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ABSTRACT:

Background: Giant cell arteritis (GCA) is the most common form of vasculitis affecting elderly
people. It is one of the few true ophthalmic emergencies. GCA is a heterogenous disease,
symptoms and signs are variable thereby making it challenging to diagnose and often delaying
diagnosis. A temporal artery biopsy is the gold standard to test for GCA, and there are currently
no specific biochemical markers to categorize or aid diagnosis of the disease. We aimed to
identify a less invasive method to confirm the diagnosis of GCA, as well as to ascertain clinically
relevant predictive biomarkers by studying the transcriptome of purified peripheral CD4+ and
CD8+ T lymphocytes in patients with GCA.

Methods and Findings: We recruited 16 patients with histological evidence of GCA at the
Royal Victorian Eye and Ear Hospital (RVEEH), Melbourne, Australia, and aimed to collect
blood samples at six time points: acute phase, 2-3 weeks, 6-8 weeks, 3 months, 6 months and
12 months after clinical diagnosis. CD4+ and CD8+ T-cells were positively selected at each time
point through magnetic-assisted cell sorting (MACS). RNA was extracted from all 195 collected
samples for subsequent RNA sequencing. The expression profiles of patients were compared to
those of 16 age-matched controls. Over the 12-month study period, polynomial modelling
analyses identified 179 and 4 statistically significant transcripts with altered expression profiles
(FDR < 0.05) between cases and controls in CD4+ and CD8+ populations, respectively. In
CD8+ cells, we identified two transcripts that remained differentially expressed after 12 months,
namely SGTB, associated with neuronal apoptosis, and FCGR3A, which has been found in
association with Takayasu arteritis (TA), another large vessel vasculitis. We detected genes that
correlate with both symptoms and biochemical markers used in the acute setting for predicting
long-term prognosis. 15 genes were shared across 3 phenotypes in CD4 and 16 across CD8
cells. In CD8, /L32 was common to 5 phenotypes: a history of Polymyalgia Rheumatica, both
visual disturbance and raised neutrophils at the time of presentation, bilateral blindness and
death within 12 months. Altered /IL32 gene expression could provide risk evaluation of GCA
diagnosis at the time of presentation and give an indication of prognosis, which may influence
management.

Conclusions: This is the first longitudinal gene expression study undertaken to identify robust
transcriptomic biomarkers of GCA. Our results show cell type-specific transcript expression
profiles, novel gene-phenotype associations, and uncover important biological pathways for this
disease. These data significantly enhance the current knowledge of relevant biomarkers, their
association with clinical prognostic markers, as well as potential candidates for detecting
disease activity in whole blood samples. In the acute phase, the gene-phenotype relationships
we have identified could provide insight to potential disease severity and as such guide us in
initiating appropriate patient management.
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INTRODUCTION

Giant Cell Arteritis (GCA) is the most common form of vasculitis in people over 50 years of age,
and has a predilection for medium- and large-sized vessels of the head and neck. GCA
represents one of the few true ophthalmic emergencies, and given the severe sequelae of
untreated disease, a timely diagnosis is crucial [1]. GCA is a devastating disease associated
with significant morbidity and mortality. If untreated, GCA can cause catastrophic complications
including blindness and stroke, as well as aortic dissection and rupture.

The patho-aetiology of GCA is poorly understood. It is likely that both a genetic predisposition
and possible environmental factors, the latter unconfirmed, contribute to the onset of disease
[2]. GCA is a heterogenous disease and a definitive diagnosis can be difficult to establish in the
acute setting. The current gold standard for diagnosis is a temporal artery biopsy, which is an
invasive surgical procedure [3,4]. There are currently no specific biomarkers to diagnose GCA,
or stratify patient management.

In the acute setting, treatment with high-dose corticosteroids should be started empirically when
a patient's symptoms and/or inflammatory markers suggest a diagnosis of GCA is likely [1].
Treatment should not be delayed whilst waiting for biopsy results to become available. Once
diagnosed, clinicians monitor disease activity based on patients’ symptoms and inflammatory
markers, primarily the erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP).
However, these biochemical markers are nonspecific and may be elevated in other
inflammatory or infective diagnoses. There is a pressing need for more sensitive and specific
biomarkers. This would aid in making a diagnosis, as well managing this condition more
appropriately and mitigate the need for an invasive surgical procedure. Motivated by this need,
we aimed to discover a biomarker so that when patients present to the emergency department
with features of GCA, a blood test could be performed, allowing prompt diagnosis and initiation
of appropriate treatment.

GCA is presumed to be an autoimmune disease with a highly complex immunopathogenesis. It
has a strong association with HLA class Il suggesting an adaptive immune response with
antigen presentation to CD4+ T cells [5]. CD8+ T cells have also been described in GCA both
at tissue level and peripherally [6,7]. Transcriptional profiling in blood consists of measuring
RNA abundance in circulating nucleated cells. Changes in transcript abundance can result from
exposure to host- or pathogen-derived immunogenic factors. Given that T Lymphocytes are key
mediators of the adaptive cellular immune response and in GCA [8], we studied the
transcriptome of peripheral CD4+ and CD8+ T cells of patients with GCA. We monitored
patients’ expression profiling along the course of their disease to detect changes in transcripts
as disease state altered and became quiescent.
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METHODS

Patient recruitment

Between July 2014 and June 2016, 16 patients presenting to the emergency department (ED) at
the Royal Victorian Eye & Ear Hospital (RVEEH) in Melbourne (Australia), with symptoms and
signs consistent with the diagnosis of GCA were enrolled in our study (Figure 1). Ethics was
approved for this study through the RVEEH (Ethics 11/998H), and all patients provided informed
written consent to participate in serial sample collections. We acquired blood samples from
patients in the acute phase of their disease T1 (Day 0-7) but ideally prior to steroid initiation.
Analysis took into account those patients who were steroid-naive at T1 and those who had
already started steroid treatment, albeit in some cases less than 24 hours earlier. In addition to
T1, we aimed to acquire five subsequent serial samples from each patient - T2 (2-3 weeks), T3
(6-8 weeks), T4 (~3 months), T5 (~6 months) and T6 (~12 months) after presentation - to detect
changes in their transcripts as the disease state altered and became quiescent (Supplementary
Table 1). For each patient with GCA, we recruited an age- and gender-matched healthy control
from whom two serial blood samples were collected 2-3 weeks apart. Our study design is
outlined in Figure 1.

T-cell isolation

At each visit, 36 ml of peripheral blood were collected in 4 x 9 ml ethylenediaminetetraacetic
acid (EDTA) tubes, 18 ml of which were used to isolate each of the two T-cell populations. Once
blood was collected from a patient, it was processed within 30 minutes. Rapid processing was
conducted to avoid changes in cellular expression profiles [9]. First, the peripheral blood
mononuclear cells (PBMCs) were isolated using Ficoll-Paque density centrifugation. This was
followed by positive selection with magnetic antibody-coupled microbeads (MACS) (CD4
Human Microbeads (130-045-101) and CD8 Human Microbeads (130-045-201) from Miltenyi
Biotec), to isolate the CD4+ and CD8+ T-cell populations from PBMCs. CD4+ cells were
labelled with fluorescein isothiocyanate (CD4-Viobright FITC (130-104-515) Miltenyi Biotec) and
CD8+ with allophycocyanin (CD8-APC (130-091-076) Miltenyi Biotec) antibody for purity
analysis. The CD4+ and CD8+ positive fractions were eluted from the magnetically charged MS
column in 1000ul of MACS BSA Stock Solution 1:20 with autoMACS Rinsing Solution (Miltenyi
Biotec). A 20 pl aliquot of both CD4+ and CD8+ final cell populations was fixed in 2%
paraformaldehyde (PFA) and used for analysis of the population purity on a CyAn ADP
fluorescence-activated cell sorting (FACS) analyzer (Supplementary Figure 1). The remainder of
the positive fractions was stored at -80°C in lysis RLT buffer (Qiagen) to which beta-
mercaptoethanol had been added as per manufacturer’s guidelines for between 1 - 23 months.

RNA extraction, cDNA processing and RNA sequencing

T cell samples underwent RNA extraction as per manufacturer’s protocol (Qiagen RNeasy kit) at
CERA. All T-cell lysate samples, 135 GCA patient samples and 60 control samples, were
randomised to RNA extraction batches of between 20-24 samples to avoid batch effects. RNA
samples were eluted 30 pl in RNAse free water and stored at -80C until all extractions were
complete. Samples were tested on the NanoDrop ND-100 spectrophotometer to check RNA
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quantity and quality (A260/A230 and A260/A280 between 1.8 and 2.1). Once all batches were
extracted, samples were dispatched on dry ice to the Australian Translational Genomics Centre
(ATGC) at Queensland University of Technology (QUT) for cDNA processing and RNA
sequencing. At ATGC, RNA integrity (RIN) and quantity was confirmed with a Bioanalyzer 2100
(Agilent) before undergoing library preparation.

To avoid sequencing batch effects, all 195 samples (GCA n=135, and Control n=60) were re-
randomised to be processed in one of three different cDNA library preparation batches (lllumina
TruSeq Stranded mRNA Sample Preparation Kits). This kit purifies the polyA containing mRNA
molecules. The lllumina Truseq protocol is optimized for 0.1-4 ug of total RNA and a RIN
value = 8 is recommended. The average total RNA yield varied between samples. The average
RNA concentration was 137.9 ng/ul (range 12.1 to 1,130.0 ng/ul). Total RNA yield per sample
averaged to 2,757.7 ng (range 242.0 to 22,600.0 ng) and average RIN was 8.9 (range 7.2 to
10.0). 600 ng total RNA was used to generate cDNA libraries (30 pl) for all samples with 2600
ng total RNA available. Samples with less than 600 ng total RNA available were used entirely.
Samples were barcoded to allow large throughput at sequencing. The number of PCR cycles for
cDNA amplification was adjusted as required to equalise the cDNA yield as per the protocol.
Quality control of library concentrations was assessed through LabChip GX High Sensitivity
DNA assay.

RNA-Seq libraries were multiplexed and sequenced (75bp PE) in batches on an lllumina
NextSeq500 high-throughput instrument. Each batch of cDNA libraries was pooled in equimolar
volumes, and sequenced over three flow cells (FCs), with nine FCs used in total. To achieve
uniform sequencing across a large number of samples, the data were reviewed following each
run by determining the number of mapped reads per sample. The read count per sample
volume pooled was used as a metric to re-pool the cDNA libraries for additional sequencing. As
such the pool of cDNA libraries for each batch was adjusted so that all samples would reach
16M raw reads. This strategy also minimised between sample sequence run batch effects.
cDNA libraries were sequenced and we obtained a median 11,017,433 mapped reads per
sample and the read counts were aggregated into a single gene expression matrix. 40,744
transcripts had counts-per-million (cpm) > 1 in 50% of samples and underwent further analysis.

Computational Analysis

Quality control of the sequencing data was performed on the FASTQ files. High quality reads
were retained and Trimmomatic v0.36 was used to remove adapters and low quality bases.
Reads were mapped to the GRCh38 human reference transcriptome using Kallisto v0.42.4 [10].
Only those with counts-per-million (cpm) > 1 in 50% of the samples were retained for further
analysis. Transcript expression between libraries was normalised using the trimmed mean of M
method (TMM) and corrected for batch effects using the removeBatchEffect function
implemented in edgeR (Flowcell ID, Gender and Ethnicity) [11]. Hierarchical clustering and
principal component analysis (PCA) confirmed the absence of batch effects and outlier samples
(Supplementary Figure 2).
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Differential gene expression analysis

A total of 135 GCA samples (n=16 patients) spanning six timepoints and 60 control samples
(n=16 patients) spanning two timepoints were grouped for analysis based on their CD4
(GCA=68, control=30) or CD8 MACS (GCA=67, control=30) separation. This grouping strategy
formed the basis of the differential expression design matrix, allowing pairwise comparisons
between individual timepoints on a case/control or CD4/CD8 basis. Differentially expressed
transcripts were considered statistically significant if their false discovery rate (FDR) was less
than 0.05. Differential expression (DGE) analysis between case and control subjects was
performed comparing the initial T1 case specimens versus both the T1 and T2 of control
specimens. Transcripts below FDR <0.05 and a two-fold change between cases and controls
were considered significant.

Polynomial modelling of transcript expression

The longitudinal expression profile of retained transcripts across six time points was tested for
significant changes using polynomial regression. Polynomial regression modelling was
performed with the patient weight-normalised steroid dosage fitted as a fixed effect. Steroid
dose was normalised by dividing the Daily Steroid Dose by the Patient Weight. The global
model p-value was corrected for multiple testing using the Benjamini-Hochberg method (FDR)
and transcripts with an adjusted p-value below the FDR threshold (<0.05) were considered
statistically significant.

Functional enrichment and pathway analysis

Functional enrichment analysis was performed using the Reactome biological pathway
database via the ReactomePA software package (version 1.18) and the CPdB web server
(http://cpdb.molgen.mpg.de/) [12]. Pathway analysis results with adjusted p-values below the
FDR threshold (< 0.1) were considered significant.

Clinical phenotype regression analysis

Models were constructed to regress clinically relevant traits that were measured at the time of
disease onset, or sample collection, against normalised gene expression levels. For quantitative
clinical variables we used a linear model, and for categorical variables we used a logistic
regression model. Clinical phenotypes were fitted against the expression of each of transcripts
in GCA-only samples separated into CD4+ and CD8+ populations and weight-normalised daily
steroid dose was included as a fixed effect. For each transcript, the adjusted p-value was
calculated using the Benjamini-Hochberg method (FDR) method [13]. Transcripts with adjusted
p-values below the FDR threshold (< 0.01) were retained for further analysis. The complete
summary tables of tested phenotypes are available in Tables 2-4.
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RESULTS

Patient Recruitment and MACS events:

16 incident patients with active GCA and 16 age-matched controls were recruited. The mean
age was 78.2 years in the GCA cohort and 76.6 years in the control group. Both groups had the
same 14:2 female to male ratio. Table 2 provides the number of patients presenting with the
common symptoms and signs associated with GCA. Supplementary Tables 2 and 3 describe
the specific ophthalmic manifestations and long-term prognoses observed in our patient cohort.
Not all patients were able to complete 12 months of participation; therefore, not all patients had
six samples collected (Supplementary Table 1). 6 patients were steroid-naive at T1; these
patients had their first sample collected in the ED prior to commencing steroid treatment. Of the
other 10 patients, 3 patients had been on steroids less than 24 hours, and the other 7 patients
had been on steroids for between three to seven days at the time of T1.

In total, 195 MACS events (135 GCA and 60 control events) were performed, isolating between
2-10 million CD4+ and CD8+ cells per patient per time event. CD4+ MACS isolation resulted in
greater cell counts than CD8+. The analysis on the CyAn ADP analyser shows good population
purity after MACS-positive cell selection: an average of 97% for CD4+ cells and > 94% for
CD8+ cells (Supplementary Figure 1).

Differential expression analysis:

To determine which transcripts showed the most variation in expression over the 12-month
collection period, and to identify cell type specific signatures, we analysed the expression levels
of samples from GCA patients (n=135) (Supplementary Figure 3). Figure 2 represents the
expression levels of the top 40 most variable transcripts in CD4+ and CD8+ samples in GCA
patients. The expression levels of control genes such as CD4 and CD8A/B confirms the
partitioning of CD4+ and CD8+ cells.

We investigated changes in gene expression in both CD4+ and CD8+ between cases and
controls at T1. At a significance threshold of FDR < 0.05, we identified 67 down-regulated (DR)
and 129 up-regulated (UR) transcripts in CD4+ samples, and 93 DR and 188 UR transcripts in
CD8+ samples (Table 1). The numbers of significantly differentially expressed transcripts
increased dramatically at T3 in cases compared to the controls at T1 for CD8+ samples, and
resolving to a near-control profile at T6. At T3 (6-8 weeks), we detected 1927 DR and 1,783 UR
transcripts in CD8+ cells. Interestingly, DE transcripts in CD4+ cells reached a plateau from T2
to T4 (T2: 254 DR/228 UR; T3: 196 DR/190 UR; T4: 179 DR/200 UR).

We hypothesised that gene expression in GCA patients would return to baseline levels at
approximately 12 months, corresponding to T6, marking disease quiescence. Transcripts
remaining DE at T6 may be of clinical interest or mark evidence of previous disease despite
current inactivity. In CD8+ cells, we identified two significant DE transcripts at T6 versus
controls, SGTB (Small glutamine-rich tetratricopeptide repeat (TPR)-containing beta) and
FCGR3A (Fc Fragment Of IgG Receptor llla), which showed log2 fold changes in expression of
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-0.54 (p = 4.83x107) and 1.99 (p = 1.75x10°), respectively. There were no significant DE
transcripts in the CD4+ cells between GCA T6 and the controls.

Differentially expressed genes between T1 and T6 in GCA patients could represent a biomarker
of disease activity, marking either gene UR or DR during the acute phase of disease and then
normalising as disease quiesces. From the CD8+ cell analysis, we detected two differentially
expressed isoforms of CD163 with significantly reduced expression levels. At T6 compared to
T1, CD163 isoform 1 (ENST00000359156) expression showed a log2 FC of -6.01 (p = 1.07x10°
®), whereas the log2 FC of CD163 isoform 2 (ENST00000432237) was -9.69 (p = 5.84x10?).
Notably, CD163 expression is suppressed in response to pro-inflammatory stimuli in monocytes
[14], and is inversely correlated with CD16 expression [14,15], which is consistent with the
increased CD16 expression we observed in cases compared to controls at T6 (12 months).
However, CD16 was not consistently differentially expressed across all time points in CD8+
cells. There were no significant DE transcripts in the CD4+ cells between GCA T1 and T6.
Reassuringly, no significant transcripts were observed in either CD4+ or CD8+ cells in the
controls between T1 & T2. Tables of significant differentially expressed transcripts are
presented in Supplementary Tables 4 (CD4) and 5 (CD8).

Polynomial modelling of longitudinal transcript expression:

To identify important transcripts whose expression levels vary across a 12-month period of the
study, we used polynomial regression to model changes in the expression levels of 40,744
transcripts separately in CD4+ and CD8+ cells across the six timepoints. Using this approach,
we detected 179 and 4 statistically significant expression profiles (FDR < 0.05) in CD4+ and
CD8+ populations, respectively. Tables of significant transcript expression models are available
in Supplementary Table 6.

The top 12 CD4+ profiles and all 4 significant CD8+ profiles are shown in Figure 3. In CD4+, the
majority of genes demonstrated a pattern of decreased expression over the study course. Only
two genes demonstrated a positive fold change and increase in expression levels over the 12
months, namely FOXO1 involved in blood vessel development and TRBCZ2 involved in
complement cascade activation and phagocytosis. The four identified genes in CD8+ were
CCLN2, FANCA, PTCD2 and THRAPS3. The first three genes demonstrate a negative log2 fold
change, whilst THRAP3 demonstrates an increased expression trend.

No substantial contribution of steroid dose to the model was observed across the 12-month time
course (CD4: median beta = -0.001, median p = 0.439; CD8: median beta = -0.002, median p =
0.463). However, expression levels of certain genes at T1 may have been affected depending
on whether patients were steroid-naive or had already been started on treatment at time of their
first blood sample collection. Figures 3A and B highlight those patients who were steroid-naive
in red and those who had already been started on steroid treatment in black. Expression of
certain genes, for example TIMD4, VIPR1, and FOXO1, show obvious clustering depending on
a patient's treatment status and appear to be affected by corticosteroid initiation. Steroid
treatment, even though only initiated in some instances less than 24 hours prior to blood
collection at T1, has a clear effect on the expression of certain genes.

10
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In CD4+, three genes, LMBR1L, UAP1L1 and KCNMB4, showed least clustering at T1 and
appeared least affected by steroid treatment, albeit having been through oral dose or
intravenously administered prior to T1 collection. In CD8+ cells, PTCD2 and THRAP3 appear
little affected by steroids at T1. PTCD2 is highly expressed in both steroid-naive and patients on
steroids at T1 and less so at T6, suggesting no major influence of steroids at T1. THRAP3
shows increased expression over time suggesting that in the acute phase THRAP3 expression
might be suppressed.

From our DGE analysis, we observed significant reduction in CD163 transcript expression
between T1 and T6 in the CD8 cell population analysis. Our results for the polynomial expression
modelling also reflected that CD163 was significantly reduced at T6. However, model profiles of
this transcript showed that the trend over the 12-month time course was not statistically significant
(FDR > 0.05). Interestingly, we noted that several CD163 isoforms in the analyses of both CD4+
and CD8+ cell populations had compelling model profiles. For all but one CD163 isoform,
expression levels returned to zero for all individuals at 12 months; however, these were not
FDR-significant. The log2 fold-change in the expression of these transcripts over 12 months is
shown in Figure 4.

Functional enrichment and pathway analysis:

For individuals with GCA, we would expect an enrichment of immune and inflammation related
pathways compared to healthy individuals. Biological pathway analysis of differentially
expressed transcripts and statistically significant transcripts identified in the polynomial
expression modelling analysis was performed using the curated Reactome database.

Significant DE transcripts in CD4+ samples comparing GCA to controls in the early time points
showed a significant enrichment of T-cell receptor signaling (adj. p-value = 4.25 x 10; 11
genes). In CD8+ samples, we observed an enrichment of genes in pathways related to platelet
degranulation (adj. p-value = 0.0124; 12 genes) and activation (adj. p-value = 0.0156; 20
genes), as well as Fc-gamma receptor (FCGR) dependent phagocytosis (adj. p-value = 0.0156;
13 genes). Furthermore, CD8+ samples from first two collected samples of GCA cases showed
significant enrichment of pathways related to haemostasis (adj. p-value = 2.63 x 10° 118
genes), innate immune system (adj. p-value = 5.51 x 10®; 169 genes) and the adaptive immune
system (adj. p-value = 3.24 x 10™*; 129 genes).

Transcripts with a significant association across the 12-month collection time were interrogated
for enrichment of specific biological pathways. We tested all 179 CD4 and 4 CD8 significant
transcripts. In the CD4 transcripts, we observed an over-representation of transcripts in the
integrin cell surface interactions (adj. p-value = 0.015) and Caspase-mediated cleavage of
cytoskeletal proteins (adj. p-value = 0.0325) as well as cytokine signaling (adj. p-value = 0.08)
and negative regulators of RIG-I/MDAS signaling (adj. p-value = 0.08). In the CD8 results, there
were insufficient significant transcripts to perform enrichment analyses. However, a literature
search revealed THRAP3 is involved in intracellular steroid hormone receptor signaling
pathways, and FANCA in inflammatory responses and T-cell differentiation pathways.
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Clinical phenotype regression analysis:

Linear and logistic regression models were used to estimate the effect of specific clinically
important phenotypes on expressed transcripts. The analyses were three-fold. The first was to
determine whether there were any genes that correlated with symptoms and signs used in the
acute setting (T1) (Table 2). Second, we determined whether any genes directly correlated with
the biochemical markers currently used in the acute phase (T1) (Table 3). Genes resulting from
these first two analyses are potential biomarkers for disease activity in the acute setting and
predict relapses. Thirdly, we determined gene correlations with markers of disease severity or
prognosis (Table 4). These were categorised in terms of visual outcome: whether blinded in one
eye, “monocular’, or both eyes, “bilateral”; relapse events; and whether the patient died during
the study period. This enables us to identify genes that could provide prognostic information,
ideally at the time of diagnosis (T1) but also during the course of disease (T1-6).

Correlation with clinical features in the acute setting:

At the time of admission (T1), we would expect to observe some changes in gene expression to
be strongly associated with clinical phenotypes related to the acute onset of disease. To identify
a transcriptional signature that may be specific to active GCA, we examined the effect of
clinically relevant phenotypes on gene expression in CD4 and CD8 samples taken at T1. Table
2 lists the eleven phenotypes and the number of statistically significant transcripts (FDR < 0.01)
observed for each in CD4 or CD8 samples at T1. Genes or transcripts that are common to
multiple symptoms/signs are likely to be clinically relevant, particularly at the acute onset of
disease. In CD4 and CD8 samples, we identified 17 (CD4) and 27 (CD8) transcripts that were
significantly associated with two or more clinical phenotypes.

In CD4 cells, LAMTOR4 is a gene shared between jaw claudication and temporal headache,
two important clinical features in acute GCA. Another gene associated with jaw claudication is
GZMB, which is also associated with visual disturbance. PPP1CB and EIF4A3 were shared by
both jaw claudication and a background history of Polymyalgia Rheumatica (PMR). EXTL3, was
expressed in both patients with jaw claudication and fatigue. We identified numerous genes
associated with headache, both temporal and other types: POFUTZ2 in CD4 cells, and SLC35F86,
HTD2, ZNF708, KLRC4-KLRK1 and JMJD7 in CD8 cells. EIF5A in CD8 cells was common to
both malaise and temporal headache. SLA and ETS1 are genes shared by patients with a
history of PMR diagnosis and those experiencing visual disturbances at T1.

Genes shared by three clinically important phenotypes at T1 are even more promising than
those shared by two phenotypes and included 15 genes in CD4 and 16 in CD8 cells (Table 5).
SRRT in CD4 was common to four phenotypes: death, fever, and both headache types. In CD8,
IL32 was common to five phenotypes: visual disturbance and raised neutrophils at T1, a history
of PMR, and bilateral blindness and death within 12 months. The results for each phenotype are
available in Supplementary Table 7.

Correlation with currently used biochemical markers:
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We asked whether the results of several routine blood tests, including white cell count, platelet
count, ESR and CRP correlated with changes in gene expression (Table 3). We observed
significant clinical associations for each biochemical marker in both CD4 and CD8 samples.

Thrombocytosis - raised platelet count - is a good predictor of acute GCA [16]. Our analysis
revealed associations of multiple genes common to both raised platelet count and fever in CD4
cells, namely ATP9B, SEC23A, PDZD4, ABCA2, ELK1, CCDC88C and DGKZ. In addition, ESR
and CRP are biomarkers commonly used to predict the likelihood of GCA, and we found that
SAP18 in CD4 was associated with raised ESR and jaw claudication, whereas in CD8 cells
AMPD2 was associated with raised CRP and visual disturbances.

White-blood cell count (WCC), neutrophil and lymphocyte count may also be affected in GCA,
although this may be due to the corticosteroid treatment rather than the inflammatory process
[17]. In the CD4 cells of our patients, we found that SPPL2B expression was common to both
those with raised WCC and jaw claudication whilst MATR3 was associated with raised WCC
and long-term monocular blindness. NDUFS7 expression in CD4 cells was associated with an
increased lymphocyte count and temporal headache in CD4, whereas in CD8 cells AP1G2 was
common to raised lymphocytes and visual disturbance. Additionally, expression of ZNF343 and
INTS14 in CD4 cells were associated with both raised neutrophil and with scalp tenderness and
event relapses respectively.

Correlation with prognostic outcome 12 months after diagnosis:

We identified genes that overlap between phenotypes marking acute disease as well as those
marking prognosis. For example temporal headache at T1 as well as bilateral blindness showed
significant association with CD8 expression of TCF7 (TH: beta = -0.151, adj. p-value = 6.0 x 10
*. BB: beta = -1.801, adj. p-value = 2.2 x 10°) and NUCB2 (beta = 1.571, adj. p-value = 1.31 x
10). The expression of such genes could provide insight into visual prognosis in those patients
presenting with headache in GCA. RPL17 in CD8 was associated between jaw claudication and
relapse events, and FTSJ7 in CD4 between jaw claudication and long-term cerebrovascular
events. Many genes were shared between multiple acute phase phenotypes and mortality within
12 months (Table 5). Figure 5 shows the network analysis of clinically correlated phenotypes
with shared genes, and highlights the link between phenotypes through significant shared
genes.

DISCUSSION

Through transcriptional profiling of T-lymphocyte we identified 4,031 genes in CD4+ and CD8+
cells (CD4: 884; CD8: 3,147) that are differentially expressed between patients with active GCA
compared to age- and sex-matched controls. Longitudinal profiling of cases was undertaken
with the aim of distinguishing genes that are up- or down-regulated during the acute phase of
disease, which later normalise as the disease quiesces. We hypothesised that gene expression
in GCA patients would return to normal at approximately 12 months. With polynomial modeling
analysis of the significant differentially expressed genes, we identified 4 transcripts in CD8+
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cells and 179 in CD4+ cells that show a change in expression profile over the course of twelve
months (Figure 2). As there were no statistically significant differentially expressed genes
between both samples taken from controls subjects at separate times, the genes we report as
differentially expressed likely represent true changes occurring in GCA disease activity.

Next, we determined whether the fold change in expression was secondary to the true effect of
disease status rather than due to steroid treatment. It is important to take into consideration
steroid influence on gene expression, especially early in the treatment course, as this would
allow for the identification of a biomarker that could help diagnose GCA in the acute setting prior
to treatment. As patients received high-dose corticosteroids between T2-T6, we compared gene
expression of those patients who were steroid naive versus those who had already been
initiated on treatment at their first sample collection. LMBR1L, UAP1L1 and KCNMB4 in CD4,
and PTCD2 and THRAP3 in CD8, showed least clustering at the initial collection and seemed
least affected by steroids at T1 (Figure 3), suggesting that the expression profiles of these
genes seen in patients, compared to controls, is likely representative of “acute disease” at T1
rather than a steroid-induced change.

Gene expression patterns seen from our polynomial modeling analysis over the 12 months
might have been influenced by systemic corticosteroid treatment (Figure 3). In CD8+ samples,
differential expression of certain genes increased dramatically at around 6-8 weeks (T3) in
cases compared to the controls, and in CD4+ cells, differential expression plateaued from T2-
T4. Duration of steroid treatment did not have a significant effect on expression and was
removed from analysis. We also adjusted for steroid dose and patient weight in our analysis;
however, the peak in expression in both cell types at these time points could be caused by a
delayed or accumulation of steroid-induced effect. Nevertheless, from a diagnostic perspective,
acute phase evaluation at T1 is most crucial for patient assessment and this potential delayed
steroid-induced effect is not that problematic in our analysis. It does, however, make evaluation
of expression levels in relation to relapse events between 0.5-12 months (T2-T6) slightly
challenging.

Our results show that transcripts that remain DE at 12 months (T6) could potentially be used in
clinical practice to detect evidence of previous GCA disease despite current inactivity. In CD8+
cells, we identified two significant differentially expressed transcripts at T6 versus controls,
SGTB and FCGRS3A. Little is known about SGTB but it has been associated with neuronal
apoptosis after neuroinflammation [18]. Interestingly, FCGR3A encodes CD16a, which forms
part of the Fc receptor of the immunoglobulin complex and interacts with a number of immune-
related proteins including CD4 and PTPRC, a protein required for T-cell activation. Recently,
Lassauniére et al. showed that Black individuals have significantly reduced proportions of
FCGR3A natural killer cells (95.2% vs. 96.9%) and CD8+ T lymphocytes (9.6% vs. 11.7%)
compared to Caucasians [19], and this may serve as a predictive marker for a high-expressing
FCGR3A phenotype in Caucasians, the population most affected by GCA. A recent genome-
wide association study revealed that the FCGR2A/FCGR3A genes confer susceptibility to
Takayasu arteritis, another chronic large-vessel vasculitis [20]. Furthermore, two recent studies
investigating rejection in heart and kidney transplants, observed selective changes in
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endothelial/angiogenesis and natural killer cell transcripts, including CD16A and FCGR3A which
showed increased expression with rejection phenotypes [21][22]. Both studies illustrate the
clinical potential of gene transcripts to illustrate transplant rejection diagnosis. A future study
would need to be conducted to investigate the expression of FCGR3A and CD16a at the arterial
level (TAB) of GCA patients to determine whether increased expression at local level is
representative to that found in peripheral T-cells. If so, FCGR3A could potentially be used as a
biomarker of GCA severity in peripheral blood.

From our CD8+ cell analysis, we detected two differentially expressed isoforms of CD7163 with
significantly reduced expression levels at first and last collection points. CD163, however, is a
member of the scavenger receptor cysteine-rich (SRCR) superfamily, and is mostly expressed
in monocytes and macrophages [23]. Despite an excellent T-cell population purity of >97%
isolated through MACS (Supp Fig 1), monocytes and macrophages may carry CD4+ and CD8+
cell surface markers as T lymphocytes, and may have carried over into our final positively-
selected T-cell population. Irrespective of its derivative cell population, CD163 expression may
play a crucial role in the context of GCA and, as a result, provide crucial information. CD163 is
involved in dendritic cell development, a cell crucial in the pathogenesis of GCA [24]. It has
been suggested that the soluble form of CD163 (sCD163) may have an anti-inflammatory role,
and be a valuable diagnostic parameter for monitoring macrophage activation in inflammatory
conditions where macrophage function is affected [25]. A number of clinical studies have
evaluated the role sCD163 as a disease marker in inflammatory conditions including
autoimmune disease, transplantation and cancer [26][27][28]. Expression levels of CD163 were
reduced in our patients at T6, possibly reflecting disease quiescence. It is likely that 12 months
after disease onset, the need for CD163-monocytes and macrophages to clear damaged tissue
has become redundant. CD163 featured in both our differential expression and polynomial
regression analyses and therefore warrants further investigation in the context of GCA,
potentially through study of peripheral or tissue monocytes and macrophages.

Another strength of this study is that, through linear and logistic regression analyses, we
identified associations between specific clinically important phenotypes and expressed
transcripts. We detected genes which correlated with both symptoms and signs as well as
biochemical markers used in the acute setting (Table 2). Symptoms causing the most suspicion
of a potential GCA diagnosis consist of jaw claudication, temporal headache (or other type),
scalp tenderness and visual disturbance [1]. Genes shared by multiple of these phenotypes are
likely to be particularly relevant to making a diagnosis and could be used as biomarkers for
disease activity in the acute setting and potentially predict relapses.

Jaw claudication is often considered the most predictive symptom of GCA; for example, a
patient has a nine time greater risk of a positive TAB when they experience jaw claudication
[29]. In CD4 cells of our patient cohort, LAMTOR4, was shared between jaw claudication and
temporal headache. This protein is part of the ragulator complex, which is involved in pathways
regulating cell size and cell cycle arrest [30]. A gene common to both jaw claudication and
visual disturbance is GZMB, otherwise known as Granzyme B enzyme. GZMB is necessary for
targeting cell lysis in cell-mediated immune responses and is involved in the activation of
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cytokine release and cascade of caspases responsible for apoptosis execution. Its involvement
has been reported in other autoimmune diseases such as type 1 diabetes and systemic lupus
erythematosus [31,32]. PPP1CB, linked to vascular smooth muscle contraction pathway [33],
was common to patients with jaw claudication and a background history of PMR, which has
been shown to increase the risk of GCA [34]. EXTL3, involved in the heparan sulfate
biosynthesis pathway and previously associated with syphilis, was expressed in both patients
with jaw claudication and fatigue [35].

Multiple genes were associated with temporal and other types of headache in our patients.
These included POFUTZ2 in CD4 cells and SLC35F6, HTD2, ZNF708, KLRC4-KLRK1 and
JMJD7 in CD8 cells. These genes have been described as involved in cellular defense
mechanism, innate immunity, cell proliferation and apoptosis signaling pathways [36]. One
example of great clinical interest is a gene shared by patients with a history of PMR and those
experiencing visual disturbances at T1. ETS1, controls lymphocyte differentiation, modulates
cytokine and chemokine expression. Low expression levels of ETS17, leading to aberrant
lymphocyte differentiation, have been found in systemic lupus erythematosus [37]. ETS1 also
has a potential role in the regulation of angiogenesis [38]. ETS1 warrants further functional
investigation in relation to its vascular role and as a biomarker for GCA for those patients
presenting with PMR.

We determined gene correlations with markers of disease prognosis and severity (Table 3).
Genes in association with poor prognostic outcome markers of GCA, such as blindness,
relapses and death could provide useful predictions in the acute setting and could help
determine the treatment intensity and length required for those particular patients. We identified
genes that overlap between acute phase markers as well as the prognostic markers. For
examples temporal headache at T1 as well as bilateral blindness showed significant association
with CD8 expression of TCF7, which is important for adaptive T lymphocyte and innate
lymphoid cell regulation [39]. Both these phenotypes were also associated with NUCB2, which
encodes Nesfatin-1. NUCB?2 is linked to inflammation and coagulopathies, and is correlated with
mortality following brain injury [40]. As TCF7 and NUCB2 expression are associated with
temporal headache in patients with GCA, these genes could also raise suspicion of poor visual
outcome in patients presenting with temporal headache with GCA diagnosis.

We identified 15 genes shared across three phenotypes in CD4 and 16 across CD8 cells (Table
5). In CD4 cells, SRRT, a gene associated with cell proliferation [41], was common to four
phenotypes: death, fever, and both types of headaches. In CD8, /L32, a member of the cytokine
family [42], was common to 5 phenotypes: a history of PMR, visual disturbance and raised
neutrophils at T1, bilateral blindness and death within 12 months. IL-32 involvement has been
described in vasculitides such as granulomatosis with polyangiitis and anti-neutrophil cytoplasm
antibodies (ANCA) associated vasculitis ([43,44]. A previous quantitative gene expression
analysis study investigating /L-32 in GCA demonstrated a strong and significant up-regulation of
IL-32 in TAB specimens of patients with GCA; in particular it was highly expressed by vascular
smooth muscle cells of inflamed arteries and neovessels within inflammatory infiltrates [45]. This
study also evaluated circulating CD4+ Th1 lymphocytes by flow cytometry which showed that
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there was a greater abundance of them in GCA patients than controls and that they produced
greater amounts of /L-32 [45]. From our study, expression of /[L32 in patients presenting with
visual disturbance, a history of PMR in the presence of an abnormal neutrophil count, should
raise suspicion of GCA diagnosis with poor prognostic outcome. Altered expression of these
genes should raise suspicion of GCA diagnosis with poor outcome. Such genes warrant more
investigation in the context of GCA as these correlated with not only clinical and biochemical
phenotypes but also with prognoses.

GCA is a devastating disease associated with significant morbidity and mortality. The current
mainstay treatment of high-dose corticosteroids is effective but is commonly associated with
potentially serious complications affecting up to 89% of those with GCA[3]. Even after
successful initial treatment with corticosteroids, GCA relapses in up to two-thirds of patients[46].
As shown by our study, 5 out of 16 patients experienced relapses requiring an increase in
steroid dose (Supplementary Table 1). Unlike in other autoimmune diseases, most steroid-
sparing agents and the use of adjunct agents in GCA [mB1] are not associated with a significant
improvement in outcome[46,47]. Tocilizumab, a humanized monoclonal antibody directed
against the IL-6 receptor, has been found to improve both induction and maintenance of
remission in patients with GCA for up to 12 months [48]. However, there is a large side effect
profile from toxilizumab. Interestingly we did not see DGE for IL-6.

In summary, this study has identified genes potentially implicated in the patho-aetiology of GCA
that could be used as biomarkers to monitor disease activity and to predict outcome. Further
functional investigation is needed to understand the pathways in which these genes play a role
in the pathogenesis of GCA and also to determine whether the DGE in this study can be
translated into the clinical setting as new potential biomarkers and assist in finding more
effective and safer treatments for GCA.

FIGURE LEGENDS

Figure 1. Overview of the study design. A total of 16 patients with GCA had serial blood tests to
investigate the gene expression profiles of T lymphocytes over the course of their disease.
CD4+ and CD8+ cells were positively selected through magnetic assisted cell sorting (MACS).
RNA was extracted for subsequent RNA sequencing. The expression profiles of patients were
compared to that of 16 age-matched controls. In addition to differential gene expression
analysis and longitudinal transcript analysis, clinical phenotype regression analysis was
performed to investigate genes predictive of acute disease and prognosis.

Figure 2: Expression levels of the top 40 genes with highest expression variation in CD4 and
CD8 samples for all GCA patients. The color scale indicates normalised, log2-transformed gene
expression (cpm), from low (blue) to high (red). Multiple gene IDs represent alternative
transcript isoforms.
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Figure 3: CD4+ cell (a) and CD8+ cell (b) polynomial regression. A polynomial model, with
weight-normalised steroid dosage included as a fixed effect, was used to examine transcript
expression over the duration of the study. Top transcripts with statistically significant expression
profiles over the duration of the study are shown. The x-axis shows the duration of the study in
months and the y-axis shows normalised expression levels (cpm). The red points represent the
samples taken from steroid-naive individuals, and the gold points represent the samples taken
from individuals who had suffered a relapse at the corresponding time point. The blue line
shows the modelled expression values.

Figure 4. Fold-change distribution of differentially expressed transcripts in CD4 and CD8
samples for each differential expression comparison. Coloured points indicate the log2 fold-
change of CD163 expression and shown for each transcript in CD4 and CD8 samples. Lines
connect the fold-change values (log2-transformed) of differential expression comparisons along
the time course only.

Figure 5. Network analysis of clinically correlated phenotypes with shared genes. Network plots
show the clinical phenotypes observed for GCA patients at the time of presentation with shared,
statistically significant genes (FDR < 0.01) in (a) CD4 and (b) CD8 samples. Each network node
represents a phenotype that shares significant genes with > 1 other phenotype. Network edges
represent connections (shared genes) between phenotypes.
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TABLES

Table 1: Number of DE genes in each comparison

CcD4 CcD8
Contrast DR UR DR UR
Control 2 vs Control 1 0] 0] 0 0
GCAT2vs T1 0 0 0 0
GCAT3vsT1 1 8 35 80
GCA T4 vs T1 2 7 1 3
GCAT5vs T1 0 0 0 0
GCAT6vs T1 0 0 2 0
GCAT6vs T3 0 0 45 10
GCA T1 vs Control 1 67 129 93 188
GCA T2 vs Control 1 254 228 325 453
GCA T3 vs Control 1 196 190 1927 1783
GCA T4 vs Control 1 179 200 576 827
GCA T5 vs Control 1 1 1 101 296
GCA T6 vs Control 1 0] 0] 1 1
GCA T1 vs Control 2 22 58 58 156
GCA T2 vs Control 2 276 233 187 335
GCA T3 vs Control 2 194 171 1066 1227
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GCA T4 vs Control 2 197 179 351 615
GCA T5 vs Control 2 2 0 55 222
GCA T6 vs Control 2 0 0 0 0
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Table 2: “Acute phase” symptoms, signs and relevant past medical history
Number of patients (total n=16) and genes significantly affected (FDR < 0.01) by clinical phenotype in
regression models at T1.

Phenotype Number of patients Number of Transcripts per
with each feature at cell type correlating to
time of presentation each phenotype

CcD4 CD8
1 | Visual Disturbance 14 23 247
2 | Temporal Headache 14 67 34
3 | Other Headache 13 30 76
4 | Scalp Tenderness 12 10 7
5 | Malaise 12 8 27
6 | Jaw Claudication 11 70 10
7 | Fatigue 11 6 29
8 | Loss of Appetite 9 59 32
9 | Weight Loss 8 27 55
10 | Fever 4 177 41
11 | Polymyalgia Rheumatica 4 51 53
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Table 3: “Acute phase” biochemical markers
Number of genes significantly affected (FDR < 0.01) by biochemical markers in regression models at T1.

Phenotype CD4 CD8
1| ESR 23 15
2 | CRP 12 15
3 | Platelets 41 7
4 | WCC 75 38
5 | Lymphocytes 23 63
6 | Neutrophils 22 133

Table 4: “Prognostic genes”
Number of genes significantly affected (FDR < 0.01) by outcome and prognostic phenotype markers in
regression models both in the acute phase alone (T1) as well as across all time points (T1-T6).

T T1-T6
Phenotype CD4 CcD8 CcD4 CcD8
1 | Monocular Blindness 22 41 26 56
2 | Bilateral Blindness 22 50 21 18
3 | Stroke/TIA 40 4 153 70
4 | Relapse events 6 3 47 166
5 | Deceased within 12 months 878 904 43 50
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Table 5: Genes associated with multiple phenotypes, both acute and prognostic, in CD4 and CD8 T cells.

Gene Phenotype 1 Phenotype 2 Phenotype 3

CD4

ATP1A1 Temporal headache Bilateral blindness Death within 12 months
LAMTORA4 Temporal headache Jaw claudication Death within 12 months
MATR3 White cell count Monocular blindness Death within 12 months
MLH1 Temporal headache Bilateral blindness Death within 12 months
NDEL1 Loss of appetite Other headache Death within 12 months
NDUFS7 Temporal headache Elevated lymphocytes Death within 12 months
PDZD4 Fever Loss of appetite Reduced platelets
POFUT2 Temporal headache Other headache Death within 12 months
RRP1 Temporal headache Bilateral blindness Death within 12 months
SDCCAG3 Bilateral blindness Relapse events Death within 12 months
SEC23A Fever Reduced platelets Death within 12 months
SLC10A3 Fever Reduced white cell count Death within 12 months
USF2 Temporal headache Bilateral blindness Death within 12 months
WDR91 Loss of appetite Elevated white cell count Death within 12 months
ZNF343 Scalp tenderness Reduced neutrophils Death within 12 months
CD8

ACADVL Elevated neutrophils Other headache Death within 12 months
CD6 Elevated neutrophils Visual disturbance Death within 12 months
EIF5A Malaise Temporal Headache Death within 12 months
FDXR Loss of appetite Weight loss Death within 12 months
INPPL1 Malaise Fatigue Elevated neutrophils
JMJID7 Temporal headache Other headache Death within 12 months
KIAA0513 Visual disturbance Bilateral blindness Death within 12 months
KLRC4-KLR1I | Temporal headache Other headache Death within 12 months
MTA1 Elevated neutrophils Visual disturbance Death within 12 months
NUCB2 Temporal headache Bilateral blindness Death within 12 months
PI4KA Elevated neutrophils Visual disturbance Death within 12 months
PRAGT Elevated neutrophils Bilateral blindness Death within 12 months
RNPS1 Malaise Fatigue Death within 12 months
SLC35F6 Temporal headache Other headache Death within 12 months
UQCRC1 Malaise Other headache Death within 12 months
ZNF708 Temporal headache Other headache Death within 12 months
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Figure 1. Overview of the study design. A total of 16 patients with GCA had serial blood tests to
investigate the gene expression profiles of T lymphocytes over the course of their disease.
CD4+ and CD8+ cells were positively selected through magnetic assisted cell sorting (MACS).
RNA was extracted for subsequent RNA sequencing. The expression profiles of patients were
compared to that of 16 age-matched controls. In addition to differential gene expression
analysis and longitudinal transcript analysis, clinical phenotype regression analysis was
performed to investigate genes predictive of acute disease and prognosis.
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Figure 2: Expression levels of the top 40 genes with highest expression variation in CD4 and
CD8 samples for all GCA patients. The color scale indicates normalised, log2-transformed gene
expression (cpm), from low (blue) to high (red). Multiple gene IDs represent alternative transcript
isoforms.
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Figure 3: CD4 cell (a) and CD8 cell (b) polynomial regression. A polynomial model, with
weight-normalised steroid dosage included as a fixed effect, was used to examine transcript
expression over the duration of the study. Top transcripts with statistically significant expression
profiles over the duration of the study are shown. The x-axis shows the duration of the study in
months and the y-axis shows normalised expression levels (cpm). The red points represent the
samples taken from steroid-naive individuals, and the gold points represent the samples taken
from individuals who had suffered a relapse at the corresponding time point. The blue line
shows the modelled expression values.
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Figure 4. Fold-change distribution of differentially expressed transcripts in CD4 and CD8
samples for each differential expression comparison. Coloured points indicate the log2
fold-change of CD163 expression and shown for each transcript in CD4 and CD8 samples.
Lines connect the fold-change values (log2-transformed) of differential expression comparisons
along the time course only.
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Figure 5. Network analysis of clinically correlated phenotypes with shared genes. Network plots
show the clinical phenotypes observed for GCA patients at the time of presentation with shared,
statistically significant genes (FDR < 0.01) in (a) CD4 and (b) CD8 samples. Each network node
represents a phenotype that shares significant genes with > 1 other phenotype. Network edges
represent connections (shared genes) between phenotypes.
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Supplementary Figure 1.
Quality control metrics for stored specimens. Representative FACS analysis for FITC bound CD4 (A)
and APC bound CD8 cells (B). Panel C displays the FACS confirmed purity of all specimens, with
case and control samples represented by red and blue triangles respectively.
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Effect of batch correction on 195 samples (2 samples of the 197 were removed). Three parameters
(Flowcell ID, Gender and Ethnicity) were used to remove confounding effects in edgeR. PC1
contributes the greatest amount of variance and is largely attributed to Flowcell ID, which accounts for
most of the variance in sequencing experiments.
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Expression levels of the top 500 most variable transcripts in CD4 and CD8 cells, shown for
each of 135 samples. Sample groups are indicated by the orange (CD4) and blue (CD8)
bars at the top of the heatmap.
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Supplementary Table 1.
Cases recruited and attendance for all 6 time points. Abbreviations: T1 (Day 0-7); T2 (2-3 weeks); T4
(~3 months); T5 (~6 months); T6 (~12 months); DNA, did not attend.

GCA T T2 T3 T4 T5 T6
case

1. 0 17 42 103 189 374
2, 5 17 54 99 187 383
3. 6 18 34 89 194 377
4, 1 29 - 99 190 386
5. 1 24 51 80 164 390
6. 6 18 34 83 175 369
7. 3 21 51 93 189 387
8 0

9 0

10. 0

1. 0

12 2

13. 3

14. 1

15. 5

16. 0

Mean 2.0
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Median 1 17.5 49 90 188 383

(Range) | (0-6) | (7-29) | (34-65) | (80-103) | (164-194) | (366-390)
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Supplementary Table 2.
Ophthalmic clinical summary data (GCA cases, n=16).

Number of
cases

Visual disturbance at T1

Monocular 10

Bilateral 4

None 2
Eye affected

Right 4

Left 5

Both 4
Ophthalmic Manifestation

Amaurosis Fugax 2

AION 9

Transient diplopia 1

3rd Cranial nerve palsy 2
Final recorded visual outcome

Normal vision both eyes 4

Normal vision one eye, visual impairment other 7

Blind one eye 2

Blind both eyes 3

Definitions (Snellen Chart): Normal vision: >6/9; Vision impairment: <6/9 but >6/60; Severe vision impairment (“Blind”): <=6/60.
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General Disease Outcome and prognostic measures

Category Number of
cases
Number of relapse events during the 12 month study period
None 5
One 5
Two 2
Three or more 1
Unknown (loss to follow up) 3

Deceased within 12 months

Yes 3
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