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Abstract 

Previous studies suggest that people generate predictions during language comprehension at 

multiple linguistic levels. It has been hypothesized that, under some circumstances, this can 

result in the pre-activation of specific lexico-semantic representations. We asked whether such 

representationally specific semantic pre-activation can be detected in the brain ahead of 

encountering bottom-up input. We measured MEG activity as participants read highly 

constraining sentences in which the final word could be predicted. We found that both spatial and 

temporal patterns of the brain activity prior to the onset of this word were more similar when the 

same words were predicted than when different words were predicted. This pre-activation was 

transient and engaged a left inferior and medial temporal region. These results suggest that 

unique spatial patterns of neural activity associated with the pre-activation of distributed 

semantic representations can be detected prior to the appearance of new sensory input, and that 

the left inferior and medial temporal regions may play a role in temporally binding such 

representations, giving rise to specific lexico-semantic predictions.  
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1. Introduction 

After reading or hearing the sentence “In the crib there is a sleeping …”, the word “baby” is 

already activated in our minds before we encounter it. Here, we used magnetoencephalography 

(MEG) to determine whether it is possible to detect a spatio-temporal signature that corresponds 

to the representationally specific pre-activation of the predicted word (“baby”).  

 

Language prediction allows us to rapidly understand what we read or hear by giving processing a 

head start. Within a hierarchical generative framework of language processing1, information at 

higher levels flows down the hierarchy to pre-activate information at lower levels in an attempt 

to minimize prediction errors within an internal generative model that explains the statistical 

structure of the bottom-up sensory input. When these predictions match this bottom-up input, its 

recognition is facilitated, and when they mismatch this input, the generative model is updated. 

During language processing, people can generate probabilistic predictions at multiple linguistic 

levels, including events2, syntax3, semantic features4, phonetic5 and orthographic features6 and 

even lower-level visual7 and auditory8 features. The level and strength of such pre-activation 

depends on many factors, including contextual constraint9 and the comprehender’s 

communicative goals and strategy (see 1, section 3.4).  

 

Prediction is also hypothesized to be a core computational principle of brain function10. 

Numerous electrophysiological studies have investigated language prediction by measuring brain 

responses to words with different levels of predictability. This includes a wide range of studies 

based on the N400 paradigm11. Only a few studies, however, have examined brain activity 

associated with the prediction period itself, prior to the presentation of the predicted word. These 
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studies report that highly constraining sentence contexts induce an increase in theta power12,13 as 

well as a suppression in alpha/beta power14-17. They also report activity within both neocortical 

(e.g., left frontal and temporal regions;12,15) and subcortical (e.g., hippocampus and 

cerebellum;13,18,19) regions. Thus far, however, no study has determined whether it is possible to 

detect neural activity associated with representationally specific lexico-semantic prediction, and, 

if so, when exactly such information is active in relation to the appearance of the bottom-up 

input.  

 

Neural patterns reflecting representationally specific information can be detected using 

multivariate pattern analysis (MPVA) such as representational similarity analysis (RSA)20-22. 

RSA assumes that similarities in both spatial and/or temporal patterns of brain activity can be 

used to identify brain activity associated with representationally similar items. This approach has, 

for example, been used to decode representationally specific visual information during both 

perception23,24 and working memory maintenance25,26. 

 

In the present MEG study, participants read pairs of sentences with highly constraining contexts 

(Fig. 1a). Each member of a pair predicted the same word. We visually presented the sentences at 

a slow rate of 1s per word. This guaranteed sufficient time to detect any representationally 

specific neural activity before the onset of the predicted word, and to identify its precise time 

course in relation to the appearance of the bottom-up input. We hypothesized that, if 

representationally specific lexico-semantic information is pre-activated, the brain activity 

associated with pre-activation of the same predicted words (within-pairs) should be more similar 

than brain activity associated with differently predicted words (between-pairs). We examined 
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both spatial and temporal indices of neural similarity. Spatial similarity values were computed by 

correlating the pattern of MEG data across all sensors between pairs of sentences. This enabled 

us to identify the temporal dynamics associated with the pre-activation of specific lexico-

semantic items (Fig. 1b). Temporal similarity values were computed by correlating the temporal 

pattern of MEG data between pairs of sentences. By examining such temporal correlations at 

each location (Fig. 1c), we were able to identify the key brain structures involved in generating 

representationally specific semantic predictions. 

 

2. Results 

Twenty-six participants read 120 sentence pairs presented at a rate of one word per second while 

MEG data were acquired. Pairs of sentences were constructed that strongly predicted the same 

sentence-final words (SFWs). As an example (Fig. 1a), sentences S1 (e.g. “In the hospital, there 

is a newborn…”) and S2 (“In the crib there is a sleeping…”) both predicted the word “baby”. We 

compared the similarity pattern of sentence pairs that predicted the same SFWs (within-pairs) to 

those that predicted different SFWs (between-pairs) before the SFW actually appeared. To avoid 

repetition of the predicted word across sentence pairs, one member of each pair ended with the 

predicted word (e.g. in S1, “baby”) while the other member ended with an unpredicted but 

plausible word (e.g. in S2, “child”). The 120 sentence pairs were presented in random order. 

Participants were asked to read each sentence carefully and to answer yes/no comprehension 

questions following 1/6th of the sentences. Comprehension accuracy was high (98%+/-2.0%). 

 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 7, 2018. ; https://doi.org/10.1101/243667doi: bioRxiv preprint 

https://doi.org/10.1101/243667
http://creativecommons.org/licenses/by-nd/4.0/


 6

2.1. The spatial pattern of neural activity was more similar in sentence pairs that predicted 

the same versus different words 

In each participant, we quantified the degree of spatial similarity of MEG activity (30Hz low-

pass filter) produced by pairs of sentences that predicted either the same SFW (i.e. within-pair, 

e.g. S1-A vs. S2-A’) or a different SFW (i.e. between-pair, e.g. S1-A vs. S3-B) by correlating the 

pattern of signal produced across sensors at each sampling point from -2000ms to 1000ms 

relative to SFW onset. We then averaged the resulting time series of spatial correlations (R-

values) within each participant and then across participants (Fig. 2b). Both the within- and 

between-pair group-average time series showed a sharp increase at ~100ms after the onset of the 

second-from-final word (SFW-1; at -1000ms) that lasted ~400ms before sharply decreasing (Fig. 

2a). The same pattern was observed around the previous word (SFW-2) and around the SFW. 

We attribute this general increase in spatial similarity to the visual onset and offset of each word, 

resulting in an increase of spatial similarity for around 300ms after its offset at 200ms relative to 

the word onset. We focused the rest of the analysis on the predictive intervals before the SFW 

and before SFW-1 where these general increases in spatial correlation were largest (R > 0.04). 

 

Averaged across the -880 – -485ms interval before the onset of the SFW (corresponding to 120 – 

515ms after the onset of SFW-1), we found that the spatial pattern of neural activity (across 

sensors) was more similar in sentence pairs that predicted the same SFW (within-pairs) than in 

pairs that predicted different SFWs (between-pairs), t(25) = 4.434, p < .001, Fig. 2b. Fig. 2c shows 

a scatter plot of the averaged R-values per participant in this interval. Twenty-two out of 26 

subjects had R-values below the diagonal, i.e. larger values for the within-pair than the between-

pair spatial correlations. In contrast, there was no difference between the within-pair and 
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between-pair spatial correlation values averaged across the -1900 – -1510ms interval before the 

SFW (corresponding to 100 – 490ms after the onset of SFW-2): t(25) = -0.212, p = .834. 

*Insert Fig. 1 here* 

 

This difference in spatial similarity within the predictive interval cannot be explained by 

differences in the number of within- and between-sentence pairs used to compute these spatial 

correlation values because they were calculated per pair before averaging (see27,28). However, to 

convince skeptics, we repeated the analysis using a randomly selected subset of between-pair 

correlations that matched the number of within-pair correlations. This analysis confirmed that 

the within-pair spatial correlation values were greater than the between-pair correlations (t(25) = 

2.393, p = .025; see Supplementary Fig. 1). 

 

We avoided the repetition of the SFW (e.g. “baby”) between pairs by replacing the predicted 

SFW of one member with an unpredicted but plausible word (e.g. “child”). However, it might be 

argued that, after encountering the predicted word (“baby”), participants retained this item within 

memory and that the increased spatial similarity of brain activity when reading the other member 

of the pair was due to anticipatory retrieval facilitated by the previous presentation of the item. 

To address this concern, we divided the sentence pairs into two subsets according to whether the 

sentences with expected or unexpected SFWs were presented first. We then applied the spatial 

similarity analysis to both subsets (Supplementary Fig. 2) and compared their spatial similarity 

values. A repeated measures ANOVA with the factors Order (Expected SFW first, Unexpected 

SFW first) and Pairs (Within-pair, Between-pair) showed no main effect of Order (F(1,25) = 0.747, 

p = .396, η2 = .029), nor an interaction between Order and Pairs (F(1,25) = 1.804, p = .191, η2 
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= .067). We conclude that previously encountering a sentence ending with the expected SFW did 

not inflate the spatial similarity between sentence pairs that predicted the same SFW. 

*Insert Fig. 2 here* 

 

To characterize the temporal dynamics of brain activity reflecting representationally specific 

predictions, we correlated the spatial pattern of activity (across sensors) between one sentence 

(e.g. S1-A) at a particular time sample (e.g. t1) with that of its paired sentence (e.g. S2-A’) at all 

time samples (e.g. from t1 to tn) in each participant (see also29 and21), yielding a cross-temporal 

within-pair similarity matrix. We also calculated between-pair cross-temporal similarity matrices, 

and averaged them within each participant and then across participants (Fig. 2d). As expected, 

both the within- and between-pair group-averaged cross-temporal spatial similarity matrices 

showed that the spatial similarity was strongest around the diagonal in the first half-second after 

the onset of SFW-1. This was also the case for the difference between within-pair and the 

between-pair matrices (cluster-based permutation test: p = .002). This effect along the diagonal 

is consistent with the spatial similarity difference reported in Figs. 2b and 2c. Importantly, the 

absence of an effect off the diagonal suggests that the spatial patterns associated with prediction 

were not stable over time.  

 

2.2. The temporal pattern of neural activity was more similar in sentence pairs that 

predicted the same versus different words, and this effect localized to left inferior temporal 

regions 

As described above, across the -880 – -485ms interval prior to the onset of the SFW, we 

observed a general increase in spatial similarity between all pairs of sentences, regardless of 

whether they predicted for the same (within-pair) or a different SFW (between-pair). We next 
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asked whether, within this time window, there were any brain regions in which the temporal 

pattern of neural activity was more similar between sentences that predicted the same versus 

different SFWs. To address this question, in each participant, we quantified the degree of 

temporal similarity of MEG activity produced by pairs of sentences that predicted the same 

versus different SFWs by correlating the temporal pattern of signal produced within this time 

window at each sensor. We then averaged the resulting spatial topographic maps of temporal 

correlations within each participant and then across participants (Fig. 1c). The group-averaged 

temporal similarity maps revealed a general increase in temporal similarity over bilateral 

temporal and posterior sensors, regardless of whether sentences predicted the same or a different 

SFW. When comparing the within- and between-pair temporal similarity topographic maps (Fig. 

3a), the temporal pattern of neural activity was more similar in pairs that predicted the same 

versus different words over central and posterior sensors (cluster-based randomization test: p 

= .008; Fig. 3a: right panel). 

 

In order to estimate the underlying neuroanatomical source of the increased temporal similarity 

associated with the within-pair sentences, we repeated this analysis in source space. We first 

discretized the full brain volume using a grid. At each grid point, we constructed spatial filters at 

each grid point using a ‘beamforming approach’ (a linearly constrained minimum variance 

technique30) and applied it to the MEG data. Then we performed the temporal similarity analysis 

on the time series from the spatial filters. The differences in the temporal similarity R-values 

were mapped on the grid in each participant. These difference values were then morphed to the 

MNI brain and averaged. This analysis showed that the temporal pattern of neural activity was 

more similar in sentence pairs that predicted the same versus different words within the left 

inferior temporal region (see Supplementary Fig. 4a for the 85% maximum difference). The 
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source extended medially to include the left fusiform, parahippocampus and hippocampus, as 

well as the left cerebellum (Fig. 3b; cluster-randomization controlling for multiple comparisons: 

p = .004). The comparison of a randomly selected subset of between-pair correlations that 

matched the number of within-pair correlations confirmed this finding (cluster-randomization 

controlling for multiple comparisons: p = .034, see Supplementary Fig. 3b for the statistically 

significant cluster and Supplementary Fig. 4b for the 85% maximum difference). 

*Insert Fig. 3 here* 

 

3. Discussion 

We aimed to identify neural activity associated with representationally specific lexico-semantic 

prediction during sentence reading. To this end, we used MEG in conjunction with a 

representational similarity approach to index brain activity as participants read sentences in 

which the last word was highly predictable from the context. Based on a spatial correlation 

measure we were able to detect a unique pattern of spatial activity associated with 

representationally specific lexico-semantic prediction. This activity was evident between 120 and 

515ms following the word before the predicted word (SFW-1). Moreover, within this predictive 

window, a temporal correlation measure implicated the left inferior temporal region and 

neighboring areas as playing an important role in implementing specific lexico-semantic 

prediction. To the best of our knowledge, this is the first study to detect representationally 

specific lexico-semantic pre-activation during language processing.  
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3.1. Representationally specific pre-activation appeared immediately after the prediction was 

available 

Our finding that the spatial pattern of neural activity (across sensors) was more similar in 

sentence pairs that predicted the same SFW (within-pairs) than in pairs that predicted different 

SFWs (between-pairs) provides strong evidence that representationally specific information was 

pre-activated. We argue that the increased within-pair spatial correlations reflected the similarity 

between unique spatial patterns of neural activity across sensors associated with the same 

predicted word. We suggest that these unique spatial patterns corresponded to the pre-activation 

of a unique sets of distributed semantic features associated with the predicted words. 

 

An alternative possibility is that, rather than reflecting pre-activation of the same word, the 

increased spatial similarity associated with the within-pairs reflected greater similarity between 

their sentence contexts. We think this is unlikely, since the two contexts within each pair were 

composed of distinct words; in particular, the word before the SFW (SFW-1) always differed 

within pairs. Further, the effect was first observed in the 120 – 515ms interval after the onset of 

word before the SFW (SFW-1). If the effect was driven by related contexts, the larger within-

pair than between-pair correlations would have started to build up earlier. The spatial similarity 

effect also cannot be attributed to the simple recognition of a previously presented SFW (e.g. 

“baby”) in the within-pair analysis. This is because the spatial similarity effect was just as large 

when the unexpected SFW of a pair was presented before the expected SFW as in the opposite 

order (see Supplementary Fig. 2).  

 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 7, 2018. ; https://doi.org/10.1101/243667doi: bioRxiv preprint 

https://doi.org/10.1101/243667
http://creativecommons.org/licenses/by-nd/4.0/


 12

We deliberately presented the sentences at a slow rate of 1000ms per word, and measured spatial 

similarity values at each point in time in order to probe the precise time-course of any 

representationally specific pre-activation in relation to the appearance of the bottom-up input. 

The increased spatial similarity between sentence pairs that predicted the same (versus a 

different) SFW only began at around 120ms after the onset of the word before the SFW (SFW-1). 

This was the first point in time at which participants had sufficient information to unambiguously 

predict a specific SFW. This increased spatial similarity effect lasted until 515ms following the 

onset of the SFW-1, corresponding to 315ms following its offset and then dropped off in the 

second half of the interval before the onset of the SFW (see Fig. 2). The cross-temporal spatial 

similarity matrix (Fig. 2d) confirmed the dynamic nature of this effect. It suggests that, rather 

than being maintained by persistent neural activity across time, any representationally specific 

predictive activity was transient in nature. This finding is in line with the notion of ‘activity-

silent’ working memory31,32. Of course, it will be important for future work to determine whether 

similar dynamics are associated with representationally specific lexico-semantic prediction when 

bottom-up inputs unfold at faster, more naturalistic rates. 

 

3.2. Representationally specific pre-activation was associated with left inferior and medial 

temporal activity 

By analyzing temporal similarity at the source level during the prediction period, we were able to 

identify regions that showed more similarity in their temporal pattern of neural activity in 

sentence pairs that predicted the same (within-pair) than different SFWs (between-pair). We 

found evidence of increased temporal similarity within the left inferior temporal gyrus, extending 

into the medial temporal lobe, including the left fusiform, and parahippocampal gyrus and the 
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hippocampus. We suggest that these regions played a functional role in temporally binding the 

unique patterns of spatial activity (corresponding to unique combinations of distributed semantic 

features) that were pre-activated prior to the onset of the SFW, and therefore in instantiating 

representationally specific lexico-semantic prediction. 

 

The left inferior temporal lobe, particularly its more anterior portions, has long been implicated 

in lexico-semantic processing33-39. In particular, it has been proposed that it acts as a hub (a 

“convergence zone”40) that brings together conceptual information that is distributed throughout 

cortex41,42. Parts of this region may play a particular role in lexical processing, functioning as the 

brain’s dictionary by mediating between conceptual and phonological knowledge of words43,44. 

Ventral anterior subregions of the temporal cortex have also been implicated more generally in 

subserving not only verbal but also non-verbal multimodal semantic representations41,45-47. Most 

relevant to the present study is a recent finding that temporal RSA applied to intracranial EEG 

signals was associated with neural activity within the left inferior temporal lobe that encoded 

item-specific representations during picture naming24. Together with the present findings, this 

supports the idea that the temporal pattern of activity within this region plays a functional role in 

instantiating the activation of specific lexico-semantic items. For example, by tracking the 

precise time-course of activity within distributed regions, it may act to bind them together to 

form a coherent whole48. Crucially, in present study, the increase in temporal similarity between 

sentences that predicted the same SFW began before the bottom-up input became available, 

indicating that it may also instantiate representationally specific lexico-semantic prediction. 

 

Of potential relevance to the idea that this region plays a role in temporal binding is the 
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observation that it extended medially to include the hippocampus. While MEG source-modeling 

results within medial and subcortical regions should be interpreted with caution, the possible 

involvement of the hippocampus is very interesting given other work that has implicated it as 

playing a crucial role in binding representations to generate predictions. A large literature from 

recordings in rats demonstrates that the hippocampus represents upcoming spatial representations 

as the rat is navigating49, and we have a good understanding of the physiological mechanisms 

supporting such predictions50. There is also growing evidence that these predictive mechanisms 

might generalize to the human hippocampus51-55. Moreover, recently, it was found that the 

temporal patterns in higher frequency bands recorded within the hippocampus were similar 

between a pre-picture interval and the picture itself56, suggesting a role in representing pre-

activated non-verbal semantic information. Given these findings, it is conceivable that the 

hippocampus also plays an analogous role in language prediction. Indeed Piai et al. (2016) used 

intracranial recordings in humans to demonstrate predictive effects in the hippocampus in a 

language task in which the sentence-final word had to be produced13. 

 

In conclusion, we successfully used MEG to identify unique spatial and temporal patterns 

associated with the prediction of specific lexico-semantic items during language processing. We 

showed that the spatially specific neural patterns became active at around 100ms after a word 

was unambiguously predicted, that this pre-activation was transient and that it was accompanied 

by unique temporal patterns of activity within the left inferior and medial temporal lobe. These 

findings pave the way towards the use of these methods to determine whether and when such 

specific lexico-semantic representations are pre-activated as language, in both visual and 

auditory domains, unfolds more rapidly in real time. 
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Figure legends 

Fig. 1. The experimental procedure and approach for Representational Similarity Analyses. (a) 

Trials began with a blank screen (1600ms). Sentences were presented in Chinese (translated here 

into English), word-by-word (200ms per word; 800ms blank interval between words). Sentences 

were followed either by ‘NEXT’ (2000ms) or by a probe question (1/6th of trials, randomly). We 

constructed sentence pairs in which the same word could be predicted from the context (e.g. S1-

A & S2-A’; S3-B & S4-B'). One member of each pair ended with the predicted word (e.g. S1-A, 

S3-B) and the other member ended with a plausible but unpredicted word (e.g. S2-A’, S4-B’). 

Before the onset of the predicted word, we compared brain activity associated with the prediction 

of the same word (within-pair) and different words (between-pair). (b) Spatial Representational 

Similarity Analysis. Left: The pattern of MEG data over sensors was correlated between each 

sentence pair (i e.g. S1-A and S2-A’) at each time sample t(j).. Right: The average spatial 

correlation values for pairs (R1
within, R2

within, …) in which the same word was predicted formed the 

within-pair spatial correlation time series (
1

N within

i

R
i=1

N

∑ , shown in red). The average of pairs 

(R1
between, R2

between, …) in which different words were predicted formed the between-pair spatial 

correlation time series (
1

2N(N −1) between

i

R
i=1

2 N ( N−1)

∑ , shown in blue). (c) Temporal Representational 

Similarity Analysis. Left: The pattern of MEG activity over time was correlated between 

sentence pairs, sensor-by-sensor or grid-by-grid point (source level). Right: The average 

temporal correlation values for pairs (R1
within, R2

within, …) in which the same word was predicted 

formed the within-pair temporal correlation topographic/source maps. The average of pairs 

(R1
between, R2

between, …) in which different words were predicted formed the between-pair temporal 

correlation topographic/source maps. 
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Fig. 2. Results: Spatial Representational Similarity Analysis. (a) The time series of spatial 

similarity R values combined across within-pair and between-pair correlations, with the 

horizontal line indicating a threshold of R = 0.04 where the general increase in spatial correlation 

was largest. (b) The time series of spatial similarity R values for pairs in which the same word 

was predicted (within-pair, shown in red) and in which different words were predicted (between-

pair, shown in blue). Both the within- and the between-pair spatial similarity time series showed 

a sharp increase at ~100ms and a decrease at ~400ms after the onset of each word. Between -880 

– -485ms before the onset of the final word, the spatial similarity was greater when the same 

word was predicted than when different words were predicted (t(25) = 4.434, p < .001). (c) Scatter 

plots of spatial similarity values averaged between -880 – -485 ms before the onset of the final 

word in 26 participants. In most participants (22/26) the within-pair spatial correlations were 

greater than the between-pair spatial correlations. (d) Cross-temporal spatial similarity matrices 

for the within- and between-pair correlations (Red: positive correlations; blue: negative 

correlations). Left & middle: Both sets of pairs showed increased spatial similarity along the 

diagonal with greater similarities for the within- than the between-pairs in the -900 – -500ms 

interval prior to the onset of the final word. Right: The matrix shows the cluster with a 

statistically significant difference between the within-pair and between-pair spatial correlations 

(p = .002, cluster-randomization approach controlling for multiple comparisons over time by 

time samples). The absence of ‘off-diagonal’ correlations suggests that the spatial pattern 

associated with prediction was reliable but changed over time.  

 

Fig. 3. Results: Temporal Representational Similarity Analysis carried out between -880 – -

485ms before the onset of the final word. (a) Temporal similarity topographic maps at the sensor 
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level. Left & middle: Both the within- and between-pair correlations revealed increased temporal 

similarity over bilateral temporal and posterior sensors. Right: the difference map revealed 

greater temporal similarity when the same word was predicted than when different words were 

predicted over central and posterior sensors. The cluster of sensors where this difference was 

significant is marked with black asterisks (p = .008; a cluster-randomization approach controlling 

for multiple comparisons over sensors). (b) Temporal similarity difference map in source space.  

The values were interpolated on the MNI template brain and are shown both on the coronal plane 

(Talairach coordinate of peak: y = -19.5 mm) and the sagittal plane (Talairach coordinate of peak: 

x = -39.5 mm). This revealed significantly greater temporal similarity between sentence pairs 

that predicted the same word than pairs that predicted different words within the left inferior 

temporal gyrus, extending into the medial temporal lobe including the left fusiform, 

hippocampus and parahippocampus as well as left cerebellum (p = .004; a cluster-randomization 

approach controlling for multiple comparisons over grid points). 

 

Supplementary Fig. 1. Results: Spatial Representational Similarity Analysis after matching the 

number of pairs between the within-pair and between-pair correlations. (a) The time series of 

spatial similarity R values for the pairs in which the same word was predicted (within-pair, 

shown in red) and in which a different word was predicted (between-pair, shown in blue). Within 

the -880 – -485ms interval relative to the onset of the final word, the spatial similarity was 

greater when the same word was predicted than when different words were predicted (-880 – -

485ms before its onset; t(25) = 2.393, p = .025). (b) Scatter plots of the spatial similarity values 

averaged between -880 – -485ms before the onset of final word in 26 participants. In most 
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participants (17/26) the within-pair spatial correlations were greater than the between-pair spatial 

correlations. 

 

Supplementary Fig. 2. Results: Spatial Representational Similarity Analysis for two subsets of 

trials where sentences ending with expected words were seen first (a and b) or sentences ending 

with unexpected words were seen first (c and d). The time series of spatial similarity R values for 

the pairs in which the same word was predicted (within-pair) are shown in red, while the time 

series for the pairs in which a different word was predicted (between-pair) are shown in blue. 

The spatial similarity was greater when the same word was predicted than when different words 

were predicted in both subsets. No significant difference was found between the two subsets of 

trials, as indicated by the lack of a main effect of Order (Expected First, Unexpected First) (F(1,25) 

= .747, p = .396, η2 = .029) or an interaction between Order (Expected First, Unexpected First) 

and Pairs (Within-pair, Between-pair) (F(1,25) = 1.804, p = .191, η2 = .067). 

 

Supplementary Fig. 3. Results: Temporal Representational Similarity Analysis carried out 

between -880 – -485ms before the onset of the final word after matching the number of pairs 

between the within-pair and between-pair correlations. (a) Temporal similarity topographic maps 

at the sensor level. Left & middle: Both the within- and between-pair correlations revealed 

increased temporal similarity over bilateral temporal and posterior sensors. Right: the difference 

map revealed greater temporal similarity when the same word was predicted than when different 

words were predicted over central and posterior sensors (marginally significant cluster: p = .0679; 

a cluster-randomization approach controlling for multiple comparisons over sensors). (b) 

Temporal similarity difference map in source space.  The values were interpolated on the MNI 
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template brain and are shown both on the coronal plane (Talairach coordinate of peak: y = -9.5 

mm) and the sagittal plane (Talairach coordinate of peak: x = -29.5 mm). This revealed 

significantly greater temporal similarity between sentence pairs that predicted the same word 

than pairs that predicted a different word within the left hippocampus and extended into the left 

inferior temporal region, left fusiform, parahippocampus, amygdala as well as left cerebellum (p 

= .034; a cluster-randomization approach controlling for multiple comparisons over grid points). 

 

Supplementary Fig. 4. Results: Temporal Representational Similarity Analysis carried out 

between -880 – -485ms before the onset of the final word, showing the 85% maximum 

difference of the statistically significant cluster in source space. (a) Temporal similarity 

difference map in source space between the averaged N within-pair correlations and 2N(N-1) 

between-pair correlations. The values were interpolated on the MNI template brain and are 

shown both on the coronal plane (Talairach coordinate of peak: y = -19.5 mm) and the sagittal 

plane (Talairach coordinate of peak: x = -39.5 mm). The maximum difference between the 

within-pair and the between-pair correlations was found within the left inferior temporal gyrus, 

and the cluster extended into the medial temporal lobe including the left fusiform, hippocampus 

and parahippocampus. (b) Temporal similarity difference map in source space between the 

averaged N within-pair correlations and N between-pair correlations. The values were 

interpolated on the MNI template brain and are shown both on the coronal plane (Talairach 

coordinate of peak: y = -9.5 mm) and the sagittal plane (Talairach coordinate of peak: x = -29.5 

mm). The maximum difference between the within-pair and the between-pair correlations was 

found within the left inferior temporal gyrus, and the cluster extended into the medial temporal 

lobe including the left fusiform, hippocampus and parahippocampus. 
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4. Methods 

4.1. Design and development of stimuli 

We developed a stimulus set of 120 pairs of sentences in Mandarin with highly constraining 

contexts. The two contexts within each pair were distinct from one another, and had no content 

words in common (with the exception of five pairs), but they each strongly predicted the same 

sentence-final word (SFW). For example, in Fig. 1, both sentences S1 and S2 predicted the word, 

“baby”. In half of these sentences, the expected final word was a noun and in the other half, it 

was a verb. 

 

To select and characterize this final set of sentences, we began with an initial set of 208 pairs and 

carried out a cloze norming study in 30 participants (mean age: 23 years; range: 18 – 28 years 

old; 15 males), who did not participate in the subsequent MEG study. In this study, sentence 

contexts were presented without the SFW (e.g. ‘In the crib there is a sleeping …’) and 

participants were asked to complete the unfinished sentence by writing down the most likely 

ending. The two members of each sentence pair were counterbalanced across two lists (with 

order randomized within lists), which were each seen by half the participants. Testing took 

approximately 40 minutes per subject. 

 

To calculate the lexico-semantic constraint of each sentence context, we tallied the number of 

participants who produced the most common completion for a given context. We retained 66 

pairs in which 73% of the participants predicted the same SFW, i.e. at least 11 out of 15 

participants filled in the same word in each sentence pair. We then revised 103 sentences (54 

sentences in list 1 and 49 in list 2) to make them more constraining, and we re-tested them in the 
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same group of participants. After this second round of cloze testing, we selected the final set of 

120 sentences for the MEG experiment. In the final set of stimuli, the lexico-semantic constraints 

of 109 pairs were above 70% and the constraints of the remaining 12 pairs were slightly lower 

(Mean: 58%; SD: 12). Across all pairs, the mean lexico-semantic constraint was 88% (SD: 12).  

 

We then generated full sentences by adding a SFW to each member of a pair. In one member of 

the pair, this SFW was highly predictable; it was the most common word filled by the cloze 

participants (e.g. “baby” following context S1, “In the crib there is a sleeping…”). In the other 

member of the pair, we selected a word that was semantically related to the highly predicted 

word but was not produced by any of the participants in the cloze norming, with the whole 

sentence still being plausible (e.g. “child” following context, S2, “In the hospital, there is a 

newborn…”). Thus, for this sentence, the lexical cloze probability was zero, see Fig. 1a for 

examples. All sentence contexts (e.g. S1 and S2) were combined with both lexically predicted 

(e.g. A: ‘baby’) and unpredicted (e.g. A’: ‘child’) SFWs, e.g. S1-A, S1-A’, S2-A, S2-A’. All 

combinations of the sentence contexts and SFWs were then counterbalanced across two lists. 

This ensured that, in the MEG session, while each participant would see both members of each 

sentence pair, they never saw the same SFW twice. Within each list, sentences were pseudo-

randomized so that participants did not encounter more than three expected or unexpected SFWs 

in succession. All Mandarin sentences, together with their English translations, are available in 

the Supplementary Material.  
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4.2. Participants in the MEG study 

The study was approved by the Institutional Review Board (IRB) of the Institute of Psychology, 

Chinese Academy of Sciences. Thirty-four students from the Beijing area were initially recruited 

by advertisement. They were all right-handed native Chinese speakers without histories of 

language or neurological impairments. All gave informed consent and were paid for their time. 

The data of eight participants were subsequently excluded because of technical problems, 

leaving a final MEG dataset of 26 participants (mean age 23 years, range 20 – 29; 13 males). 

 

4.3. Procedure 

MEG data were collected while participants sat in a comfortable chair within a dimly-lit shielded 

room. Stimuli were presented on a projection screen in a grey color on a black background 

(visual angle ranging from 1.22 to 2.44 degrees). As shown in Fig. 1a, each trial began with a 

blank screen (1600ms), followed by each word with an SOA of 1000ms (200ms presentation 

with an inter-stimulus interval, ISI, of 800ms). The final word ended with a period followed by a 

2000ms ISI. After one-sixth of the trials, at random, participants read either a correct or an 

incorrect statement that referred back to the semantic content of the sentence that they just read 

(for example, S1-A and S2-A’ in Fig. 1a might be followed by the incorrect statement, “There is 

an old man.”). Participants were instructed to judge whether or not the statements were correct 

by pressing one of two buttons with their left hand. This helped ensure that participants read the 

sentences for comprehension. In all other trials, the Chinese word '�� ' (meaning 'NEXT') 

appeared, and participants were instructed to simply press another button with their left hand 

within 5000ms in order to proceed to the next trial. 
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*Insert Fig. 1 here* 

 

The 240 sentences were divided into 8 blocks, with each block lasting about 8 minutes. Between 

blocks there was a small break during which participants were told that they could relax and 

blink, but to keep the position of their heads still. Participants could start the next block by 

informing the experimenter verbally. The whole experiment lasted about 1.5 hours, including 

preparation, instructions and a short practice session consisting of eight sentences. 

 

4.4. MEG data acquisition 

MEG data was collected using a CTF Omega System with 275 axial gradiometers at Institute of 

Biophysics, Chinese Academy of Sciences. Six sensors (MLF31, MRC41, MRF32, MRF56, 

MRT16, MRF24) were non-functional and were therefore excluded from the recordings. The 

ongoing MEG signals were low-pass filtered at 300Hz and digitized at 1200Hz. Head position, 

with respect to the sensor array, was monitored continuously with three coils placed at 

anatomical landmarks (fiducials) on the head (forehead, left and right cheekbones). The total 

movement across the whole experiment was, on average, 8mm across all participants. In addition, 

structural Magnetic Resonance Images (MRIs) of 24 participants were obtained using a 3.0T 

Siemens system. During MRI scanning, markers were attached in the same position as the head 

coils, allowing for later alignment between these MRIs and the MEG coordinate system. 

 

4.5. MEG data processing 

MEG data were analyzed using the Fieldtrip software package, an open-source Matlab toolbox57. 

In order to minimize environmental noise, we applied third order synthetic gradiometer 
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correction during preprocessing. Then, the MEG data were segmented into 4000ms epochs, time-

locked from the onset of two words before the SFW (SFW-2) until 2000ms after the onset of the 

SFW. Within this 4000ms epoch, trials contaminated with muscle or MEG jump artifacts were 

identified and removed using a semi-automatic routine. After that, we carried out an Independent 

Component Analysis (ICA;58,59) and removed components associated with the eye-movement 

and cardiac activity from the MEG signal (about 5 components per subject). Finally, we 

inspected the data visually and removed any remaining artifacts. On average 96% +/- 3.4%) of 

trials were retained. 

 

4.5.1. Spatial Representational Similarity Analysis 

4.5.1.1. Calculation of spatial similarity time series  

A schematic illustration of the spatial representational similarity analysis (RSA) approach is 

shown in Fig. 1b. First, we detrended and applied a 30Hz low pass filter to the MEG data. Next, 

in each participant, for each trial, and at each time sample, we extracted a vector of MEG data 

that represented the spatial pattern of activity across all 269 MEG sensors (6 of 275 sensors were 

not operational). We then quantified the degree of spatial similarity of MEG activity produced by 

the two members of each sentence pair predicting the same SFW (e.g. between S1-A and S2-A’, 

in Fig. 1a) by correlating the spatial vectors between each member of a pair at consecutive time 

sample across the 4000ms epoch. This yielded a time-series of correlations (Pearson R-values) 

reflecting the degree of spatial similarity at each time sample between sentences that predicted 

the same SFW (e.g. time-series R1
within and R2

within, see Fig. 1b). We refer to these as within-pair 

spatial similarities. After artifact rejection, in each participant, there were, on average, N = 

111+/-8 complete within-pair spatial similarity time series. We then averaged these time series 
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together over all pairs of sentences that predicted the same SFW to yield an average within-pair 

spatial similarity time series within each participant (
1

N within

i

R
i=1

N

∑ ; Fig. 1b). 

 

We then repeated this entire procedure, but this time correlating spatial patterns of MEG activity 

between pairs of sentences that predicted a different SFW, for example, between S1-A and S3-B 

(Fig. 1a). This yielded 2N(N-1) between-pair spatial correlation time courses, e.g. R1
between and 

R2
between (Fig. 1b). We again averaged these together to yield a time series of R-values within 

each participant (
1

2N(N −1) between

i

R
i=1

2 N ( N−1)

∑ ; Fig. 1b), which reflected the degree of similarity 

between spatial patterns of activity elicited by sentences that predicted different SFWs at each 

time sample (i.e. between-pair spatial similarity time series). Fig. 2b shows the averages, across 

all participants, of the within-pair spatial similarity time series, and the between-pair spatial 

similarity time series. 

 

4.5.1.2. Calculation of cross-temporal spatial similarity matrices 

To characterize how temporally sustained the spatial patterns were (see also21,29), we correlated 

the spatial pattern vector between one member of a sentence pair (e.g. S1-A) at a particular time 

sample (e.g. t1) with that of the other member of the pair (e.g. S2-A’) at all time samples (e.g. 

from t1 to tn) in each participant. The resulting values can be visualized as a similarity matrix 

(Fig. 2d), with each entry representing the spatial similarity between two sentences at two time 

samples (e.g. R(i,j) represents the correlation between S1-A at time i and S2-A’ at time j). The R-

values along the diagonal reflect the spatial similarity at corresponding time samples (R(i,j) when 

i = j; i.e. the time of similarity R-values as described in Fig. 1b), while the R-values off the 
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diagonal reflects cross-temporal spatial similarity. We repeated this procedure for pairs of 

sentences that predicted different SFWs (between-pairs). The cross-temporal similarity matrices 

for both within-pair and between-pair correlations, were averaged across sentence pairs for each 

participant (see Fig. 2d). Fig. 3 also shows the group-averaged within-pair and between-pair 

cross-temporal spatial similarity matrices. When constructing these cross-temporal similarity 

matrices, to increase computational efficiency, we down-sampled the data to 300 Hz and 

randomly selected N between-pairs to match with the N within-pairs for averaging. The 

correlation values were smoothed in time in both directions with a Gaussian kernel (40ms time 

window, SD: 8ms).  

 

4.5.1.3. Statistical testing 

As can be seen in Fig. 2a, the averaged within-pair and the between-pair spatial similarity time 

series showed a sharp increase in R-values at around 100ms after the onset of the word before 

the SFW (SFW-1) lasting for about 400ms (i.e. 300ms into the ISI after the SFW-1 offset) before 

sharply decreasing again. This pattern of a sharp increase and decrease in spatial correlations was 

also seen in association with the previous word (SFW-2) as well as the following word (SFW). 

In order to objectively quantify the time-window over which this general increase in spatial 

similarity R values was sustained during the prediction period, we compared the averaged 

within-pair and between-pair spatial similarity time series against a threshold of R = 0.04 based 

on visual inspection of the R-values in the prediction time window. We found an increase in R-

values from -880ms to -485ms (i.e. 120ms to 515ms relative to the onset of SFW-1), as well as 

from -1900 to -1510ms before the onset of the SFW (i.e. 100ms to 490ms relative to the onset of 

SFW-2) (Fig. 2b). 
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We then averaged across the -880 – -485ms interval before the onset of the SFW and carried out 

paired t-tests to determine whether, collapsed across these time windows, the spatial pattern of 

MEG activity produced by sentence pairs that predicted the same SFW was significantly more 

similar than the spatial pattern of MEG activity produced by sentences that predicted different 

SFW (i.e. within-pair vs. between-pair spatial correlation R values). We repeated the same 

analysis for the -1900 – -1510ms interval before the onset of the SFW. 

 

To test for cross-temporal statistical differences in spatial similarity patterns produced by 

sentence pairs that predicted the same versus different SFWs while controlling for multiple 

comparisons over time, we applied a cluster-randomization approach60. To this end, we first 

carried out paired t-tests at each data time sample in the cross-temporal spatial similarity 

matrices within the 1000ms interval between the onset of SFW-1 and the onset of SFW. We used 

temporal cluster-based permutations to account for multiple comparisons60. Data points that 

exceeded a pre-set uncorrected p-value of 0.05 or less were considered temporal clusters. The 

individual t-statistics within each cluster were summed to yield a cluster-level test statistic — the 

cluster mass statistic. We then randomly re-assigned the spatial similarity R values across the 

two conditions (i.e. within-pair and between-pair) at each data point within the matrix, within 

each participant, and calculated cluster-level statistics as described above. This was repeated 

1000 times. For each randomization, we took the largest cluster mass statistic (i.e. the summed T 

values), and, in this way, created a null distribution for the cluster mass statistic. We then 

compared our observed cluster-level test statistic against this null distribution. Any temporal 

clusters falling within the highest or lowest 2.5% of the distribution were considered significant. 
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4.5.2. Temporal representational similarity analysis 

4.5.2.1. Construction of temporal similarity maps at sensor level 

In each participant, at each sensor for each trial, we considered the MEG time series in the -880 – 

-485ms interval before the onset of the SFW — that is, the time-window over which we 

observed the general increase in spatial similarity R values during the prediction period (see Fig. 

2a). At each sensor, we then correlated this time series within this window between the two 

members of each sentence pair predicting the same SFW (e.g. between S1-A and S2-A’, in Fig. 

1a) to yield an R value representing the degree of temporal similarity: an R value of 1 implies 

that the two time series are in perfect synchrony; an R value of 0 implies that the two time series 

are not correlated, while an R value of -1 implies that the two time series are anti-correlated. 

Together, these R values at each sensor yielded within-pair temporal similarity topographic maps 

for each pair, e.g. topographic maps R1
within and R2

within, see Fig. 1c. We then averaged across all 

the within-pair temporal correlations at each sensor to yield an average within-pair temporal 

similarity topographic map within each participant and then averaged across participants (see Fig. 

1c). 

 

We then repeated this procedure, but this time correlating time series from MEG sensors 

produced by sentence pair that predicted different SFWs to investigate the spatial distribution of 

between-pair temporal correlations (e.g. topographic maps R1
between and R2

between in Fig. 1c). 

These were again averaged together to yield an average topographic map of R values within each 

participant, and then averaged across participants (Fig. 1c). 
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4.5.2.2. Construction of temporal similarity maps at source level 

We also constructed temporal similarity maps at the source level. We estimated the MEG signals 

at the source level by applying a spatial filter at each grid point using a beamforming approach30. 

We computed a linearly constrained minimum variance (LCMV; 30) spatial filter on the 30 Hz 

low-pass filtered (and linearly detrended) data from onset of SFW-1 to 1000ms after onset of 

SFW (i.e. -1000 – 1000ms relative to SFW onset). The LCMV approach estimates a spatial filter 

from a lead field matrix and the covariance matrix of the data from the axial gradiometers. To 

obtain the lead field for each participant, we first spatially co-registered the individual 

anatomical MRIs to the sensor MEG data by identifying the fiducials at the forehead and the two 

cheekbones. Then a realistically shaped single-shell head model was constructed based on the 

segmented anatomical MRI for each participant61. Each brain volume was divided into a grid 

with 10mm spacing and the lead field was calculated for each grid point. Then the grid was 

warped to the template Montreal Neurological Institute (MNI) brain (Montreal, Quebec, Canada). 

The MNI template brain was used for one participant whose MRI image was not available. The 

application of the LCMV spatial filter to the sensor-level data resulted in single-trial estimates of 

time series at each grid point in three orthogonal orientations. To obtain one signal per grid point 

we projected the time series along the direction that explains most variance using singular value 

decomposition. In order to construct temporal similarity maps in source space, we followed the 

same procedures as above, by correlating the time series at each grid point. The grand-average 

similarity values were interpolated onto the MNI template brain (Fig. 3b). 

 

4.5.2.3. Testing for significant difference between the within- and between-pair temporal 

similarity maps 
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To compare the within-pair vs. between-pair temporal correlation R value statistically, both at 

the sensor level and at the source level, we carried out a cluster-based permutation approach to 

control for multiple comparisons over sensors or grid-points60. At each sensor/grid point, in each 

participant, we compared the mean differences in the temporal similarity R values between 

sentence pairs predicting the same word (i.e. within-pair) versus a different word (i.e. between-

pair). Sensors within 40mm that exceeded the 95th percentile of the mean difference were 

considered clusters. In source space, clusters were formed by contiguous grids points. Within 

each cluster, we then summed the mean differences of R values at each sensor/grid-point to yield 

a cluster-level test statistic — the cluster mass statistic. Next, we randomly re-assigned the R-

values across the two conditions (i.e. within-pair and between-pair) at each sensor/grid within 

each participant, and calculated cluster-level statistics as described above. This was repeated 

1000 times. For each randomization, we considered the largest cluster mass statistic (i.e. the 

summed mean difference within a cluster to create a null distribution for the cluster mass 

statistic). Then we compared our observed cluster-level test statistic against this null distribution. 

Any clusters falling within the highest or lowest 2.5% of the distribution were considered 

significant. 
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