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ABSTRACT 

Dopamine neurons from the Ventral Tegmental Area (VTA) switch from tonic to phasic burst 

firing in response to reward-predictive cues and actions. Bursting is influenced by nicotinic 

acetylcholine receptors (nAChRs), which are not implicated in reinforcement learning, but rather 

in exploration and uncertainty-seeking. The leading model assigns these functions to tonic 

dopamine firing. To investigate this paradox, we recorded the activity of VTA dopamine neurons 

during a spatial decision-making task. When reward was certain, mice adopted a stereotyped 

behavior, and dopamine neurons signaled reward. When confronted with uncertain rewards or a 

novel environment, mice exhibited exploration. Modulation of phasic, but not tonic, dopamine 

activity predicted uncertainty-seeking and locomotor exploration. Deletion of nAChRs disrupted 

the influence of uncertainty and novelty on dopamine firing and behavior, sparing reward signaling 

and learning. Hence, nAChR modulation of dopamine neurons can influence cognitive functions 

on a short timescale, through the modulation of phasic, synchronous bursting. 

 

 

 

  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 4, 2018. ; https://doi.org/10.1101/242438doi: bioRxiv preprint 

https://doi.org/10.1101/242438
http://creativecommons.org/licenses/by/4.0/


 3 

INTRODUCTION 

VTA dopamine neurons play a major role in motivating goal-directed behaviors and reinforcing 

behaviors leading to reward(Glimcher, 2011; Schultz, 2007; Sutton and Barto, 1998). These cells 

encode a “reward prediction error”, the difference between predicted and actual reward, which can 

be used to update the expected (mean) value of stimuli and actions(Glimcher, 2011; Schultz, 2007). 

Dopamine neurons signal a reward prediction error through a switch from tonic (regular single-

spike firing) to phasic (synchronous bursting) firing(Faure et al., 2014; Grace et al., 2007; Schultz, 

2007). The bursting pattern in dopamine cells depends on the balance between glutamatergic and 

GABAergic inputs(Lobb et al., 2010; Paladini and Roeper, 2014; Zweifel et al., 2009), but also 

critically on cholinergic modulation(Dani and Bertrand, 2007; Faure et al., 2014; Grace et al., 

2007; Mameli-Engvall et al., 2006). Understanding how mesopontine acetylcholine impacts 

decision-making through the modulation of firing in dopamine cells is of utmost importance, as 

dysregulations of these neuromodulatory systems are implicated in major psychological diseases 

such as schizophrenia, tobacco addiction or Parkinson’s disease(Dani and Bertrand, 2007). 

In particular, nicotinic acetylcholine receptors (nAChR) containing the β2-subunit 

constitute major determinants of dopamine neurons firing pattern. In anesthetized mice lacking the 

nAChR β2-subunit, dopamine cells lack spontaneous bursting(Mameli-Engvall et al., 2006; 

Maskos et al., 2005; Naudé et al., 2016). Contrasting with the role of dopamine cell bursting in 

reinforcement learning(Faure et al., 2014; Grace et al., 2007; Schultz, 2007), blocking or deleting 

β2-containing nAChRs (β2*nAChR) does not affect reward-guided learning(Naudé et al., 2016), 

motivation to work for reward(Yeomans and Baptista, 1997), or choices between differently sized 

rewards(Serreau et al., 2011). Nonetheless, VTA β2*nAChRs are implicated in complex cognitive 

processes such as exploration(Granon et al., 2003; Maubourguet et al., 2008; Naudé et al., 2016) 
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and uncertainty processing (Naudé et al., 2016), which are believed to depend on tonic 

fluctuations(Beeler et al., 2010; Fiorillo et al., 2003; Frank et al., 2009; Humphries et al., 2012; 

Niv, 2007; Schultz, 2007). 

There is thus an apparent discrepancy between the proposed behavioral roles of VTA 

nAChRs (exploration, but not reward), the kind of dopamine firing that they are thought to control 

(switch from tonic to phasic) and the respective roles assigned to phasic (reward) and tonic 

(exploration) dopamine. In other words, direct evidence of how nAChRs affect dopamine firing 

and function during exploration or uncertainty-processing tasks is still lacking.  Here we assessed 

dopamine encoding of uncertainty, novelty and exploration in a self-paced task, with no stimulus 

signaling the beginning of a trial, in order to give the mice full control over whether to exploit 

reward or explore the open-field. We found that dopamine neurons encoded expected reward and 

motivation for both reward-directed decisions and locomotion, i.e., exploitation, in purely 

predictable contexts. Importantly, we also found that the phasic activity of dopamine neurons 

summed uncertainty with reward, to signal motivation to explore in uncertain or novel 

environments. We then disrupted β2*nAChRs to relate alterations in uncertainty processing and 

exploration with dopaminergic signaling, and show that dopamine neurons in β2-/- mice did not 

encode uncertainty nor exploration bonuses, concomitantly with the disappearance of uncertainty-

seeking and exploratory locomotion. 
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RESULTS  

 

β2*nAChRs control spontaneous, synchronous bursting in dopamine neurons 

We recorded the spontaneous firing from putative dopamine neurons (pDAn) in the VTA from 

WT (n=87 from 16 mice) and mice deleted from the β2-subunit of the nAChRs (β2-/-, n=80 from 

12 mice) awake mice at rest, using extracellular poly-electrodes (Fig. 1a). All neurons met the 

criteria used to identify dopamine cells in vivo(Roesch et al., 2007; Takahashi et al., 2016) (Fig. 

1b, Supplementary Fig. 1, Methods). Spike trains were decomposed based on inter-spike intervals 

(ISI) into phasic bursting (corresponding to shorter ISI, see Methods) and tonic firing patterns (Fig 

1c). On average, pDAn from β2-/- mice fired at a lower frequency (WT=4.96Hz, β2-/-=4.11Hz, 

U(87,80)=8171, p=0.006, Fig. 1d) than that from WT mice. However, there was no difference in the 

proportion of spikes within bursts (%SWB) between the two genotypes (WT=40.5%, β2-/-=36.5%, 

U(87,80)=7705, p=0.2). This contrasts with previous studies using anesthetized β2-/- mice, in which 

DA neurons lack bursting(Mameli-Engvall et al., 2006; Naudé et al., 2016), suggesting a different 

control of DA firing in awake mice. Synchronous bursting activity among dopamine neurons 

causes a substantial larger dopamine release in target structure(Grace et al., 2007) than 

asynchronous activity. We thus next measured basal synchrony between raw spike trains (all 

spikes), and also assessed synchrony between bursting events (all spikes within bursts), bursting 

onsets (first spike of bursts) and tonic spiking (spikes outside bursts). We found that bursting 

onsets were spontaneously synchronized(Kreuz et al., 2013)- in the sense that synchrony was 

higher than chance level in WT(Eshel et al., 2016; Joshua et al., 2009), but not in β2-/- animals 

(p<0.006, KS-test, Fig. 1e, Supplementary Fig. 2). Hence, in awake mice, bursting events are 
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spontaneously synchronized among VTA DA neurons, and their synchronization is under the 

control of β2*nAChRs.  

 

Synchronous bursting emerges with the learning of a self-paced task 

Dopamine cells signal reward by a phasic activation, i.e. a time-locked increase in 

synchronous bursting activity. We thus assessed how the involvement of β2*nAChRs in 

synchronous bursting can affect phasic dopamine activity related to reward processing. Phasic 

activity from dopamine cells is usually conceptualized as a reward prediction error(Glimcher, 

2011; Sutton and Barto, 1998): 𝛿(𝑡) =  𝑅(𝑡) + 𝛾𝑉(𝑠𝑡+1) − 𝑉(𝑠𝑡), where 𝛿(𝑡), the reward 

prediction error, is assumed to correspond to phasic dopamine activity, 𝑅(𝑡) to the actual reward 

eventually obtained, 𝛾𝑉(𝑠𝑡+1) to the prediction of the value of the next choice (temporally-

discounted by a factor 𝛾) and 𝑉(𝑠𝑡) to the expected value of the current state of the animal. We 

determined whether the activity from VTA pDAn (126 from 12 WT and 103 from 10 β2-/- mice) 

is compatible with a reward prediction error, while mice performed a spatial version of the multi-

armed bandit task(Naudé et al., 2016) (Methods). In an open-field, mice learned to associate three 

explicit locations with intracranial self-stimulation (ICSS(Carlezon and Chartoff, 2007)) (Fig. 2A). 

Because two consecutive rewards cannot be obtained at the same location, mice learnt to alternate 

between them. When faced with certain rewards, both WT and β2-/- mice learned the task 

(F(9,13)=118.18, p<0.001) and performed similarly (F(1,22)=2.2, p=0.89, Fig. 2a).  

 

After learning, pDAn emitted bursts of action potentials early in the trials (Fig. 2b), 

henceforth called “early bursting”. Early bursting emerged in both WT and β2-/- animals, 
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suggesting that the phasic increase in dopamine activity at actions onset(Jin and Costa, 2010; 

Wassum et al., 2012) is β2*nAChRs-independent. Early bursting was characterized by a series of 

features, in both WT and in β2-/- mice, compatible with the encoding a reward prediction error 

occurring during the self-initiation of an action that constitutes the first predictor of the next 

reward(Sutton and Barto, 1998; Wassum et al., 2012). First, early bursting was not triggered by 

the electrical stimulation, since it occurred when ICSS reward was unexpectedly omitted (Fig. 2c), 

in the first trials of the probabilistic setting used later on (see below). Hence, early bursting 

appeared to predict the next reward, rather than signaling the previous one. Second, during reward 

omissions (Fig. 2c), pDAn activity decreased at the time of the expected reward (t(18)=-3.07, 

p=0.007). This result is also consistent with dopamine cell signaling a reward prediction error 

(Glimcher, 2011; Schultz, 2007; Sutton and Barto, 1998), as the actual reward is lower than 

expected: in the first omission trials, animals expect a reward but do not obtain it (𝑅(𝑡) = 0 so that 

𝑅(𝑡) − 𝑉(𝑠𝑡) < 0). Finally, the percentage of pDAn displaying a bursting activity significantly 

larger than baseline firing at any time between two ICSS increased over learning sessions in WT 

mice (χ2=7.81, p=0.01, Fig. 2d). The increase in phasic activity was also apparent in pDAn from 

β2-/- animals (proportion of pDAn displaying phasic activity not different from WT: χ2=0.05, 

p=0.82). This gradual increase in the total number of VTA dopamine cells displaying phasic 

bursting activity is consistent with the emergence of a positive reward prediction error during 

learning.   

 

Reorganization of firing with learning  

We next analyzed how this change in dopamine firing at the single-trial scale impacted the 

average activity of dopamine neurons. Completion of learning induces the emission of bursts by 
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dopamine cells at each trial, but also corresponds to an increase in the number of trials, the 

combination of these two features thus suggests an overall increase in pDAn firing frequency. 

However, this was not observed: even though the %SWB and burst synchrony increased 

throughout learning (%SWB: F(2,118)=49.78, p<0.001, synchrony: F(2,141)=63.1, p<0.001, 

Supplementary Fig. 3), the average firing frequency remained constant (F(2,118)=1.3, p=0.28, Fig. 

2d below). Hence early bursting in dopamine neurons (Jin and Costa, 2010; Wassum et al., 2012), 

reflecting reward prediction, does not rely on additional spikes, but rather on a dynamical re-

organization towards synchronous bursting activity (Fig. 2e). In β2-/- mice, the increase in phasic 

activity in pDAn was however accompanied by an increase in average firing frequency (genotype 

x learning interaction F(2,216)=4.81, p=0.01; learning effect in β2-/-: F(2,98)=9.15, p<0.001), and 

pairwise synchrony between pDAn bursting increased less in β2-/- than in WT mice (genotype: 

F(1,232)=11.85, p < 0.001; genotype x learning interaction : F(1,2)=3.47, p = 0.03, Supplementary 

Fig. 3). This indicates β2*nAChRs are not only implicated in the spontaneous synchrony among 

DA neurons (Fig. 1), but also in the re-organization of collective dynamics of the VTA upon 

learning. 

 

Dopamine neurons signal exploitation of rewards in predictable environment 

Reinforcement models also state that after learning, dopaminergic reward prediction does 

not play any further role in ongoing behavior(Glimcher, 2011; Sutton and Barto, 1998). Recent 

studies have shown that phasic dopamine can also encode for kinetic variables, but this mainly 

concerns dopamine neurons from the Substantia Nigra pars compacta (SNc)(Barter et al., 2015; 

Howe and Dombeck, 2016). We thus asked whether pDAn from the VTA encode for motor 

variables. In our setup, early bursting occurred during the animal’s dwelling time, before 
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movement onset towards the next location (Fig. 3a). When assessing the correlations between early 

bursting and kinetic variables, we did not find any relation with immediate behavior (e.g. 

instantaneous speed or acceleration just following early bursting, Supplementary Fig. 4), as found 

in studies interested in the role of the SNc in motor control(Barter et al., 2015; Howe and Dombeck, 

2016). However, we observed that a higher frequency during early bursting corresponded to a 

shorter trial duration, i.e. the time needed by the animal to reach the next rewarded location (Fig. 

3b). Sorting the trials by increasing “early bursting” frequency (i.e. frequency during the first 

second of the trial, see Methods) revealed that it correlated with the time-to-peak speed (Fig. 3c) 

and, more precisely, with the ratio of maximum speed over the time-to-maximum speed (Fig. 3d, 

WT: 62.5% modulated cells, median R2: 0.54; β2-/-: 76.0% modulated cells, median R2: 0.58). This 

ratio relates to the directness of the animal towards the goal: a high peak speed, a strong 

acceleration, a direct path or a short dwell-time all increase this measure. Since ICSS reward was 

equivalent at all locations (and thus, the reward prediction would be the same for all trials), our 

findings suggest that dopamine phasic activity encodes a locomotor signal related to the whole 

action sequence (from start to goal)(Wassum et al., 2012), on top of a reward prediction error. 

Moreover, the proportion of cells showing directness-related firing was similar in WT and β2-/- 

mice (p=0.21, KS-test), indicating that VTA dopamine signaling of locomotor activity is 

β2*nAChRs-independent in the context of exploitation. 

 

Encoding of uncertainty by phasic bursting in dopamine neurons  

We next investigated pDAn signaling in decision-making under uncertainty, using a 

probabilistic setup, in which the three rewarded locations are respectively associated with different 

probabilities to receive ICSS (Fig. 4A, p=100%, p=50% and p=25%). The three binary choices 
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(here, 25% vs. 50%, 25% vs. 100% and 50% vs. 100% reward probabilities) allow characterizing 

the influence of two co-varying parameters (reward mean, which corresponds to p and uncertainty, 

defined as variance p(1-p)) on decisions(Naudé et al., 2016). Mice visited overall the locations 

associated with higher ICSS probability more often (Fig 4b left), indicating a choice behavior. 

However, when starting from the 25%-reward probability location, they chose the 50% reward as 

much as the 100% reward (U=35, p =0.49, Wilcoxon test, Fig 4b middle), suggesting that mice 

are irrationally attracted by the 50% reward. We investigated this preference by fitting the binary 

choices with a computational model that takes into account the relative influences of reward mean 

and reward uncertainty on decisions (see Methods). This model-based analysis indicates that WT 

mice chose as if they assigned a positive value to the reward uncertainty (a “bonus” value added 

to expected reward) (Kakade and Dayan, 2002; Naudé et al., 2016) of the goal (Fig 4B right), 

which is maximal for 50% reward probability (Fig. 4a). In other words, mice choices appear 

suboptimal because they explore actions with uncertain consequences.  

We next recorded pDAn firing during this task (Fig 4c) to assessed whether the bonus value 

of uncertainty was encoded by pDAn neuron. pDAn firing activity was sorted according to the 

reward probability of the goal during direct trials (duration shorter than 5s, average median 

duration of trials =4.84±0.39s, mean±s.e.m. in WT mice) in WT and β2-/- mice. Averaging trials 

with different durations by linearizing the time between two consecutive locations (Fig. 4D, 

Supplementary Fig. 5 displays all neurons) revealed that (1) early bursting, but also late, “ramping” 

activity, seemed modulated by reward probabilities (boxes in Fig. 4D) and (2) these dynamics 

seemed altered by the genetic deletion of β2*nAChRs (Fig. 4D left versus right). We thus centered 

the analysis of early bursting on the first 500ms of trial onset (Methods). Early bursting was 

sensitive to the expected reward probability at the goal (F(2,187)=5.53, p=0.005, Fig. 5A), consistent 
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with a reward prediction(Glimcher, 2011; Schultz, 2007). In addition, encoding of uncertain 

rewards (50%) relative to certain rewards (100%) by pDAn early bursting activity predicted the 

bonus (i.e. the positive value) mice assigned to uncertainty (R2=0.47, p=0.03, Fig. 5B). This 

suggests that the phasic activity of VTA dopamine neurons integrates an uncertainty bonus 

together with expected value(Kakade and Dayan, 2002; Lak et al., 2014). 

 Moreover, we found a significant correlation between the residuals of pDAn activity and 

of the next choices of the animal (R2=0.36, p<0.001, Fig. 5C),  after subtracting the effect of reward 

probability on both variables(Varazzani et al., 2015) (Methods). For instance, in a given session, 

if a mouse chose a rewarded location more than the group average, pDAn from this mouse 

displayed an activity corresponding to this location’s reward probability higher than the population 

average. In other words, dopamine activity encodes the subjective value of the next choice rather 

than the objective reward attributes (e.g. reward probability). Besides, early bursting activity 

correlated with the peak speed/time-to-peak speed ratio, as in the certain setting, but to a lesser 

extent (Supplementary Fig. 6), as we discuss below when analyzing exploratory locomotion. 

Hence, phasic activity of pDAn signals both ongoing choices and motor control(Howe and 

Dombeck, 2016; Jin and Costa, 2010; Salamone and Correa, 2012). Overall, our results suggest 

that phasic activity in VTA dopamine cells (early bursting) incorporates different sources of value 

(expected reward, uncertainty-bonus, among others)(Fiorillo, 2011; Lak et al., 2014; Stauffer et 

al., 2014) to signal ongoing behavior. 

 

Uncertainty-seeking and encoding of uncertainty by dopamine neurons both depends 

on nicotinic acetylcholine receptors  
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Given the implication of β2*nAChRs in uncertainty-seeking and exploration(Maskos et al., 

2005; Naudé et al., 2016), we next assessed their roles in the probabilistic task. Overall, β2-/- mice 

chose the 50% location less than their WT counterparts (F(1,2)=4.19, p=0.02, repartition*genotype 

interaction, t(15)=2.31, p=0.035, Fig. 4b left). This was particularly clear in the binary choice 

between 50% and 100% reward, in which β2-/- animals chose less the 50% alternative than WT 

animals (t(15)=2.56, p=0.02, Fig. 4b middle). This alteration in decision-making can be modeled as 

an absence of valuation of uncertainty (uncertainty-bonus in β2-/- versus WT mice: U(10,7)=114, 

p=0.02, and not different from 0: W(7)=12, p=0.81, Fig 4b right, 5a right). Reward probability was 

differently encoded in β2-/- and WT pDAn (F(1,2)=3.95, p=0.02, probability*genotype interaction), 

with a reduction of activation by uncertain rewards (t(136)=2.18, p=0.03, Fig. 5a) that paralleled 

decreased uncertainty-seeking in β2-/- mice (Fig. 5b, Supplementary Fig. 7). By contrast, the 

correlation between residuals in early bursting and choices was the same as in WT mice (Fig. 5c), 

indicating that the relation between pDAn activity and ongoing choices was not altered in β2-/- 

mice. Hence, uncertainty-seeking and encoding of uncertainty by VTA pDAn activity are both 

affected by β2*nAChR deletion, but not the relation between DA activity and choices. 

 

Tonic dopamine activity encodes uncertainty but does not signal uncertainty-seeking  

When no action is required from the animals, dopamine cells have been shown to encode 

reward uncertainty through a ramping increase in activity(Fiorillo et al., 2003), but this remains 

unclear in operant tasks, where uncertainty motivates the animal to explore uncertain 

options(Funamizu et al., 2012; Heilbronner, 2013; Naudé et al., 2016; Oudeyer, 2007). We thus 

sorted pDAn activity upon arrival at a location (i.e. last second before trial end, Methods) by the 

reward probability associated with this location (Fig. 5D left). Tonic ramping occurred before WT 
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mice reached their goal, especially for the uncertain 50%-reward probability location (F(2,187)=6.36, 

p=0.002, 50% versus 100% encoding: t(128)=3.71, p<0.001). Comparison with other probability 

sets (Supplementary Fig. 5) indicates that pDAn ramping activity scaled with reward uncertainty. 

In β2-/- mice, ramping was not modulated by reward probability (F(2,137)=1.62, p=0.20) and was 

different from WT mice (F(1,2)=4.42, p=0.01, probability*genotype interaction), indicating an 

implication of β2*nAChRs in uncertainty-modulation of both phasic and tonic dopamine activity 

(Fig. 5D right). Yet, the modulation of tonic ramping was not correlated with uncertainty-seeking 

behavior (Supplementary Fig. 8). This result is consistent with ramping activity appearing long 

after the choice, and thus not being implicated in the decision. Moreover, we observed that while 

early bursting activity could be considered as phasic (i.e. both bursting and synchronous), late 

ramping activity was mostly composed of tonic spiking (Supplementary Fig. 9). This contradicts 

that ramping activity might constitute a backpropagation of reward prediction error(Fiorillo et al., 

2005; Niv et al., 2005). Our results thus suggest that phasic, rather than tonic, DA activity, 

underlies uncertainty-seeking. 

 

Dopamine neurons signal exploratory locomotion in uncertain or novel environments, 

under nicotinic regulation  

Our results suggest a role of β2*nAChRs in exploration, in the framework of decision-

making between clearly defined alternatives (here, the rewarded locations). Exploration also refers 

to locomotion in the rest of the open-field(Maubourguet et al., 2008) when animals wander in-

between rewarded locations in the probabilistic task, or when animals travel in a novel open-field. 

We thus assessed whether pDAn activity (phasic and or tonic) encodes motor variables of 

locomotor exploration in long trials (duration longer than 5s, Fig. 6A), during which mice display 
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pauses and tortuous trajectories in-between rewarded locations. At the beginning of these long 

trials, pDAn displayed bursting activity (Fig. 6B) that did not scale with reward probability (Fig. 

6C; WT F(2,173)=0.22, p=0.81; β2-/- F(2,117)=0.42, p=0.66). This early bursting positively correlated 

with the travelled distance in WT (32.9% modulated pDAn, median R2=0.16) but not in β2-/- mice 

(4.0% modulated pDAn, median R2=0.03, Fig. 6D). Hence, pDAn could signal distance (Fig. 6) 

in long trials and speed in short trials (Fig. 3). The phasic activity of DA neurons may encode the 

initiation and energization of a relevant motor program in both cases: speed (directness) during 

exploitation, and distance during exploration. This may explain why we found less directness-

encoding cells in the probabilistic setting (Supplementary Fig. 6), where animals alternate between 

exploiting rewarded locations and exploring the rest of the open-field, than in the deterministic 

setup where mice only exploit rewards.  

Since locomotion in long, exploratory trials in the probabilistic setting consists in a 

sequence of movements interspersed with pauses(Maubourguet et al., 2008), we refined the 

analysis of pDAn activity by distinguishing, in long trials, exploration (at low speed) from 

navigation (at higher speed). Periods of low speed in the open-field corresponds to rearing, 

scanning, sniffing and grooming(Maubourguet et al., 2008), with all these behaviors related to 

collecting information, except grooming that only accounts for 10% of low-speed epochs in the 

open-field (Maubourguet et al., 2008). During long trials, the difference between bursting activity 

during slow and fast epochs correlated with the total travelled distance in WT (60.3% modulated 

cells, example in Fig. 6E left, median R2=0.40, distribution in Fig. 6E right). This correlation with 

travelled distance was abolished in β2-/- mice (10.0% modulated cells, median R2=0.04, Fig. 6E). 

Moreover, bursting activity was higher during epochs of slow exploration compared to epochs of 
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fast locomotion in WT (t(63)=2.17, p=0.03) but not in β2-/- mice (t(50)=-0.82, p=0.41, Fig. 7A), 

adding evidence to an involvement of β2*nAChRs in the dopamine encoding of exploration.  

This prompted us to assess whether VTA pDAn activity already signaled novelty-induced 

exploration (Schiemann et al., 2012), in a new open-field without reward, i.e. before learning of 

the ICSS task (see Methods). Average firing frequency and %SWB did not differ in a novel and 

familiar environment (Supplementary Fig. 10), ruling out a pure dependence of exploratory 

locomotion on spontaneous DA activity. However, pDAn bursting activity during slow locomotion 

(Fig. 7B) was higher than during fast locomotion in WT (t(51)=-5.49, p<0.001), but not in β2-/- mice 

(W(30)=119, p=0.15), indicating a similar encoding of locomotor exploration by the bursting 

activity of  neurons in the contexts of novel environments and uncertain rewards (Fig. 7B and A). 
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DISCUSSION 

Nicotinic acetylcholine receptors control dopamine firing on different timescales 

 nAChRs are known to affect the transition of dopamine firing from regular spiking to 

bursting(Dautan et al., 2016; Grace et al., 2007). Here we delved further on how this cholinergic 

modulation relates to behavior. Bursting is observed during phasic dopamine activity(Fiorillo et 

al., 2003; Jin and Costa, 2010; Lak et al., 2014; Redgrave and Gurney, 2006; Schultz, 2007), 

usually described as a reward prediction error(Glimcher, 2011; Schultz, 2007; Sutton and Barto, 

1998), while tonic fluctuations have been related to most of the other functions ascribed to 

dopamine, e.g. exploration(Frank et al., 2009; Humphries et al., 2012), locomotion(Niv, 2007), 

and encoding of reward uncertainty(Fiorillo et al., 2003). However, the mapping between 

behaviors and dopamine dynamics remains unclear(Barter et al., 2015; Berridge, 2012; Howe and 

Dombeck, 2016; Lak et al., 2014), and it is thus crucial to distinguish the firing patterns (regular 

or bursting) from the timescale (average activity or event-related) considered. When considering 

average activity in anesthetized animals or at rest, bursting occurs spontaneously in dopamine 

cells(Faure et al., 2014; Mameli-Engvall et al., 2006; Schiemann et al., 2012; Schultz, 2007), but 

this bursting propensity is distinct from phasic, stimulus- or action- locked activity. Conversely, 

averaging stimulus-related activity from repeated trials might blur the analysis of firing 

patterns(Fiorillo et al., 2005; Niv et al., 2005).  

Hence, we based our analysis on a definition of phasic activity that translates into large 

dopamine release(Faure et al., 2014; Grace et al., 2007), i.e. both bursting (i.e. short inter-spikes 

intervals) and synchronous among dopamine cells. We used this distinction to investigate the 

functional roles of dopamine neurons, and their upstream control by nicotinic acetylcholine 
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receptors, on different timescales: on average (at rest or during the exploration of a novel 

environment), or at behaviorally-relevant timings during learning and decision-making tests.  

First, we found that bursting onsets were spontaneously synchronized in awake mice at 

rest, suggesting that active mechanisms control the collective dynamics in the VTA(Eshel et al., 

2016; Joshua et al., 2009). We suggest, among others, a nicotinic mechanism, as dopamine cells 

from β2-/- mice did not display spontaneous synchrony between bursting onsets. However, contrary 

to previous observations in anesthetized animals(Mameli-Engvall et al., 2006; Maskos et al., 

2005), we did find (non-synchronized) spontaneous bursting in dopamine cells from β2-/- mice. 

This is consistent with bursting in dopamine cells arising from both cholinergic and glutamatergic 

inputs to the VTA(Faure et al., 2014). In awake animals, but not in anesthetized ones, excitation 

caused by glutamatergic inputs and muscarinic acetylcholine receptors would be sufficient to 

induce bursting activity in dopamine neurons. VTA β2*nAChRs would rather mediate a 

coordinated switch in dopamine cells towards a common excitable state(Faure et al., 2014; Grace 

et al., 2007), thus promoting synchronized bursting activity. 

Second, we also show that the learning-induced shift of phasic dopamine activity from 

reward to reward-predictive stimulus(Fiorillo et al., 2003; Lak et al., 2014) or action(Jin and Costa, 

2010; Wassum et al., 2012) relies on a re-organization of spiking towards synchronous bursting 

activity, with average firing frequency remaining stable. As reinforcement-learning theories would 

instead predict an addition of action potentials representing an increase in reward prediction, this 

suggests that both average VTA activity and its coordination among dopamine cells are tightly 

regulated. The same shift of phasic bursting occurs in dopamine cells from β2-/- mice, but with less 

synchronous bursting and an increase in average firing frequency. This implicates β2*nAChRs not 
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only in the spontaneous coordination of VTA activities, but also in the refinement of collective 

dynamics upon learning. 

Third, our data indicate a role for β2*nAChRs in the encoding of uncertainty and 

exploration by both tonic and phasic dopamine firing. Before discussing (see below) how it 

furthers our understanding of uncertainty-seeking and exploration, these results show that 

nicotinic-cholinergic modulation of dopamine activity operates on different timescales, affecting 

slowly-fluctuating dopaminergic tone but also fast, coordinated firing at behaviorally-relevant 

timings. While acetylcholine has been implicated in the transition of dopamine firing from regular 

spiking to bursting pattern(Dautan et al., 2016; Grace et al., 2007), here we show that nicotinic 

receptors can affect such transition on a fast timescale (on the order of a hundred of milliseconds), 

and thus may impact immediate decision-making. 

 

What roles for the cholinergic control of dopamine in action, choices and exploration? 

While there is a general agreement that dopamine is necessary for actions aimed at 

obtaining potential rewards (Berridge, 2012; McClure et al., 2003; Schultz, 2007), the 

contributions of dopamine to decision-making remain under investigation(Barter et al., 2015; 

Berridge, 2012; Howe and Dombeck, 2016; Nicola, 2010; Salamone and Correa, 2012; Schultz, 

2007). In the reinforcement-learning framework, phasic dopamine signals a reward prediction 

error, which indirectly affects future choices by updating the cached values of options. However, 

there is an ever-growing debate about the direct role of dopamine at the time of choice(Glimcher, 

2011; Schultz, 2007). This motivational and/or motor signal has been linked to phasic 

dopamine(Barter et al., 2015; Berridge, 2012; Howe and Dombeck, 2016) or to slower 

variations(Niv, 2007; Schultz, 2007). Even though we did not use “online” causal tools such as 
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optogenetics (which can lead to erroneous inference about neural-behavior relations(Jazayeri and 

Afraz, 2017)), our correlational results indicate that phasic, rather than tonic, dopamine activity 

occurring prior to the initiation of goal-directed actions(Eshel et al., 2016; Jin and Costa, 2010; 

Joshua et al., 2009) signals both immediate choices(Morris et al., 2006) and kinetic variables of 

the goal-directed action(Barter et al., 2015; Howe and Dombeck, 2016). Some variants of 

reinforcement learning (“incentive salience” variant of actor-critic models(McClure et al., 2003)) 

offer an interpretation of the direct effects of phasic dopamine, by proposing that the reward 

prediction error affects the probability and latency to perform an action(McClure et al., 2003). 

However, we found that the phasic activity of VTA dopamine cells at the initiation of action 

sequence correlated with the kinematics of the whole sequence rather than just the latency to 

initiate an action. Our data thus suggest a more extended role of dopamine in motor control(Rigoux 

and Guigon, 2012). 

Classic accounts also relate exploration, both in terms of decision-making and locomotion, 

to tonic, rather than phasic, dopamine(Frank et al., 2009; Humphries et al., 2012). Exploration has 

been linked to the excitability of dopamine cells(Naudé et al., 2016; Schiemann et al., 2012) or 

downstream signaling(Beeler et al., 2010; Frank et al., 2009; Humphries et al., 2012), but direct 

experimental observations of which firing patterns encode exploration were still 

lacking(Humphries et al., 2012; Naudé et al., 2016). We found that phasic activity correlated with 

uncertainty-seeking (discussed in-depth below) but that the modulation of tonic activity by 

uncertainty did not predict choices, and occurred at the end of the trial, presumably long after the 

decision process. Hence, it is doubtful that tonic encoding of uncertainty is directly implicated in 

choices under uncertainty, but may instead affect attentional processes(Fiorillo et al., 2003). We 

also observed that dopamine phasic activity at the beginning of trials could signal the distance 
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travelled during long, exploratory trials. On a longer timescale, the extent of locomotor exploration 

was related to the modulation of bursting in dopamine cells when the animal was at low speed, 

rather than avergae bursting propensity. Hence, we overall show that locomotor exploration and 

uncertainty-seeking are both signaled by the phasic activity of dopamine cells. Our data add to the 

growing catalogue of functions (motor control(Barter et al., 2015; Howe and Dombeck, 2016), 

here exploration and uncertainty) long thought to be related to tonic dopamine(Niv, 2007; Schultz, 

2007), that have proven signaled instead by fast, precisely timed, transitions towards phasic 

dopamine activity. In this framework, the disruption in the encoding of exploration by dopamine 

neurons from β2-/- mice shows that cholinergic signaling can affect precisely-timed transitions of 

dopamine cells towards bursting, henceforth affecting decision-making on a short timescale. 

 

Cholinergic control of dopamine implements an uncertainty bonus  

We also define how this fast effects of nicotinic receptors modulate dopamine encoding of 

decision variables. Together with previous studies, we show that phasic dopamine firing not only 

encode expected reward but also other reward attributes, such as risk (reward uncertainty (Fiorillo, 

2011; Fiorillo et al., 2003; Lak et al., 2014; Stauffer et al., 2014)) or advanced information about 

upcoming rewards(Bromberg-Martin and Hikosaka, 2009), and non-reward attributes, such as 

novelty or sensory surprise(Redgrave and Gurney, 2006). Rather than a “reward-only” prediction 

error, which would encode the objective properties of a reward (e.g. probability, magnitude), 

dopamine neurons would instead signal the subjective value of a choice(Lak et al., 2014; Stauffer 

et al., 2014). The “subjective utility” theory remains however agnostic about the determinants of 

one’s preferences, i.e. it relates preferences for e.g. a type of food or for risky rather than safe 

option to dopamine firing, but does not explain what renders dopamine neurons activated by risk 
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or uncertainty. Here we suggest how uncertainty can affect the subjective value of a choice, in 

terms of normative explanation and neural mechanisms.  

We sought to explain the irrational preferences displayed by the animals in our setup: they 

display equal preference for the 50% and 100% options, even though the number and intensity of 

ICSS are the same for both outcomes. Using computational modeling(Daw et al., 2006; Funamizu 

et al., 2012; Naudé et al., 2016), we were able to extract the subjective value of uncertainty from 

animals’ choices, and to relate it with increases in phasic dopaminergic activity, on top of the 

encoding of expected reward. In the framework of phasic dopamine signaling a reward (or utility) 

prediction error, this means that the value of uncertainty is added to that of the expected reward, 

in the form of “bonus” value(Kakade and Dayan, 2002). Formalizing uncertainty-modulation of 

dopaminergic activity as a bonus explains suboptimal behavior as a motivation to obtain 

information about the current status of an unpredictable outcome(Anselme et al., 2013; Dayan, 

2012; Vasconcelos et al., 2015), even if such information cannot be used to maximize reward in 

the future. Our task parameters, i.e., small stakes (there is no actual risk to lose, but just a risk not 

to win) and short delays between series of repeated gambles, are known to induce uncertainty-

seeking(Heilbronner, 2013). In our set-up, the relative weight of uncertainty compared to expected 

reward was even close to one, meaning that mice priced (useless) information as much as rewards, 

reminiscent of playful or gambling behaviors(Oudeyer, 2007). 

We also propose a neural mechanism for uncertainty-seeking. As VTA dopamine neurons 

from β2-/- mice encode reward expectation and directness but not uncertainty or exploration, these 

different types of motivation arise from distinct dynamical processes at the level of the VTA 

(presumably also involving VTA GABA neurons(Tolu et al., 2012)), with exploration-related 

dopamine activity involving nAChRs. This implication of cholinergic mechanism in information-

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 4, 2018. ; https://doi.org/10.1101/242438doi: bioRxiv preprint 

https://doi.org/10.1101/242438
http://creativecommons.org/licenses/by/4.0/


 22 

seeking suggest that acetylcholine might signal uncertainty, as proposed by computational 

theories(Yu and Dayan, 2005), or that the coordinated switch in dopamine cells excitability 

gates(Grace et al., 2007) uncertainty signals generated elsewhere, e.g. in the cerebral cortex. This 

implication of β2-nAChRs in uncertainty-modulation of phasic activity (i.e. β2-nAChRs would be 

necessary for the integration of the uncertainty bonus) may explain the role of nicotinic receptors 

in probability discounting and henceforth in decisions under uncertainty(Fobbs and Mizumori, 

2014). Overall, our results suggest that pontine cholinergic modulation, far from being just a 

slowly fluctuating tone, can affect dopamine firing on a fast timescale, thereby instantly biasing 

animals towards information-gathering. 
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FIGURE LEGENDS 
 

 

Figure 1. β2*nAChRs control synchronous bursting in dopamine neurons. (a) Schematic of 

in vivo implantation (left). Filtered extracellular recordings in the VTA (middle) and average spike 

waveforms from simultaneously recorded neurons (right). (b) Pharmacological confirmation of 

the dopaminergic nature of recorded neurons. Neurons were considered dopaminergic if inhibited 

by intra-peritoneal injection of D2R agonist quinpirole followed by reactivation by D2R antagonist 

eticlopride. (c) Decomposition of spike trains into phasic bursting and tonic firing patterns. Bursts 

start with an interspike interval (ISI) less than 80ms and stop when the ISI become greater than 

160ms. All spikes within bursts were labeled “phasic” while spikes outside bursts were labeled 

“tonic”. (d) Firing frequency (left) and %SWB (right) of pDAn from WT (n=87 neurons from 16 

mice) and β2-/- mice (n=80 neurons from 12 mice). (e) Cumulative density of pairwise synchrony 

between burst onsets in WT (black) and β2-/- (red) mice. Solid lines correspond to spontaneous 

synchrony in familiar environment. Dashed lines correspond to surrogate data (shuffling of 

neurons pairs). Burst onsets from WT mice show increased synchrony over surrogate (for WT 

mice, p<0.001; for β2-/- mice, burst onsets: 0.14; KS tests) and synchrony between burst onsets 

was different in WT and β2-/- mice (p=0.006, KS test). 
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Figure 2. Reinforcement learning reorganizes dopaminergic firing towards the self-initiation 

of actions with learning, independently from β2*nAChRs. (a) Top: multi-armed bandit task 

using ICSS (left) and number of ICSS rewards against learning sessions (right). Bottom: 

representative trajectories for WT and β2-/- mice after learning. (b) Top: extracellular recordings 

between two ICSS (grey boxes) after learning. Bottom: normalized firing frequency against 

normalized time between two ICSS for WT (n=55 neurons from 13 mice) and β2-/- mice (n=52 

neurons from 10 mice). (c) extracellular voltage (top) and normalized firing frequency (bottom) 

during the omission of an ICSS, showing examples of early bursting related to next reward (yellow 

boxes). (d) Top: percentage of pDAn displaying movement onset-related activity against learning 

sessions. Bottom: average firing frequency throughout learning (naive: open-field without ICSS, 

first: sessions 1-5, last: sessions 6-10). (e) Representative examples of animal trajectory during a 

session, with corresponding instantaneous firing frequency (color coded), in the first session (top) 

and late session (bottom), illustrating correlated reorganization of behavioral and spiking dynamics 

through learning. 
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Figure 3. Dopamine signaling of reward exploitation predicts directness towards the goal, 

independently from β2*nAChRs. (a) Normalized firing frequency (solid lines) and instantaneous 

speed (dashed lines) against normalized time between two ICSS for WT mice. (b) Bottom, raster 

plot of action potentials, sorted by increasing phasic activity of pDAn. Each line is a trial between 

two ICSS locations, each black dot is an action potential, and red dots represent the end of the trial. 

Top, histogram of the raster plot. (c) Normalized firing activity (top) and speed profiles (bottom) 

corresponding to the raster plot in (A), against linearized time between two ICSS locations, sorted 

by increasing phasic activity of pDAn. (d) Representative example of the correlation between 

firing frequency at movement onset and the peak speed over time-to-peak speed ratio (left) and 

distribution of the coefficient of determination (R2) for the correlation in (c) for all neurons (right). 
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Figure 4. β2*nAChRs bias choice of uncertain rewards and its encoding by dopamine 

neurons. (a) Left schematics: in probabilistic sessions, each location was associated with a distinct 

ICSS probability. Right: Representative trajectories for WT and β2-/- mice. (b) Left: proportion of 

choices against reward probability. Middle: proportion of irrational choices of uncertain outcomes, 

defined as choosing the location associated with 50% reward probability against 100% reward 

probability. Right: uncertainty bonus versus inverse temperature, fitted from the choices. (c): 

Extracellular recordings when the animal received (R) or not (ø) an ICSS. Dashed red boxes 

indicate phasic activity (P). (d): normalized firing frequency against normalized time between two 

locations for WT (left, n=71 neurons from 13 mice) and β2-/- mice (right, n=51 neurons from 10 

mice), sorted by reward probability at the goal. Dashed boxes delineate activity modulated by 

reward probability (early bursting and late ramping activity) and affected by the genetic deletion 

of β2*nAChRs. 
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Figure 5 : Valuation of uncertain rewards is predicted by phasic, but not tonic, activity of 

dopamine neurons. (a) Normalized firing frequency after the last location for WT (left) and β2-/- 

(middle), and early bursting activity against reward probability at the goal (right). (b) Uncertainty 

bonus against encoding of uncertainty by pDAn early bursting (phasic activity related to 50% 

versus 100% reward probability). Top: each dot represents a WT mouse. Bottom: group averages 

for WT and β2-/- mice. (c) Residual choices against residual early bursting activity. (d) Normalized 

firing frequency before the next location for WT (left) and β2-/- (middle), and firing frequency 

during ramping activity against reward probability at the goal (right).  
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Figure 6. β2*nAChRs affect dopaminergic encoding of exploratory locomotion. (a) Schematic 

of the duration-based separation between direct (<5s) and long (5-10s) trials. Data presented in 

panels b-e were obtained during long trials only. (b) Normalized firing frequency over time after 

the last location, for WT (left) and β2-/- (right). (c) Normalized firing frequency during early 

bursting activity against reward probability at the goal. (d) Left: example of travelled distance 

during the trial against firing frequency during early bursting activity. Right: Cumulative density 

of the correlation (coefficient of determination, R2) for all pDAn. (e) Left: example of total 

travelled distance against difference in bursting activity between periods of slow and fast 

locomotion. right: Cumulative density of the correlation (R2) for all pDAn. 
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Figure 7. VTA dopamine neurons signal exploration induced by uncertainty and novelty. (a, 

b) Animal trajectory with corresponding instantaneous firing frequency (color coded, left) and 

average difference in bursting activity between periods of slow and fast locomotion (right) in a 

probabilistic session (a) and in a novel open-field without reward (b). 
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METHODS 
 

1. Animals 

Experiments were performed on 14 wild-type (WT; C57BL/6J) and 11 knockout SOPF HO 

ACNΒ2 (β2-/-) male mice obtained from Charles Rivers Laboratories Frances. β2-/- mice were 

generated as described previously (Picciotto et al., 1995). Even though WT and β2-/- mice are not 

littermates, the mutant line was generated more than 20 years ago, and has been backcrossed more 

than 20 generations with the wild-type C57BL6/J line, and is more than 99.99% C57BL/6J. All 

experiments were performed on mice between 2 and 4 months of age. Mice were housed in cages 

containing a maximum of 4 animals, in a 12 h light/dark cycle and temperature-controlled room 

(22 +/- 1 °C) with food and water available ad libitum. Sample sizes in this study are similar to 

those generally employed in the field and were not pre-determined by a sample size calculation. 4 

wild-type and 4 β2-/- mice were excluded from the analysis due to improper electrode implantation 

(no dopamine neurons were found in these mice). All experiments were undertaken in compliance 

with French laws on animal experimentation, the directives of the European Community 219/1990 

and 220/1990. The protocol was approved by the Committee on the Ethics of Animal Experiments 

of the University of Pierre et Marie Curie (Permit Number: 01438.01). 

 

2. Drive and electrodes 

Hand-made poly-electrodes (bundle of 8 electrodes, “octrodes”) were obtained by twisting eight 

polyimide-insulated 17 µm Nickel-Chrome wires (A-M SYSTEMS, USA). The use of eight 

channels relatively close together allows for a better discrimination of the different neurons. Before 

implantation and recording, the octrodes were cut at suitable length and gold-plated (gold plating 
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solution, Neuralynx; Bozeman, USA) to lower their impedance to 500-800 KOhms and improve 

the signal-to-noise ratio. The free ends of the octrodes are connected to the holes of EIB-18 

(electrode interface board, Neuralynx) and fixed with pins. Two octrodes were placed in a cannula 

(90-micron diameter) to guide the octrode to the brain and the upper part of the octrode without 

damaging its tip. We manufactured a microdrive system (home-made 3D conception and printing) 

consisting of a main body, on which is mounted the EIB, and a driving screw, with a sliding part 

comprising the octrode-containing cannula. This microdrive allowed moving through the VTA in 

order to sample neuronal populations Finally, a bipolar stimulation electrode for the IntraCranial 

Self-Stimulation (ICSS) was also fixed to the EIB (in the stimulation ports). 

 

3. Surgery 

After induction of anesthesia with a gas mixture of oxygen (1l/min) and 3% isoflurane 

(Vetflurane®, Virbac), the mouse was placed in a stereotaxic frame (David Kopf). The cranial 

bone was exposed by a midline incision of the skin. The skull was then drilled and recordings 

electrodes were placed just above the VTA (coordinates: 3.2±0.1 mm posterior to the Bregma, 

0.5±0.1 mm lateral and 4.0±0.1 mm deep from the surface of the brain(Paxinos and Franklin, 

2004)). From this starting position, electrodes were lowered (75µm steps) during the experiment 

until a depth of 5.0 mm was reached. Monopolar ground electrodes were laid over the cortical 

layer of the cerebellum and the olfactory bulb. Stimulation electrode for ICSS was implanted in 

the medial forebrain bundle (MFB, 1.4 mm posterior to the Bregma, mediolateral= ±1.2 mm lateral 

and 4.8 mm deep from the surface of the brain). Dental acrylic cement was used to fix the main 

body of the microdrive to the skull during the surgery. After surgery, an antiseptic (Povidone-
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iodine solution) and a local anesthetic (lidocaine ointment) were applied in areas where the scalp 

was incised. Animals recovered until regaining pre-surgery body weight, and at least two weeks. 

 

4. Neuronal recordings and characterization of dopamine neurons 

Recordings of extracellular potentials were performed using a digital acquisition system (Digital 

Lynx SX; Neuralynx) together with the Cheetah software. Broadband signals from each wire were 

filtered between 0.1 and 9000 Hz and recorded continuously at 32 kHz. To extract spike timing, 

signals were band-pass-filtered between 600 and 6000 Hz and sorted offline. Spike clustering was 

cross-validated by using both SpikeSort3D (Neuralynx) and custom-written Matlab (The 

Mathworks) routines (spike-sorting codes are available upon request). The electrophysiological 

characteristics of VTA neurons were analyzed in the active cells encountered by systematically 

moving down the octrode-containing cannula. Extracellular identification of putative DA neurons 

was based on their location as well as on a set of unique electrophysiological properties that 

characterize these cells in vivo: 1) a typical triphasic action potential with a marked negative 

deflection; 2) a characteristic long duration (>2.0 ms) action potential; 3) an action potential width 

from start to negative trough >1.1 ms; 4) a slow firing rate (<10 Hz) with an irregular single spiking 

pattern and occasional short, slow bursting activity. Putative GABA neurons were characterized 

by a characteristic short duration of action potential from start to negative trough (<1.0 ms), and a 

high firing rate (>12Hz). D2 receptors (D2R) pharmacology was also used for confirmation of DA 

neuron identification: after a baseline (10 min) and a saline (dose, 10 min) injection, quinpirole 

(1mg/kg,, D2R antagonist) was injected (30 min recording), followed by an eticlopride (D2R 

agonist) injection (1mg/kg, 30 min recording). Since most DA, but not GABA neurons, express 

inhibitory D2 auto-receptors, neurons were considered as pDA neurons if quinpirole induced at 
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least 30% decrease in their firing rate, while eticlopride restored firing above the baseline. 

Nevertheless, as continuous D2 pharmacology could have affected both baseline DA neurons 

firing and decision-making(Fobbs and Mizumori, 2014), we allowed the mice to recover two days 

after this experiment. We thus performed pharmacological confirmation (1) when first 

encountering a putative DA neuron in a given mouse or (2) at the end of the week if at least one 

putative neuron was present during the behavioral experiment. Neurons were considered DA only 

if they responded to the pharmacology, or if they presented electrophysiological characteristics 

defined above and were recorded between two positive pharmacological experiments. 

 

5. Immunohistochemistry 

Immunolabeling allowed to assess the TH-positive phenotype of the neurons surrounding the 

electrode trace and was performed as follows. All neurons from mice in which the electrode trace 

was detected outside the VTA were excluded from the analysis. Following the death of the mice, 

brains were rapidly removed and fixed in 4% paraformaldehyde. After at least 3 days of fixation 

at 4 °C, serial 60-μm sections were cut from the midbrain with a vibratome. Free-floating VTA 

brain sections were incubated 1h at 4°C in a blocking solution of phosphate- buffered saline (PBS) 

containing 3% Bovine Serum Albumin (BSA, Sigma; A4503) and 0.2% Triton X-100 and then 

incubated overnight at 4°C with a mouse anti-tyrosine hydroxylase antibody (TH, Sigma, T1299) 

at 1:200 dilution in PBS containing 1.5% BSA and 0.2% Triton X-100. The following day, sections 

were rinsed with PBS and then incubated 3 h at 22–25°C with Cy3- conjugated anti-mouse 

secondary antibodies (Jackson ImmunoResearch, 715-165-150) at 1:200 dilution in a solution of 

1.5% BSA in PBS. After three rinses in PBS, slices were wet-mounted using Prolong Gold 
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Antifade Reagent (Invitrogen, P36930). Microscopy was carried out with a fluorescent 

microscope, and images captured using a camera and ImageJ imaging software. 

Behavioral data acquisition 

6. Behavioral data acquisition 

 

Locomotor activity and decision-making (ICSS choice task, see below) were both recorded in a 

0.8-m diameter circular open-field. Experiments were performed using a video camera, connected 

to a video-track system, out of sight of the experimenter. A home-made software (Labview 

National instrument) tracked the animal, recorded its trajectory (20 frames per s) for 5 min and 

sent TTL pulses to the ICSS stimulator when appropriate (see below). Spontaneous activity 

(behavioral and neuronal) was obtained in the mouse home-cage (“familiar environment”) for 10 

minutes prior to starting the open-field experiment. The “new environment” corresponds to the 

open-field, the first time the animals were exploring it, for 30 minutes. Animal trajectories were 

smoothed using a triangular filter. Time-to-goal measures the duration of one trial between one 

ICSS location and the next one. The speed profile corresponds to the instantaneous speed as a 

function of time. Maximal speed and time-to-maximal speed were detected for each trial after 

removing the first second after the last ICSS location, which corresponds to the duration where 

early bursting firing activity was computed (see below). In the new environment and in the long, 

exploratory trials of the probabilistic setting (Fig. 6,7), behavior was decomposed according to 

animal’s speed between navigation and exploration epochs using a dual threshold criterion(Maskos 

et al., 2005; Maubourguet et al., 2008). The behavior was considered as to change from 

“exploration” to “navigation” if and only if speed crossed the high threshold (12 cm.s-1) while the 

behavior was considered to change from navigation to exploration only if its speed crossed the low 
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threshold (speed < 6 cm.s-1), avoiding spurious navigation and exploration phases of small 

duration. 

 

7. Markovian decision problem by ICSS conditioning 

 

Details for this experiment can be found in a previous publication(Naudé et al., 2016). Briefly, 

three explicit square locations, marked on the floor, were placed in the open field, forming an 

equilateral triangle (side = 50 cm). Each time a mouse was detected (by its centroid) in the area of 

one of the rewarding locations (area radius = 3 cm), a 200-ms train of twenty 0.5-ms biphasic 

square waves pulsed at 100 Hz was delivered. Experiments were performed using a video camera, 

connected to a video-track system, out of sight of the experimenter. A home-made software 

(Labview National instrument) tracked the animal, recorded its trajectory (20 frames per s) for 5 

min and sent TTL pulses to the ICSS stimulator when appropriate. Animals received stimulations 

only when they alternate between rewarding locations. The training consisted of a block (10 daily 

sessions of 5 min) in a certain setting where all locations were associated with an ICSS delivery. 

ICSS intensity was adjusted so that mice self-stimulated between 50 and 150 times per session at 

the end of the training (ninth and tenth session). Current intensity was subsequently maintained 

the same throughout the probabilistic setting. The test phase consisted of a block (10 daily sessions 

of 5 min) assessing choice organization under a probabilistic setting, by associating each location 

with a different probability of ICSS (25%, 50% and 100%, randomly assigned for each mouse). 

Reward probabilities were pseudo-randomly assigned to each location for each mouse. Animals 

underwent an additional 5-sessions blocks of probabilistic settings with different probability sets 

(25%, 50% and 75%; 25%, 75%, and 100%; 50%, 75% and 100%), pseudo-randomly assigned, if 
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dopamine neurons were still recorded in these animals. From 14 WT and 10 β2-/- mice at the 

beginning of the study (i.e. training), 10 WT and 7 β2-/- mice had dopamine neurons in the 

probabilistic sessions. 

 

8. Analysis of decision-making 

Animal trajectories were smoothed using a triangular filter. Time-to-goal measures the duration of 

one trial between one ICSS location and the next one. The speed profile corresponds to the 

instantaneous speed as a function of time. 

Analysis of decision-making was based on a previous study(Naudé et al., 2016). In short, we 

expressed behavioral data as a series of choices between rewarding locations (labeled A, B, C). 

We only considered choices made in an interval of 10s after visiting the previous rewarding 

location. This experiment implements a Markovian Decision Process (MDP(Sutton and Barto, 

1998)) consisting of three states (A, B, C), corresponding to each rewarding locations, and a 

transition function, corresponding to the proportions of choices in the three gambles. The 

repartition is defined as the proportion of states visited by the animal during a session. The 

transition matrix describes the proportion of transitions from one state to another. Because animals 

receive stimulations only when they alternate between rewarding locations, there is no repetition 

of states in the sequence and the 3 × 3 transition matrix has null diagonal elements.  

We modeled mice decision strategies with a previously-published computational model, an 

uncertainty-sensitive softmax rule, henceforth called the “uncertainty model”. Because mice could 

not return to the same rewarding location, they had to choose between the two remaining states 

(rewarded locations). The uncertainty model determined the probability Pi of choosing the next 

state i, as a function of a decision variable. The softmax choice rule is: 
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(1)
 

  

where β is an inverse temperature parameter (“decision noise”) reflecting the sensitivity of choices 

to the difference between decision variables. In our model embedding an exploration bonus, the 

decision variable (the value of an option) depends on both expected reward and uncertainty(Daw 

et al., 2006; Frank et al., 2009; Funamizu et al., 2012).  

(2)  

This compound value is then nested in the softmax choice rule. We fitted the free parameters (β, 

φ) maximizing the respective likelihood of the observed choices c at all trials t for each mouse 

separately, using the population fit (fit of the average choice probabilities) as initial conditions. 

 

9. Electrophysiology analysis 

Both spontaneous activity and behavior-related neuronal activity were analyzed offline with 

Matlab custom-written codes. Spontaneous DA cell firing was analyzed with respect to the average 

firing rate and the percentage of spikes within bursts (%SWB, number of spikes within bursts, 

divided by total number of spikes). Bursts were identified as discrete events consisting of a 

sequence of spikes such that: their onset is defined by two consecutive spikes within an interval 

<80 ms and they terminated with an interval >160 ms. Phasic activity is defined as spikes falling 

into bursts, while tonic activity comprises spikes outside bursts. Synchrony between pairs of 

neurons was computed according to Kreuz et al.(Kreuz et al., 2013) definition, with SPIKY matlab 

code. Briefly, spike synchronization measures the fraction of coincidence between two spike 

Pi =
exp(bVi )

exp(bVj )jå

Vi =Ei(ICSS)+j s 2
i(ICSS)= pi(ICSS)+j pi(ICSS)(1- pi(ICSS))
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trains. This measure is comprised between 0 (no coincidence) when the spikes trains are most 

dissimilar and 1 (each spike has one matching spike in the other train) when they are similar. This 

method is parameter- and scale-free, because the coincidence window is adapted to the local spike 

rate. It is also time-resolved, which allows assessing synchrony during trials. Peri-event time 

histograms were constructed based on 1 ms-bins rasters, convolved with a Gaussian kernel (width 

= 50ms) corresponding to the same event. This event corresponded to the reward in the certain 

setting. In the probabilistic setting, different peri-event time histograms were computed, 

corresponding to each reward probability of the next location visited by the animal (e.g. 25%, 50%, 

100%), centered on animal start (i.e. the previous location occupied by the mouse) or arrival at the 

next location. As DA neurons may fire action potentials at frequencies ranging from 1 to 10Hz, to 

avoid bias towards responses of high firing neurons, firing frequencies from the peri-event time 

histograms were normalized for each neuron by its average firing frequency, and then averaged 

over the population. Neurons were considered as having an early bursting activity at the beginning 

of the between-location movement if their firing frequency was 2 times above baseline for 20 

consecutive time bins(Jin and Costa, 2010) in the first quarter of the movement. For between-

location plots (labeled “linearized time between locations” in Fig. 2), DA firing activity was binned 

(1000 bins) from 0 to 100% of the duration from the previous location to the target location, and 

then normalized by average frequency and averaged over the population. Average firing as a 

function of linearized time was only used for display purposes and was not analyzed. Early bursting 

frequency and ramping frequency were computed on direct trials (>5s). Early bursting frequency 

was computed on the first 500ms following the last location, whether the animal received an ICSS 

reward (hence, after the 200 ms duration of the ICSS) or not (in this case, 200 ms corresponding 
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to reward omission were also skipped). Ramping frequency was computed on the last second 

preceding the target location.  

 

10. Statistical analysis 

No statistical methods were used to predetermine sample sizes, which are comparable to many 

studies using similar techniques and animal models. We used a pseudo-randomization procedure, 

in the sense that in the behavioral experiments, precise parameters (for example, reward 

probabilities) were pseudo-randomly assigned to each rewarding location for each mouse. 

Behavioral and electrophysiological data were analyzed and fitted using Matlab (The MathWorks). 

Data are plotted as mean ± s.e.m. Total number (n) of observations in each group and statistics 

used are indicated in figure captions. Classically comparisons between means were performed 

using parametric tests (Student for two groups, or ANOVA for comparing more than two groups) 

when parameters followed a normal distribution (Shapiro test P > 0.05), and non- parametric tests 

(here, Wilcoxon or Mann-Whitney) when this was not the case. Homogeneity of variances was 

tested preliminarily and the t tests were Welch-corrected if needed. Multiple comparisons were 

Bonferroni corrected. All statistical tests were two-sided. P > 0.05 was considered to be not 

statistically significant. 
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