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Summary	

To	understand	the	genetic	variation	underlying	atrial	fibrillation	(AF),	the	most	common	cardiac	

arrhythmia,	we	performed	a	genome-wide	association	study	(GWAS)	of	>	1	million	people,	including	

60,620	AF	cases	and	970,216	controls.	We	identified	163	independent	risk	variants	at	111	loci	and	

prioritized	165	candidate	genes	likely	to	be	involved	in	AF.	Many	of	the	identified	risk	variants	fall	near	

genes	where	more	deleterious	mutations	have	been	reported	to	cause	serious	heart	defects	in	humans	

or	mice	(MYH6,	NKX2-5,	PITX2,	TBC1D32,	TBX5),1,2	or	near	genes	important	for	striated	muscle	function	

and	integrity	(e.g.	MYH7,	PKP2,	SSPN,	SGCA).	Experiments	in	rabbits	with	heart	failure	and	left	atrial	

dilation	identified	a	heterogeneous	distributed	molecular	switch	from	MYH6	to	MYH7	in	the	left	atrium,	

which	resulted	in	contractile	and	functional	heterogeneity	and	may	predispose	to	initiation	and	

maintenance	of	atrial	arrhythmia.		

	

Results	

We	tested	the	association	between	34,740,186	genetic	variants	(minor	allele	frequency	[MAF]	>	2.5x10-

5)	and	AF,	comparing	a	total	of	60,620	cases	and	970,216	controls	of	European	ancestry	from	6	

contributing	studies	(HUNT,	deCODE,	MGI,	DiscovEHR,	UK	Biobank,	and	the	AFGen	Consortium)	

(Supplementary	Table	1).	We	identified	111	genomic	regions	with	at	least	1	genetic	variant	associated	

with	AF	(P-value	<	5	x	10-8).	Of	these,	80	loci	have	not	previously	been	reported	(Supplementary	Figure	

1,	Figure	1,	Supplementary	Table	2,	and	Supplementary	Table	3).	Based	on	approximate	stepwise	

conditional	analyses,3	we	identified	52	additional	genetic	risk	variants	within	the	111	loci	that	

demonstrated	genome-wide	statistically	significant	association	with	AF	(Supplementary	Table	4)	that	
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were	independent	of	the	locus	index	variant	(LD	r2	<	0.05).	We	applied	the	widely	used	GWAS	P-value	

significance	threshold	of	P-value	<	5x10-8.	Some	have	suggested	to	use	a	more	stringent	threshold	of	

5x10-9	when	testing	millions	of	imputed	markers.4	If	we	had	applied	this	threshold,	we	would	still	

identify	94	loci,	63	of	which	have	not	been	previously	reported	(Supplementary	Table	2).	

	

Of	the	35	loci	previously	reported	for	AF	(Supplementary	Table	3),	we	identified	genome-wide	

significant	association	(P-value	<	5x10-8)	at	31	(89%)	after	excluding	results	from	the	previously	

published	AFGen	Consortium,	which	has	published	the	majority	loci	reported	to	date	(Supplementary	

Table	5).5	The	4	loci	not	captured	comprised	3	loci	discovered	in	East	Asian	populations	(KCNIP1,	NEBL,	

and	CUX2)	and	1	locus	(PLEC)	for	which	we	did	not	have	data	on	the	previously	reported	missense	

variant.6	To	further	test	the	validity	of	our	findings,	we	performed	a	heterogeneity	test	for	the	111	index	

variants	across	the	6	contributing	studies.	Of	the	111	index	variants,	only	2	index	variants	showed	

evidence	for	heterogeneity	in	the	effect	size	across	the	6	contributing	studies	(P-value	<	0.05/111	=	

4.5x10-4)	(Supplementary	Table	2).	Both	of	these	index	variants	represent	loci	that	have	previously	been	

established	as	associated	with	AF	across	multiple	studies	(near	PRRX1,	PITX2)	(Supplementary	Table	3).	

These	findings	demonstrate	a	high	external	validity	of	our	results.	

	

To	understand	the	biology	underlying	the	111	AF-associated	loci,	we	employed	a	number	of	

approaches,	including	‘Data-driven	Expression	Prioritized	Integration	for	Complex	Traits’	(DEPICT)7	to	

identify	cell	types	and	tissues	in	which	genes	at	AF-associated	variants	are	likely	to	be	preferentially	

expressed.	Based	on	37,427	human	microarray	expression	samples	from	209	different	tissues	and	cell	

types,	we	observed	a	statistically	significant	enrichment	for	atrial	(P-value	=	2.4x10-5),	atrial	appendage	

(P-value	=	2.8x10-5),	heart	(P-value	=	5.2x10-5),	and	ventricular	tissues	(P-value	=	1.1x10-4)	(Figure	2a	and	

Supplementary	Table	6).	We	further	applied	DEPICT	to	detect	gene	sets	that	were	enriched	for	genes	at	

AF-associated	loci.	Of	the	14,461	gene	sets	we	tested,	889	were	enriched	(false	discovery	rate	[FDR]	<	

0.05)	for	genes	at	AF-associated	loci	(Figure	2b	and	Supplementary	Table	7).	The	highlighted	gene	sets	

in	general	point	to	biological	processes	related	to	cardiac	development	and	morphology	along	with	

structural	remodeling	of	the	myocardium.	These	findings	are	in	line	with	recent	reports	which	have	

linked	AF	with	rare	coding	variants	in	the	sarcomere	genes	MYH6	and	MYL4	and	in	the	multidomain	

cyto-skeletal	linking	protein	PLEC	along	with	more	common	coding	variants	in	TTN,	essential	for	the	

passive	elasticity	of	heart	and	skeletal	muscle.8,9,6,10	

	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 4, 2018. ; https://doi.org/10.1101/242149doi: bioRxiv preprint 

https://doi.org/10.1101/242149
http://creativecommons.org/licenses/by-nc-nd/4.0/


Although	we	could	identify	protein-altering	variants	at	n	=	21	loci,	comprising	either	the	index	

variant	(n	=	2	loci)	or	a	variant	in	high	linkage	disequilibrium	(LD)	(r2)	with	the	index	variant	(n	=	19	loci;	

Supplementary	Table	8),	we	noted	that	most	associated	risk	variants	are	in	the	non-coding	genome	(159	

of	163	independent	risk	variants).	To	assess	the	potential	function	of	associated	non-coding	variants,	we	

tested	for	enrichment	of	AF-associated	variants	with	a	variety	of	regulatory	features	including	DNase	I	

hypersensitive	sites	(DHS),	histone	methylation	marks,	transcription	factor	binding	sites,	and	chromatin	

states	in	a	variety	of	cell	and	tissue	types	available	from	Roadmap	Epigenomics11	using	‘Genomic	

Regulatory	Elements	and	Gwas	Overlap	algoRithm’	(GREGOR).12	This	method	tests	if	the	number	of	AF-

associated	index	variants,	or	their	LD	proxies,	overlap	with	the	corresponding	regulatory	feature	more	

often	than	expected	when	compared	to	a	permuted	control	sets.	Of	787	combinations	of	regulatory	

features	and	tissues	examined	(Supplementary	Table	9),	we	found	that	AF-associated	variants	were	

most	strongly	associated	with:	active	enhancers	as	indicated	by	H3K27ac	in	right	atrium	(P-value	=	2x10-

33;	2.9x	enrichment);	H3K27ac	in	left	ventricle	(P-value	=	3x10-33;	2.6x	enrichment);	and	in	fetal	heart	

tissue	we	found	strong	enrichment	with	H3K4me1	(P-value	=	9x10-27;	2.0x	enrichment)	and	open	

chromatin	(P-value	=	2x10-26;	2.1x	enrichment)	(Figure	2c,	Supplementary	Figure	2	and	Supplementary	

Table	9).	This	suggests	that	some	loci	are	important	in	transcriptional	regulation	in	the	adult	heart,	in	

development	of	the	fetal	heart,	or	both.		

	 	

To	further	enhance	the	biological	understanding	of	the	AF-associated	loci,	we	identified	

candidate	functional	genes.	There	were	3,072	genes	or	transcripts	for	which	the	transcription	region	

overlapped	(see	Methods)	at	least	one	variant	in	the	111	loci.	We	prioritized	biological	candidate	genes	

which:	i)	harbored	a	protein-altering	variant	that	was	in	high	LD	(r2	>	0.80;	Supplementary	Table	8)	or	

was	itself	the	locus	index	variant;	ii)	expression	levels	were	associated	and	colocalized	with	AF-

associated	variants	(P-value	<	1.14	x	10-9	in	GTEx	consortium	data);13	iii)	were	highlighted	by	DEPICT	(FDR	

<	0.05);	or	iv)	were	nearest	to	the	index	variant	in	a	locus.	Using	these	criteria,	we	prioritized	165	target	

genes	(Supplementary	Table	2,	Supplementary	Table	10,	and	Supplementary	Table	11).		

	

To	identify	tissues	in	which	the	165	prioritized	candidate	genes	showed	enhanced	expression,	

we	used	‘Tissue	Specific	Expression	Analysis’	(TSEA)14	and	found	enrichment	in	heart	(P-value	=	5x10-12),	

muscle	(P-value	=	1x10-9)	and	blood	vessel	tissues	(P-value	=	2x10-9).	To	assess	the	empirical	significance	

of	these	results,	we	performed	1,000	permutations	of	the	same	number	of	genes	selected:	i)	randomly	

from	the	genome	and	ii)	subsets	of	the	3,072	genes	within	the	111	AF	loci.	We	determined	that	the	
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observed	P-values	were	substantially	more	significant	than	expected	by	chance	(Figure	3).	These	

findings	support	that	the	genes	we	prioritized	are	strong	candidates	for	being	involved	in	AF.	

	

Interestingly,	we	identified	as	functional	candidates	at	least	20	genes	likely	to	be	involved	in	

cardiac	and	skeletal	muscle	function	and	integrity	(AKAP6,	COL25A,	CFL2,	DPT,	MYH6,	MYH7,	MYO18B,	

MYO1C,	MYOCD,	MYOT,	MYOZ1,	MYPN,	PKP2,	RBM20,	SGCA,	SSPN,	SYNPO2L,	TTN,	TTN-AS,	WIPF1);	

these	included	SGCA	and	SSPN,	which	have	been	associated	with	muscular	dystrophies,15,16	and	PKP2	

which	has	been	associated	with	arrhythmogenic	right	ventricular	cardiomyopathy.17	We	also	identified	

at	least	13	genes	likely	to	be	involved	in	mediation	of	developmental	events	(EPHA3,	GTF2I,	HAND2,	

MYH6,	NAV2,	NKX2-5,	PITX2,	SLIT3,	SOX15,	SOX5,	TBC1D32,	TBX5,	TGFB3)	along	with	genes	likely	to	be	

involved	in	intracellular	calcium	handling	in	the	heart	(CALU,	CAMK2D,	CASQ2,	PLN,	S100A7A),	

angiogenesis	(TNFSF12,	TNFSF12-TNFSF13),	hormone	signaling	(ESR2,	IGF1R,	JMJD1C,	NR3C1,	THRB1),	

and	function	of	cardiac	ion	channels	(GRIK4,	KCNC2,	KCND3,	KCNH2,	KCNJ5,	KCNN2,	KCNN3,	SCN10A,	

SCN5A,	SLC9B1).	

	

We	tested	the	111	AF	index	variants	for	association	with	123	electrocardiogram	(ECG)	

parameters	in	62,974	Icelanders	in	sinus	rhythm,	after	exclusion	of	AF	cases	(Supplementary	Figure	3).	

Sixty	variants	were	associated	with	at	least	one	ECG	parameter	when	we	controlled	for	a	false	discovery	

rate	of	0.05	at	the	variant	level,	39	of	which	were	novel	AF	variants	including	many	with	substantial	ECG	

effects,	such	as	the	variants	near	NACA,	THRB,	CAMK2D,	NKX2-5,	and	CDKN1A.	

	

For	the	locus	around	index	variant	rs422068	on	chromosome	14,	our	approach	prioritized	MYH6	

and	MYH7	as	the	most	likely	functional	genes	(Supplementary	Table	2).	MYH6	encodes	myosin	heavy	

chain	alpha	(a-MyHC),	a	major	component	of	the	thick	filaments	of	the	contractile	apparatus	in	adult	

atria,	and	hence	important	for	atrial	contraction.18	MYH7	encodes	b-MyHC,	a	slower	acting	

isoform,19	and	is	mainly	expressed	in	the	ventricles	of	the	human	heart.	It	has	been	established	

that	MYH6	and	MYH7	are	regulated	in	an	inverse	manner,	and	that	in	heart	failure	and	other	cardiac	

disorders	in	humans,	β-MHC	is	upregulated,	whereas	α-MHC	is	downregulated,	resulting	in	diminution	

of	cardiac	performance.20	Whether	these	changes	occur	also	in	the	atria	has	not	previously	been	

addressed.	
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To	explore	potential	mechanisms	of	MYH6	and	MYH7	in	AF,	we	developed	an	ischemic	heart	

failure	model	for	AF	in	rabbits.	Ischemia	was	produced	by	chronic	ligation	of	the	left	circumflex	artery	

(LCX)	during	thoracotomy	with	subsequent	development	of	ischemic	heart	failure	(>	4	weeks	post	

operatively)	and	profound	left	atrial	dilation.	We	found	that	MYH7	expression	was	only	detectable	in	the	

heart	failure	remodeled	left	atrium	(Figure	4).	The	control	left	atrium	did	not	express	detectable	levels	

of	MYH7	and	exclusively	expressed	MYH6.	More	importantly,	in	the	dilated	left	atrium,	MYH7	

expression	was	heterogeneously	distributed	and	thus	resulted	in	contractile	heterogeneity,	which	may	

have	predisposed	hearts	to	develop	long-lasting	AF,	particularly	when	intra-atrial	pressure	was	

increased	to	10cm	H2O.	Control	hearts	did	not	develop	long-lasting	AF	until	intra-atrial	pressure	was	

increased	to	30cm	H2O.	(Figure	4,	Supplementary	Figure	4).	Altogether,	this	experiment	demonstrated	

that	a	MYH6	to	MYH7	switch	in	the	atria	may	accompany	or	predispose	to	atrial	fibrillation,	and	that	the	

expression	of	both	the	faster	and	slower	myosin	heavy	chain	forms	may	predispose	to	arrhythmia	

through	contractile	heterogeneity.	

	

Next,	we	investigated	whether	any	of	the	165	biological	candidate	genes	that	we	identified	

could	potentially	represent	a	novel	drug	target	for	already	developed	drugs	or	drugs	undergoing	

development	by	querying	the	Drug-Gene	Interaction	Database.21	We	found	one	or	more	potential	drug	

or	substance-interactions	for	39	of	the	165	prioritized	genes,	totaling	523	drugs.	Of	these,	77	drugs	

targeting	16	genes	are	already	known	to	be	able	to	control	or	trigger	AF	or	other	cardiac	arrhythmias	

(Supplementary	Table	12).	Gene-drug	interactions	worth	highlighting	include	the	interaction	between	

MYH6	and	MYH7	and	omecamtiv	mecarbil	and	the	interaction	between	KCNH2	and	rottlerin.	

Omecamtiv	mecarbil	is	a	cardiac-specific	myosin	activator	which	is	currently	being	tested	for	treatment	

of	heart	failure22.	Rottlerin,	a	natural	product	isolated	from	the	tree	Mallotus	philippensis,	has	been	

shown	to	increase	cardiac	contractile	performance	and	coronary	perfusion	through	mitochondrial	BKCa++	

channel	activation	in	rat	hearts.23	Whether	these	or	the	other	highlighted	drugs	can	impact	AF	needs	

further	evaluation	but	the	findings	can	be	used	as	a	foundation	for	directing	future	functional	

experiments	and	clinical	trials.		

	

				 Finally,	we	constructed	polygenic	risk	scores	using	weighted	effect	estimates	generated	from	

the	deCODE	sample	(13,471	AF	cases	vs.	358,161	controls).	We	tested	the	performance	of	the	deCODE-

based	weighted	polygenic	risk	score	against	prevalent	AF	in	the	Norwegian	HUNT	study	(6,337	cases	vs.	

61,607	controls)	using	a	variety	of	different	thresholds	of	association	P-values	and	LD	pruning	
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thresholds.	We	observed	the	highest	area	under	the	receiver	operating	curve	using	genotype	dosages	

for	markers	with	a	P-value	<	5x10-5	that	were	pruned	using	an	LD	r2-threshold	of	0.8	(n	=	725	risk	

markers;	AUC	=	57.7%,	Supplementary	Figure	5).	We	used	this	optimized	polygenic	risk	score	to	test	for	

association	with	1,494	International	Classification	of	Diseases	(ICD)	code-defined	disease	groups	in	UK	

Biobank	participants	of	white	British	ancestry.24	In	addition	to	a	strong	association	with	AF	(P-value	=	

7x10-374),	we	found	association	to	33	mainly	cardiovascular	conditions	(P-value	<	0.05/1,494	=	3.3x10-5),	

including	palpitations,	mitral	valve	disorders,	hypertension,	heart	failure,	ischemic	heart	disease,	and	

stroke	(Supplementary	Table	13	and	Supplementary	Figure	6).	However,	when	participants	diagnosed	

with	any	type	of	cardiac	arrhythmia	(n	=	24,681)	were	excluded	from	the	analyses	to	avoid	assessment	

bias,	the	AF	risk	score	was	not	associated	with	any	ICD	disease	group	(P-value	>	3.3x10-5).	This	suggests	

that	the	score	is	specific	for	AF	or	cardiac	arrhythmia	and	that	the	additional	associations	that	we	

identified	were	mediated	through	AF,	either	as	a	result	of	a	more	thorough	clinical	examination	(e.g	

valvular	disease)	or	because	AF	is	a	likely	intermediate	step	towards	the	disease	(e.g.	stroke).	

	

In	summary,	we	substantially	increased	the	number	of	genome-wide	significant	risk	variants	for	

AF	through	a	large	GWAS	meta-analysis.	Based	on	pathway	and	functional	enrichment	analyses	along	

with	prioritization	of	functional	candidate	genes	we	anticipate	that	many	AF	risk	variants	act	in	the	

developing	heart	or	impact	AF	via	structural	remodeling	of	the	myocardium	in	the	form	of	an	‘atrial	

cardiomyopathy’25	as	a	response	to	atrial	stress	in	the	adult	heart.	This	finding	needs	confirmation	but	

provides	a	strong	foundation	for	directing	future	functional	experiments	to	better	understand	the	

biology	underlying	AF.	
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Methods	

Discovery	cohorts	

More	details	on	some	cohorts	are	provided	in	the	Supplementary	Appendix.	HUNT:	The	Nord-Trøndelag	

Health	Study	(HUNT)	is	a	population-based	health	survey	conducted	in	the	county	of	Nord-Trøndelag,	

Norway,	since	1984.26	We	used	a	combination	of	hospital,	out-patient,	and	emergency	room	discharge	

diagnoses	(ICD-9	and	ICD-10)	to	identify	6,337	AF	cases	and	61,607	AF-free	controls	with	genotype	data.	

DeCODE:	The	Icelandic	AF	population	consisted	of	all	patients	diagnosed	with	AF	(International	

Classification	of	Diseases	(ICD)	10	code	I.48	and	ICD	9	code	427.3)	at	Landspitali,	The	National	University	

Hospital,	in	Reykjavik,	and	Akureyri	Hospital	(the	two	largest	hospitals	in	Iceland)	from	1987	to	2015.	All	

AF	cases,	a	total	of	13,471,	were	included.	Controls	were	358,161	Icelanders	recruited	through	different	

genetic	research	projects	at	deCODE	genetics.	Individuals	in	the	AF	cohort	were	excluded	from	the	

control	group.	MGI:	The	Michigan	Genomics	Initiative	(MGI)	is	a	hospital-based	cohort	collected	at	

Michigan	Medicine,	USA.	Atrial	fibrillation	cases	(n	=	1,226)	were	defined	as	patients	with	ICD-9	billing	

code	427.31	and	controls	were	individual	without	AF,	atrial	flutter,	or	related	phenotyps	(ICD-9	426-

427.99).	DiscovEHR:	The	DiscovEHR	collaboration	cohort	is	a	hospital-based	cohort	including	58,124	

genotyped	individuals	of	European	ancestry	from	the	ongoing	MyCode	Community	Health	Initiative	of	

the	Geisinger	Health	System,	USA.	AF	cases	(n	=	6,679)	were	defined	as	DiscovEHR	participants	with	at	

least	one	electronic	health	record	problem	list	entry	or	at	least	two	diagnosis	code	entries	for	two	

separate	clinical	encounters	on	separate	calendar	days	for	ICD-10	I48:	atrial	fibrillation	and	flutter.	

Corresponding	controls	(n	=	41,803)	were	defined	as	individuals	with	no	electronic	health	record	

diagnosis	code	entries	(problem	list	or	encounter	codes)	for	ICD-10	I48.	UK	biobank:	The	UK	Biobank	is	

an	population-based	cohort	collected	from	multiple	sites	across	the	United	Kingdom.24	Cases	of	AF	were	

selected	using	ICD-9	and	ICD-10	codes	for	AF	or	atrial	flutter	(ICD-9	427.3	and	ICD-10	I48).	Controls	were	

participants	without	any	ICD-9	or	ICD-10	coded	specific	for	AF,	atrial	flutter,	other	cardiac	arrhythmias,	

or	conduction	disorders.	AFGen	Consortium:	Published	AF	association	summary	statistics	from	31	

cohorts	representing	17,931	AF	cases	and	115,142	controls	were	obtained	from	the	authors.5 

	

Genotyping	array,	imputation	and	association	analysis	

HUNT:	Genotyping	was	performed	at	the	Norwegian	University	of	Science	and	Technology	(NTNU)	using	

the	Illumina	HumanCore	Exome	v1.0	and	v1.1.	Quality	control	was	performed	at	the	marker	and	sample	

level.	A	total	of	2,201	individuals	were	whole	genome	sequenced	at	low-pass	and	genotype	calls	were	

generated	using	gotCloud	pipeline	(https://genome.sph.umich.edu/wiki/GotCloud).	Variants	from	the	
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HUNT	low-pass	genomes	were	imputed	into	HRC	samples	and	vice-versa	to	generate	a	single	imputation	

reference	panel	of	~34,000	individuals	including	2,201	study-specific	samples.	Imputation	was	

performed	using	Minimac3	and	variants	with	imputation	r2	>	0.3	were	take	forward.	We	performed	

testing	for	association	with	AF	using	a	generalized	mixed	model	including	covariates	birth	year,	sex,	

genotype	batch,	and	principal	components	(PC)	1-4	as	implemented	in	SAIGE.27	DeCODE:	The	study	is	

based	on	whole-genome	sequence	data	from	15,220	Icelanders	participating	in	various	disease	projects	

at	deCODE	genetics.	The	sequencing	was	done	using	Illumina	standard	TruSeq	methodology	to	a	mean	

depth	of	35x	(SD	8).8	Autosomal	SNPs	and	INDEL’s	were	identified	using	the	Genome	Analysis	Toolkit	

version	3.4.0.28	Variants	that	did	not	pass	quality	control	were	excluded	from	the	analysis	according	to	

GATK	best	practices.	Genotypes	of	the	sequence	variants	identified	through	sequencing	(SNPs	and	

indels)	were	then	imputed	into	151,677	Icelanders	chip	typed	using	Illumina	SNP	chips	and	their	close	

relatives	(familial	imputation).29	Variants	for	the	meta-analysis	were	selected	based	on	matching	with	

either	the	1000g	reference	panel	(Phase	3)	or	the	Haplotype	Consortium	reference	panel30	(based	on	

allele,	frequency	and	correlation	matching).	Logistic	regression	was	used	to	test	for	association	between	

SNPs	and	AF,	treating	disease	status	as	the	response	and	allele	counts	from	direct	genotyping	or	

expected	genotype	counts	from	imputation	as	covariates.	Other	available	individual	characteristics	that	

correlate	with	phenotype	status	were	also	included	in	the	model	as	nuisance	variables.	These	

characteristics	were:	sex,	county	of	birth,	current	age	or	age	at	death	(first	and	second	order	terms	

included),	blood	sample	availability	for	the	individual	and	an	indicator	function	for	the	overlap	of	the	

lifetime	of	the	individual	with	the	time	span	of	phenotype	collection.	To	account	for	inflation	in	test	

statistics	due	to	cryptic	relatedness	and	stratification,	we	applied	the	method	of	linkage	disequilibrium	

(LD)	score	regression.31	The	estimated	correction	factor	for	AF	based	on	LD	score	regression	was	1.38	for	

the	additive	model.	MGI:	Genotyping	was	performed	at	the	University	of	Michigan	using	the	Illumina	

Human	Core	Exome	v1.0	and	v1.1.	Quality	control	was	performed	at	the	marker	and	sample	level.	

Imputation	of	variants	from	the	HRC	reference	panel	was	performed	using	the	Michigan	Imputation	

Server	(https://imputationserver.sph.umich.edu/index.html)	and	variants	with	imputation	r2	>	0.3	were	

included.	Association	with	AF	was	determined	using	the	Firth	bias-corrected	logistic	likelihood	ratio	

test32	with	adjustment	for	age,	sex,	and	PC1-4.	DiscovEHR:	Aliquots	of	DNA	were	sent	to	Illumina	for	

genotyping	on	the	Human	OmniExpress	Exome	Beadchip.	All	individuals	of	European	ancestry,	as	

determined	using	PC	analysis,	were	imputed	to	the	HRC	Reference	Panel	using	the	Michigan	Imputation	

Server.	Markers	with	imputation	r2	>	0.3	and	MAF	>	0.001	were	carried	forward	for	analysis.	BOLT-

LMM33	was	used	to	analyze	BGEN	dosage	files,	and	variants	were	tested	for	association	with	atrial	
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fibrillation	under	an	additive	genetic	model,	adjusting	for	sex,	age,	age2,	and	the	first	four	PCs	of	

ancestry;	additionally,	a	genetic	relatedness	matrix	(calculated	using	variants	with	MAF	>	0.001,	per-

genotype	missing	data	rate	<	1%,	and	Hardy–Weinberg	equilibrium	P-value	<	10-15)	was	included	as	a	

random-effects	variable	in	the	model.34	UK	biobank:	Details	on	quality	control,	genotyping	and	

imputation	can	be	found	elsewhere.35	In	brief,	study	participants	were	genotyped	using	two	very	similar	

genotyping	arrays	(Applied	Biosystems™	UK	BiLEVE	Axiom™	Array	and	UK	BioBank	Axiom™	Array)	

designed	specifically	for	the	UK	Biobank.	Phasing	and	imputation	was	done	by	the	UK	Biobank	analyses	

team	based	on	the	HRC	reference	panel	and	the	UK10K	haplotype	resource.35	We	restricted	our	analyses	

to	HRC-imputed	markers	only	as	there	have	been	reports	of	incorrect	estimates	for	non-HRC	markers	in	

the	first	500,000	people	release	from	UK	Biobank.	We	performed	testing	for	association	with	AF	in	

people	of	white	British	ancestry	using	a	generalized	mixed	model	including	covariates	birth	year,	sex,	

genotype	batch,	and	principal	PC	1-4	as	implemented	SAIGE.27	

	

Meta-analysis	

We	included	all	markers	that	were	available	for	analyses	in	any	of	the	6	contributing	studies.	For	the	

DiscoverEHR	that	applied	the	BOLT-LMM	mixed	model,	we	obtained	an	approximation	of	the	allelic	log-

OR	and	corresponding	variance	from	the	linear	model	as	described	previously.36	Following	this,	we	

performed	a	meta-analyses	using	the	inverse	variance	method	implemented	in	the	software	package	

METAL	(http://genome.sph.umich.edu/wiki/METAL_Documentation).37	When	estimating	the	cross-

cohort	allele	frequencies,	we	only	included	participating	studies	where	individuals	were	sampled	

independent	of	AF	status	(HUNT,	deCODE,	MGI,	DiscoverEHR,	UK	Biobank).	This	was	done	to	avoid	

sampling	bias.	Heterogeneity	tests	were	performed	as	implemented	in	METAL.37	

	

Definition	of	independent	loci	

Independent	loci	were	defined	as	genetic	markers	>	1Mb	and	>	0.25	cM	apart	in	physical	and	genomic	

distance,	respectively,	with	at	least	1	genetic	variant	associated	with	AF	at	a	genome-wide	significance	

threshold	of	P-value	<	5	x	10-8.	The	lower	loci	boarders	were	defined	as	the	genome-wide	statistically	

significant	marker	within	the	loci	with	the	lowest	genomic	position	minus	1Mb.	The	upper	loci	boarders	

were	defined	as	the	genome-wide	statistically	significant	marker	within	the	loci	with	the	highest	

genomic	position	plus	1Mb.		
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Linkage	disequilibrium	(LD)	estimation	

We	used	5,000	unrelated	individuals	that	were	randomly	sampled	among	the	HUNT	Study	participants	

to	calculate	calculated	LD	r2	using	the	software	PLINK1.9	(https://www.cog-genomics.org/plink/1.9).	

	

Approximate,	stepwise	conditional	analyses	

To	identify	independent	risk	variants	within	the	identified	AF-associated	loci,	we	used	the	COJO-GCTA	

software	(http://cnsgenomics.com/software/gcta/)	to	performed	approximate,	stepwise	conditional	

analyses	based	on	summary	statistics	from	the	meta-analyses	and	a	LD-matrix	obtained	from	5,000	

unrelated	individuals	randomly	sampled	from	the	HUNT	Study.3	Only	variants	with	MAF	>	0.01	were	

included	in	the	analyses	and	variants	were	only	considered	truly	independent	if	they	were	not	in	LD	(r2	<	

0.05)	with	the	locus	index	variant	and	any	of	the	other	independent	risk	variants.	

	

Identifying	candidate	functional	genes	using	DEPICT	

We	employed	DEPICT	(https://data.broadinstitute.org/mpg/depict/)	to	identify	1)	the	most	likely	causal	

gene	at	associated	loci,	2)	reconstituted	gene	sets	enriched	for	AF	loci,	and	3)	tissues	and	cell	types	in	

which	genes	that	form	associated	loci	are	highly	expressed.7	DEPICT	uses	gene	expression	data	derived	

from	a	panel	of	77,840	mRNA	expression	arrays38	together	with	14,461	existing	gene	sets	defined	based	

on	molecular	pathways	derived	from	experimentally	verified	protein-protein	interactions,39		genotype-

phenotype	relationships	from	the	Mouse	Genetics	Initiative,40	Reactome	pathways,41	KEGG	pathways,42	

and	Gene	Ontology	(GO)	terms.43	Based	on	similarities	across	the	microarray	expression	data,	DEPICT	

reconstitutes	the	14,461	existing	gene	sets	by	assigning	each	gene	in	the	genome	a	likelihood	of	

membership	in	each	gene	set.	Using	these	precomputed	gene	sets	and	a	set	of	trait-associated	loci,	

DEPICT	quantifies	whether	any	of	the	14,461	reconstituted	gene	sets	are	significantly	enriched	for	genes	

in	the	associated	loci	and	prioritizes	genes	that	share	predicted	functions	with	genes	from	the	other	

associated	loci	more	often	than	expected	by	chance.	Additionally,	DEPICT	uses	a	set	of	37,427	human	

mRNA	microarrays	to	identify	tissues	and	cell	types	in	which	genes	from	associated	loci	are	highly	

expressed	(all	genes	residing	within	a	LD	of	r2	>	0.5	from	index	variant).		

	

We	ran	DEPICT	using	all	AF-associated	index	variants	and	variants	identified	through	stepwise	

conditional	analyses.	For	the	gene	sets	significantly	enriched	for	AF-associated	loci	(P-value	<	1	x	10-6,	

FDR	<0.05),	we	computed	a	weighted	pairwise	similarity	based	on	the	number	of	overlapping	genes	for	
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genes	with	a	Z	score	<	4.75	(corresponding	to	P-value	<	1	X	10-6)	for	being	part	of	the	gene	set.	For	gene	

sets	with	no	genes	with	a	Z	score	<	4.75,	we	included	the	3	most	significant	genes	as	done	previously.44		

	

GREGOR	

We	tested	for	enrichment	of	index	variants	with	functional	domains	using	the	software	GREGOR	

(http://csg.sph.umich.edu/GREGOR/).12	This	method	tests	for	an	increase	in	the	number	of	AF-

associated	index	variants,	or	their	LD	proxies,	overlapping	with	the	regulatory	feature	more	often	than	

expected	by	chance	by	comparing	to	permuted	control	sets	where	the	index	variant	is	matched	for	

frequency,	number	of	LD	proxies	and	distance	to	the	nearest	gene.	We	use	a	saddle-point	

approximation	to	estimate	the	P-value	by	comparing	to	the	distribution	of	permuted	statistics.12	We	ran	

GREGOR	using	all	AF-associated	index	variants	along	with	variants	identified	through	stepwise	

conditional	analyses.	

	

Identification	of	expression	quantitative	trait	loci	(eQTLs)	using	GTEx	data	

We	performed	eQTL	look-up	using	the	GTEx	database	(http://gtexportal.org)13	version	6p,	which	holds	

cis-eQTLs	expression	data	of	up	to	190	million	single	nucleotide	variants	across	44	tissues,	by	searching	

for	all	AF-associated	loci	index	variants,	all	independent	risk	variants	identified	from	the	stepwise	

conditional	analyses,	and	any	variants	in	strong	LD	(r2	>	0.80)	with	these	variants	using	an	eQTL	

significance	threshold	of	P	<	1.14	x	10-9	(5	x	10-8	/	44	tissues).	For	all	statistically	significant	genes,	we	

queried	all	markers	in	the	GTEx	database	that	affected	the	expression	of	the	affected	genes	and	tested	if	

the	eQTLs	markers	colocalized	with	the	GWAS	signal	as	described	previously.45	

	

Ischemic	heart	failure	model	of	atrial	fibrillation	susceptibility	

Ischemic	heart	failure	was	modeled	using	a	previously	described	rabbit	model	of	left	circumflex	artery	

ligation.	In	this	model,	the	left	atrium	progressively	dilates	following	the	ischemic	insult	as	heart	failure	

develops.	Figure	4a	shows	images	of	Langendorff	perfused	hearts	of	control	and	heart	failure	(HF)	

animals	highlighting	the	overt	dilation	of	the	left	atrium	in	HF.	With	equivalent	left	atrial	pressure	(10	cm	

H2O)	AF	was	induced	in	each	condition	with	high	frequency	burst	pacing	as	shown	in	the	ECG	traces	and	

done	before.46	Protein	expression	analysis	were	performed	using	western	blot.		
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Tissue	Specific	Expression	Analysis	(TSEA)	

The	TSEA	analyses	were	performed	using	the	R	software	pSI	package	

(http://genetics.wustl.edu/jdlab/psi_package/).14	For	the	calculations,	pre-defined	pSI	values	provided	

by	the	pSI	package	creators	were	used.	To	get	null	distributions	for	the	P-values	for	the	prioritized	

genes,	we	performed	two	sets	of	permutations;	randomly	selected	from	the	entire	human	genome	and	

randomly	selected	from	the	associated	loci	(also	matching	the	number	of	genes	picked	in	each	of	the	

loci).	In	both	scenarios	one	thousand	permutations	were	done.	

	

Electrocardiogram	data	

ECG	data	was	collected	from	Landspitali	University	Hospital	in	Reykjavik	and	included	all	ECGs	obtained	

and	digitally	stored	from	1998	to	2015,	including	a	total	of	434,000	ECGs	from	88,217	individuals.	A	total	

of	289,297	ECGs	of	62,974	individuals	were	sinus	rhythm	(heart	rate	50-100	beats	per	minute)	ECGs	of	

individuals	without	the	diagnosis	of	AF.	The	ECGs	were	digitally	recorded	with	the	Philips	PageWriter	

Trim	III,	PageWriter	200,	Philips	Page	Writer	50	and	Phillips	Page	Writer	70	cardiographs	and	stored	in	

the	Philips	TraceMasterVue	ECG	Management	System.	These	were	ECGs	obtained	in	all	hospital	

departments,	from	both	inpatients	and	outpatients.	Digitally	measured	ECG	waveforms	and	parameters	

were	extracted	from	the	database	for	analysis.	The	Philips	PageWriter	Trim	III	QT	interval	measurement	

algorithm	has	been	previously	described	and	shown	to	fulfill	industrial	ECG	measurement	accuracy	

standards.47	The	Philips	PR	interval	and	QRS	complex	measurements	have	been	shown	to	fulfill	industrial	

accuracy	standards.48		

	

We	tested	111	genome-wide	significant	and	replicated	AF	variants	for	association	with	123	ECG	

measurements	using	a	linear	mixed	effects	model	implemented	in	the	Bolt	software	package,33	treating	

the	ECG	measurement	as	the	response	and	the	genotype	as	the	covariate.	All	measures	except	heart	

rate	and	QT	corrected	are	presented	for	all	12	ECG	leads.	For	this	analysis,	we	used	289,297	sinus	

rhythm	ECGs	(heart	rate	50-100	beats	per	minute)	from	62,974	individuals	who	have	not	been	

diagnosed	with	AF	according	to	our	databases.	This	was	done	to	assess	the	effect	of	the	AF	variants	on	

ECG	measures	and	cardiac	electrical	function	in	the	absence	of	AF.	Individuals	with	pacemakers	were	

also	excluded.	The	ECG	measurements	were	adjusted	for	sex,	year	of	birth,	and	age	at	measurement	

and	were	subsequently	quantile	standardized	to	have	a	normal	distribution.	For	individuals	with	

multiple	ECG	measurements,	the	mean	standardized	value	was	used.	We	assume	that	the	quantitative	

measurements	follow	a	normal	distribution	with	a	mean	that	depends	linearly	on	the	expected	allele	at	
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the	variant	and	a	variance-covariance	matrix	proportional	to	the	kinship	matrix.49	Since	123	traits	were	

tested,	the	Benjamini-Hochberg	FDR	procedure	controlling	the	FDR	at	0.05	at	each	marker	was	used	to	

account	for	multiple	testing.	

	

Polygenic	risk	score	

Using	dosage-weighted	effect	estimates	obtained	from	the	Iceland-based	deCODE	population,	we	

constructed	20	GWAS-based	polygenic	risk	cores	by	combining	genetic	markers	across	different	GWAS	

P-value	thresholds	(P-value	<	5	x	10-4,	P-value	<	5	x	10-5,	P-value	<	5	x	10-6,	P-value	<	5	x	10-7,	P-value	<	5	

x	10-8)	and	LD	cut-offs	(r2	<	0.2,	r2	<	0.4,	r2	<	0.6,	r2	<	0.8).	We	evaluated	the	performance	of	each	of	the	

20	polygenic	risk	scores	against	AUC	for	predicting	prevalent	AF	in	the	Norwegian-specific	HUNT	Study	

using	a	logistic	regression.		

	

Phenome-wide	association	analyses	

We	used	a	previously	published	scheme	to	defined	disease-specific	binary	phenotypes	by	combining	

hospital	ICD-9	codes	into	hierarchical	PheCodes,	each	representing	a	more	or	less	specific	disease	

group.50	ICD-10	codes	were	mapped	to	PheCodes	using	a	combination	of	available	maps	through	the	

Unified	Medical	Language	System(https://www.nlm.nih.gov/research/umls/)	and	other	sources,	string	

matching,	and	manual	review.	Study	participants	were	labeled	a	PheCode	if	they	had	one	or	more	of	the	

PheCode-specific	ICD	codes.	Cases	were	all	study	participants	with	the	PheCode	of	interest	and	controls	

were	all	study	participants	without	the	PheCode	of	interest	or	any	related	PheCodes.	Gender	checks	

were	performed,	so	PheCodes	specific	for	one	gender	could	not	mistakenly	be	assigned	to	the	other	

gender.	The	association	between	the	optimized	polygenic	risk	score	and	each	of	the	defined	phenotypes	

where	tested	using	a	logistic	regression	adjusted	for	sex	and	birth	year.		
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Figures	

	

Figure	1.	Manhattan	plot	showing	known	(orange)	and	novel	(red)	loci	associated	with	atrial	fibrillation.	

The	x-axis	represents	the	genome	in	physical	order	whereas	the	y-axis	represents	P-values	(-log10[P-

value])	of	association.		
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Figure	2.	Tissues,	reconstituted	gene	sets,	and	regulatory	elements	implicated	in	atrial	fibrillation.	a)	

Based	on	expression	patterns	across	37,427	human	mRNA	microarrays,	DEPICT	predicted	genes	within	

atrial	fibrillation-associated	loci	to	be	highly	expressed	across	various	cardiac	tissues.	Tissues	are	

grouped	by	type	and	significance.	Red	columns	represent	statistically	significant	tissues	following	

Bonferroni	correction	(P-value	<	0.0002).	b)	Top	(P	<	1x10-6)	reconstituted	gene	sets	(out	of	826	with	

FDR	<	0.05	and	after	exclusion	of	‘gene	subnetworks’)	found	by	DEPICT	to	be	significantly	enriched	by	

genes	in	atrial	fibrillation-associated	loci.	Each	node,	colored	according	to	the	permutation	P-value,	

represents	a	gene	set	and	the	grey	connecting	lines	represent	pairwise	overlap	of	genes	within	the	gene	

sets.	c)	Heatmap	indicating	the	overlap	between	fibrillation–associated	risk	variants	and	regulatory	

elements	across	127	Roadmap	Epigenomics	tissues	(each	represented	by	a	row)	using	GREGOR.	Black	

indicates	no	data.	
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Figure	3.	Significance	of	the	expression	enrichment	for	the	candidate	genes.	This	figure	compares	the	

tissue-specific	gene	expression	enrichment	for	the	165	biological	candidate	genes	(colored	dots)	to	a	

null	distribution	derived	by	randomly	selecting	same	number	of	genes	from	the	whole	genome	or	from	

the	associated	loci.	The	grey	dots	are	the	P-values	for	each	of	the	permutations	for	the	randomized	tests	

(1,000	for	both	sampling	scenarios	for	each	tissue)	and	the	blue	and	yellow	lines	represent	the	per-

tissue	P-value	thresholds	comparable	to	a	false	positive	rate	of	0.05.		

	

	

	

Figure	4.	Atrial	fibrillation	(AF)	is	associated	with	heterogeneous	changes	in	left	atrial	myosin	isoform	

expression.	a)	Langendorff-perfused	rabbit	hearts	from	control	(blue,	top)	or	heart	failure	(HF)	rabbits	

(red,	bottom	panel)	were	tested	for	AF-inducibility	and	duration	following	burst	pacing	at	50ms	cycle	

length.	HF	was	induced	by	chronic	left	circumflex	artery	ligation	and	was	allowed	to	develop	over	6	

weeks.	During	HF	progression,	severe	left	atrial	hypertrophy	occurred.	b)	HF	hearts	developed	long	

lasting	AF	(>	60s)	when	intra-atrial	pressure	was	increased	to	10	cm	H2O.	On	the	other	hand,	control	

hearts	did	not	develop	long	lasting	AF	until	intra-atrial	pressure	was	increased	to	30cm	H2O.	c)	Western	
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blotting	for	MYH7	gene	expression	(b-MyHC	protein)	indicates	MYH7	expression	exclusively	in	the	

remodeled	HF	left	atrium.	d)	Immunostaining	and	confocal	microscopy	revealed	heterogeneous	MYH7	

gene	expression	(green)	in	the	HF	left	atrium.	Consistent	with	Western	blotting	data,	the	HF	right	atrium	

(RA)	did	not	express	MYH7.		
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