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ABSTRACT

Birds and other vertebrates display stunning variation in pigmentation patterning, yet the
genes controlling this diversity remain largely unknown. Rock pigeons (Columba livia)
are fundamentally one of four color pattern phenotypes, in decreasing order of melanism:
T-check, checker, bar (ancestral), or barless. Using whole-genome scans, we identified
NDP as a candidate gene for this variation. Allele-specific expression differences in NDP
indicate cis-regulatory differences between ancestral and melanistic alleles. Sequence
comparisons suggest that derived alleles originated in the speckled pigeon (Columba
guinea), providing a striking example of introgression of alleles that are favored by
breeders and are potentially advantageous in the wild. In contrast, barless rock pigeons
have an increased incidence of vision defects and, like two human families with
hereditary blindness, carry start-codon mutations in NDP. In summary, we find
unexpected links between color pattern, introgression, and vision defects associated with

regulatory and coding variation at a single locus.
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INTRODUCTION

Vertebrates have evolved a vast array of epidermal colors and color patterns in
response to natural, sexual, and artificial selection. Numerous studies have identified key
genes that determine variation in the types of pigments that are produced (e.g., Hubbard
et al. 2010; Manceau et al. 2010; Roulin and Ducrest 2013; Domyan et al. 2014;
Rosenblum et al. 2014). In contrast, considerably less is known about the genetic
mechanisms that determine pigment patterning throughout the entire epidermis and
within individual epidermal appendages (e.g., feathers, scales, and hairs) (Kelsh 2004;
Protas and Patel 2008; Kelsh et al. 2009; Lin et al. 2009; Kaelin et al. 2012; Lin et al.
2013; Eom et al. 2015; Poelstra et al. 2015; Mallarino et al. 2016). In birds, color
patterns are strikingly diverse among different populations and species, and these traits
have profound impacts on mate-choice, crypsis, and communication (Hill and McGraw
20006).

The domestic rock pigeon (Columba livia) displays enormous phenotypic
diversity within and among over 350 breeds, including a wide variety of plumage
pigmentation patterns (Shapiro and Domyan 2013; Domyan and Shapiro 2017). Some of
these pattern phenotypes are found in feral and wild populations as well (Johnston and
Janiga 1995). A large number of genetic loci contribute to pattern variation in rock
pigeons, including genes that contribute in an additive fashion and others that
epistatically mask the effects of other loci (Jones 1922; Hollander 1937; Sell 2012;
Domyan et al. 2014). Despite the genetic complexity of the full spectrum of plumage
pattern diversity in pigeons, classical genetic experiments demonstrate that major wing

shield pigmentation phenotypes are determined by an allelic series at a single locus (C,
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for “checker” pattern) that produces four phenotypes: T-check (C” allele, also called T-
pattern), checker (C), bar (+), and barless (c), in decreasing order of dominance and
melanism (Fig. 1A) (Bonhote and Smalley 1911; Hollander 1938; Hollander 1983; Levi
1986; Sell 2012). Bar is the ancestral phenotype (Darwin 1859, 1868), yet checker and T-
check can occur at higher frequencies than bar in urban feral populations, suggesting a
fitness advantage in areas of dense human habitation (Obukhova and Kreslavskii 1984;
Johnston and Janiga 1995; Canady and Mosansky 2013).

Color pattern variation is associated with several important life history traits in
feral pigeon populations. For example, checker and T-check birds have higher
frequencies of successful fledging from the nest, longer (up to year-round) breeding
seasons, and can sequester more toxic heavy metals in plumage pigments through
chelation (Petersen and Williamson 1949b; Lofts et al. 1966; Murton et al. 1973;
Chatelain et al. 2014; Chatelain et al. 2016). Relative to bar, checker and T-check birds
also have reduced fat storage and, perhaps as a consequence, lower overwinter adult
survival rates in harsh rural environments (Petersen and Williamson 1949a; Jacquin et al.
2012). Disassortative mating occurs in feral pigeons with different patterns, so sexual
selection probably influences the frequencies of wing pigmentation patterns in feral
populations as well (Burley 1981; Johnston and Johnson 1989). In contrast, barless, the
recessive and least melanistic phenotype, is rarely observed in feral pigeons (Johnston
and Janiga 1995). In domestic populations, barless birds have a higher frequency of
vision defects, sometimes referred to as “foggy” vision (Hollander and Miller 1981;

Hollander 1983; Mangile 1987), which could negatively impact fitness in the wild.
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74 In this study, we investigate the molecular and evolutionary mechanisms

75  underlying wing pattern diversity in pigeons. We discover both coding and regulatory

76  variation at a single candidate gene, and a trans-species polymorphism linked with

77  pattern variation within and between species that likely resulted from interspecies

78  hybridization.

79

80 RESULTS AND DISCUSSION

81 A genomic region on Scaffold 68 is associated with wing pattern phenotype

82 To identify the genomic region containing the major wing pigmentation pattern
83  locus, we used a probabilistic measure of allele frequency differentiation (pFst; Domyan
84  etal. 2016) to compare the resequenced genomes of bar pigeons to genomes of pigeons
85  with either checker or T-check patterns (see Methods). Checker and T-check birds were
86  grouped together because these two patterns are sometimes difficult to distinguish, even
87  for experienced hobbyists (Fig. 1A). Checker birds are typically less pigmented than T-
88  check birds, but genetic modifiers of pattern phenotypes can minimize this difference. A
89  two-step whole-genome scan (see Methods, Fig. 1B, Fig. S1A) identified a single ~103-
90 kb significantly differentiated region on Scaffold 68 that was shared by all checker and T-
91  check birds (position 1,702,691-1,805,600 of the Cliv_1.0 pigeon genome assembly

92  (Shapiro et al. 2013); p = 1.11e-16, genome-wide significance threshold = 9.72e-10). The
93  minimal shared region was defined by haplotype breakpoints in a homozygous checker
94  and a homozygous bar bird and is hereafter referred to as the minimal checker haplotype.
95  As expected for the well-characterized allelic series at the C locus, we also found that a

96  broadly overlapping region of Scaffold 68 was highly differentiated between the genomes
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of bar and barless birds (p = 3.11e-15, genome-wide significance threshold = 9.71e-10;
Fig. S1B). Together, whole-genome comparisons identified a single genomic region

corresponding to the wing pattern C locus.

A copy number variant is associated with melanistic wing patterns

To identify genetic variants associated with the derived checker and T-check
phenotypes, we first compared annotated protein-coding genes throughout the genome.
We found a single, predicted, fixed change in EFHC2 (Y572C, Fig. S2) in checker and T-
check birds relative to bar birds (VAAST; Yandell et al. 2011). However, this same
amino acid substitution is also found in Columba rupestris, a closely related species to C.
livia that has a bar wing pattern. Thus, the Y572C substitution is not likely to be
causative for the checker or T-check pattern, nor is it likely to have a strong impact on
protein function (MutPred2 score 0.468, no recognized affected domain; PolyPhen-2
score 0.036; Adzhubei et al. 2010; Pejaver et al. 2017).

Next, we examined sequence coverage across the checker haplotype and
discovered a copy number variable (CNV) region (approximate breakpoints at Scaffold
68 positions 1,790,000 and 1,805,600). Based on normalized read-depths of resequenced
birds, we determined that the CNV region has one, two, or four copies per chromosome.
Bar birds (n=12) in our resequencing panel always had a total of two copies in the CNV
region (one on each chromosome), but most checker (n=5 of 7) and T-check (n=2 of 2)
genomes examined had additional copies of the CNV (Fig. 2A). Using a PCR assay to
amplify across the breakpoints in birds with more than one copy per chromosome, we

determined that additional copies result from tandem repeats. We found no evidence that
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the checker haplotype contains an inversion based on mapping of paired-end reads at the
CNV breakpoints (WHAM; Kronenberg et al. 2015). In addition, we were able to amplify
unique PCR products that span the outer CNV breakpoints (data not shown), suggesting
that there are no inversions within the CNV region.

The fact that some checker birds had only two total copies of the CNV region
demonstrates that a copy number increase is not necessary to produce melanistic
phenotypes. However, consistent with the dominant inheritance pattern of the phenotype,
all checker and T-check birds had at least one copy of the checker haplotype. Thus, a
checker haplotype on at least one chromosome appears to be necessary for the dominant
melanistic phenotypes, but additional copies of the CNV region are not.

In a larger sample of pigeons, we found a significant association between copy
number and phenotype (TagMan assay; pairwise Wilcoxon test, p=2.1e-05). Checker
(n=40 of 56) and T-check (n=15 of 18) patterns were associated with additional copies,
and pigeons with the bar pattern (n=20) never had more than two copies in total (Fig.
2B). Although additional copies of the CNV only occurred in checker and T-check birds,
we did not observe a consistent number of copies associated with either phenotype. This
could be due to a variety of factors, including modifiers that darken genotypically-
checker birds to closely resemble T-check (Jones 1922; Sell 2012) and environmental
factors such as temperature-dependent darkening of the wing shield during feather
development (Podhradsky 1968).

Due to the potential ambiguity in categorical phenotyping, we next measured the
percent of pigmented area on the wing shield and tested for associations between copy

number and percentage of pigmented wing shield area. We phenotyped and genotyped an
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additional 63 birds from diverse domestic breeds as well as 26 feral birds, and found that
estimated copy number in the variable region was correlated with the amount of dark
pigment on the wing shield (nonlinear least squares regression, followed by 1*
calculation; r°=0.46) (Fig. 2C). This correlation was a better fit to the regression when
ferals were excluded (1*=0.68, Fig. S3B), possibly because numerous pigmentation
modifiers (e.g., sooty and dirty) are segregating in feral populations (Hollander 1938;
Johnston and Janiga 1995). Together, our analyses of genetic variation among
phenotypes point to a CNV that is associated with qualitative and quantitative color

pattern variation in pigeons.

NDP is differentially expressed in feather buds of different wing pattern phenotypes
The CNV that is associated with wing pattern variation resides between two
genes, EFHC2 and NDP. EFHC? is a component of motile cilia, and mouse mutants have
juvenile myoclonic epilepsy (Linck et al. 2014). In humans, allelic variation in EFHC?2 is
also associated with differential fear responses and social cognition (Weiss et al. 2007;
Blaya et al. 2009; Startin et al. 2015; but see Zinn et al. 2008). However, EFHC2 has not
been implicated in pigmentation phenotypes in any organism. NDP encodes a secreted
ligand that activates WNT signaling by binding to its only known receptor FZD4 and its
co-receptor LRP5 (Smallwood et al. 2007; Hendrickx and Leyns 2008; Deng et al. 2013;
Ke et al. 2013). Notably, NDP is one of many differentially expressed genes in the
feathers of closely related crow subspecies that differ, in part, by the intensity of plumage
pigmentation (Poelstra et al. 2015). Furthermore, FZD4 is a known melanocyte stem cell

marker (Yamada et al. 2010). Thus, based on expression variation in different crow
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166  plumage phenotypes, and the expression of its receptor in pigment cell precursors, NDP
167  is a strong candidate for pigment variation in pigeons.

168 The CNV in the intergenic space between EFHC2 and NDP in the candidate

169  region, coupled with the lack of candidate coding variants between bar and checker

170  haplotypes, led us to hypothesize that the CNV region might contain regulatory variation
171  that could alter expression of one or both neighboring genes. To test this possibility, we
172 performed qRT-PCR on RNA harvested from regenerating wing shield feathers of bar,
173  checker, and T-check birds. EFHC?2 was not differentially expressed between bar and
174  either checker or T-check patterned feathers (p=0.19, pairwise Wilcoxon test, p-value
175  adjustment method: fdr), although expression levels differed slightly between the checker
176  and T-check patterned feathers (p=0.046, Fig. 3A). Expression levels of other genes

177  adjacent to the minimal checker haplotype region also did not vary by phenotype (Fig.
178  S4).

179 In contrast, expression of NDP was significantly increased in checker feathers —
180 and even higher in T-check feathers — relative to bar feathers (Fig. 3A) (bar-checker

181  comparison, p=1.9¢-05; bar-T-check, p=1.0e-08; checker-T-check, p=0.0071; pairwise
182  Wilcoxon test, all comparisons were significant at a false discovery rate of 0.05).

183  Moreover, when qRT-PCR expression data for checker and T-check feathers were

184  grouped by copy number instead of categorical phenotype, the number of CNV copies
185  was positively associated with NDP expression level (Fig. S5). Thus, expression of NDP
186  is positively associated with both increased melanism (categorical pigment pattern

187  phenotype) and CNV genotype.
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The increase in NDP expression could be the outcome of at least two molecular
mechanisms. First, one or more regulatory elements in the CNV region (or elsewhere)
could increase expression of NDP in cis. Such changes would only affect expression of
the allele on the same chromosome (Wittkopp et al. 2004). Second, trans-acting factors
encoded within the minimal checker haplotype (e.g., EFHC?2 or an unannotated feature)
could increase NDP expression, resulting in an upregulation of NDP alleles on both
chromosomes.

To distinguish between these possibilities, we carried out allele-specific
expression assays (Domyan et al. 2014; Domyan et al. 2016) on the regenerating feathers
of birds that were heterozygous for bar and checker alleles in the candidate region
(checker alleles with one, two, or four copies of the CNV). In the common trans-acting
cellular environment of heterozygous birds, checker alleles of NDP were more highly
expressed than bar alleles, and these differences were further amplified in checker alleles
with more copies of the CNV (Fig. 3B) (p=0.0028 for two-sample t-test between 1 vs. 4
copies, p=1.84e-06 for generalized linear model regression). In comparison, transcripts of
EFHC?2 from checker and bar alleles were not differentially expressed in the hybrid
background (Fig. 3B) (p=0.5451 for two-sample t-test between 1 vs. 4 copies, p=0.471
for linear regression). Together, our expression studies indicate that a cis-acting
regulatory change drives increased expression of NDP in pigeons with more melanistic
plumage patterns, but does not alter expression of EFHC?2 or other nearby genes (Figs.
3A, S4). Furthermore, because NDP expression increases with additional copies of the

CNV, the regulatory element probably resides within the CNV itself.

10
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A missense mutation at the start codon of NDP is associated with barless

In humans, mutations in NDP can result in Norrie disease, a recessively-inherited
disorder characterized by a suite of symptoms including vision deficiencies, intellectual
and motor impairments, and auditory deficiencies (Norrie 1927; Warburg 1961; Holmes
1971; Chen et al. 1992; Sims et al. 1992). Protein-coding mutations in NDP, including
identical mutations segregating within single-family pedigrees, result in variable
phenotypic outcomes, including incomplete penetrance (Meindl et al. 1995; Berger 1998;
Allen et al. 2006). Intriguingly, barless pigeons also have an increased incidence of vision
deficiencies and, as in humans with certain mutant alleles of NDP, this phenotype is not
completely penetrant (Hollander 1983). Thus, based on the known allelism at the C locus,
the nomination of regulatory changes at NDP as candidates for the C and C” alleles, and
the vision-related symptoms of Norrie disease, NDP is also a strong candidate for the
barless phenotype (c allele).

To test the prediction that variation in NDP is associated with the barless
phenotype, we used VAAST to scan the resequenced genomes of 9 barless pigeons and
found that all were homozygous for a nonsynonymous protein-coding change at the start
codon of NDP that was perfectly associated with the barless wing pattern phenotype. We
detected no other genes with fixed coding changes or regions of significant allele
frequency differentiation (pFst) elsewhere in the genome. We genotyped an additional 14
barless birds and found that all were homozygous for the same start-codon mutation (Fig.
S6). The barless mutation is predicted to truncate the amino terminus of the NDP protein
by 11 amino acids, thereby disrupting the 24-amino acid signal peptide sequence

(www.uniprot.org, Q00604 NDP_Human). NDP is still transcribed and detectable by RT-

11
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PCR in regenerating barless feathers (data not shown); therefore, we speculate that the
start-codon mutation might alter the normal secretion of the protein into the extracellular
matrix (Gierasch 1989).

In humans, coding mutations in NDP are frequently associated with a suite of
neurological deficits. In pigeons, however, only wing pigment depletion and vision
defects are reported in barless homozygotes. Remarkably, two human families
segregating Norrie disease have only vision defects, and like barless pigeons, these
individuals have start-codon mutations in NDP (Fig. S6) (Isashiki et al. 1995). Therefore,
signal peptide mutations might affect a specific subset of developmental processes
regulated by NDP, while leaving other (largely neurological) functions intact. In
summary, wing pattern phenotypes in pigeons are associated with the evolution of both
regulatory (checker, T-check) and coding (barless) changes in the same gene, and barless
pigeons share a partially-penetrant visual deficiency with human patients who have start-

codon substitutions.

Signatures of introgression of the checker haplotype

Pigeon fanciers have long hypothesized that the checker pattern in the rock pigeon
(Columba livia) resulted from a cross-species hybridization event with the speckled
pigeon (Columba guinea, Fig. S7), a species with a checker-like wing pattern (G.
Hochlan, G. Young, personal communication) (Hollander 1983). Although C. /ivia and
C. guinea diverged an estimated 4-5 million years ago, inter-species crosses can produce
fertile hybrids (Whitman 1919; Irwin et al. 1936; Taibel 1949; Miller 1953). Moreover,

hybrid F; and backcross progeny between C. guinea and bar C. livia have checkered

12
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wings, much like C. /ivia with the C allele (Whitman 1919; Taibel 1949). Taibel (1949)
showed that, although hybrid F; females were infertile, two more generations of
backcrossing to C. livia could produce checker offspring of both sexes that were fully
fertile. In short, Taibel introgressed the checker trait from C. guinea into C. livia in just
three generations.

To evaluate the possibility of an ancient cross-species introgression event, we
sequenced an individual C. guinea genome to ~30X coverage and mapped the reads to
the C. livia reference assembly. We calculated four-taxon D-statistics (“ABBA-BABA”
test; Durand et al. 2011) to test for deviations from expected sequence similarity between
C. guinea and C. livia, using a wood pigeon (C. palumbus) genome as an outgroup. In
this case, the null expectation is that the C candidate region will be more similar between
conspecific bar and checker C. /ivia than either will be to the same region in C. guinea.
That is, the phylogeny of the candidate region should be congruent with the species
phylogeny. However, we found that the D-statistic approaches 1.0 in the candidate region
(n=10 each for bar and checker C. livia), indicating that checker C. /ivia are more similar
to C. guinea than to conspecific bar birds in this region (Fig. 4A). The mean genome-
wide D-statistic was close to zero (0.021), indicating that bar and checker sequences are
more similar to each other throughout the genome than either one is to C. guinea.

This unexpected similarity between C. guinea and checker C. /ivia in the pattern
candidate region was further supported by sequence analysis using HybridCheck (Ward
and van Oosterhout 2016). Outside of the candidate region, checker birds have a high
sequence similarity to conspecific bar birds and low similarity to C. guinea (Fig. 4B).

Within the candidate region, however, this relationship shows a striking reversal, and

13
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checker and C. guinea sequences are most similar to each other. In addition, although the
genome-wide D-statistic was relatively low, the 95% confidence interval (CI) was greater
than zero (0.021 to 0.022), providing further evidence for one or more introgression
events from C. guinea into checker and T-check genomes. Unlike in many checker and
T-check C. livia, we did not find additional copies of the CNV region in C. guinea. This
could indicate that the CNV expanded in C. livia, or that the CNV is present in a subset
of C. guinea but has not yet been sampled. Taken together, these patterns of sequence
similarity and divergence support the hypothesis that the candidate checker haplotype in

rock pigeons originated by introgression from C. guinea.

Estimated divergence time among pattern locus haplotypes

While post-divergence introgression is an attractive hypothesis to explain the
sequence similarity between checker C. /ivia and C. guinea, another formal possibility is
that sequence similarity between these groups is due to incomplete lineage sorting.
Therefore, to assess whether the minimal checker haplotype might have been present in
the last common ancestor of C. guinea and C. livia, we measured single nucleotide
differences among different alleles of the minimal haplotype and compared these counts
to polymorphism rates expected to accumulate over the divergence time between C. /ivia
and C. guinea (Fig. 4C, purple bar, see Methods).

We found that polymorphisms between bar C. /ivia and C. guinea approached the
number expected to accumulate in 4-5 MY (1708+109 mean SNPs, Fig. 4C), but so did
intraspecific comparisons between bar and checker C. /ivia (1564+99). In contrast, C.

guinea and C. livia checker sequences had only 384+6 mean differences, significantly
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fewer than would be expected to accumulate between the two species (p < 2.2e-16, t-
test). These results support an introgression event from C. guinea to C. livia, rather than a
shared ancestral allele inherited from a common ancestor prior to divergence. Among 11
checker haplotype sequences we found only 26+8 mean differences.

We then estimated the age of the minimal checker haplotype following Voight et
al. (2006). Using a recombination rate calculated for rock pigeon (Holt et al. 2017), the
minimal checker haplotype is estimated to have been introgressed 857 (95% CI 534 to
1432) generations ago. Therefore, assuming 1-2 generations per year in C. /ivia,
introgression events likely occurred well after the domestication of rock pigeons (~5000
years ago). The ranges of C. livia and C. guinea overlap in northern Africa (del Hoyo et
al. 2017), so introgression events could have occurred in free-living populations.
Alternatively, or perhaps additionally, multiple (but relatively similar) checker
haplotypes could have been introgressed more recently by pigeon breeders. Once male
hybrids are generated, this can be accomplished in just a few generations (Taibel 1949).
This explanation is supported by lack of diversity among checker haplotypes, with only
2648 mean differences, which is unusually low for the diversity typically observed in
large, free-living pigeon populations (Shapiro et al. 2013). Additional C. guinea genome
sequences will help to characterize allelic variation at this locus and resolve these

possibilities.

Introgression and pleiotropy

Adaptive traits can arise through new mutations or standing variation within a

species, and a growing number of studies point to cross-species adaptive introgressions
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among vertebrates and other animals (Hedrick 2013; Harrison and Larson 2014; Zhang et
al. 2016). In some cases, introgressed loci are associated with adaptive traits in the
receiving species, including high-altitude tolerance in Tibetan human populations from
Denisovans (Huerta-Sanchez et al. 2014), resistance to anticoagulant pesticides in the
house mouse from the Algerian mouse (Song et al. 2011; Liu et al. 2015), and beak
morphology among different species of Darwin’s finches (Lamichhaney et al. 2015).
Among domesticated birds, introgressions are responsible for skin and plumage color
traits in chickens and canaries, respectively (Eriksson et al. 2008; Lopes et al. 2016).
Alleles under artificial selection in a domesticated species can be advantageous in the
wild as well, as in the introgression of dark coat color from domestic dogs to wolves
(Anderson et al. 2009) (however, color might actually be a visual marker for an
advantageous physiological trait conferred by the same allele; Coulson et al. 2011).

In this study, we identified a putative introgression into C. /ivia from C. guinea
that is advantageous both in artificial (selection by breeders) and free-living urban
environments (sexual and natural selection). A change in plumage color pattern is an
immediately obvious phenotypic consequence of the checker allele, yet other traits are
linked to this pigmentation pattern. For example, checker and T-check pigeons have
longer breeding seasons, up to year-round in some locations (Lofts et al. 1966; Murton et
al. 1973), and C. guinea breeds year-round in most of its native range as well (del Hoyo
et al. 2017). Perhaps not coincidentally, NDP is expressed in the gonad tissues of adult C.
livia (MacManes et al. 2017) and the reproductive tract of other amniotes (Paxton et al.
2010). Abrogation of expression or function of NDP or its receptor FZD4 is associated

with infertility and gonad defects (Luhmann et al. 2005; Kaloglu et al. 2011; Ohlmann et
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al. 2012; Ohlmann and Tamm 2012). Furthermore, checker and T-check birds deposit
less fat during normally reproductively quiescent winter months. In humans, expression
levels of FZD4 and the co-receptor LRPS5 in adipose tissue respond to varying levels of
insulin (Karczewska-Kupczewska et al. 2016), and LRPS5 regulates the amount and
location of adipose tissue deposition (Loh et al. 2015; Karczewska-Kupczewska et al.
2016). Therefore, based on its reproductive and metabolic roles in pigeons and other
amniotes, NDP is a viable candidate not only for color pattern variation, but also for the
suite of other traits observed in free-living (feral and wild) checker and T-check pigeons.
Indeed, the potential pleiotropic effects of NDP raise the possibility that reproductive
output and other physiological advantages are secondary or even primary targets of
selection, and melanistic phenotypes are honest genetic signals of a cluster of adaptive
traits controlled by a single locus.

Adaptive cis-regulatory change is emerging as an important theme in the
evolution of vertebrates and other animals (Shapiro et al. 2004; Miller et al. 2007; Chan
et al. 2010; Wittkopp and Kalay 2012; O'Brown et al. 2015). In some cases, the evolution
of multiple regulatory elements of the same gene can fine-tune phenotypes, such as
mouse coat color and trichome distribution in fruit flies (McGregor et al. 2007; Linnen et
al. 2013). Cross-species introgression can result in the simultaneous transfer of multiple
advantageous traits (Rieseberg 2011), and the potential role of NDP in both plumage and
physiological variation in pigeons could represent a striking example of this process.

Wing pigmentation patterns that resemble checker are present in many wild
species within and outside of Columbidae including Patagioenas maculosa (Spot-winged

pigeon), Spilopelia chinensis (Spotted dove), Geopelia cuneata (Diamond dove), Gyps
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rueppelli (Riippell’s vulture), and Pygiptila stellaris (Spot-winged antshrike). Based on
our results in pigeons, NDP and its downstream targets can serve as initial candidate
genes to ask whether similar molecular mechanisms generate convergent patterns in other

species.

MATERIALS & METHODS
Ethics statement

Animal husbandry and experimental procedures were performed in accordance
with protocols approved by the University of Utah Institutional Animal Care and Use

Committee (protocols 10-05007, 13-04012, and 16-03010).

DNA sample collection and extraction

Blood samples were collected in Utah at local pigeon shows, at the homes of local
pigeon breeders, from pigeons in the Shapiro lab, and from ferals that had been captured
in Salt Lake City, Utah. Photos of each bird were taken upon sample collection for our
records and for phenotype verification. Tissue samples of C. rupestris, C. guinea, and C.
palumbus were provided by the University of Washington Burke Museum, Louisiana
State University Museum of Natural Science, and Tracy Aviary, respectively. Breeders
outside of Utah were contacted by email or phone to obtain feather samples. Breeders
were sent feather collection packets and instructions, and feather samples were sent back
to the University of Utah along with detailed phenotypic information. Breeders were
instructed to submit only samples that were unrelated by grandparent. DNA was then

extracted from blood, tissue, and feathers as previously described (Stringham et al. 2012).
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Determination of color and pattern phenotype of adult birds

Feather and color phenotypes of birds were designated by their respective
breeders. Birds that were raised in our facility at the University of Utah or collected from
feral populations were assigned a phenotype using standard references (Levi 1986; Sell

2012).

Genomic Analyses

BAM files from a panel of previously resequenced birds were combined with
BAM files from 8 additional barless birds, 23 bar and 23 checker birds (22 feral, 24
domestics), a single C. guinea, and a single C. palumbus. SNVs and small indels were
called using the Genome Analysis Toolkit (Unified Genotyper and LeftAlignAnd
TrimVariants functions, default settings) (McKenna et al. (2010) Genome Research).
Variants were filtered as described previously (Domyan et al. 2016) and the subsequent
variant call format (VCF) file was used for pFst and ABBA-BABA analyses as part of
the VCFLIB software library (https://github.com/vcflib) and VAAST (Yandell et al.
2011) as described previously (Shapiro et al. 2013).

pFst was first performed on whole-genomes of 32 bar and 27 checker birds. Some
of the checker and bar birds were sequenced to very low coverage (~1X), so we were
unable to confidently define the boundaries of the shared haplotype. To remedy this
issue, we used the core of the haplotype to identify additional bar and checker birds from
a set of birds that had already been sequenced to higher coverage (Shapiro et al. 2013).

These additional birds were not included in the initial scan because their wing pattern
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phenotypes were concealed by other color and pattern traits that are epistatic to bar and
check phenotypes. For example, the recessive red (e) and spread () loci produce a
uniform pigment over the entire body, thereby obscuring any bars or checkers (Jones
1922; Hollander 1938; Sell 2012; Domyan et al. 2014). Although the major wing pattern
is not visible in these birds, the presence or absence of the core checker haplotype
allowed us to characterize them as either bar or checker/T-check. We then re-ran pFst
using 17 bar and 24 checker/T-check birds with at least 8X mean read depth coverage
and (Fig. 1B), and found a minimal shared checker haplotype of ~100 kb (Scaffold 68
position 1,702,691-1,805,600), as defined by haplotype breakpoints in a homozygous
checker and a homozygous bar bird (NCBI BioSamples SAMNO01057561 and
SAMNO01057543, respectively; BioProject PRINA167554). pFst was also used to
compare the genomes of 32 bar and 9 barless birds. New sequence data for C. /ivia are
deposited in the NCBI SRA database under BioProject PRINA428271 with the
BioSample accession numbers SAMNO08286792- SAMNO08286844. (Submission of

sequences for C. guinea and C. palumbus is in progress.)

CNYV breakpoint identification and read depth analysis

The approximate breakpoints of the CNV region were identified at Scaffold 68
positions 1,790,000 and 1,805,600 using WHAM in resequenced genomes of
homozygous bar or checker birds with greater than 8x coverage (Kronenberg et al. 2015).
For 12 bar, 7 checker, and 2 T-check resequenced genomes, Scaffold 68 gdepth files
were generated using VCFtools (Danecek et al. 2011). Two subset regions were

specified: the first contained the CNV and the second was outside of the CNV and was
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used for normalization (positions 1,500,000-2,000,000 and 800,000-1,400,000,
respectively). Read depth in the CNV was normalized by dividing read depth by the
average read depth from the second (non-CNV) region, then multiplying by two to

normalize for diploidy.

Taqman assay for copy number variation

Copy number variation was estimated using a custom Tagman Copy Number
Assay (assay ID: cnvtaqgl CCI1RVED; Applied Biosystems, Foster City, CA) for 94 birds
phenotyped by wing pigment pattern category and 89 birds whose pigmentation was
quantified by image analysis. After DNA extraction, samples were diluted to Sng/pL.

Samples were run in quadruplicate according to the manufacturer’s protocol.

Quantification of pigment pattern phenotype

At the time of blood sample collection, the right wing shield was photographed
(RAW format images from a Nikon D70 or Sony a6000 digital camera). In Photoshop
(Adobe Systems Incorporated, San Jose, CA), the wing shield including the bar (on the
secondary covert feathers) was isolated from the original RAW file. Images were
adjusted to remove shadows and the contrast was set to 100%. The isolated adjusted wing

shield image was then imported into ImageJ (imagej.nih.gov/) in JPEG format. Image

depth was set to 8-bit and we then applied the threshold command. Threshold was further
adjusted by hand to capture checkering and particles were analyzed using a minimum
pixel size of 50. This procedure calculated the area of dark plumage pigmentation on the

wing shield. Total shield area was calculated using the Huang threshold setting and
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464  analyzing the particles as before (minimum pixel size of 50). The dark area particles were
465  divided by total wing area particles, and then multiplied by 100 to get the percent dark
466  area on the wing shield. Measurements were done in triplicate for each bird, and the

467  mean percentages of dark area for each bird were used to test for associations between
468  copy number and phenotype using a non-linear least squares regression.

469

470  ¢RT-PCR analysis of gene expression

471 Two secondary covert wing feathers each from the wing shields of 8 bar, 7

472  checker, and 8 T-check birds were plucked to stimulate feather regeneration for qRT-
473  PCR experiments. Nine days after plucking, regenerating feather buds were removed, the
474  proximal 5 mm was cut longitudinally, and specimens were stored in RNAlater (Qiagen,
475  Valencia, CA) at 4°C for up to three days. Next, collar cells were removed, RNA was
476  isolated, and mRNA was reverse-transcribed to cDNA as described previously (Domyan
477  etal. 2014). Intron-spanning primers (see Table S1) were used to amplify each target
478  using a CFX96 qPCR instrument and iTaq Universal Syber Green Supermix (Bio-Rad,
479  Hercules, CA). Samples were run in duplicate and normalized to B-actin. The mean value
480  was determined and results are presented as mean = S.E. for each phenotype. Results
481  were compared using a Wilcoxon Rank Sum test and expression differences were

482  considered statistically-significant if p < 0.05.

483

484  Allele-specific expression assay

485 SNPs in NDP and EFHC?2 were identified as being diagnostic of the bar or

486  checker/T-check haplotypes from resequenced birds. Heterozygous birds were identified
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by Sanger sequencing in the minimal checker haplotype region (AV17 primers, see Table
S1). Twelve checker and T-check heterozygous birds were then verified by additional
Sanger reactions (AV54 for NDP and AV97 for EFHC?2, see Table S1) to be
heterozygous for the SNPs in NDP and EFHC2. PyroMark Custom assays (Qiagen) were
designed for each SNP using the manufacturer’s software (Table S1). Pyrosequencing
was performed on gDNA and cDNA derived from collar cells from 9-day regenerating
feathers using a PyroMark Q24 instrument (Qiagen). Signal intensity ratios from the
cDNA samples were normalized to the ratios from the corresponding gDNA samples to
control for bias in allele amplification. Normalized ratios were analyzed by a Wilcoxon

Rank Sum test and results were considered significant if p < 0.05.

NDP genotyping and alignments

NDP exons were sequenced using primers in Table S1. Primers pairs were
designed using the rock pigeon reference genome (Cliv_1.0) (Shapiro et al. 2013). PCR
products were purified using a QIAquick PCR purification kit (Qiagen) and Sanger
sequenced. Sequences from each exon were then edited for quality with Sequencher v.5.1
(GeneCodes, Ann Arbor, MI). Sequences were translated and aligned with SIXFRAME
and CLUSTALW in SDSC Biology Workbench (http://workbench.sdsc.edu). Amino acid

sequences outside of Columbidae were downloaded from Ensembl (www.ensembl.org).

D-statistic calculations

Whole genome ABBA-BABA (https://github.com/vcflib) was performed on 10 X

10 combinations of bar and checker (Table S2) birds in the arrangement: bar, checker, C.
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guinea, C. palumbus. VCFLIB (https://github.com/vcflib) was used to smooth raw
ABBA-BABA results in 1000-kb or 100-kb windows for whole-genome or Scaffold 68
analyses respectively. For each 10 X 10 combination. We calculated the average D
statistic across the genome. These were then averaged to generate a whole genome
average of D=0.0212, marked as the dotted line in Fig. 4A. Confidence intervals were
generated via moving blocks bootstrap (Kunsch 1989). Block sizes are equal to the
windows above, with D-statistic values resampled with replacement a number of times
equal to the number of windows in a sample. In Figure 4A, three representative ABBA-
BABA tests are shown for different combinations of bar and checker birds. The checker
and bar birds used in each representative comparison are: ARC-STA, SRS346901 and
SRS346887; MAP-ORR, SRS346893 and SRS346881; IRT-STA, SRS346892 and

SRS346887 respectively.

Haplotype phasing and HybridCheck analysis

VCF files containing Scaffold 68 genotypes for 16 bar, 11 homozygous checker,
and 1 C. guinea were phased using Beagle version 3.3 (Browning and Browning 2007).
VCFs were then converted to fasta format using vcf2fasta in vet-lib
(https://github.com/vcflib). HybridCheck (Ward and van Oosterhout 2016)
(https://github.com/Ward9250/HybridCheck) was run to visualize pairwise sequence

similarities between trios of bar, checker, and C. guinea sequences across Scaffold 68.

Pairwise SNP comparisons
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532 Phased VCF files for 16 bar, 11 homozygous checker, and 1 C. guinea were

533  subsetted to the minimal checker haplotype region (positions 1,702,691-1,805,600) with
534  tabix (Li2011). The vef-compare software module (VCFtools, Danecek et al. 2011) was
535  used to run pairwise comparisons between bar, checker, and C. guinea birds (176 bar-
536  checker, 16 bar-guinea, and 11 checker-guinea comparisons) as well as among bar and
537  checker birds (120 bar-bar and 55 checker-checker comparisons). The total number of
538 differences for each group was compared to the number of differences that are expected
539  to accumulate during a 4-5 million year divergence time in a 102,909-bp region (the size
540  of the minimal checker haplotype) with the mutation rate u=1.42e-9 (Shapiro et al. 2013)
541  using the coalescent equation: Time= #SNPs/(2xux length of the region). The observed
542  pairwise differences and the expected number of differences were evaluated with two-
543  sample t-tests and all groups were considered statistically different from the 4-5 MY

544  expectation (1169.05-1461.31). Standard deviations from the mean number of differences
545  for each group were calculated in R: bar-guinea, 109; bar-checker, 99; bar-bar, 143;

546  checker-guinea, 6; checker-checker, 8.

547

548 Transcript amplification of barless allele of NDP

549 In order to determine whether the barless allele of NDP is transcribed and persists
550 inthe cell, or is degraded by the non-sense mediated decay (NMD) pathway, we designed
551 aPCR assay to amplify NDP mRNA using intron-spanning primers (see Table S1). 4
552 barless, 2 bar, 2 checker, and 2 T-check birds were plucked to stimulate regeneration for
553  NDP amplification. Feathers were harvested, RNA extracted, and cDNA synthesized as

554  above. We detected expression of NDP in feather buds from barless feathers (n=4
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feathers from a single individual). While not quantitative, expression was qualitatively
similar to the levels of amplicons generated from other pattern phenotypes (n=2 for bar,

checker, and T-check).

EFHC2 alignments

EFHC?2 exonic sequences from resequenced homozygous bar (n=16),
homozygous check or T-check (n=11), barless (n=9), Columba rupestris (n=1), Columba
guinea (n=1), and Columba palumbus (n=1) were extracted using the IGV browser
(Thorvaldsdottir et al. 2013). Exon sequences for each group were translated using
SIXFRAME in SDSC Biology Workbench (http://workbench.sdsc.edu). Peptide
sequences were then aligned to EFHC2 amino acid sequences from other species
downloaded from ensembl (http://www.ensembl.org) using CLUSTALW (Thompson et
al. 1994) in SDSC Biology Workbench. Exon sequences from additional C. livia (n=17
checker or T-check and n=14 bar) and C. guinea (n=>5) birds were determined by Sanger

sequencing.

Recombination rate estimation

Recombination frequency estimates were generated from a genetic map based an
F2 cross of two divergent C. livia breeds, a Pomeranian Pouter and a Scandaroon
(Domyan et al. 2016). Briefly, for genetic map construction, genotyping by sequencing
(GBS) data were generated, trimmed, and filtered as described (Domyan et al. 2016),
then mapped to the pigeon Cliv_1.0 pigeon genome assembly using Bowtie2 (Langmead

and Salzberg 2012). Genotypes were called using Stacks (Catchen et al. 2011), and
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genetic map construction was performed using R/qtl (www.rqtl.org) (Broman et al.
2003). Pairwise recombination frequencies were calculated for all markers based on GBS
genotypes. Within individual scaffolds, markers were filtered to remove loci showing
segregation distortion (Chi-square, p < 0.01) or probable genotyping error. Specifically,
markers were removed if dropping the marker led to an increased LOD score, or if
removing a non-terminal marker led to a decrease in length of >10 cM that was not
supported by physical distance. Individual genotypes with error LOD scores >5 (Lincoln
and Lander 1992) were also removed. Pairwise recombination frequencies for markers
retained in the final linkage map were used to estimate the age of the introgression event

between C. guinea and C. livia.

Minimal haplotype age estimation

The minimal haplotype age was estimated following Voight et al. (2006). We
assume a star-shaped phylogeny, in which all samples with the minimal haplotype are
identical to the nearest recombination event, and differ immediately beyond it. Choosing
a variant in the center of the minimal haplotype, we calculated EHH, and estimated the
age using the largest haplotype with a probability of homozygosity just below 0.25. Note
that

Pr[homoz] = e~?"9

where r is the genetic map distance, and g is the number of generations since
introgression / onset of selection. Therefore

100 log(Pr[homoz])
T 2r

The confidence interval around g was estimated assuming
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N~Binom(n = 22,p = 0.204)
Here, N is a binomially distributed random variable for the number of samples that have
not recombined to a map distance equal to 2r. Then, Prflhomoz] = N / 22. The probability
that a sample has no recombination event within 2r of the focal SNP is p = (Pr[homoz |
left] + Pr[homoz | right]) / 2 is derived from the data. Both left and right of the focal SNP

we chose the end of the haplotype at the first SNP which brought Pr[homoz] < 0.25.
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999  Fig. 1. A single genomic region is associated with rock pigeon (C. /ivia) wing
1000  pigmentation pattern (A) Four classical wing pattern pigmentation phenotypes, shown in
1001  decreasing order of genetic dominance and melanism (left to right): T-check, checker,
1002  bar, and barless. Photos courtesy of the Genetics Science Learning Center
1003  (http://learn.genetics.utah.edu/content/pigeons). (B) Whole-genome pFst comparisons
1004  between the genomes of bar (n=17) and checker (n=24) pigeons. Dashed red line marks
1005  the genome-wide significance threshold (9.72e-10). (C) Detail of pFst peak shows region
1006  of high differentiation on Scaffold 68. Five genes within the region are shown in red.
1007  Blue shading marks the location of the smallest shared haplotype common to all checker
1008  and T-check birds. Haplotype homozygosity in the candidate region extends further for
1009  checker and t-check birds (blue trace) than for bar birds (gray), a signature of positive
1010  selection for the derived alleles. Extended haplotype homozygosity (EHH) was measured
1011  from focal position 1,751,072 and follows the method of Sabeti et al. (2007).
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Fig. 2. A copy number variant (CNV) in the candidate region is associated with T-check
and checker phenotypes. (A) Normalized read depths from resequenced birds are plotted
in the candidate region between EFHC2 and NDP on Scaffold 68. Thickened portions of
gene models represent exons and thin portions are introns. Representative individual read
depth traces are shown for the following: black for bar C. /ivia, grey for checker C. livia
individuals without additional copies of the CNV, blue for checker C. /ivia individuals
with additional copies of the CNV region, red for T-check C. livia. (B) CNV
quantification for 94 birds (20 bar, 56 checker, and 18 T-check). Checker and T-check
phenotypes (as reported by breeders) were associated with increased copy numbers
(p=2.1e-05). (C) CNV and phenotype quantification for an additional 84 birds, including
26 feral pigeons. Increased copy number was associated with an increase in dark area on
the wing shield (r*=0.46, linear regression). Points are colored by reported phenotype and
origin: bar, black; checker, blue; T-check, red; domestic breeds, solid points; ferals, cross

points.
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Fig. 3. Expression differences in NDP, but not EFHC2, indicate cis-regulatory
differences associated with pigmentation phenotypes. (A) gRT-PCR assays demonstrate
higher expression of NDP in regenerating feathers of checker and T-check birds than in
bar birds. Expression levels of EFHC?2 are indistinguishable between bar and melanistic
phenotypes (p=0.19), although checker and T-check differed from each other (p=0.046).
(B) Allele-specific expression assay in regenerating feathers from heterozygous
bar/checker birds for NDP and EFHC?2. Copies of the CNV region on the checker
chromosome were quantified using a custom Tagman assay. Boxes span the first to third
quartiles, bars extend to minimum and maximum observed values, black line indicates
median. Expression of EFHC? alleles were not significantly different, and checker alleles
of NDP showed higher expression than the bar allele; p=0.0028 for two-sample t-test

between 1 vs. 4 copies, p=1.84e-06 for glm regression.
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Fig. 4. Signatures of introgression of the checker haplotype from C. guinea to C. livia.
(A) ABBA-BABA test with C. livia (bar), C. livia (checker), C. guinea, and C. palumbus
shows elevated D-statistic in the Scaffold 68 candidate region. Three representative
ABBA-BABA tests are shown and dashed red line marks the genome-wide mean D-
statistic for 10 X 10 different combinations of bar and checker birds (ARC-STA, MAP-
ORR, IRT-STA are shown, see Methods). (B) HybridCheck shows sequence similarity
between three pairwise comparisons: representative bar (Fer VA), checker (ARC), and
C. guinea individuals. (C) Expected (purple bar) and observed SNP differences in the
minimal haplotype region for different pairwise comparisons between and among bar,

checker, and C. guinea.
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Fig. S1. Whole genome pFst comparisons to identify a candidate genomic region

differentiated between birds with different wing pattern phenotypes. (A) Whole genome

pFst comparing 32 bar and 27 checker and T-check birds. (B) Whole genome pFst

comparing 32 bar and 9 barless birds.
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C. livia barless RSREIRQVFAAADPEHTKLIEYDPFRNLIVSITDGAFSEHEVITLGHYYGVRDEYKIDLHYLLAVAQEKLKKNNFDNFEQ
C. livia bar RSREIRQVFAAADPEHTKLIEYDPFRNLIVSITDGAFSEHEVITLGHYYGVRDEYKIDLHYLLAVAQEKLKKNNFDNFEQ
C.liviachecker2 RSREIRQVFAAADPEHTKLIEYDPFRNLIVSITDGAFSEHEVITLGHCYGVRDEYKIDLHYLLAVAQEKLKKNNFDNFEQ
C.liviachecker1 RSREIRQVFAAADPEHTKLIEYDPFRNLIVSITDGAFSEHEVITLGHCYGVRDEYKIDLYYLLAVAQEKLKKNNFDNFEQ
Hill pi?eon RSREIRQVFAAADPEHTKLIEYDPFRNLIVSITDGAFSEHEVITLGHCYGVRDEYKIDLHYLLAVAQEKLKKNNFDNFEQ

Speckled pigeon 2 RSREIRQVFAAADPEHTKLIEYDPFRNLIVSITDGAFSEHEVITLGHCYGVRDEYKIDLHYLLAVAQEKLKKNNFDNFEQ
Speckled pigeon 1 RSREIRQVFAAADPEHTKLIEYDPFRNLIVSITDGAFSEHEVITLGHCYGVRDEYKIDLYYLLAVAQEKLKKNNFDNFEQ
Wood pigeon RSREIRQVFAAADPEHTKLIEYDPFRNLIVSITDGAFSEHEVITLGHYYGVRDEYKIDLHYLLAVAQEKLKKNNFDNFEQ
Chicken RSREIRQVFAAADPQHTKMIEYDPFRNLIVSITDGAFSEHE TLGRHYG?EYEIDEH.LLAKAQEQLKKNSF NFEQ
Flycatcher RAKEIRKTFATTDPEHTNVIGYDTFRNWYVSWAAGEFSEHEIMTLGRHEYGMRDESQTDLYLLLSVAQEKLKKNAFENFEQ
Mouse SREEKQVFKAADSKHTNMVDYNTFRDEILMSLTVGNLAEQEFVUTEARHYRVP GTCSD.D.LIA.AHERFKKNMF NFF
Human SREITQVFAAADYNHTKVUVPYNTFRDILMS I TMGKLIDOEEITIARHYRVPEIMDPDLAYLIARAHEKFKKNIFENF
Opposum uAREIIMIFAA.DPRnTK YEAFRAVMENITNKKFEEHETMTEIGRFYSVR snﬁm.n.s.z\q.n.kau‘ IFDK
Anole RSREIKQEFAATDPOHTIMIDYDEFRNLMENISDGKLSEHEEMTEGRYYSVRDENEMD zYLLAVSQELLKKNN NFAQ

1059

1060

1061  Fig. S2. EFHC2 amino acid sequences of pigeons and other amniotes (residues 525-604).
1062  Variable amino acid residues are marked in magenta (similar residues) and green

1063  (different residues). Checker C. livia, C. rupestris, and C. guinea share 572C while bar C.
1064  livia are fixed for 572Y (left arrowhead). Checker C. livia and C. guinea are polymorphic
1065  for 584H/Y (right arrowhead).
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1068  Fig. S3. CNV is associated with darker wing shield pigmentation. CNV and phenotype
1069  quantification for (A) domestic breeds (n=58) and (B) wild-caught ferals (n=26), parsed
1070  from data in Fig. 2C.
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1073  Fig. S4. Expression of genes involved in pigmentation and genes in the candidate region.
1074  Expression levels of Mitf (A), Sox10 (B), MaoA (D), MaoB (E), and Fundcl (F) are
1075  indistinguishable across phenotypes. (C) Tyrosinase shows increased expression in T-
1076  check birds relative to bar (p=2.4e-04) and checker birds (p=3.8e-05). Boxes span the
1077  first to third quartiles, bars extend to minimum and maximum observed values, black line
1078  indicates median. Expression values are analyzed by Pairwise Wilcoxon test (p-value
1079  adjustment method: fdr).
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Fig. S5. NDP expression varies by copy number and phenotype. qRT-PCR expression
assay for NDP (Fig. 3A) is parsed by copy number in the CNV region. All checker (blue)
and T-check (red) birds, except for the single individual with four total copies (dark
blue), are heterozygous for bar. Increase in NDP expression is correlated with increasing
numbers of copies of the CNV region. Boxes span the first to third quartiles, bars extend
to minimum and maximum observed values, black line indicates median. Different letters
indicate significant pairwise differences. Pairwise Wilcoxon test (p-value adjustment
method: fdr) results by copy number: 2-3 copies, p=0.03788; 2-4 copies, p=0.04938; 2-5
copies, p=0.00015; 2 copies-bar, p=0.00432; 3-4 copies, p=0.03788; 3-5 copies,
p=0.00122; 3 copies-bar, p=1.9¢-06; 4-5 copies, p=0.48485; 4 copies-bar, p=0.02179; 5
copies-bar, p=1.9¢-06.
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1 10

Anole MGNHVLAASISVLSLL,.,
Opposum MRNHVLAASISMLSLL..
Human MRNHVLAASISMLSLL..
Mouse MRKHVLAASFSMLSLL ..
Flycatcher MGNHVLAASISMLSLL..
Chicken MGSHVLAASISMLSLL..
WoodPigeon MGNHVLAASISMLSLL..
SpeckledPigeon MGNHVLAASISMLSLL..
HillPigeon MGNHVLAASISMLSLL.,
RockPigeon checker MGNHVLAASISMLSLL..
RockPigeon_ bar MGNHVLAASISMLSLL..

RockPigeon barless GNHVIAASISMLSLL ..
Human NorrieDisease RKHVLAASFSMLSLL ..

A
1094

1095  Fig. S6. Barless pigeons have a nonsense mutation at the highly-conserved translation
1096  start site of NDP. Barless rock pigeons are homozygous for a nonsense mutation that
1097  truncates the amino terminus of NDP to 13 amino acids; the same amino acid position is
1098  affected by a mutation in two human families with hereditary blindness (red, bottom of
1099  alignments).
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Columba guinea

Fig. S7. Speckled pigeon (Columba guinea). Photo courtesy of Kjeuring (CC BY 3.0

license, https://creativecommons.org/licenses/by/3.0/legalcode). Photo cropped from

“speckled pigeon Columba guinea Table Mountain Cape
Town,” https://en.wikipedia.org/wiki/Speckled pigeon#/media/File:Speckledpigeon.JPG.

Inset feather image by the authors.
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