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Abstract

Previous studies suggest that people generate predictions during language comprehension at
multiple linguistic levels. It has been hypothesized that, under some circumstances, this can
result in the pre-activation of specific lexico-semantic representations. We asked whether such
representationally specific semantic pre-activation can be detected in the brain ahead of
encountering bottom-up input. We measured MEG activity as participants read highly
constraining sentences in which the final word could be predicted. We found that both spatial and
temporal patterns of the brain activity prior to the onset of this word were more similar when the
same words were predicted than when different words were predicted. This pre-activation was
transient and engaged a left inferior and medial temporal region. These results suggest that
unique spatial patterns of neural activity associated with the pre-activation of distributed
semantic representations can be detected prior to the appearance of new sensory input, and that
the left inferior and medial temporal regions may play a role in temporally binding such

representations, giving rise to specific lexico-semantic predictions.
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1. Introduction

After reading or hearing the sentence “In the crib there is a sleeping ...”, the word “baby” is
already activated in our minds before we encounter it. Here, we used magnetoencephalography
(MEG) to determine whether it is possible to detect a spatio-temporal signature that corresponds

to the representationally specific pre-activation of the predicted word (“baby”).

Language prediction allows us to rapidly understand what we read or hear by giving processing a
head start. Within a hierarchical generative framework of language processing', information at
higher levels flows down the hierarchy to pre-activate information at lower levels in an attempt
to minimize prediction errors within an internal generative model that explains the statistical
structure of the bottom-up sensory input. When these predictions match this bottom-up input, its
recognition is facilitated, and when they mismatch this input, the generative model is updated.
During language processing, people can generate probabilistic predictions at multiple linguistic
levels, including events?, syntax®, semantic features®, phonetic® and orthographic features® and
even lower-level visual’ and auditory® features. The level and strength of such pre-activation
depends on many factors, including contextual constraint’® and the comprehender’s

communicative goals and strategy (see , section 3.4).

Prediction is also hypothesized to be a core computational principle of brain function™.
Numerous electrophysiological studies have investigated language prediction by measuring brain
responses to words with different levels of predictability. This includes a wide range of studies
based on the N400 paradigm™. Only a few studies, however, have examined brain activity

associated with the prediction period itself, prior to the presentation of the predicted word. These
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12,13

studies report that highly constraining sentence contexts induce an increase in theta power—=~" as

well as a suppression in alpha/beta power**™*’. They also report activity within both neocortical

12,15

(e.g., left frontal and temporal regions;=™°) and subcortical (e.g., hippocampus and

cerebellum;***#*%) regions. Thus far, however, no study has determined whether it is possible to
detect neural activity associated with representationally specific lexico-semantic prediction, and,

if so, when exactly such information is active in relation to the appearance of the bottom-up

input.

Neural patterns reflecting representationally specific information can be detected using
multivariate pattern analysis (MPVA) such as representational similarity analysis (RSA)*?,
RSA assumes that similarities in both spatial and/or temporal patterns of brain activity can be

used to identify brain activity associated with representationally similar items. This approach has,

for example, been used to decode representationally specific visual information during both

23,24 25,26

perception=<" and working memory maintenance
In the present MEG study, participants read pairs of sentences with highly constraining contexts
(Fig. 1a). Each member of a pair predicted the same word. We visually presented the sentences at
a slow rate of 1s per word. This guaranteed sufficient time to detect any representationally
specific neural activity before the onset of the predicted word, and to identify its precise time
course in relation to the appearance of the bottom-up input. We hypothesized that, if
representationally specific lexico-semantic information is pre-activated, the brain activity
associated with pre-activation of the same predicted words (within-pairs) should be more similar

than brain activity associated with differently predicted words (between-pairs). We examined
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both spatial and temporal indices of neural similarity. Spatial similarity values were computed by
correlating the pattern of MEG data across all sensors between pairs of sentences. This enabled
us to identify the temporal dynamics associated with the pre-activation of specific lexico-
semantic items (Fig. 1b). Temporal similarity values were computed by correlating the temporal
pattern of MEG data between pairs of sentences. By examining such temporal correlations at
each location (Fig. 1c), we were able to identify the key brain structures involved in generating

representationally specific semantic predictions.

2. Results

Twenty-six participants read 120 sentence pairs presented at a rate of one word per second while
MEG data were acquired. Pairs of sentences were constructed that strongly predicted the same
sentence-final words (SFWs). As an example (Fig. 1a), sentences S1 (e.g. “In the hospital, there
is a newborn...”) and S2 (“In the crib there is a sleeping...”) both predicted the word “baby”. We
compared the similarity pattern of sentence pairs that predicted the same SFWs (within-pairs) to
those that predicted different SFWs (between-pairs) before the SFW actually appeared. To avoid
repetition of the predicted word across sentence pairs, one member of each pair ended with the
predicted word (e.g. in S1, “baby”) while the other member ended with an unpredicted but
plausible word (e.g. in S2, “child”). The 120 sentence pairs were presented in random order.
Participants were asked to read each sentence carefully and to answer yes/no comprehension

questions following 1/6th of the sentences. Comprehension accuracy was high (98%-+/-2.0%).
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2.1. The spatial pattern of neural activity was more similar in sentence pairs that predicted
the same ver sus different wor ds

In each participant, we quantified the degree of spatial similarity of MEG activity (30Hz low-
pass filter) produced by pairs of sentences that predicted either the same SFW (i.e. within-pair,
e.g. S1-A vs. S2-A’) or a different SFW (i.e. between-pair, e.g. S1-A vs. S3-B) by correlating the
pattern of signal produced across sensors at each sampling point from -2000ms to 1000ms
relative to SFW onset. We then averaged the resulting time series of spatial correlations (R-
values) within each participant and then across participants (Fig. 2b). Both the within- and
between-pair group-average time series showed a sharp increase at ~100ms after the onset of the
second-from-final word (SFW-1; at -1000ms) that lasted ~400ms before sharply decreasing (Fig.
2a). The same pattern was observed around the previous word (SFW-2) and around the SFW.
We attribute this general increase in spatial similarity to the visual onset and offset of each word,
resulting in an increase of spatial similarity for around 300ms after its offset at 200ms relative to
the word onset. We focused the rest of the analysis on the predictive intervals before the SFW

and before SFW-1 where these general increases in spatial correlation were largest (R > 0.04).

Averaged across the -880 — -485ms interval before the onset of the SFW (corresponding to 120 —
515ms after the onset of SFW-1), we found that the spatial pattern of neural activity (across
sensors) was more similar in sentence pairs that predicted the same SFW (within-pairs) than in
pairs that predicted different SFWs (between-pairs), t.s = 4.434, p < .001, Fig. 2b. Fig. 2c shows
a scatter plot of the averaged R-values per participant in this interval. Twenty-two out of 26
subjects had R-values below the diagonal, i.e. larger values for the within-pair than the between-

pair spatial correlations. In contrast, there was no difference between the within-pair and
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between-pair spatial correlation values averaged across the -1900 — -1510ms interval before the
SFW (corresponding to 100 — 490ms after the onset of SFW-2): t.s, = -0.212, p = .834.

*Insert Fig. 1 here*

This difference in spatial similarity within the predictive interval cannot be explained by
differences in the number of within- and between-sentence pairs used to compute these spatial

correlation values because they were calculated per pair before averaging (see”*®

). However, to
convince skeptics, we repeated the analysis using a randomly selected subset of between-pair
correlations that matched the number of within-pair correlations. This analysis confirmed that
the within-pair spatial correlation values were greater than the between-pair correlations (t.s =

2.393, p =.025; see Supplementary Fig. 1).

We avoided the repetition of the SFW (e.g. “baby”) between pairs by replacing the predicted
SFW of one member with an unpredicted but plausible word (e.g. “child”). However, it might be
argued that, after encountering the predicted word (“baby”), participants retained this item within
memory and that the increased spatial similarity of brain activity when reading the other member
of the pair was due to anticipatory retrieval facilitated by the previous presentation of the item.
To address this concern, we divided the sentence pairs into two subsets according to whether the
sentences with expected or unexpected SFWs were presented first. We then applied the spatial
similarity analysis to both subsets (Supplementary Fig. 2) and compared their spatial similarity
values. A repeated measures ANOVA with the factors Order (Expected SFW first, Unexpected
SFW first) and Pairs (Within-pair, Between-pair) showed no main effect of Order (F(,25) = 0.747,

p = .396, n2 = .029), nor an interaction between Order and Pairs (Fa25 = 1.804, p = .191, n2
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=.067). We conclude that previously encountering a sentence ending with the expected SFW did
not inflate the spatial similarity between sentence pairs that predicted the same SFW.

*Insert Fig. 2 here*

To characterize the temporal dynamics of brain activity reflecting representationally specific
predictions, we correlated the spatial pattern of activity (across sensors) between one sentence
(e.g. S1-A) at a particular time sample (e.g. t,) with that of its paired sentence (e.g. S2-A’) at all
time samples (e.g. from t, to t,) in each participant (see also® and®), yielding a cross-temporal
within-pair similarity matrix. We also calculated between-pair cross-temporal similarity matrices,
and averaged them within each participant and then across participants (Fig. 2d). As expected,
both the within- and between-pair group-averaged cross-temporal spatial similarity matrices
showed that the spatial similarity was strongest around the diagonal in the first half-second after
the onset of SFW-1. This was also the case for the difference between within-pair and the
between-pair matrices (cluster-based permutation test: p = .002). This effect along the diagonal
is consistent with the spatial similarity difference reported in Figs. 2b and 2c. Importantly, the
absence of an effect off the diagonal suggests that the spatial patterns associated with prediction

were not stable over time.

2.2. The temporal pattern of neural activity was more similar in sentence pairs that
predicted the same ver sus different words, and this effect localized to left inferior temporal
regions

As described above, across the -880 — -485ms interval prior to the onset of the SFW, we
observed a general increase in spatial similarity between all pairs of sentences, regardless of

whether they predicted for the same (within-pair) or a different SFW (between-pair). We next
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asked whether, within this time window, there were any brain regions in which the temporal
pattern of neural activity was more similar between sentences that predicted the same versus
different SFWs. To address this question, in each participant, we quantified the degree of
temporal similarity of MEG activity produced by pairs of sentences that predicted the same
versus different SFWs by correlating the temporal pattern of signal produced within this time
window at each sensor. We then averaged the resulting spatial topographic maps of temporal
correlations within each participant and then across participants (Fig. 1c). The group-averaged
temporal similarity maps revealed a general increase in temporal similarity over bilateral
temporal and posterior sensors, regardless of whether sentences predicted the same or a different
SFW. When comparing the within- and between-pair temporal similarity topographic maps (Fig.
3a), the temporal pattern of neural activity was more similar in pairs that predicted the same
versus different words over central and posterior sensors (cluster-based randomization test: p

=.008; Fig. 3a: right panel).

In order to estimate the underlying neuroanatomical source of the increased temporal similarity
associated with the within-pair sentences, we repeated this analysis in source space. We first
discretized the full brain volume using a grid. At each grid point, we constructed spatial filters at
each grid point using a ‘beamforming approach’ (a linearly constrained minimum variance
technique®®) and applied it to the MEG data. Then we performed the temporal similarity analysis
on the time series from the spatial filters. The differences in the temporal similarity R-values
were mapped on the grid in each participant. These difference values were then morphed to the
MNI brain and averaged. This analysis showed that the temporal pattern of neural activity was
more similar in sentence pairs that predicted the same versus different words within the left

inferior temporal region (see Supplementary Fig. 4a for the 85% maximum difference). The
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source extended medially to include the left fusiform, parahippocampus and hippocampus, as
well as the left cerebellum (Fig. 3b; cluster-randomization controlling for multiple comparisons:
p = .004). The comparison of a randomly selected subset of between-pair correlations that
matched the number of within-pair correlations confirmed this finding (cluster-randomization
controlling for multiple comparisons: p = .034, see Supplementary Fig. 3b for the statistically
significant cluster and Supplementary Fig. 4b for the 85% maximum difference).

*Insert Fig. 3 here*

3. Discussion

We aimed to identify neural activity associated with representationally specific lexico-semantic
prediction during sentence reading. To this end, we used MEG in conjunction with a
representational similarity approach to index brain activity as participants read sentences in
which the last word was highly predictable from the context. Based on a spatial correlation
measure we were able to detect a unique pattern of spatial activity associated with
representationally specific lexico-semantic prediction. This activity was evident between 120 and
515ms following the word before the predicted word (SFW-1). Moreover, within this predictive
window, a temporal correlation measure implicated the left inferior temporal region and
neighboring areas as playing an important role in implementing specific lexico-semantic
prediction. To the best of our knowledge, this is the first study to detect representationally

specific lexico-semantic pre-activation during language processing.

10
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3.1. Representationally specific pre-activation appeared immediately after the prediction was
available

Our finding that the spatial pattern of neural activity (across sensors) was more similar in
sentence pairs that predicted the same SFW (within-pairs) than in pairs that predicted different
SFWs (between-pairs) provides strong evidence that representationally specific information was
pre-activated. We argue that the increased within-pair spatial correlations reflected the similarity
between unique spatial patterns of neural activity across sensors associated with the same
predicted word. We suggest that these unique spatial patterns corresponded to the pre-activation

of a unique sets of distributed semantic features associated with the predicted words.

An alternative possibility is that, rather than reflecting pre-activation of the same word, the
increased spatial similarity associated with the within-pairs reflected greater similarity between
their sentence contexts. We think this is unlikely, since the two contexts within each pair were
composed of distinct words; in particular, the word before the SFW (SFW-1) always differed
within pairs. Further, the effect was first observed in the 120 — 515ms interval after the onset of
word before the SFW (SFW-1). If the effect was driven by related contexts, the larger within-
pair than between-pair correlations would have started to build up earlier. The spatial similarity
effect also cannot be attributed to the simple recognition of a previously presented SFW (e.g.
“baby”) in the within-pair analysis. This is because the spatial similarity effect was just as large
when the unexpected SFW of a pair was presented before the expected SFW as in the opposite

order (see Supplementary Fig. 2).

11
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We deliberately presented the sentences at a slow rate of 1000ms per word, and measured spatial
similarity values at each point in time in order to probe the precise time-course of any
representationally specific pre-activation in relation to the appearance of the bottom-up input.
The increased spatial similarity between sentence pairs that predicted the same (versus a
different) SFW only began at around 120ms after the onset of the word before the SFW (SFW-1).
This was the first point in time at which participants had sufficient information to unambiguously
predict a specific SFW. This increased spatial similarity effect lasted until 515ms following the
onset of the SFW-1, corresponding to 315ms following its offset and then dropped off in the
second half of the interval before the onset of the SFW (see Fig. 2). The cross-temporal spatial
similarity matrix (Fig. 2d) confirmed the dynamic nature of this effect. It suggests that, rather
than being maintained by persistent neural activity across time, any representationally specific
predictive activity was transient in nature. This finding is in line with the notion of ‘activity-
silent” working memory**2. Of course, it will be important for future work to determine whether
similar dynamics are associated with representationally specific lexico-semantic prediction when

bottom-up inputs unfold at faster, more naturalistic rates.

3.2. Representationally specific pre-activation was associated with left inferior and medial
temporal activity

By analyzing temporal similarity at the source level during the prediction period, we were able to
identify regions that showed more similarity in their temporal pattern of neural activity in
sentence pairs that predicted the same (within-pair) than different SFWs (between-pair). We
found evidence of increased temporal similarity within the left inferior temporal gyrus, extending

into the medial temporal lobe, including the left fusiform, and parahippocampal gyrus and the

12
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hippocampus. We suggest that these regions played a functional role in temporally binding the
unique patterns of spatial activity (corresponding to unique combinations of distributed semantic
features) that were pre-activated prior to the onset of the SFW, and therefore in instantiating

representationally specific lexico-semantic prediction.

The left inferior temporal lobe, particularly its more anterior portions, has long been implicated
in lexico-semantic processing®™°. In particular, it has been proposed that it acts as a hub (a

140

“convergence zone ™) that brings together conceptual information that is distributed throughout

cortex**2. Parts of this region may play a particular role in lexical processing, functioning as the
brain’s dictionary by mediating between conceptual and phonological knowledge of words***.
Ventral anterior subregions of the temporal cortex have also been implicated more generally in
subserving not only verbal but also non-verbal multimodal semantic representations****’. Most
relevant to the present study is a recent finding that temporal RSA applied to intracranial EEG
signals was associated with neural activity within the left inferior temporal lobe that encoded
item-specific representations during picture naming®*. Together with the present findings, this
supports the idea that the temporal pattern of activity within this region plays a functional role in
instantiating the activation of specific lexico-semantic items. For example, by tracking the
precise time-course of activity within distributed regions, it may act to bind them together to
form a coherent whole®. Crucially, in present study, the increase in temporal similarity between

sentences that predicted the same SFW began before the bottom-up input became available,

indicating that it may also instantiate representationally specific lexico-semantic prediction.

Of potential relevance to the idea that this region plays a role in temporal binding is the

13
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observation that it extended medially to include the hippocampus. While MEG source-modeling
results within medial and subcortical regions should be interpreted with caution, the possible
involvement of the hippocampus is very interesting given other work that has implicated it as
playing a crucial role in binding representations to generate predictions. A large literature from
recordings in rats demonstrates that the hippocampus represents upcoming spatial representations
as the rat is navigating®®, and we have a good understanding of the physiological mechanisms
supporting such predictions®. There is also growing evidence that these predictive mechanisms
might generalize to the human hippocampus®*>>. Moreover, recently, it was found that the
temporal patterns in higher frequency bands recorded within the hippocampus were similar

between a pre-picture interval and the picture itself>®

, suggesting a role in representing pre-
activated non-verbal semantic information. Given these findings, it is conceivable that the
hippocampus also plays an analogous role in language prediction. Indeed Piai et al. (2016) used
intracranial recordings in humans to demonstrate predictive effects in the hippocampus in a

language task in which the sentence-final word had to be produced®®,

In conclusion, we successfully used MEG to identify unique spatial and temporal patterns
associated with the prediction of specific lexico-semantic items during language processing. We
showed that the spatially specific neural patterns became active at around 100ms after a word
was unambiguously predicted, that this pre-activation was transient and that it was accompanied
by unique temporal patterns of activity within the left inferior and medial temporal lobe. These
findings pave the way towards the use of these methods to determine whether and when such
specific lexico-semantic representations are pre-activated as language, in both visual and

auditory domains, unfolds more rapidly in real time.

14
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Figurelegends

Fig. 1. The experimental procedure and approach for Representational Similarity Analyses. (a)
Trials began with a blank screen (1600ms). Sentences were presented in Chinese (translated here
into English), word-by-word (200ms per word; 800ms blank interval between words). Sentences
were followed either by ‘“NEXT’ (2000ms) or by a probe question (1/6th of trials, randomly). We
constructed sentence pairs in which the same word could be predicted from the context (e.g. S1-
A & S2-A’; S3-B & S4-B"). One member of each pair ended with the predicted word (e.g. S1-A,
S3-B) and the other member ended with a plausible but unpredicted word (e.g. S2-A’, S4-B’).
Before the onset of the predicted word, we compared brain activity associated with the prediction
of the same word (within-pair) and different words (between-pair). (b) Spatial Representational
Similarity Analysis. Left: The pattern of MEG data over sensors was correlated between each
sentence pair (i e.g. S1-A and S2-A’) at each time sample t;,. Right: The average spatial

correlation values for pairs (Rinin, R ---) in Which the same word was predicted formed the

N .
within-pair spatial correlation time series (%Z R'A , shown in red). The average of pairs

within
i=1

(R*setweens RPoetweens ---) 1N Which different words were predicted formed the between-pair spatial

2N(N-1)

correlation time series (m Z Ribetween, shown in blue). (c) Temporal Representational
- i=1

Similarity Analysis. Left: The pattern of MEG activity over time was correlated between
sentence pairs, sensor-by-sensor or grid-by-grid point (source level). Right: The average
temporal correlation values for pairs (Rinin RZimin, -..) IN Which the same word was predicted
formed the within-pair temporal correlation topographic/source maps. The average of pairs
(R*setweens R2oetweens ---) 1IN Which different words were predicted formed the between-pair temporal

correlation topographic/source maps.
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Fig. 2. Results: Spatial Representational Similarity Analysis. (a) The time series of spatial
similarity R values combined across within-pair and between-pair correlations, with the
horizontal line indicating a threshold of R = 0.04 where the general increase in spatial correlation
was largest. (b) The time series of spatial similarity R values for pairs in which the same word
was predicted (within-pair, shown in red) and in which different words were predicted (between-
pair, shown in blue). Both the within- and the between-pair spatial similarity time series showed
a sharp increase at ~100ms and a decrease at ~400ms after the onset of each word. Between -880
— -485ms before the onset of the final word, the spatial similarity was greater when the same
word was predicted than when different words were predicted (ts) = 4.434, p < .001). (c) Scatter
plots of spatial similarity values averaged between -880 — -485 ms before the onset of the final
word in 26 participants. In most participants (22/26) the within-pair spatial correlations were
greater than the between-pair spatial correlations. (d) Cross-temporal spatial similarity matrices
for the within- and between-pair correlations (Red: positive correlations; blue: negative
correlations). Left & middle: Both sets of pairs showed increased spatial similarity along the
diagonal with greater similarities for the within- than the between-pairs in the -900 — -500ms
interval prior to the onset of the final word. Right: The matrix shows the cluster with a
statistically significant difference between the within-pair and between-pair spatial correlations
(p = .002, cluster-randomization approach controlling for multiple comparisons over time by
time samples). The absence of ‘off-diagonal’ correlations suggests that the spatial pattern

associated with prediction was reliable but changed over time.

Fig. 3. Results: Temporal Representational Similarity Analysis carried out between -880 — -
485ms before the onset of the final word. (a) Temporal similarity topographic maps at the sensor
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level. Left & middle: Both the within- and between-pair correlations revealed increased temporal
similarity over bilateral temporal and posterior sensors. Right: the difference map revealed
greater temporal similarity when the same word was predicted than when different words were
predicted over central and posterior sensors. The cluster of sensors where this difference was
significant is marked with black asterisks (p = .008; a cluster-randomization approach controlling
for multiple comparisons over sensors). (b) Temporal similarity difference map in source space.
The values were interpolated on the MNI template brain and are shown both on the coronal plane
(Talairach coordinate of peak: y = -19.5 mm) and the sagittal plane (Talairach coordinate of peak:
x = -39.5 mm). This revealed significantly greater temporal similarity between sentence pairs
that predicted the same word than pairs that predicted different words within the left inferior
temporal gyrus, extending into the medial temporal lobe including the left fusiform,
hippocampus and parahippocampus as well as left cerebellum (p = .004; a cluster-randomization

approach controlling for multiple comparisons over grid points).

Supplementary Fig. 1. Results: Spatial Representational Similarity Analysis after matching the
number of pairs between the within-pair and between-pair correlations. (@) The time series of
spatial similarity R values for the pairs in which the same word was predicted (within-pair,
shown in red) and in which a different word was predicted (between-pair, shown in blue). Within
the -880 — -485ms interval relative to the onset of the final word, the spatial similarity was
greater when the same word was predicted than when different words were predicted (-880 — -
485ms before its onset; t,; = 2.393, p = .025). (b) Scatter plots of the spatial similarity values

averaged between -880 — -485ms before the onset of final word in 26 participants. In most
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participants (17/26) the within-pair spatial correlations were greater than the between-pair spatial

correlations.

Supplementary Fig. 2. Results: Spatial Representational Similarity Analysis for two subsets of
trials where sentences ending with expected words were seen first (a and b) or sentences ending
with unexpected words were seen first (c and d). The time series of spatial similarity R values for
the pairs in which the same word was predicted (within-pair) are shown in red, while the time
series for the pairs in which a different word was predicted (between-pair) are shown in blue.
The spatial similarity was greater when the same word was predicted than when different words
were predicted in both subsets. No significant difference was found between the two subsets of
trials, as indicated by the lack of a main effect of Order (Expected First, Unexpected First) (F(1,25)
=.747, p = .396, n2 = .029) or an interaction between Order (Expected First, Unexpected First)

and Pairs (Within-pair, Between-pair) (F(1,25) = 1.804, p = .191, n2 = .067).

Supplementary Fig. 3. Results: Temporal Representational Similarity Analysis carried out
between -880 — -485ms before the onset of the final word after matching the number of pairs
between the within-pair and between-pair correlations. (a) Temporal similarity topographic maps
at the sensor level. Left & middle: Both the within- and between-pair correlations revealed
increased temporal similarity over bilateral temporal and posterior sensors. Right: the difference
map revealed greater temporal similarity when the same word was predicted than when different
words were predicted over central and posterior sensors (marginally significant cluster: p =.0679;
a cluster-randomization approach controlling for multiple comparisons over sensors). (b)

Temporal similarity difference map in source space. The values were interpolated on the MNI
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template brain and are shown both on the coronal plane (Talairach coordinate of peak: y = -9.5
mm) and the sagittal plane (Talairach coordinate of peak: x = -29.5 mm). This revealed
significantly greater temporal similarity between sentence pairs that predicted the same word
than pairs that predicted a different word within the left hippocampus and extended into the left
inferior temporal region, left fusiform, parahippocampus, amygdala as well as left cerebellum (p

= .034; a cluster-randomization approach controlling for multiple comparisons over grid points).

Supplementary Fig. 4. Results: Temporal Representational Similarity Analysis carried out
between -880 — -485ms before the onset of the final word, showing the 85% maximum
difference of the statistically significant cluster in source space. (a) Temporal similarity
difference map in source space between the averaged N within-pair correlations and 2N(N-1)
between-pair correlations. The values were interpolated on the MNI template brain and are
shown both on the coronal plane (Talairach coordinate of peak: y = -19.5 mm) and the sagittal
plane (Talairach coordinate of peak: x = -39.5 mm). The maximum difference between the
within-pair and the between-pair correlations was found within the left inferior temporal gyrus,
and the cluster extended into the medial temporal lobe including the left fusiform, hippocampus
and parahippocampus. (b) Temporal similarity difference map in source space between the
averaged N within-pair correlations and N between-pair correlations. The values were
interpolated on the MNI template brain and are shown both on the coronal plane (Talairach
coordinate of peak: y = -9.5 mm) and the sagittal plane (Talairach coordinate of peak: x = -29.5
mm). The maximum difference between the within-pair and the between-pair correlations was
found within the left inferior temporal gyrus, and the cluster extended into the medial temporal

lobe including the left fusiform, hippocampus and parahippocampus.
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4. Methods

4.1. Design and development of stimuli

We developed a stimulus set of 120 pairs of sentences in Mandarin with highly constraining
contexts. The two contexts within each pair were distinct from one another, and had no content
words in common (with the exception of five pairs), but they each strongly predicted the same
sentence-final word (SFW). For example, in Fig. 1, both sentences S1 and S2 predicted the word,
“baby”. In half of these sentences, the expected final word was a noun and in the other half, it

was a verb.

To select and characterize this final set of sentences, we began with an initial set of 208 pairs and
carried out a cloze norming study in 30 participants (mean age: 23 years; range: 18 — 28 years
old; 15 males), who did not participate in the subsequent MEG study. In this study, sentence
contexts were presented without the SFW (e.g. ‘In the crib there is a sleeping ...”) and
participants were asked to complete the unfinished sentence by writing down the most likely
ending. The two members of each sentence pair were counterbalanced across two lists (with
order randomized within lists), which were each seen by half the participants. Testing took

approximately 40 minutes per subject.

To calculate the lexico-semantic constraint of each sentence context, we tallied the number of
participants who produced the most common completion for a given context. We retained 66
pairs in which 73% of the participants predicted the same SFW, i.e. at least 11 out of 15
participants filled in the same word in each sentence pair. We then revised 103 sentences (54

sentences in list 1 and 49 in list 2) to make them more constraining, and we re-tested them in the
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same group of participants. After this second round of cloze testing, we selected the final set of
120 sentences for the MEG experiment. In the final set of stimuli, the lexico-semantic constraints
of 109 pairs were above 70% and the constraints of the remaining 12 pairs were slightly lower

(Mean: 58%; SD: 12). Across all pairs, the mean lexico-semantic constraint was 88% (SD: 12).

We then generated full sentences by adding a SFW to each member of a pair. In one member of
the pair, this SFW was highly predictable; it was the most common word filled by the cloze
participants (e.g. “baby” following context S1, “In the crib there is a sleeping...”). In the other
member of the pair, we selected a word that was semantically related to the highly predicted
word but was not produced by any of the participants in the cloze norming, with the whole
sentence still being plausible (e.g. “child” following context, S2, “In the hospital, there is a
newborn...”). Thus, for this sentence, the lexical cloze probability was zero, see Fig. 1a for
examples. All sentence contexts (e.g. S1 and S2) were combined with both lexically predicted
(e.g. A: ‘baby’) and unpredicted (e.g. A’: “child’) SFWs, e.g. S1-A, S1-A’, S2-A, S2-A’. All
combinations of the sentence contexts and SFWs were then counterbalanced across two lists.
This ensured that, in the MEG session, while each participant would see both members of each
sentence pair, they never saw the same SFW twice. Within each list, sentences were pseudo-
randomized so that participants did not encounter more than three expected or unexpected SFWs
in succession. All Mandarin sentences, together with their English translations, are available in

the Supplementary Material.
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4.2. Participantsin the MEG study

The study was approved by the Institutional Review Board (IRB) of the Institute of Psychology,
Chinese Academy of Sciences. Thirty-four students from the Beijing area were initially recruited
by advertisement. They were all right-handed native Chinese speakers without histories of
language or neurological impairments. All gave informed consent and were paid for their time.
The data of eight participants were subsequently excluded because of technical problems,

leaving a final MEG dataset of 26 participants (mean age 23 years, range 20 — 29; 13 males).

4.3. Procedure

MEG data were collected while participants sat in a comfortable chair within a dimly-lit shielded
room. Stimuli were presented on a projection screen in a grey color on a black background
(visual angle ranging from 1.22 to 2.44 degrees). As shown in Fig. 1a, each trial began with a
blank screen (1600ms), followed by each word with an SOA of 1000ms (200ms presentation
with an inter-stimulus interval, ISI, of 800ms). The final word ended with a period followed by a
2000ms ISI. After one-sixth of the trials, at random, participants read either a correct or an
incorrect statement that referred back to the semantic content of the sentence that they just read
(for example, S1-A and S2-A’ in Fig. 1a might be followed by the incorrect statement, “There is
an old man.”). Participants were instructed to judge whether or not the statements were correct
by pressing one of two buttons with their left hand. This helped ensure that participants read the

sentences for comprehension. In all other trials, the Chinese word ' * * ' (meaning 'NEXT)

appeared, and participants were instructed to simply press another button with their left hand

within 5000ms in order to proceed to the next trial.
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*Insert Fig. 1 here*

The 240 sentences were divided into 8 blocks, with each block lasting about 8 minutes. Between
blocks there was a small break during which participants were told that they could relax and
blink, but to keep the position of their heads still. Participants could start the next block by
informing the experimenter verbally. The whole experiment lasted about 1.5 hours, including

preparation, instructions and a short practice session consisting of eight sentences.

4.4. MEG data acquisition

MEG data was collected using a CTF Omega System with 275 axial gradiometers at Institute of
Biophysics, Chinese Academy of Sciences. Six sensors (MLF31, MRC41, MRF32, MRF56,
MRT16, MRF24) were non-functional and were therefore excluded from the recordings. The
ongoing MEG signals were low-pass filtered at 300Hz and digitized at 1200Hz. Head position,
with respect to the sensor array, was monitored continuously with three coils placed at
anatomical landmarks (fiducials) on the head (forehead, left and right cheekbones). The total
movement across the whole experiment was, on average, 8mm across all participants. In addition,
structural Magnetic Resonance Images (MRIs) of 24 participants were obtained using a 3.0T
Siemens system. During MRI scanning, markers were attached in the same position as the head

coils, allowing for later alignment between these MRIs and the MEG coordinate system.

4.5. MEG data processing

MEG data were analyzed using the Fieldtrip software package, an open-source Matlab toolbox®".

In order to minimize environmental noise, we applied third order synthetic gradiometer
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correction during preprocessing. Then, the MEG data were segmented into 4000ms epochs, time-
locked from the onset of two words before the SFW (SFW-2) until 2000ms after the onset of the
SFW. Within this 4000ms epoch, trials contaminated with muscle or MEG jump artifacts were
identified and removed using a semi-automatic routine. After that, we carried out an Independent
Component Analysis (ICA;***°) and removed components associated with the eye-movement
and cardiac activity from the MEG signal (about 5 components per subject). Finally, we
inspected the data visually and removed any remaining artifacts. On average 96% +/- 3.4%) of

trials were retained.

45.1. Spatial Representational Similarity Analysis

4.5.1.1. Calculation of spatial similarity time series

A schematic illustration of the spatial representational similarity analysis (RSA) approach is
shown in Fig. 1b. First, we detrended and applied a 30Hz low pass filter to the MEG data. Next,
in each participant, for each trial, and at each time sample, we extracted a vector of MEG data
that represented the spatial pattern of activity across all 269 MEG sensors (6 of 275 sensors were
not operational). We then quantified the degree of spatial similarity of MEG activity produced by
the two members of each sentence pair predicting the same SFW (e.g. between S1-A and S2-A’,
in Fig. 1a) by correlating the spatial vectors between each member of a pair at consecutive time
sample across the 4000ms epoch. This yielded a time-series of correlations (Pearson R-values)
reflecting the degree of spatial similarity at each time sample between sentences that predicted
the same SFW (e.g. time-series R*witnin and R2uitnin, See Fig. 1b). We refer to these as within-pair
spatial similarities. After artifact rejection, in each participant, there were, on average, N =

111+/-8 complete within-pair spatial similarity time series. We then averaged these time series
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together over all pairs of sentences that predicted the same SFW to yield an average within-pair

within ’

N .
spatial similarity time series within each participant (%Z R' ; Fig. 1b).

i=1

We then repeated this entire procedure, but this time correlating spatial patterns of MEG activity
between pairs of sentences that predicted a different SFW, for example, between S1-A and S3-B
(Fig. 1a). This yielded 2N(N-1) between-pair spatial correlation time courses, e.g. R petween and

R%emeen (Fig. 1b). We again averaged these together to yield a time series of R-values within

2N(N-1)

each participant (m Z RLeNm; Fig. 1b), which reflected the degree of similarity
- i=1

between spatial patterns of activity elicited by sentences that predicted different SFWs at each
time sample (i.e. between-pair spatial similarity time series). Fig. 2b shows the averages, across
all participants, of the within-pair spatial similarity time series, and the between-pair spatial

similarity time series.

4.5.1.2. Calculation of cross-temporal spatial smilarity matrices

To characterize how temporally sustained the spatial patterns were (see also*?°

), we correlated
the spatial pattern vector between one member of a sentence pair (e.g. S1-A) at a particular time
sample (e.g. t;) with that of the other member of the pair (e.g. S2-A’) at all time samples (e.g.
from t; to t;) in each participant. The resulting values can be visualized as a similarity matrix
(Fig. 2d), with each entry representing the spatial similarity between two sentences at two time
samples (e.g. R represents the correlation between S1-A at time i and S2-A’ at time j). The R-

values along the diagonal reflect the spatial similarity at corresponding time samples (R¢j when

I = J; i.e. the time of similarity R-values as described in Fig. 1b), while the R-values off the
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diagonal reflects cross-temporal spatial similarity. We repeated this procedure for pairs of
sentences that predicted different SFWs (between-pairs). The cross-temporal similarity matrices
for both within-pair and between-pair correlations, were averaged across sentence pairs for each
participant (see Fig. 2d). Fig. 3 also shows the group-averaged within-pair and between-pair
cross-temporal spatial similarity matrices. When constructing these cross-temporal similarity
matrices, to increase computational efficiency, we down-sampled the data to 300 Hz and
randomly selected N between-pairs to match with the N within-pairs for averaging. The
correlation values were smoothed in time in both directions with a Gaussian kernel (40ms time

window, SD: 8ms).

45.1.3. Satistical testing

As can be seen in Fig. 2a, the averaged within-pair and the between-pair spatial similarity time
series showed a sharp increase in R-values at around 100ms after the onset of the word before
the SFW (SFW-1) lasting for about 400ms (i.e. 300ms into the ISI after the SFW-1 offset) before
sharply decreasing again. This pattern of a sharp increase and decrease in spatial correlations was
also seen in association with the previous word (SFW-2) as well as the following word (SFW).
In order to objectively quantify the time-window over which this general increase in spatial
similarity R values was sustained during the prediction period, we compared the averaged
within-pair and between-pair spatial similarity time series against a threshold of R = 0.04 based
on visual inspection of the R-values in the prediction time window. We found an increase in R-
values from -880ms to -485ms (i.e. 120ms to 515ms relative to the onset of SFW-1), as well as
from -1900 to -1510ms before the onset of the SFW (i.e. 100ms to 490ms relative to the onset of

SFW-2) (Fig. 2b).
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We then averaged across the -880 — -485ms interval before the onset of the SFW and carried out
paired t-tests to determine whether, collapsed across these time windows, the spatial pattern of
MEG activity produced by sentence pairs that predicted the same SFW was significantly more
similar than the spatial pattern of MEG activity produced by sentences that predicted different
SFW (i.e. within-pair vs. between-pair spatial correlation R values). We repeated the same

analysis for the -1900 — -1510ms interval before the onset of the SFW.

To test for cross-temporal statistical differences in spatial similarity patterns produced by
sentence pairs that predicted the same versus different SFWs while controlling for multiple
comparisons over time, we applied a cluster-randomization approach®. To this end, we first
carried out paired t-tests at each data time sample in the cross-temporal spatial similarity
matrices within the 1000ms interval between the onset of SFW-1 and the onset of SFW. We used
temporal cluster-based permutations to account for multiple comparisons®. Data points that
exceeded a pre-set uncorrected p-value of 0.05 or less were considered temporal clusters. The
individual t-statistics within each cluster were summed to yield a cluster-level test statistic — the
cluster mass statistic. We then randomly re-assigned the spatial similarity R values across the
two conditions (i.e. within-pair and between-pair) at each data point within the matrix, within
each participant, and calculated cluster-level statistics as described above. This was repeated
1000 times. For each randomization, we took the largest cluster mass statistic (i.e. the summed T
values), and, in this way, created a null distribution for the cluster mass statistic. We then
compared our observed cluster-level test statistic against this null distribution. Any temporal

clusters falling within the highest or lowest 2.5% of the distribution were considered significant.
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4.5.2. Temporal representational similarity analysis

4.5.2.1. Construction of temporal similarity maps at sensor level

In each participant, at each sensor for each trial, we considered the MEG time series in the -880 —
-485ms interval before the onset of the SFW — that is, the time-window over which we
observed the general increase in spatial similarity R values during the prediction period (see Fig.
2a). At each sensor, we then correlated this time series within this window between the two
members of each sentence pair predicting the same SFW (e.g. between S1-A and S2-A’, in Fig.
1a) to yield an R value representing the degree of temporal similarity: an R value of 1 implies
that the two time series are in perfect synchrony; an R value of 0 implies that the two time series
are not correlated, while an R value of -1 implies that the two time series are anti-correlated.
Together, these R values at each sensor yielded within-pair temporal similarity topographic maps
for each pair, e.g. topographic maps Rwitnin and R2itnin, See Fig. 1c. We then averaged across all
the within-pair temporal correlations at each sensor to yield an average within-pair temporal
similarity topographic map within each participant and then averaged across participants (see Fig.

1c).

We then repeated this procedure, but this time correlating time series from MEG sensors
produced by sentence pair that predicted different SFWSs to investigate the spatial distribution of
between-pair temporal correlations (e.g. topographic maps Rlbeween and RZemeen in Fig. 1C).
These were again averaged together to yield an average topographic map of R values within each

participant, and then averaged across participants (Fig. 1c).
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4.5.2.2. Construction of temporal similarity maps at source level

We also constructed temporal similarity maps at the source level. We estimated the MEG signals
at the source level by applying a spatial filter at each grid point using a beamforming approach®.
We computed a linearly constrained minimum variance (LCMV; ) spatial filter on the 30 Hz
low-pass filtered (and linearly detrended) data from onset of SFW-1 to 1000ms after onset of
SFW (i.e. -1000 — 1000ms relative to SFW onset). The LCMV approach estimates a spatial filter
from a lead field matrix and the covariance matrix of the data from the axial gradiometers. To
obtain the lead field for each participant, we first spatially co-registered the individual
anatomical MRIs to the sensor MEG data by identifying the fiducials at the forehead and the two
cheekbones. Then a realistically shaped single-shell head model was constructed based on the
segmented anatomical MRI for each participant®. Each brain volume was divided into a grid
with 10mm spacing and the lead field was calculated for each grid point. Then the grid was
warped to the template Montreal Neurological Institute (MNI) brain (Montreal, Quebec, Canada).
The MNI template brain was used for one participant whose MRI image was not available. The
application of the LCMV spatial filter to the sensor-level data resulted in single-trial estimates of
time series at each grid point in three orthogonal orientations. To obtain one signal per grid point
we projected the time series along the direction that explains most variance using singular value
decomposition. In order to construct temporal similarity maps in source space, we followed the
same procedures as above, by correlating the time series at each grid point. The grand-average

similarity values were interpolated onto the MNI template brain (Fig. 3b).

45.2.3. Testing for dignificant difference between the within- and between-pair temporal

similarity maps
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To compare the within-pair vs. between-pair temporal correlation R value statistically, both at
the sensor level and at the source level, we carried out a cluster-based permutation approach to
control for multiple comparisons over sensors or grid-points®. At each sensor/grid point, in each
participant, we compared the mean differences in the temporal similarity R values between
sentence pairs predicting the same word (i.e. within-pair) versus a different word (i.e. between-
pair). Sensors within 40mm that exceeded the 95" percentile of the mean difference were
considered clusters. In source space, clusters were formed by contiguous grids points. Within
each cluster, we then summed the mean differences of R values at each sensor/grid-point to yield
a cluster-level test statistic — the cluster mass statistic. Next, we randomly re-assigned the R-
values across the two conditions (i.e. within-pair and between-pair) at each sensor/grid within
each participant, and calculated cluster-level statistics as described above. This was repeated
1000 times. For each randomization, we considered the largest cluster mass statistic (i.e. the
summed mean difference within a cluster to create a null distribution for the cluster mass
statistic). Then we compared our observed cluster-level test statistic against this null distribution.
Any clusters falling within the highest or lowest 2.5% of the distribution were considered

significant.
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