have found sequencing coverages >10x to be sufficient) may present a high 24 
upfront cost. However, this cost represents a one-time investment, which can be applied 25 
toward all future experiments using the same set of founders. Furthermore, a number of 26 
consortiums already maintain publically available stocks of large numbers of Drosophila 27 
lines and other model organisms with full, high-quality genome sequences 31,32,34. We 28 
anticipate that these resources will continue to rapidly expand, facilitating experiments 29 
with even greater haplotype diversity at minimal costs. 30 
 31 
In addition, this approach is limited to studying short-term adaptation on the scale of 32 
tens of generations. In fact, an assumption of our method is that within an inference 33 
window, recombination breakpoints minimally affect the ability to accurately call 34 
haplotype frequencies. For a given window size however, this assumption becomes less 35 
valid as recombination proceeds and haplotypes blocks decay. Conversely however, 36 
decreasing the window size reduces the information used for haplotype inference, which 37 
at the extreme renders HAFs no more accurate than raw AFs. In our pipeline, we 38 
attempt to balance these effects by scaling window sizes at any generation by the 39 
expected average unrecombined fragment length. While our results here demonstrate 40 
that even with this scaling procedure, recombination will limit the ability to detect 41 
adaptation on timescales of more than tens of generations, the short-term adaptive 42 
dynamics that best fit E+R studies fall well within this range. Furthermore, it is at these 43 
short timescales, when large numbers of replicate populations are critical to reliably 44 
detect selection, that the cost savings associated with haplotype inference methods will 45 
be most beneficial.  46 
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 1 
Finally, this approach relies on tracking the trajectories of known bi-allelic 2 
polymorphisms derived from the founder population, and thus, de novo mutations will 3 
not be assayed in this framework. Nonetheless our approach should sufficiently capture 4 
the salient features of short-term adaptive dynamics, as there is a growing body of 5 
experimental evidence suggesting that selection acts primarily on standing genetic 6 
variation in sexual organisms, and that de novo beneficial mutations do not play a large 7 
role in rapid adaptation 4,35–37.  Additionally, by tracking only known well-validated 8 
polymorphisms, the approach is largely robust to error from small non-SNP 9 
chromosomal variants such as indels.  10 
 11 
Despite the above limitations, collectively our results show that integrating haplotype 12 
inference into future E+R experiments is a cost-effective way to achieve accuracy in 13 
allele frequency estimates, which will directly improve the ability to detect genome-wide 14 
signatures of adaptation. Consequently, we offer specific recommendations for future 15 
E+R experimental schemes that take advantage of this approach. First, each founder 16 
line should be initially sequenced to a sufficient depth that minimizes any missing 17 
genotypes. If missing genotype calls do exist in founder lines, imputing sites prior to 18 
haplotype inference can mitigate some of this error.  19 
 20 
Together, these guidelines and the analysis above form a framework for achieving 21 
effective coverages of close to 100x with empirical coverages as low as 1x even after 22 
50 generations of recombination in Drosophila melanogaster, reducing sequencing 23 
costs by 100-fold. Ultimately, these cost savings, which can be extended to experiments 24 
with a variety of model organisms, will facilitate E+R frameworks that can incorporate 25 
large numbers of replicate populations. These improvements may be crucial to the 26 
statistical power to distinguish between beneficial and neutral alleles 38,39 and ultimately 27 
the future of E+R as a practical and reliable experimental tool. 28 
  29 
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 3 
  4 

Methods 5 
 6 
Establishment and sequencing of founder set 7 
207 iso-female Drosophila melanogaster lines were established from wild individuals 8 
sampled from Maine and Pennsylvania40, and inbred for ~20 generations of full-sibling 9 
mating to produce viable, fertile inbred lines. 30-50 individuals from each line were 10 
pooled for DNA extraction. Whole flies were homogenized with lysis buffer and 1mm 11 
beads, and DNA was precipitated from the homogenate before resuspension in TE 12 
buffer.  Libraries were prepared with a modified Nextera protocol41. All samples were 13 
indexed with Illumina’s TruSeq Dual Index Sequencing Primer Kit (PE-121-1003) and 14 
pooled equimolarly into 3 sets of ~70 samples each. Each set of pooled DNA libraries 15 
were purified using Ampure XP and size-selected to 450-500 bp with a SizeSelect E-16 
Gel. After an additional 5 rounds of PCR, DNA libraries were purified using Ampure XP 17 
beads, quantified, and diluted to the appropriate concentration before sequencing on 18 
the HiSeq 3000. All sequences were deposited in SRA (BioProject PRJNA383555). 19 
Adapter sequences were trimmed (Trimmomatic v0.33) and overlapping reads were 20 
merged (PEAR v0.9.6), then reads were mapped (bwa v 0.7.9) to the D.melanogaster 21 
reference genome (v5.39) using default parameters. PCR duplicates were removed 22 
using PicardTools (v1.12). Base quality score recalibration, indel realignment, and novel 23 
SNP discovery were carried out using GATK’s HaplotypeCaller. Only bi-allelic SNPs 24 
segregating in the 99 lines pooled for resequencing in this study were used to generate 25 
a founder SNP table, simulate reads, and estimate haplotype frequencies.  26 
 27 
Generating Experimentally Pooled Samples 28 
One male each was selected from each of 99 inbred strains, and all 99 individuals were 29 
pooled for re-sequencing. A second biological replicate was constructed from 99 30 
additional individuals. DNA isolation was performed as described above. Three 31 
separate libraries were prepared from each of the two biological replicates using 32 
different library prep methods: [1] according to protocols described in Nextera DNA 33 
Library Prep Reference Guide (15027987 v01); [2] a modified Nextera protocol (as 34 
described above) and [3] a Covaris shearing protocol.  Final results from the 3 library 35 
prep methods were similar. All libraries were size-selected and PCR amplified using two 36 
replicate PCR reactions and a high volume of template DNA to prevent PCR-37 
jackpotting. DNA was purified, quantified, and diluted before sequencing on the HiSeq 38 
3000. Raw, 150bp pair-end reads were trimmed for adapter sequences with Skewer 39 
(version 0.1.127). Read merging, mapping, and PCR duplicate removal was performed 40 
as above.  41 
 42 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/244004doi: bioRxiv preprint 

https://doi.org/10.1101/244004
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 
 

Generating Simulated Pooled Samples 1 
150-bp paired end pre-aligned reads were simulated from a table of founder genotypes 2 
and the D. melanogaster reference genome with simreads, a software tool included with 3 
the harp package23. All reads were simulated with an error rate of 0.2%28, with 4 
simulated sequencing errors receiving a lower simulated base quality score. No read 5 
trimming or PCR duplicate removal was done. All SNP tables with missing genotypes 6 
were imputed before read simulation. 7 
 8 
Haplotype Frequency Estimation 9 
All haplotype frequencies were estimated with harp - Haplotype Analysis of Reads in 10 
Pools 23 in a two-step process in which 1) a likelihood model is built by probabilistically 11 
assigning all reads to haplotypes, and 2) maximum likelihood estimates of haplotype 12 
frequencies are calculated in discrete chromosomal windows, given local read 13 
assignments. An assumption of this method is that there are no recombination 14 
breakpoints within a window used for haplotype frequency estimation. However, with a 15 
fixed window size, this assumption breaks down as the lengths of unrecombined 16 
fragments decrease. The distribution of fragment lengths at a given generation can be 17 
modeled with an exponential distribution with rate, 𝜆, equal to, 18 
 19 

 20 
  21 
where R is recombination rate, L is chromosome length, and G is the number of 22 
generations of recombination between the initiation of the founding population and 23 
sampling. The qth quantile of this distribution can be calculated in R with the function 24 
qexp(q,𝜆). 25 
 26 
We allowed window sizes to shrink over successive generations of recombination, such 27 
that only 18% of sampled unrecombined fragment lengths were expected to be smaller 28 
than the window length. Various quantiles from 5-25 were tested before choosing this 29 
parameter (see Supp Fig. 4). Note that haplotype frequencies for fully unrecombined 30 
chromosomes (Fig. 2) were evaluated in 1000kb, 100kb and 10kb windows. To further 31 
reduce error, we used overlapping inference windows, with a step size equal to 10% of 32 
the window size. Thus, the vast majority of sites fall within 10 separate overlapping 33 
inference windows. Finally, in order to balance local relevance with maximal 34 
information, we always created likelihood models in windows 10x the size of frequency 35 
estimation windows, with a step size equal to half the likelihood window size.  36 
 37 
For reference, inferring haplotype frequencies for 99 founder lines at 283k segregating 38 
sites on chromosome 2L in 1000kb windows took 8 minutes and required 450Mb RAM 39 
for samples sequenced at 5x empirical coverage and took 15 minutes and required 40 
860Mb RAM for samples sequenced at 10x. Using 100kb windows took 9.5 minutes / 41 
70Mb and 17.5 minutes / 132Mb for 5x and 10x samples, respectively. 42 
 43 
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HAF Estimations 1 
The haplotype-derived allele frequency (HAF) for a given biallelic site was calculated by 2 
summing founder haplotypes containing the alternate allele, each weighted by their 3 
average estimated haplotype frequency in all haplotype inference windows overlapping 4 
the site. Founder haplotypes with missing genotypes were given a fractional alternate 5 
allele count equal to the mean of genotyped founders with alternate alleles. 6 
 7 
Accuracy Estimations Using Effective Coverage 8 
Effective coverage was used as a metric to assess the accuracy of all HAFs and raw 9 
AFs. For a given set of allele frequency estimates pestimated at n sites, for which true 10 
frequency ptrue is known, we first calculate the root mean squared error (RMSEestimated), 11 
where 12 
 13 

RMSEestimated	= $∑('()*+,-*(.	/	'*01()3)
4

 14 
Next, we solve for the coverage Ceffective at which RMSEtheoretical from binomial sampling 15 
would be equal to RMSEestimated, where  16 

RMSEtheoretical  	= $
∑('*01(	(5	/	'*01())

6(77(8*+9(∗	4
 17 

Solving for Ceffective yields, 18 
Ceffective=

∑('*01(	(5	/	'*01())
∑('()*+,-*(.	/	'*01()3)

 19 
 20 
which is the theoretical coverage at which binomial sampling of reads would be 21 
expected to contain the observed amount of error from estimated frequencies.  22 
 23 
Recombination 24 
Forward-in-time simulations of recombination were performed with the software tool 25 
forqs29 using a D. melanogaster recombination map30. forqs simulates recombination of 26 
haplotype chunks for chromosomes of user-specified lengths for a randomly mating 27 
population, using a user-supplied recombination map, and non-overlapping generations. 28 
As a conservative metric, in our simulations we referred to the female D. meanogaster 29 
recombination rate. Since male D melanogaster do not undergo recombination, our 30 
estimates of the number of recombination events per generation are higher than that 31 
expected in real populations and our estimates of effective coverage serve as a lower 32 
bound on effective coverage expected at the same number of generations in real 33 
populations. Three rounds of simulation were performed for each selection regime. In 34 
each round, an initial population of 1,000 individuals was created, with each individual 35 
assigned to a randomly selected homozygous founder strain. 5-10 sites were randomly 36 
chosen to be under selection and the genotypes of each individual (determined by the 37 
genotype of the corresponding founder strain) at these sites was supplied to forqs via 38 
an ms file. Homozygous reference, heterozygous, and homozygous alternate genotypes 39 
were assigned fitness advantages equal to 0, s, or 2s respectively, where s was a 40 
specified selection coefficient (either s=.025 or s=.1 in our simulations). The chosen loci 41 
each contributed independently to a single additive trait, with environmental variance 42 
equal to 0.01. At each generation, a fitness value was calculated by forqs for each 43 
individual based on their genotypes at the selected sites, with fitness decaying linearly 44 
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with distance from the optimum trait value of 1. Individuals were selected to contribute 1 
to the next generation probabilistically based on their fitness value. Recombination 2 
breakpoints were simulated for evolutionary trajectories up to 50 generations in 5 3 
replicate populations with a constant population size of 1,000 individuals. Within each 4 
round, each replicate contained the same selected sites and selection coefficient. At 5 
specific generations, 100 sets of recombination breakpoints (each representing a pair of 6 
evolved ‘chromosomes’) were randomly selected from the forqs output and were used 7 
to reconstruct ‘sampled chromosome genotypes’ from corresponding segments of the 8 
99 founder genotype calls. This set of sampled genotypes was used to directly calculate 9 
‘true’ allele frequencies for the sampled pool and was also used as input for read 10 
simulations with simreads.  The resulting reads were then used for HAF calculation.  11 
 12 
Generating a predictive model of effective coverage 13 
 14 
While we observed non-linear relationships between effective coverage and both 15 
parameters, the log-log relationships were fairly linear. This suggested that a 16 
reasonable simple model would have the following format: 17 

log10( effectiveCoverage ) ~ a * log10( nofReadsPerWin ) + b * 18 
log10(pctMissingGenotypes) 19 
 20 
We used the R function ‘nls’ to solve for the coefficients a and b in this formula, using all 21 
Drosophila melanogaster simulations described in the sections above.   22 
 23 
 24 
HAFs with an alternate founder set 25 
For the DGRP founder set, SNP information was obtained for 205 strains initially 26 
isolated from Raleigh, NC that were independently sequenced as part of freeze 2 of the 27 
Drosophila Genetic Reference Panel (DGRP)31. Genotype data was downloaded 28 
directly from http://dgrp2.gnets.ncsu.edu. For the C. elegans founder set, a soft-filtered 29 
VCF file (v. 20170531) of genotype calls for 249 sequenced strains 32 was downloaded 30 
from the CeNDR website (https://www.elegansvariation.org/data/release/20170531), 31 
and was converted to a SNP table including genotypes for 100 randomly selected lines 32 
at all segregating biallelic SNP sites. 33 
 34 
After constructing the appropriate SNP table, read simulation, haplotype inference and 35 
effective coverage calculations were carried out as described in the sections above. 36 
 37 
Code Accessibility 38 
Scripts to calculate HAFs are available at https://github.com/petrov-lab/HAFpipe-line .  39 
At minimum, the pipeline requires a) called biallelic variants from sequenced founder 40 
lines, and b) mapped reads from one or more pool-seq samples, and uses harp for 41 
haplotype inference.  42 
 43 
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Statement on Data and Reagent Availability 1 
Sequence data from seasonal strains is available at SRA (BioProject PRJNA383555) 2 
and genotype data is available at https://github.com/petrov-lab/HAFpipe-3 
line/blob/master/99.clean.SNP.HARP.segregating.gz . Strains are available upon 4 
request. Code used to generate the simulated data is provided at 5 
https://github.com/petrov-lab/HAFpipe-line/tree/master/simulations . 6 
   7 
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Supplemental Text 1 
 2 
Incorporating uneven pooling of individuals produces more realistic estimates of 3 
true allele frequencies 4 
 5 
Our ability to measure the accuracy of HAFs and raw AFs depends on our ability to 6 
determine the true contribution of each pooled individual. Since uneven pooling is a 7 
source of error known to affect pool-seq samples15, we estimated the relative 8 
contribution of DNA from each individual by calculating the average genome-wide allele 9 
frequency at sites private to each founder. While each founder could be detected in the 10 
pool, we found substantial variation in their relative representation (Supp. Fig. 3). ‘True’ 11 
frequencies for the experimental pooled sample were thus calculated by weighting 12 
founders known to contain the alternate allele by their estimated representation in the 13 
pool. We assessed whether these ‘true’ allele frequencies were better recapitulated by 14 
experimental reads than ‘true’ allele frequencies calculated without incorporating 15 
uneven pooling at all fully genotyped sites (both private and common). We found that 16 
the effective coverage using unevenly pooled weighted values (126x) was higher than 17 
the effective coverage assuming evenly pooled individuals (120x). We used these same 18 
estimates of uneven pooling to simulate reads in uneven proportions from different 19 
haplotypes for the synthetic sample as well. 20 
 21 
Imputing missing founder genotypes increases the accuracy of HAFs 22 
 23 
While missing information can be accommodated by many haplotype inference tools 24 
(i.e. an N in place of a missing call), it is unclear how missing calls affect inference 25 
accuracy, and what the best practices should be when missing calls are present in the 26 
reference founder set. 27 
 28 
We first examined whether haplotype frequencies estimated for founders with many 29 
missing calls or few missing calls systematically deviated from an expected haplotype 30 
frequency of 0.101 (1/99). We found that across individual inference windows, there 31 
was a clear negative correlation between the number of missing calls per founder, and 32 
the haplotype frequencies estimated for that founder (Supp. Fig. 1). To determine 33 
whether the observed skewed haplotype frequencies were directly associated with the 34 
presence of missing sites, we tested whether imputing genotype calls for missing sites 35 
would reduce bias in haplotype frequency assignment. While a number of sophisticated 36 
methods for imputing rare SNPs do exist 42–44 , and may in some cases improve HAF 37 
accuracy, here we used a simple approach. To perform imputation, at each site we first 38 
calculated the allele frequency among called founder genotypes and used this value as 39 
a probability for assigning genotypes to missing calls. We found that imputation 40 
significantly reduced the skewed haplotype frequency distribution by 4-6-fold for all 41 
empirical coverages and window sizes tested. We expect that imputation with more 42 
advanced tools would achieve even better results.  43 
 44 
We next examined how imputation of haplotype frequencies can impact the overall 45 
accuracy of HAFs. We also confirmed that haplotype inference using imputed calls 46 
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produced more accurate HAFs than using a subset of sites with no missing calls. Thus, 1 
we include imputation as a key step in our analysis pipeline.  2 
 3 
 4 

Supplemental Figures  5 
 6 

 7 
 8 
Supplemental Figure 1. Median haplotype frequency across all windows on chromosome 2L 9 
for each founder (n=99), calculated with different window sizes and empirical coverages.  10 
Haplotype frequencies calculated before imputation (red circles) and after imputation (blue 11 
circles) are plotted as a function of the log of the total number of ambiguous genotypes (aka “N-12 
count”). Best fit lines for each dataset were calculated with standard linear regression. 13 
 14 
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 1 
Supplemental Figure 2. An example of true and predicted allele frequencies at each 2 
segregating site on chromosome 2L, where predicted frequencies are calculated either from A) 3 
raw mapped reads at 5x empirical coverage, B) HAFs at 5x empirical coverage, C) simulated 4 
binomial sampling of reads at 462x coverage.  Color represents density of points. RMSE for 5 
each set of predictions is indicated in the top left of each panel. Note that RMSE for panels B 6 
and C are very similar; this equivalence forms the basis of assigning an ‘effective coverage’ of 7 
462x to the estimated allele frequencies in panel B. 8 
 9 
 10 

 11 
 12 
Supplemental Figure 3. Contribution of DNA from each pooled individual in experimental 13 
replicate 1, estimated by average genome-wide allele frequency across all singleton sites. The 14 
dashed line represents theoretical expectation for evenly pooled individuals. Error bars 15 
represent total expected binomial error, given total read depth at all singleton sites for a given 16 
founder. 17 
 18 
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 1 
 2 
 3 
 4 
 5 

 6 
 7 
Supplemental Figure 4. Effective coverage was calculated for samples simulated at 5x 8 
empirical coverage after 5,15, and 50 generations of weak selection, with a founder genotype 9 
table missing 1% of calls, using various window sizes for haplotype inference. Colors 10 
correspond to the quantiles of the expected exponential distribution of unrecombined fragment 11 
lengths that were used as the window size for haplotype inference. Each panel (1-3) represents 12 
results from a different simulation round, using a different set of selected sites. 13 
 14 

 15 
 16 
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 1 
Supplemental Figure 5. Effective coverage for 3 separate simulated long-term experiments 2 
each with 5 randomly selected sites under selection (S=0.025), simulated empirical coverage of 3 
5x, and no missing founder genotypes. 4 
 5 
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 1 
 2 
Supplemental Figure 6. True population-wide allele frequencies (grey lines), true sampled 3 
chromosome allele frequencies (closed black circles) and HAFs (open circles) calculated at 4 
sites under selection (S=0.025) from samples simulated at 5x empirical coverage after 5 
5,10,15,25, and 50 generations of recombination, using founder information with various 6 
fractions of missing of founder genotype calls (color). 7 
 8 
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 1 
Supplemental Figure 7. Relationship between effective coverage, number of reads per 2 
window, and percent of missing genotypes.  he plots in the top row (A-B) indicate that the 3 
relationships are not linear. The plots in the bottom row (C-D) (where the x- and y-axes have 4 
been adjusted to log scale) suggest that the relationships are approximately log-linear. 5 
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