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Genome-wide association study of 1 million people identifies 111 loci for atrial fibrillation
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Summary

To understand the genetic variation underlying atrial fibrillation (AF), the most common cardiac
arrhythmia, we performed a genome-wide association study (GWAS) of > 1 million people, including
60,620 AF cases and 970,216 controls. We identified 163 independent risk variants at 111 loci and
prioritized 165 candidate genes likely to be involved in AF. Many of the identified risk variants fall near
genes where more deleterious mutations have been reported to cause serious heart defects in humans
or mice (MYH6, NKX2-5, PITX2, TBC1D32, TBX5),1'2 or near genes important for striated muscle function
and integrity (e.g. MYH7, PKP2, SSPN, SGCA). Experiments in rabbits with heart failure and left atrial
dilation identified a heterogeneous distributed molecular switch from MYH6 to MYH?7 in the left atrium,
which resulted in contractile and functional heterogeneity and may predispose to initiation and

maintenance of atrial arrhythmia.

Results

We tested the association between 34,740,186 genetic variants (minor allele frequency [MAF] > 2.5x10°
®) and AF, comparing a total of 60,620 cases and 970,216 controls of European ancestry from 6
contributing studies (HUNT, deCODE, MGI, DiscovEHR, UK Biobank, and the AFGen Consortium)
(Supplementary Table 1). We identified 111 genomic regions with at least 1 genetic variant associated
with AF (P-value < 5 x 10'®). Of these, 80 loci have not previously been reported (Supplementary Figure
1, Figure 1, Supplementary Table 2, and Supplementary Table 3). Based on approximate stepwise
conditional analyses,® we identified 52 additional genetic risk variants within the 111 loci that

demonstrated genome-wide statistically significant association with AF (Supplementary Table 4) that


https://doi.org/10.1101/242149
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/242149; this version posted January 4, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

were independent of the locus index variant (LD r? < 0.05). We applied the widely used GWAS P-value
significance threshold of P-value < 5x10®. Some have suggested to use a more stringent threshold of
5x10”° when testing millions of imputed markers.” If we had applied this threshold, we would still

identify 94 loci, 63 of which have not been previously reported (Supplementary Table 2).

Of the 35 loci previously reported for AF (Supplementary Table 3), we identified genome-wide
significant association (P-value < 5x10®) at 31 (89%) after excluding results from the previously
published AFGen Consortium, which has published the majority loci reported to date (Supplementary
Table 5).° The 4 loci not captured comprised 3 loci discovered in East Asian populations (KCNIP1, NEBL,
and CUX2) and 1 locus (PLEC) for which we did not have data on the previously reported missense
variant.® To further test the validity of our findings, we performed a heterogeneity test for the 111 index
variants across the 6 contributing studies. Of the 111 index variants, only 2 index variants showed
evidence for heterogeneity in the effect size across the 6 contributing studies (P-value < 0.05/111 =
4.5x10) (Supplementary Table 2). Both of these index variants represent loci that have previously been
established as associated with AF across multiple studies (near PRRX1, PITX2) (Supplementary Table 3).

These findings demonstrate a high external validity of our results.

To understand the biology underlying the 111 AF-associated loci, we employed a number of
approaches, including ‘Data-driven Expression Prioritized Integration for Complex Traits’ (DEPICT) to
identify cell types and tissues in which genes at AF-associated variants are likely to be preferentially
expressed. Based on 37,427 human microarray expression samples from 209 different tissues and cell
types, we observed a statistically significant enrichment for atrial (P-value = 2.4x10™), atrial appendage
(P-value = 2.8x10), heart (P-value = 5.2x10), and ventricular tissues (P-value = 1.1x10™*) (Figure 2a and
Supplementary Table 6). We further applied DEPICT to detect gene sets that were enriched for genes at
AF-associated loci. Of the 14,461 gene sets we tested, 889 were enriched (false discovery rate [FDR] <
0.05) for genes at AF-associated loci (Figure 2b and Supplementary Table 7). The highlighted gene sets
in general point to biological processes related to cardiac development and morphology along with
structural remodeling of the myocardium. These findings are in line with recent reports which have
linked AF with rare coding variants in the sarcomere genes MYH6 and MYL4 and in the multidomain
cyto-skeletal linking protein PLEC along with more common coding variants in TTN, essential for the

. .. 8,9,6,10
passive elasticity of heart and skeletal muscle.™™
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Although we could identify protein-altering variants at n = 21 loci, comprising either the index
variant (n = 2 loci) or a variant in high linkage disequilibrium (LD) (r?) with the index variant (n = 19 loci;
Supplementary Table 8), we noted that most associated risk variants are in the non-coding genome (159
of 163 independent risk variants). To assess the potential function of associated non-coding variants, we
tested for enrichment of AF-associated variants with a variety of regulatory features including DNase |
hypersensitive sites (DHS), histone methylation marks, transcription factor binding sites, and chromatin
states in a variety of cell and tissue types available from Roadmap Epigenomics™! using ‘Genomic
Regulatory Elements and Gwas Overlap algoRithm’ (GREGOR)." This method tests if the number of AF-
associated index variants, or their LD proxies, overlap with the corresponding regulatory feature more
often than expected when compared to a permuted control sets. Of 787 combinations of regulatory
features and tissues examined (Supplementary Table 9), we found that AF-associated variants were
most strongly associated with: active enhancers as indicated by H3K27ac in right atrium (P-value = 2x10
3.2 9x enrichment); H3K27ac in left ventricle (P-value = 3x10°3; 2.6x enrichment); and in fetal heart
tissue we found strong enrichment with H3K4me1 (P-value = 9x10™; 2.0x enrichment) and open
chromatin (P-value = 2x10%%; 2.1x enrichment) (Figure 2c, Supplementary Figure 2 and Supplementary
Table 9). This suggests that some loci are important in transcriptional regulation in the adult heart, in

development of the fetal heart, or both.

To further enhance the biological understanding of the AF-associated loci, we identified
candidate functional genes. There were 3,072 genes or transcripts for which the transcription region
overlapped (see Methods) at least one variant in the 111 loci. We prioritized biological candidate genes
which: i) harbored a protein-altering variant that was in high LD (r* > 0.80; Supplementary Table 8) or
was itself the locus index variant; ii) expression levels were associated and colocalized with AF-
associated variants (P-value < 1.14 x 10” in GTEx consortium data);*? iii) were highlighted by DEPICT (FDR
< 0.05); or iv) were nearest to the index variant in a locus. Using these criteria, we prioritized 165 target

genes (Supplementary Table 2, Supplementary Table 10, and Supplementary Table 11).

To identify tissues in which the 165 prioritized candidate genes showed enhanced expression,
we used ‘Tissue Specific Expression Analysis’ (TSEA)* and found enrichment in heart (P-value = 5x10™%),
muscle (P-value = 1x10”) and blood vessel tissues (P-value = 2x10”°). To assess the empirical significance
of these results, we performed 1,000 permutations of the same number of genes selected: i) randomly

from the genome and ii) subsets of the 3,072 genes within the 111 AF loci. We determined that the
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observed P-values were substantially more significant than expected by chance (Figure 3). These

findings support that the genes we prioritized are strong candidates for being involved in AF.

Interestingly, we identified as functional candidates at least 20 genes likely to be involved in
cardiac and skeletal muscle function and integrity (AKAP6, COL25A, CFL2, DPT, MYH6, MYH7, MYO18B,
MYO1C, MYOCD, MYOT, MYOZ1, MYPN, PKP2, RBM20, SGCA, SSPN, SYNPO2L, TTN, TTN-AS, WIPF1);
these included SGCA and SSPN, which have been associated with muscular dystrophies,™*® and PKP2
which has been associated with arrhythmogenic right ventricular cardiomyopathy.”” We also identified
at least 13 genes likely to be involved in mediation of developmental events (EPHA3, GTF2I, HAND2,
MYH6, NAV2, NKX2-5, PITX2, SLIT3, SOX15, SOX5, TBC1D32, TBX5, TGFB3) along with genes likely to be
involved in intracellular calcium handling in the heart (CALU, CAMK2D, CASQ2, PLN, S100A7A),
angiogenesis (TNFSF12, TNFSF12-TNFSF13), hormone signaling (ESR2, IGF1R, JMJD1C, NR3C1, THRB1),
and function of cardiac ion channels (GRIK4, KCNC2, KCND3, KCNH2, KCNJ5, KCNN2, KCNN3, SCN10A,
SCN5A, SLC9B1).

We tested the 111 AF index variants for association with 123 electrocardiogram (ECG)
parameters in 62,974 Icelanders in sinus rhythm, after exclusion of AF cases (Supplementary Figure 3).
Sixty variants were associated with at least one ECG parameter when we controlled for a false discovery
rate of 0.05 at the variant level, 39 of which were novel AF variants including many with substantial ECG

effects, such as the variants near NACA, THRB, CAMK2D, NKX2-5, and CDKN1A.

For the locus around index variant rs422068 on chromosome 14, our approach prioritized MYH6
and MYH?7 as the most likely functional genes (Supplementary Table 2). MYH6 encodes myosin heavy
chain alpha (a-MyHC), a major component of the thick filaments of the contractile apparatus in adult
atria, and hence important for atrial contraction.’® MYH7 encodes B-MyHC, a slower acting
isoform,*® and is mainly expressed in the ventricles of the human heart. It has been established
that MYH6 and MYH7 are regulated in an inverse manner, and that in heart failure and other cardiac
disorders in humans, B-MHC is upregulated, whereas a-MHC is downregulated, resulting in diminution
of cardiac performance.”” Whether these changes occur also in the atria has not previously been

addressed.
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To explore potential mechanisms of MYH6 and MYH7 in AF, we developed an ischemic heart
failure model for AF in rabbits. Ischemia was produced by chronic ligation of the left circumflex artery
(LCX) during thoracotomy with subsequent development of ischemic heart failure (> 4 weeks post
operatively) and profound left atrial dilation. We found that MYH7 expression was only detectable in the
heart failure remodeled left atrium (Figure 4). The control left atrium did not express detectable levels
of MYH7 and exclusively expressed MYH6. More importantly, in the dilated left atrium, MYH7
expression was heterogeneously distributed and thus resulted in contractile heterogeneity, which may
have predisposed hearts to develop long-lasting AF, particularly when intra-atrial pressure was
increased to 10cm H,0. Control hearts did not develop long-lasting AF until intra-atrial pressure was
increased to 30cm H,0. (Figure 4, Supplementary Figure 4). Altogether, this experiment demonstrated
that a MYH6 to MYH7 switch in the atria may accompany or predispose to atrial fibrillation, and that the
expression of both the faster and slower myosin heavy chain forms may predispose to arrhythmia

through contractile heterogeneity.

Next, we investigated whether any of the 165 biological candidate genes that we identified
could potentially represent a novel drug target for already developed drugs or drugs undergoing
development by querying the Drug-Gene Interaction Database.”* We found one or more potential drug
or substance-interactions for 39 of the 165 prioritized genes, totaling 523 drugs. Of these, 77 drugs
targeting 16 genes are already known to be able to control or trigger AF or other cardiac arrhythmias
(Supplementary Table 12). Gene-drug interactions worth highlighting include the interaction between
MYH6 and MYH7 and omecamtiv mecarbil and the interaction between KCNH2 and rottlerin.
Omecamtiv mecarbil is a cardiac-specific myosin activator which is currently being tested for treatment
of heart failure?. Rottlerin, a natural product isolated from the tree Mallotus philippensis, has been
shown to increase cardiac contractile performance and coronary perfusion through mitochondrial BKcas+
channel activation in rat hearts.”® Whether these or the other highlighted drugs can impact AF needs
further evaluation but the findings can be used as a foundation for directing future functional

experiments and clinical trials.

Finally, we constructed polygenic risk scores using weighted effect estimates generated from
the deCODE sample (13,471 AF cases vs. 358,161 controls). We tested the performance of the deCODE-
based weighted polygenic risk score against prevalent AF in the Norwegian HUNT study (6,337 cases vs.

61,607 controls) using a variety of different thresholds of association P-values and LD pruning
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thresholds. We observed the highest area under the receiver operating curve using genotype dosages
for markers with a P-value < 5x107 that were pruned using an LD r>threshold of 0.8 (n = 725 risk
markers; AUC = 57.7%, Supplementary Figure 5). We used this optimized polygenic risk score to test for
association with 1,494 International Classification of Diseases (ICD) code-defined disease groups in UK
Biobank participants of white British ancestry.?* In addition to a strong association with AF (P-value =
7x107*"%), we found association to 33 mainly cardiovascular conditions (P-value < 0.05/1,494 = 3.3x107),
including palpitations, mitral valve disorders, hypertension, heart failure, ischemic heart disease, and
stroke (Supplementary Table 13 and Supplementary Figure 6). However, when participants diagnosed
with any type of cardiac arrhythmia (n = 24,681) were excluded from the analyses to avoid assessment
bias, the AF risk score was not associated with any ICD disease group (P-value > 3.3x107). This suggests
that the score is specific for AF or cardiac arrhythmia and that the additional associations that we
identified were mediated through AF, either as a result of a more thorough clinical examination (e.g

valvular disease) or because AF is a likely intermediate step towards the disease (e.g. stroke).

In summary, we substantially increased the number of genome-wide significant risk variants for
AF through a large GWAS meta-analysis. Based on pathway and functional enrichment analyses along
with prioritization of functional candidate genes we anticipate that many AF risk variants act in the
developing heart or impact AF via structural remodeling of the myocardium in the form of an ‘atrial
cardiomyopathy’” as a response to atrial stress in the adult heart. This finding needs confirmation but
provides a strong foundation for directing future functional experiments to better understand the

biology underlying AF.
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Methods

Discovery cohorts

More details on some cohorts are provided in the Supplementary Appendix. HUNT: The Nord-Trgndelag
Health Study (HUNT) is a population-based health survey conducted in the county of Nord-Trgndelag,
Norway, since 1984.%° We used a combination of hospital, out-patient, and emergency room discharge
diagnoses (ICD-9 and ICD-10) to identify 6,337 AF cases and 61,607 AF-free controls with genotype data.
DeCODE: The Icelandic AF population consisted of all patients diagnosed with AF (International
Classification of Diseases (ICD) 10 code 1.48 and ICD 9 code 427.3) at Landspitali, The National University
Hospital, in Reykjavik, and Akureyri Hospital (the two largest hospitals in Iceland) from 1987 to 2015. All
AF cases, a total of 13,471, were included. Controls were 358,161 Icelanders recruited through different
genetic research projects at deCODE genetics. Individuals in the AF cohort were excluded from the
control group. MGI: The Michigan Genomics Initiative (MGl) is a hospital-based cohort collected at
Michigan Medicine, USA. Atrial fibrillation cases (n = 1,226) were defined as patients with ICD-9 billing
code 427.31 and controls were individual without AF, atrial flutter, or related phenotyps (ICD-9 426-
427.99). DiscovEHR: The DiscovEHR collaboration cohort is a hospital-based cohort including 58,124
genotyped individuals of European ancestry from the ongoing MyCode Community Health Initiative of
the Geisinger Health System, USA. AF cases (n = 6,679) were defined as DiscovEHR participants with at
least one electronic health record problem list entry or at least two diagnosis code entries for two
separate clinical encounters on separate calendar days for ICD-10 148: atrial fibrillation and flutter.
Corresponding controls (n = 41,803) were defined as individuals with no electronic health record
diagnosis code entries (problem list or encounter codes) for ICD-10 148. UK biobank: The UK Biobank is
an population-based cohort collected from multiple sites across the United Kingdom.?* Cases of AF were
selected using ICD-9 and ICD-10 codes for AF or atrial flutter (ICD-9 427.3 and ICD-10 148). Controls were
participants without any ICD-9 or ICD-10 coded specific for AF, atrial flutter, other cardiac arrhythmias,
or conduction disorders. AFGen Consortium: Published AF association summary statistics from 31

cohorts representing 17,931 AF cases and 115,142 controls were obtained from the authors.’

Genotyping array, imputation and association analysis

HUNT: Genotyping was performed at the Norwegian University of Science and Technology (NTNU) using
the lllumina HumanCore Exome v1.0 and v1.1. Quality control was performed at the marker and sample
level. A total of 2,201 individuals were whole genome sequenced at low-pass and genotype calls were

generated using gotCloud pipeline ( ). Variants from the
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HUNT low-pass genomes were imputed into HRC samples and vice-versa to generate a single imputation
reference panel of ~34,000 individuals including 2,201 study-specific samples. Imputation was
performed using Minimac3 and variants with imputation r> > 0.3 were take forward. We performed
testing for association with AF using a generalized mixed model including covariates birth year, sex,
genotype batch, and principal components (PC) 1-4 as implemented in SAIGE.”” DeCODE: The study is
based on whole-genome sequence data from 15,220 Icelanders participating in various disease projects
at deCODE genetics. The sequencing was done using Illumina standard TruSeq methodology to a mean
depth of 35x (SD 8).2 Autosomal SNPs and INDEL’s were identified using the Genome Analysis Toolkit
version 3.4.0.%% Variants that did not pass quality control were excluded from the analysis according to
GATK best practices. Genotypes of the sequence variants identified through sequencing (SNPs and
indels) were then imputed into 151,677 Icelanders chip typed using lllumina SNP chips and their close
relatives (familial imputation).”® Variants for the meta-analysis were selected based on matching with
either the 1000g reference panel (Phase 3) or the Haplotype Consortium reference panel®® (based on
allele, frequency and correlation matching). Logistic regression was used to test for association between
SNPs and AF, treating disease status as the response and allele counts from direct genotyping or
expected genotype counts from imputation as covariates. Other available individual characteristics that
correlate with phenotype status were also included in the model as nuisance variables. These
characteristics were: sex, county of birth, current age or age at death (first and second order terms
included), blood sample availability for the individual and an indicator function for the overlap of the
lifetime of the individual with the time span of phenotype collection. To account for inflation in test
statistics due to cryptic relatedness and stratification, we applied the method of linkage disequilibrium
(LD) score regression.>! The estimated correction factor for AF based on LD score regression was 1.38 for
the additive model. MGI: Genotyping was performed at the University of Michigan using the Illumina
Human Core Exome v1.0 and v1.1. Quality control was performed at the marker and sample level.
Imputation of variants from the HRC reference panel was performed using the Michigan Imputation
Server ( ) and variants with imputation r’ > 0.3 were
included. Association with AF was determined using the Firth bias-corrected logistic likelihood ratio
test®” with adjustment for age, sex, and PC1-4. DiscovEHR: Aliquots of DNA were sent to Illumina for
genotyping on the Human OmniExpress Exome Beadchip. All individuals of European ancestry, as
determined using PC analysis, were imputed to the HRC Reference Panel using the Michigan Imputation
Server. Markers with imputation r? > 0.3 and MAF > 0.001 were carried forward for analysis. BOLT-

LMM?*? was used to analyze BGEN dosage files, and variants were tested for association with atrial
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fibrillation under an additive genetic model, adjusting for sex, age, age’, and the first four PCs of
ancestry; additionally, a genetic relatedness matrix (calculated using variants with MAF > 0.001, per-
genotype missing data rate < 1%, and Hardy—-Weinberg equilibrium P-value < 10™) was included as a
random-effects variable in the model.** UK biobank: Details on quality control, genotyping and
imputation can be found elsewhere.* In brief, study participants were genotyped using two very similar
genotyping arrays (Applied Biosystems™ UK BiLEVE Axiom™ Array and UK BioBank Axiom™ Array)
designed specifically for the UK Biobank. Phasing and imputation was done by the UK Biobank analyses
team based on the HRC reference panel and the UK10K haplotype resource.®® We restricted our analyses
to HRC-imputed markers only as there have been reports of incorrect estimates for non-HRC markers in
the first 500,000 people release from UK Biobank. We performed testing for association with AF in
people of white British ancestry using a generalized mixed model including covariates birth year, sex,

genotype batch, and principal PC 1-4 as implemented SAIGE.”’

Meta-analysis

We included all markers that were available for analyses in any of the 6 contributing studies. For the
DiscoverEHR that applied the BOLT-LMM mixed model, we obtained an approximation of the allelic log-
OR and corresponding variance from the linear model as described previously.*® Following this, we
performed a meta-analyses using the inverse variance method implemented in the software package
METAL ( 2" When estimating the cross-
cohort allele frequencies, we only included participating studies where individuals were sampled
independent of AF status (HUNT, deCODE, MGI, DiscoverEHR, UK Biobank). This was done to avoid

sampling bias. Heterogeneity tests were performed as implemented in METAL.>’

Definition of independent loci

Independent loci were defined as genetic markers > 1Mb and > 0.25 cM apart in physical and genomic
distance, respectively, with at least 1 genetic variant associated with AF at a genome-wide significance
threshold of P-value < 5 x 10, The lower loci boarders were defined as the genome-wide statistically
significant marker within the loci with the lowest genomic position minus 1Mb. The upper loci boarders
were defined as the genome-wide statistically significant marker within the loci with the highest

genomic position plus 1Mb.
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Linkage disequilibrium (LD) estimation
We used 5,000 unrelated individuals that were randomly sampled among the HUNT Study participants

to calculate calculated LD r? using the software PLINK1.9 ( ).

Approximate, stepwise conditional analyses

To identify independent risk variants within the identified AF-associated loci, we used the COJO-GCTA
software ( ) to performed approximate, stepwise conditional
analyses based on summary statistics from the meta-analyses and a LD-matrix obtained from 5,000
unrelated individuals randomly sampled from the HUNT Study.? Only variants with MAF > 0.01 were
included in the analyses and variants were only considered truly independent if they were not in LD (r* <

0.05) with the locus index variant and any of the other independent risk variants.

Identifying candidate functional genes using DEPICT

We employed DEPICT ( ) to identify 1) the most likely causal
gene at associated loci, 2) reconstituted gene sets enriched for AF loci, and 3) tissues and cell types in
which genes that form associated loci are highly expressed.” DEPICT uses gene expression data derived
from a panel of 77,840 mRNA expression arrays>® together with 14,461 existing gene sets defined based
on molecular pathways derived from experimentally verified protein-protein interactions,*® genotype-
phenotype relationships from the Mouse Genetics Initiative,*® Reactome pathways,*! KEGG pathways,*
and Gene Ontology (GO) terms.*® Based on similarities across the microarray expression data, DEPICT
reconstitutes the 14,461 existing gene sets by assigning each gene in the genome a likelihood of
membership in each gene set. Using these precomputed gene sets and a set of trait-associated loci,
DEPICT quantifies whether any of the 14,461 reconstituted gene sets are significantly enriched for genes
in the associated loci and prioritizes genes that share predicted functions with genes from the other
associated loci more often than expected by chance. Additionally, DEPICT uses a set of 37,427 human
mRNA microarrays to identify tissues and cell types in which genes from associated loci are highly

expressed (all genes residing within a LD of r* > 0.5 from index variant).

We ran DEPICT using all AF-associated index variants and variants identified through stepwise
conditional analyses. For the gene sets significantly enriched for AF-associated loci (P-value < 1 x 10,

FDR <0.05), we computed a weighted pairwise similarity based on the number of overlapping genes for
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genes with a Z score < 4.75 (corresponding to P-value < 1 X 10°®) for being part of the gene set. For gene

sets with no genes with a Z score < 4.75, we included the 3 most significant genes as done previously.**

GREGOR

We tested for enrichment of index variants with functional domains using the software GREGOR

( ). This method tests for an increase in the number of AF-
associated index variants, or their LD proxies, overlapping with the regulatory feature more often than
expected by chance by comparing to permuted control sets where the index variant is matched for
frequency, number of LD proxies and distance to the nearest gene. We use a saddle-point
approximation to estimate the P-value by comparing to the distribution of permuted statistics.’* We ran
GREGOR using all AF-associated index variants along with variants identified through stepwise

conditional analyses.

Identification of expression quantitative trait loci (eQTLs) using GTEx data

We performed eQTL look-up using the GTEx database ( )®2 version 6p, which holds
cis-eQTLs expression data of up to 190 million single nucleotide variants across 44 tissues, by searching
for all AF-associated loci index variants, all independent risk variants identified from the stepwise
conditional analyses, and any variants in strong LD (r* > 0.80) with these variants using an eQTL
significance threshold of P < 1.14 x 10 (5 x 10 / 44 tissues). For all statistically significant genes, we
queried all markers in the GTEx database that affected the expression of the affected genes and tested if

the eQTLs markers colocalized with the GWAS signal as described previously.*

Ischemic heart failure model of atrial fibrillation susceptibility

Ischemic heart failure was modeled using a previously described rabbit model of left circumflex artery
ligation. In this model, the left atrium progressively dilates following the ischemic insult as heart failure
develops. Figure 4a shows images of Langendorff perfused hearts of control and heart failure (HF)
animals highlighting the overt dilation of the left atrium in HF. With equivalent left atrial pressure (10 cm
H,0) AF was induced in each condition with high frequency burst pacing as shown in the ECG traces and

46 . . . .
done before.™ Protein expression analysis were performed using western blot.
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Tissue Specific Expression Analysis (TSEA)

The TSEA analyses were performed using the R software pSl package

( ). For the calculations, pre-defined pSl values provided
by the pSl package creators were used. To get null distributions for the P-values for the prioritized
genes, we performed two sets of permutations; randomly selected from the entire human genome and
randomly selected from the associated loci (also matching the number of genes picked in each of the

loci). In both scenarios one thousand permutations were done.

Electrocardiogram data

ECG data was collected from Landspitali University Hospital in Reykjavik and included all ECGs obtained
and digitally stored from 1998 to 2015, including a total of 434,000 ECGs from 88,217 individuals. A total
of 289,297 ECGs of 62,974 individuals were sinus rhythm (heart rate 50-100 beats per minute) ECGs of
individuals without the diagnosis of AF. The ECGs were digitally recorded with the Philips PageWriter
Trim 1ll, PageWriter 200, Philips Page Writer 50 and Phillips Page Writer 70 cardiographs and stored in
the Philips TraceMasterVue ECG Management System. These were ECGs obtained in all hospital
departments, from both inpatients and outpatients. Digitally measured ECG waveforms and parameters
were extracted from the database for analysis. The Philips PageWriter Trim Il QT interval measurement
algorithm has been previously described and shown to fulfill industrial ECG measurement accuracy
standards.”’ The Philips PR interval and QRS complex measurements have been shown to fulfill industrial

48
accuracy standards.

We tested 111 genome-wide significant and replicated AF variants for association with 123 ECG
measurements using a linear mixed effects model implemented in the Bolt software package,* treating
the ECG measurement as the response and the genotype as the covariate. All measures except heart
rate and QT corrected are presented for all 12 ECG leads. For this analysis, we used 289,297 sinus
rhythm ECGs (heart rate 50-100 beats per minute) from 62,974 individuals who have not been
diagnosed with AF according to our databases. This was done to assess the effect of the AF variants on
ECG measures and cardiac electrical function in the absence of AF. Individuals with pacemakers were
also excluded. The ECG measurements were adjusted for sex, year of birth, and age at measurement
and were subsequently quantile standardized to have a normal distribution. For individuals with
multiple ECG measurements, the mean standardized value was used. We assume that the quantitative

measurements follow a normal distribution with a mean that depends linearly on the expected allele at
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the variant and a variance-covariance matrix proportional to the kinship matrix.*® Since 123 traits were
tested, the Benjamini-Hochberg FDR procedure controlling the FDR at 0.05 at each marker was used to

account for multiple testing.

Polygenic risk score

Using dosage-weighted effect estimates obtained from the Iceland-based deCODE population, we
constructed 20 GWAS-based polygenic risk cores by combining genetic markers across different GWAS
P-value thresholds (P-value < 5 x 10, P-value < 5 x 10°, P-value < 5 x 10°®, P-value < 5 x 107, P-value < 5
x 10®) and LD cut-offs (r’< 0.2, r’< 0.4, r’< 0.6, r*< 0.8). We evaluated the performance of each of the
20 polygenic risk scores against AUC for predicting prevalent AF in the Norwegian-specific HUNT Study

using a logistic regression.

Phenome-wide association analyses

We used a previously published scheme to defined disease-specific binary phenotypes by combining
hospital ICD-9 codes into hierarchical PheCodes, each representing a more or less specific disease
group.”® ICD-10 codes were mapped to PheCodes using a combination of available maps through the
Unified Medical Language System(https://www.nlm.nih.gov/research/umls/) and other sources, string
matching, and manual review. Study participants were labeled a PheCode if they had one or more of the
PheCode-specific ICD codes. Cases were all study participants with the PheCode of interest and controls
were all study participants without the PheCode of interest or any related PheCodes. Gender checks
were performed, so PheCodes specific for one gender could not mistakenly be assigned to the other
gender. The association between the optimized polygenic risk score and each of the defined phenotypes

where tested using a logistic regression adjusted for sex and birth year.
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Figure 1. Manhattan plot showing known (orange) and novel (red) loci associated with atrial fibrillation.
The x-axis represents the genome in physical order whereas the y-axis represents P-values (-log;o[P-

value]) of association.
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Figure 2. Tissues, reconstituted gene sets, and regulatory elements implicated in atrial fibrillation. a)

Based on expression patterns across 37,427 human mRNA microarrays, DEPICT predicted genes within

atrial fibrillation-associated loci to be highly expressed across various cardiac tissues. Tissues are

grouped by type and significance. Red columns represent statistically significant tissues following

Bonferroni correction (P-value < 0.0002). b) Top (P < 1x10°®) reconstituted gene sets (out of 826 with

FDR < 0.05 and after exclusion of ‘gene subnetworks’) found by DEPICT to be significantly enriched by

genes in atrial fibrillation-associated loci. Each node, colored according to the permutation P-value,

represents a gene set and the grey connecting lines represent pairwise overlap of genes within the gene

sets. ¢) Heatmap indicating the overlap between fibrillation—associated risk variants and regulatory

elements across 127 Roadmap Epigenomics tissues (each represented by a row) using GREGOR. Black

indicates no data.
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Figure 3. Significance of the expression enrichment for the candidate genes. This figure compares the
tissue-specific gene expression enrichment for the 165 biological candidate genes (colored dots) to a
null distribution derived by randomly selecting same number of genes from the whole genome or from
the associated loci. The grey dots are the P-values for each of the permutations for the randomized tests
(1,000 for both sampling scenarios for each tissue) and the blue and yellow lines represent the per-

tissue P-value thresholds comparable to a false positive rate of 0.05.
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Figure 4. Atrial fibrillation (AF) is associated with heterogeneous changes in left atrial myosin isoform
expression. a) Langendorff-perfused rabbit hearts from control (blue, top) or heart failure (HF) rabbits
(red, bottom panel) were tested for AF-inducibility and duration following burst pacing at 50ms cycle
length. HF was induced by chronic left circumflex artery ligation and was allowed to develop over 6
weeks. During HF progression, severe left atrial hypertrophy occurred. b) HF hearts developed long
lasting AF (> 60s) when intra-atrial pressure was increased to 10 cm H,0. On the other hand, control

hearts did not develop long lasting AF until intra-atrial pressure was increased to 30cm H,0. c) Western
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blotting for MYH7 gene expression (B-MyHC protein) indicates MYH7 expression exclusively in the

remodeled HF left atrium. d) Immunostaining and confocal microscopy revealed heterogeneous MYH7

gene expression (green) in the HF left atrium. Consistent with Western blotting data, the HF right atrium

(RA) did not express MYH7.
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