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ABSTRACT 47 

 48 

Primates—including humans—can typically recognize objects in visual images at a 49 

glance even in the face of naturally occurring identity-preserving image transformations (e.g. 50 

changes in viewpoint). A primary neuroscience goal is to uncover neuron-level mechanistic 51 

models that quantitatively explain this behavior by predicting primate performance for each and 52 

every image. Here, we applied this stringent behavioral prediction test to the leading mechanistic 53 

models of primate vision (specifically, deep, convolutional, artificial neural networks; ANNs) by 54 

directly comparing their behavioral signatures against those of humans and rhesus macaque 55 

monkeys. Using high-throughput data collection systems for human and monkey psychophysics, 56 

we collected over one million behavioral trials for 2400 images over 276 binary object 57 

discrimination tasks. Consistent with previous work, we observed that state-of-the-art deep, feed-58 

forward convolutional ANNs trained for visual categorization (termed DCNNIC models) 59 

accurately predicted primate patterns of object-level confusion. However, when we examined 60 

behavioral performance for individual images within each object discrimination task, we found 61 

that all tested DCNNIC models were significantly non-predictive of primate performance, and 62 

that this prediction failure was not accounted for by simple image attributes, nor rescued by 63 

simple model modifications. These results show that current DCNNIC models cannot account for 64 

the image-level behavioral patterns of primates, and that new ANN models are needed to more 65 

precisely capture the neural mechanisms underlying primate object vision. To this end, large-66 

scale, high-resolution primate behavioral benchmarks—such as those obtained here—could serve 67 

as direct guides for discovering such models. 68 

 69 

  70 
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SIGNIFICANCE STATEMENT 71 

 72 

Recently, specific feed-forward deep convolutional artificial neural networks (ANNs) 73 

models have dramatically advanced our quantitative understanding of the neural mechanisms 74 

underlying primate core object recognition. In this work, we tested the limits of those ANNs by 75 

systematically comparing the behavioral responses of these models with the behavioral responses 76 

of humans and monkeys, at the resolution of individual images. Using these high-resolution 77 

metrics, we found that all tested ANN models significantly diverged from primate behavior. 78 

Going forward, these high-resolution, large-scale primate behavioral benchmarks could serve as 79 

direct guides for discovering better ANN models of the primate visual system. 80 

  81 
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INTRODUCTION 82 

 83 

Primates—both human and non-human—can typically recognize objects in visual images 84 

at a glance, even in the face of naturally occurring identity-preserving transformations such as 85 

changes in viewpoint. This view-invariant visual object recognition ability is thought to be 86 

supported primarily by the primate ventral visual stream (DiCarlo et al., 2012). A primary 87 

neuroscience goal is to construct computational models that quantitatively explain the neural 88 

mechanisms underlying this ability. That is, our goal is to discover artificial neural networks 89 

(ANNs) that accurately predict neuronal firing rate responses at all levels of the ventral stream 90 

and its behavioral output. To this end, specific models within a large family of deep, 91 

convolutional neural networks (DCNNs), optimized by supervised training on large-scale 92 

category-labeled image-sets (ImageNet) to match human-level categorization performance 93 

(Krizhevsky et al., 2012; LeCun et al., 2015), have been put forth as the leading ANN models of 94 

the ventral stream (Yamins and DiCarlo, 2016). We refer to this sub-family as DCNNIC models 95 

(IC to denote ImageNet-categorization pre-training), so as to distinguish them from all possible 96 

models in the DCNN family, and more broadly, from the super-family of all ANNs. To date, it 97 

has been shown that DCNNIC models display internal feature representations similar to neuronal 98 

representations along the primate ventral visual stream (Yamins et al., 2013; Cadieu et al., 2014; 99 

Khaligh-Razavi and Kriegeskorte, 2014; Yamins et al., 2014), and they exhibit behavioral 100 

patterns similar to the behavioral patterns of pairwise object confusions of primates 101 

(Rajalingham et al., 2015). Thus, DCNNIC models may provide a quantitative account of the 102 

neural mechanisms underlying primate core object recognition behavior. 103 

 104 

However, several studies have shown that DCNNIC models can diverge drastically from 105 

humans in object recognition behavior, especially with regards to particular images optimized to 106 

be adversarial to these networks (Goodfellow et al., 2014; Nguyen et al., 2015). Related work 107 

has shown that specific image distortions are disproportionately challenging to current DCNNs, 108 

as compared to humans (RichardWebster et al., 2016; Dodge and Karam, 2017; Geirhos et al., 109 

2017; Hosseini et al., 2017). Such image-specific failures of the current ANN models would 110 

likely not be captured by “object-level” behavioral metrics (e.g. the pattern of pairwise object 111 

confusions mentioned above) that are computed by pooling over hundreds of images and thus are 112 
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not sensitive to variation in difficulty across images of the same object. To overcome this 113 

limitation of prior work, we here aimed to use scalable behavioral testing methods to precisely 114 

characterize primate behavior at the resolution of individual images and to directly compare 115 

leading DCNN models to primates over the domain of core object recognition behavior at this 116 

high resolution. 117 

 118 

We focused on core invariant object recognition—the ability to identify objects in visual 119 

images in the central visual field during a single, natural viewing fixation (DiCarlo et al., 2012). 120 

We further restricted our behavioral domain to basic-level object discriminations, as defined 121 

previously (Rosch et al., 1976). Within this domain, we collected large-scale, high-resolution 122 

measurements of human and monkey behavior (over a million behavioral trials) using high-123 

throughput psychophysical techniques—including a novel home-cage behavioral system for 124 

monkeys. These data enabled us to systematically compare all systems at progressively higher 125 

resolution. At lower resolutions, we replicated previous findings that humans, monkeys, and 126 

DCNNIC models all share a common pattern of object-level confusion (Rajalingham et al., 2015). 127 

However, at the higher resolution of individual images, we found that the behavior of all tested 128 

DCNNIC models was significantly different from human and monkey behavior, and this model 129 

prediction failure could not be easily rescued by simple model modifications. These results show 130 

that current DCNNIC models do not fully account for the image-level behavioral patterns of 131 

primates, suggesting that new ANN models are needed to more precisely capture the neural 132 

mechanisms underlying primate object vision. To this end, large-scale high-resolution behavioral 133 

benchmarks, such as those obtained here, could serve as a strong top-down constraint for 134 

efficiently discovering such models. 135 

 136 

 137 

MATERIALS & METHODS 138 

 139 

Visual images 140 

We examined basic-level, core object recognition behavior using a set of 24 broadly-141 

sampled objects that we previously found to be reliably labeled by independent human subjects, 142 

based on the definition of basic-level proposed by (Rosch et al., 1976). For each object, we 143 
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generated 100 naturalistic synthetic images by first rendering a 3D model of the object with 144 

randomly chosen viewing parameters (2D position, 3D rotation and viewing distance), and then 145 

placing that foreground object view onto a randomly chosen, natural image background. To do 146 

this, each object was first assigned a canonical position (center of gaze), scale (~2 degrees) and 147 

pose, and then its viewing parameters were randomly sampled uniformly from the following 148 

ranges for object translation ([-3,3] degrees in both h and v), rotation ([-180,180] degrees in all 149 

three axes) and scale ([x0.7, x1.7]. Background images were sampled randomly from a large 150 

database of high-dynamic range images of indoor and outdoor scenes obtained from Dosch 151 

Design (www.doschdesign.com). This image generation procedure enforces invariant object 152 

recognition, rather than image matching, as it requires the visual recognition system (human, 153 

animal or model) to tackle the “invariance problem,” the computational crux of object 154 

recognition (Ullman and Humphreys, 1996; Pinto et al., 2008). Using this procedure, we 155 

previously generated 2400 images (100 images per object) rendered at 1024x1024 pixel 156 

resolution with 256-level gray scale and subsequently resized to 256x256 pixel resolution for 157 

human psychophysics, monkey psychophysics and model evaluation (Rajalingham et al., 2015). 158 

In the current work, we focused our analyses on a randomly subsampled, and then fixed, sub-set 159 

of 240 images (10 images per object; here referred to as the “primary test images”). Figure 1A 160 

shows the full list of 24 objects, with two example images of each object. 161 

 162 

Because all of the images were generated from synthetic 3D object models, we had 163 

explicit knowledge of the viewpoint parameters (position, size, and pose) for each object in each 164 

image, as well as perfect segmentation masks. Taking advantage of this feature, we characterized 165 

each image based on these high-level attributes, consisting of size, eccentricity, relative pose and 166 

contrast of the object in the image. The size and eccentricity of the object in each image were 167 

computed directly from the corresponding viewpoint parameters, under the assumption that the 168 

entire image would subtend 6° at the center of visual gaze (+/-3° in both azimuth and elevation; 169 

see below). For each synthetic object, we first defined its “canonical” 3D pose vector, based on 170 

independent human judgments. To compute the relative pose attribute of each image, we 171 

estimated the difference between the object’s 3D pose and its canonical 3D pose. Pose 172 

differences were computed as distances in unit quaternion representations: the 3D pose (rxy, rxz, 173 

ryz) was first converted into unit quaternions, and distances between quaternions �� , ��  were 174 
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estimated as  cos��|�� · ��| (Huynh, 2009). To compute the object contrast, we measured the 175 

absolute difference between the mean of the pixel intensities corresponding to the object and the 176 

mean of the background pixel intensities in the vicinity of the object (specifically, within 25 177 

pixels of any object pixel, analogous to computing the local foreground-background luminance 178 

difference of a foreground object in an image). Figure 5C shows example images with varying 179 

values for the four image attributes. 180 

 181 

Core object recognition behavioral paradigm 182 

Core object discrimination is defined as the ability to discriminate between two or more 183 

objects in visual images presented under high view uncertainty in the central visual field (~10°), 184 

for durations that approximate the typical primate, free-viewing fixation duration (~200 ms) 185 

(DiCarlo and Cox, 2007; DiCarlo et al., 2012). As in our previous work (Rajalingham et al., 186 

2015), the behavioral task paradigm consisted of a interleaved set of binary discrimination tasks. 187 

Each binary discrimination task is an object discrimination task between a pair of objects (e.g. 188 

elephant vs. bear). Each such binary task is balanced in that the test image is equally likely 189 

(50%) to be of either of the two objects. On each trial, a test image is presented, followed by a 190 

choice screen showing canonical views of the two possible objects (the object that was not 191 

displayed in the test image is referred to as the “distractor” object, but note that objects are 192 

equally likely to be distractors and targets). Here, 24 objects were tested, which resulted in 276 193 

binary object discrimination tasks. To neutralize feature attention, these 276 tasks are randomly 194 

interleaved (trial by trial), and the global task is referred to as a basic-level, core object 195 

recognition task paradigm.  196 

 197 

Testing human behavior 198 

All human behavioral data presented here were collected from 1476 human subjects on 199 

Amazon Mechanical Turk (MTurk) performing the task paradigm described above. Subjects 200 

were instructed to report the identity of the foreground object in each presented image from 201 

among the two objects presented on the choice screen (Fig 1B). Because all 276 tasks were 202 

interleaved randomly (trial-by-trial), subjects could not deploy feature attentional strategies 203 

specific to each object or specific to each binary task to process each test image.  204 

 205 
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Figure 1B illustrates the time course of each behavioral trial, for a particular object 206 

discrimination task (zebra versus dog). Each trial initiated with a central black point for 500 ms, 207 

followed by 100 ms presentation of a test image containing one foreground object presented 208 

under high variation in viewing parameters and overlaid on a random background, as described 209 

above (see Visual images above). Immediately after extinction of the test image, two choice 210 

images, each displaying a single object in a canonical view with no background, were shown to 211 

the left and right. One of these two objects was always the same as the object that generated the 212 

test image (i.e., the correct object choice), and the location of the correct object (left or right) was 213 

randomly chosen on each trial. After clicking on one of the choice images, the subject was 214 

queued with another fixation point before the next test image appeared. No feedback was given; 215 

human subjects were never explicitly trained on the tasks. Under assumptions of typical 216 

computer ergonomics, we estimate that images were presented at 6–8° of visual angle at the 217 

center of gaze, and the choice object images were presented at ±6–8° of eccentricity along the 218 

horizontal meridian. 219 

 220 

We measured human behavior using the online Amazon MTurk platform (see Figure 1C), 221 

which enables efficient collection of large-scale psychophysical data from crowd-sourced 222 

“human intelligence tasks” (HITs). The reliability of the online MTurk platform has been 223 

validated by comparing results obtained from online and in-lab psychophysical experiments 224 

(Majaj et al., 2015; Rajalingham et al., 2015). We pooled 927,296 trials from 1472 human 225 

subjects to characterize the aggregate human behavior, which we refer to as the “pooled” human 226 

(or “archetypal” human). Each human subject performed only a small number of trials (~150) on 227 

a subset of the images and binary tasks. All 2400 images were used for behavioral testing, but in 228 

some of the HITs, we biased the image selection towards the 240 primary test images (1424±70 229 

trials/image on this subsampled set, versus 271±93 trials/image on the remaining images, mean ± 230 

SD) to efficiently characterize behavior at image level resolution. Images were randomly drawn 231 

such that each human subject was exposed to each image a relatively small number of times 232 

(1.5±2.0 trials/image per subject, mean ± SD), in order to mitigate potential alternative 233 

behavioral strategies (e.g. “memorization” of images) that could arise from a finite image set. 234 

Behavioral signatures at the object-level (B.O1, B.O2, see Behavioral metrics and signatures) 235 

were measured using all 2400 test images, while image-level behavioral signatures (B.I1n, B.I2n, 236 
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see Behavioral metrics and signatures) were measured using the 240 primary test images. (We 237 

observed qualitatively similar results using those metrics on the full 2400 test images, but we 238 

here focus on the primary test images as the larger number of trials leads to lower noise levels). 239 

 240 

Five other human subjects were separately recruited on MTurk to each perform a large 241 

number of trials on the same images and tasks (53,097±15,278 trials/subject, mean ± SD). 242 

Behavioral data from these five subjects was not included in the characterization of the pooled 243 

human described above, but instead aggregated together to characterize a distinct held-out 244 

human pool. For the scope of the current work, this held-out human pool—which largely 245 

replicated all behavioral signatures of the larger archetypal human (see Figures 2 and 3)—served 246 

as an independent validation of our human behavioral measurements. 247 

 248 

Testing monkey behavior 249 

Five adult male rhesus macaque monkeys (Macaca mulatta, subjects M, Z, N, P, B) were 250 

tested on the same basic-level, core object recognition task paradigm described above, with 251 

minor modification as described below. All procedures were performed in compliance with 252 

National Institutes of Health guidelines and the standards of the Massachusetts Institute of 253 

Technology Committee on Animal Care and the American Physiological Society. To efficiently 254 

characterize monkey behavior, we used a novel home-cage behavioral system developed in our 255 

lab (termed MonkeyTurk, see Fig. 1C). This system leveraged a tablet touchscreen (9” Google 256 

Nexus or 10.5” Samsung Galaxy Tab S) and used a web application to wirelessly load the task 257 

and collect the data (code available at https://github.com/dicarlolab/mkturk). Analogous to the 258 

online Amazon Mechanical Turk, which allows for efficient psychophysical assays of a large 259 

number (hundreds) of human users in their native environments, MonkeyTurk allowed us to test 260 

many monkey subjects simultaneously in their home environment. Each monkey voluntarily 261 

initiated trials, and each readily performed the task a few hours each day that the task apparatus 262 

was made available to it. At an average rate of ~2,000 trials per day per monkey, we collected a 263 

total of 836,117 trials from the five monkey subjects over a period of ~3 months. 264 

 265 

Monkey training is described in detail elsewhere (Rajalingham et al., 2015). Briefly, all 266 

monkeys were initially trained on the match-test-image-to-object rule using other images and 267 
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were also trained on discriminating the particular set of 24 objects tested here using a separate set 268 

of training images rendered from these objects, in the same manner as the main testing images. 269 

Two of the monkeys subjects (Z and M) were previously trained in the lab setting, and the 270 

remaining three subjects were trained using MonkeyTurk directly in their home cages and did 271 

not have significant prior lab exposure. Once monkeys reached saturation performance on 272 

training images, we began the behavioral testing phase to collect behavior on test images. 273 

Monkeys did improve throughout the testing phase, exhibiting an increase in performance 274 

between the first and second half of trials of 4%±0.9% (mean ± SEM over five monkey subjects). 275 

However, the image-level behavioral signatures obtained from the first and the second halves of 276 

trials were highly correlated to each other (B.I1 noise-adjusted correlation of 0.85±0.06, mean ± 277 

SEM over five monkey subjects, see Behavioral metrics and signatures below), suggesting that 278 

monkeys did not significantly alter strategies (e.g. did not “memorize” images) throughout the 279 

behavioral testing phase. 280 

 281 

The monkey task paradigm was nearly identical to the human paradigm (see Figure 1B), 282 

with the exception that trials were initiated by touching a white “fixation” circle horizontally 283 

centered on the bottom third of the screen (to avoid occluding centrally-presented test images 284 

with the hand). This triggered a 100ms central presentation of a test image, followed 285 

immediately by the presentation of the two choice images (Fig. 1B, location of correct choice 286 

randomly assigned on each trial, identical to the human task). Unlike the main human task, 287 

monkeys responded by directly touching the screen at the location of one of the two choice 288 

images. Touching the choice image corresponding to the object shown in the test image resulted 289 

in the delivery of a drop of juice through a tube positioned at mouth height (but not obstructing 290 

view), while touching the distractor choice image resulted in a three second timeout. Because 291 

gaze direction typically follows the hand during reaching movements, we assumed that the 292 

monkeys were looking at the screen during touch interactions with the fixation or choice targets. 293 

In both the lab and in the home cage, we maintained total test image size at ~6 degrees of visual 294 

angle at the center of gaze, and we took advantage of the retina-like display qualities of the tablet 295 

by presenting images pixel matched to the display (256 x 256 pixel image displayed using 256 x 296 

256 pixels on the tablet at a distance of 8 inches) to avoid filtering or aliasing effects. 297 

 298 
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As with Mechanical Turk testing in humans, MonkeyTurk head-free home-cage testing 299 

enables efficient collection of reliable, large-scale psychophysical data but it likely does not yet 300 

achieve the level of experimental control that is possible in the head-fixed laboratory setting. 301 

However, we note that when subjects were engaged in home-cage testing, they reliably had their 302 

mouth on the juice tube and their arm positioned through an armhole. These spatial constraints 303 

led to a high level of head position trial-by-trial reproducibility during performance of the task 304 

paradigm. Furthermore, when subjects were in this position, they could not see other animals as 305 

the behavior box was opaque, and subjects performed the task at a rapid pace 40 trials/minute 306 

suggesting that they were not frequently distracted or interrupted. The location of the upcoming 307 

test image (but not the location of the object within that test image) was perfectly predictable at 308 

the start of each behavioral trial, which likely resulted in a reliable, reproduced gaze direction at 309 

the moment that each test image was presented. The relatively short—but natural and high 310 

performing (Cadieu et al., 2014)—test image duration (100 ms) ensured that saccadic eye 311 

movements were unlike to influence test image performance (as they generally take ~200 ms to 312 

initiate in response to the test image, and thus well after the test image has been extinguished).  313 

 314 

Testing model behavior  315 

We tested a number of different deep convolutional neural network (DCNN) models on 316 

the exact same images and tasks as those presented to humans and monkeys. Importantly, our 317 

core object recognition task paradigm is closely analogous to the large-scale ImageNet 1000-way 318 

object categorization task for which these networks were optimized and thus expected to perform 319 

well. We focused on publicly available DCNN model architectures that have proven highly 320 

successful with respect to this computer vision benchmark over the past five years: AlexNet 321 

(Krizhevsky et al., 2012), NYU (Zeiler and Fergus, 2014), VGG (Simonyan and Zisserman, 322 

2014), GoogleNet (Szegedy et al., 2013), Resnet (He et al., 2016), and Inception-v3 (Szegedy et 323 

al., 2013). As this is only a subset of possible DCNN models, we refer to these as the DCNNIC 324 

(to denote ImageNet-Categorization) visual system model sub-family. For each of the publicly 325 

available model architectures, we first used ImageNet-categorization-trained model instances, 326 

either using publicly available trained model instances or training them to saturation on the 1000-327 

way classification task in-house. Training took several days on 1-2 GPUs.  328 

 329 
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We then performed psychophysical experiments on each ImageNet-trained DCNN model 330 

to characterize their behavior on the exact same images and tasks as humans and monkeys. We 331 

first adapted these ImageNet-trained models to our 24-way object recognition task by re-training 332 

the final class probability layer (initially corresponding to the probability output of the 1000-way 333 

ImageNet classification task) while holding all other layers fixed. In practice, this was done by 334 

extracting features from the penultimate layer of each DCNNIC (i.e. top-most prior to class 335 

probability layer), on the same images that were presented to humans and monkeys, and training 336 

back-end multi-class logistic regression classifiers to determine the cross-validated output class 337 

probability for each image. This procedure is illustrated in Figure 1C. To estimate the hit rate of 338 

a given image in a given binary classification task, we renormalized the 24-way class 339 

probabilities of that image, considering only the two relevant classes, to sum to one. Object-level 340 

and image-level behavioral metrics were computed based on these hit rate estimates (as 341 

described in Behavioral metrics and signatures below). Importantly, this procedure assumes that 342 

the model “retina” layer processes the central 6 degrees of the visual field. It also assumes that 343 

linear discriminants (“readouts”) of the model’s top feature layer are its behavioral output (as 344 

intended by the model designers). Manipulating either of these choices (e.g. resizing the input 345 

images such that they span only part of the input layer, or building linear discriminates for 346 

behavior using a different model feature layer) would result in completely new, testable ANN 347 

models that we do not test here. 348 

 349 

From these analyses, we selected the most human-consistent DCNNIC architecture 350 

(Inception-v3, see Behavioral consistency below), fixed that architecture, and then performed 351 

post-hoc analyses in which we varied: the input image sampling, the initial parameter settings 352 

prior to training, the filter training images, the type of classifiers used to generate the behavior 353 

from the model features, and the classifier training images. To examine input image sampling, 354 

we re-trained the Inception-v3 architecture on images from ImageNet that were first spatially 355 

filtered to match the spatial sampling of the primate retina (i.e. an approximately exponential 356 

decrease in cone density away from the fovea) by effectively simulating a fish-eye 357 

transformation on each image. These images were at highest resolution at the “fovea” (i.e. center 358 

of the image) with gradual decrease in resolution with increasing eccentricity. To examine the 359 

analog of “inter-subject variability”, we constructed multiple trained model instances 360 
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(“subjects”), where the architecture and training images were held fixed (Inception-v3 and 361 

ImageNet, respectively) but the model filter weights initial condition and order of training 362 

images were randomly varied for each model instance. Importantly, this procedure is only one 363 

possible choice for simulating inter-subject variability for DCNN models, a choice that is an 364 

important open research direction that we do not address here. To examine the effect of model 365 

training, we fine-tuned an ImageNet-trained Inception-v3 model on a synthetic image set 366 

consisting of ~6.9 million images of 1049 objects (holding out 50,000 images for model 367 

validation). These images were generated using the same rendering pipeline as our test images, 368 

but the objects were non-overlapping with the 24 test objects presented here. As expected, fine-369 

tuning on synthetic images led to an overall increase in performance of ~5%. We tested the effect 370 

of different classifiers to generate model behavior by testing both multi-class logistic regression 371 

and support vector machine classifiers. Additionally, we tested the effect of varying the number 372 

of training images used to train those classifiers (20 versus 50 images per class). 373 

 374 

Behavioral metrics and signatures  375 

To characterize the behavior of any visual system, we here introduce four behavioral (B) 376 

metrics of increasing richness, requiring increasing amounts of data to measure reliably. Each 377 

behavioral metric computes a pattern of unbiased behavioral performance, using a sensitivity 378 

index: �� 	 
��
������ � 
���������������� , where Z is the inverse of the cumulative 379 

Gaussian distribution. The various metrics differ in the resolution at which hit rates and false 380 

alarm rates are computed. Table 1 summarizes the four behavioral metrics, varying the hit-rate 381 

resolution (object-level or image-level) and the false-alarm resolution (one-versus-all or one-382 

versus-other). When each metric is applied to the behavioral data of a visual system—biological 383 

or artificial—we refer to the result as one behavioral “signature” of that system. Note that we do 384 

not consider the signatures obtained here to be the final say on the behavior of these biological or 385 

artificial systems—in the terms defined here, new experiments using new objects/images but the 386 

same metrics would produce additional behavioral signatures. 387 

 388 

The four behavioral metrics we chose are as follows: First, the one-versus-all object-level 389 

performance metric (termed B.O1) estimates the discriminability of each object from all other 390 

objects, pooling across all distractor object choices. Since we here tested 24 objects, the resulting 391 
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B.O1 signature has 24 independent values. Second, the one-versus-other object-level 392 

performance metric (termed B.O2) estimates the discriminability of each specific pair of objects, 393 

or the pattern of pairwise object confusions. Since we here tested 276 interleaved binary object 394 

discrimination tasks, the resulting B.O2 signature has 276 independent values (the off-diagonal 395 

elements on one half of the 24x24 symmetric matrix). Third, the one-versus-all image-level 396 

performance metric (termed B.I1) estimates the discriminability of each image from all other 397 

objects, pooling across all possible distractor choices. Since we here focused on the primary 398 

image test set of 240 images (10 per object, see above), the resulting B.I1 signature has 240 399 

independent values. Fourth, the one-versus-other image-level performance metric (termed B.I2) 400 

estimates the discriminability of each image from each distractor object. Since we here focused 401 

on the primary image test set of 240 images (10 per object, see above) with 23 distractors, the 402 

resulting B.I2 signature has 5520 independent values. 403 

 404 

Naturally, object-level and image-level behavioral signatures are tightly linked. For 405 

example, images of a particularly difficult-to-discriminate object would inherit lower 406 

performance values on average as compared to images from a less difficult-to-discriminate 407 

object. To isolate the behavioral variance that is specifically driven by image variation and not 408 

simply predicted by the objects (and thus already captured by B.O1 and B.O2), we defined 409 

normalized image-level behavioral metrics (termed B.I1n, B.I2n) by subtracting the mean 410 

performance values over all images of the same object and task. This process is schematically 411 

illustrated in Figure 3A. We note that the resulting normalized image-level behavioral signatures 412 

capture a significant proportion of the total image-level behavioral variance in our data (e.g. 413 

52%, 58% of human B.I1 and B.I2 variance is driven by image variation, independent of object 414 

identity). In this study, we use these normalized metrics for image-level behavioral comparisons 415 

between models and primates (see Results). 416 

 417 

Behavioral Consistency 418 

To quantify the similarity between a model visual system and the human visual system 419 

with respect to a given behavioral metric, we used a measure called the “human-consistency” as 420 

previously defined (Johnson et al., 2002). Human-consistency (��) is computed, for each of the 421 

four behavioral metrics, as a noise-adjusted correlation of behavioral signatures (DiCarlo and 422 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 12, 2018. ; https://doi.org/10.1101/240614doi: bioRxiv preprint 

https://doi.org/10.1101/240614
http://creativecommons.org/licenses/by-nc-nd/4.0/


Johnson, 1999). For each visual system, we randomly split all behavioral trials into two equal 423 

halves and applied each behavioral metric to each half, resulting in two independent estimates of 424 

the system’s behavioral signature with respect to that metric. We took the Pearson correlation 425 

between these two estimates of the behavioral signature as a measure of the reliability of that 426 

behavioral signature given the amount of data collected, i.e. the split-half internal reliability. To 427 

estimate the human-consistency, we computed the Pearson correlation over all the independent 428 

estimates of the behavioral signature from the model (m) and the human (h), and we then divide 429 

that raw Pearson correlation by the geometric mean of the split-half internal reliability of the 430 

same behavioral signature measured for each system: ����, �� 	 ���,	


����,�
��	,	

. 431 

 432 

Since all correlations in the numerator and denominator were computed using the same 433 

amount of trial data (exactly half of the trial data), we did not need to make use of any prediction 434 

formulas (e.g. extrapolation to larger number of trials using Spearman-Brown prediction 435 

formula). This procedure was repeated 10 times with different random split-halves of trials. Our 436 

rationale for using a reliability-adjusted correlation measure for human-consistency was to 437 

account for variance in the behavioral signatures that arises from “noise,” i.e., variability that is 438 

not replicable by the experimental condition (image and task) and thus that no model can be 439 

expected to predict (DiCarlo and Johnson, 1999; Johnson et al., 2002). In sum, if the model (m) 440 

is a replica of the archetypal human (h), then its expected human-consistency is 1.0, regardless of 441 

the finite amount of data that are collected.  442 

 443 

Characterization of Residuals 444 

In addition to measuring the similarity between the behavioral signatures of primates and 445 

models (using human-consistency analyses, as described above), we examined the corresponding 446 

differences, termed “residual signatures.” Each candidate visual system model’s residual 447 

signature was estimated as the residual of a linear least squares regression of the model’s 448 

signature on the corresponding human signature and a free intercept parameter. This procedure 449 

effectively captures the differences between human and model signatures after accounting for 450 

overall performance differences. Residual signatures were estimated on disjoint split-halves of 451 

trials, repeating 10 times with random trial permutations. Residuals were computed with respect 452 

to the normalized one-versus-all image-level performance metric (B.I1n) as this metric showed a 453 
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clear difference between DCNNIC models and primates, and the behavioral residual can be 454 

interpreted based only the test images (i.e. we can assign a residual per image). 455 

 456 

To examine the extent to which the difference between each model and the archetypal 457 

human is reliably shared across different models, we measured the Pearson correlation between 458 

the residual signatures of pairs of models. Residual similarity was quantified as the proportion of 459 

shared variance, defined as the square of the noise-adjusted correlation between residual 460 

signatures (the noise-adjustment was done as defined in equation above). Correlations of residual 461 

signatures were always computed across distinct split-halves of data, to avoid introducing 462 

spurious correlations from subtracting common noise in the human data. We measured the 463 

residual similarity between all pairs of tested models, holding both architecture and optimization 464 

procedure fixed (between instances of the ImageNet-categorization trained Inception-v3 model, 465 

varying in filter initial conditions), varying the architecture while holding the optimization 466 

procedure fixed (between all tested ImageNet-categorization trained DCNN architectures), and 467 

holding the architecture fixed while varying the optimization procedure (between ImageNet-468 

categorization trained Inception-v3 and synthetic-categorization fine-tuned Inception-v3 469 

models). This analysis addresses not only the reliability of the failure of DCNNIC models to 470 

predict human behavior (deviations from humans), but also the relative importance of the 471 

characteristics defining similarities within the model sub-family (namely, the architecture and the 472 

optimization procedure). We first performed this analysis for residual signatures over the 240 473 

primary test images, and subsequently zoomed in on subsets of images that humans found to be 474 

particularly difficult. This image selection was made relative to the distribution of image-level 475 

performance of held-out human subjects (B.I1 metric from five subjects); difficult images were 476 

defined as ones with performance below the 25th percentile of this distribution. 477 

 478 

To examine whether the difference between each model and humans can be explained by 479 

simple human-interpretable stimulus attributes, we regressed each DCNNIC model’s residual 480 

signature on image attributes (object size, eccentricity, pose, and contrast). Briefly, we 481 

constructed a design matrix from the image attributes (using individual attributes, or all 482 

attributes), and used multiple linear least squares regression to predict the image-level residual 483 

signature. The multiple linear regression was tested using two-fold cross-validation over trials. 484 
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The relative importance of each attribute (or groups of attributes) was quantified using the 485 

proportion of explainable variance (i.e. variance remaining after accounting for noise variance) 486 

explained from the residual signature. 487 

 488 

Primate behavior zone 489 

In this work, we are primarily concerned with the behavior of an “archetypal human”, 490 

rather than the behavior of any given individual human subject. We operationally defined this 491 

concept as the common behavior over many humans, obtained by pooling together trials from a 492 

large number of individual human subjects and treating this human pool as if it were acquired 493 

from a single behaving agent. Due to inter-subject variability, we do not expect any given human 494 

or monkey subject to be perfectly consistent with this archetypal human (i.e. we do not expect it 495 

to have a human-consistency of 1.0). Given current limitations of monkey psychophysics, we are 496 

not yet able to measure the behavior of very large number of monkey subjects at high resolution 497 

and consequently cannot directly estimate the human-consistency of the corresponding 498 

“archetypal monkey” to the human pool. Rather, we indirectly estimated this value by first 499 

measuring human-consistency as a function of number of individual monkey subjects pooled 500 

together (n), and extrapolating the human-consistency estimate for pools of very large number of 501 

subjects (as n approaches infinity). Extrapolations were done using least squares fitting of an 502 

exponential function ����� 	 �  ! · ���
 (see Figure 4). 503 

 504 

For each behavioral metric, we defined a “primate zone” as the range of human-505 

consistency values delimited by estimates ���� and ���� as lower and upper bounds respectively. 506 

����  corresponds to the extrapolated estimate of human-consistency of a large (i.e. infinitely 507 

many) pool of rhesus macaque monkeys; ���� is by definition equal to 1.0. Thus, the primate 508 

zone defines a range of human-consistency values that correspond to models that accurately 509 

capture the behavior of the human pool, at least as well as an extrapolation of our monkey 510 

sample. In this work, we defined this range of human-consistency values as the criterion for 511 

success for computational models of primate visual object recognition behavior. 512 

 513 

To make a global statistical inference about whether models sampled from the DCNNIC 514 

sub-family meet or fall short of this criterion for success, we attempted to reject the hypothesis 515 
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that, for a given behavioral metric, the human-consistency of DCNNIC models is within the 516 

primate zone. To test this hypothesis, we estimated the empirical probability that the distribution 517 

of human-consistency values, estimated over different model instances within this family, could 518 

produce human-consistency values within the primate zone. Specifically, we estimated a p-value 519 

for each behavioral metric using the following procedure: We first estimated an empirical 520 

distribution of Fisher-transformed human-consistency values for this model family (i.e. over all 521 

tested DCNNIC models and over all trial-resampling of each DCNNIC model). From this 522 

empirical distribution, we fit a Gaussian kernel density function, optimizing the bandwidth 523 

parameter to minimize the mean squared error to the empirical distribution. This kernel density 524 

function was evaluated to compute a p-value, by computing the cumulative probability of 525 

observing a human-consistency value greater than or equal to the criterion of success (i.e. the 526 

Fisher transformed ����  value). This p-value indicates the probability that human-consistency 527 

values sampled from the observed distribution would fall into the primate zone, with smaller p-528 

values indicating stronger evidence against the hypothesis that the human-consistency of DCNN 529 

models is within the primate zone. 530 

 531 

RESULTS 532 

 533 

In the present work, we systematically compared the basic level core object recognition 534 

behavior of primates and state-of-the-art artificial neural network models using a series of 535 

behavioral metrics ranging from low to high resolution within a two-alternative forced choice 536 

match-to-sample paradigm. The behavior of each visual system, whether biological or artificial, 537 

was tested on the same 2400 images (24 objects, 100 images/object) in the same 276 interleaved 538 

binary object recognition tasks. Each system’s behavior was characterized at multiple resolutions 539 

(see Behavioral metrics and signatures in Methods) and directly compared to the corresponding 540 

behavioral metric applied on the archetypal human (defined as the average behavior of a large 541 

pool of human subjects tested; see Methods). The overarching logic of this study was that, if two 542 

visual systems are equivalent, they should produce statistically indistinguishable behavioral 543 

signatures with respect to these metrics. Specifically, our goal was to compare the behavioral 544 

signatures of visual system models with the corresponding behavioral signatures of primates. 545 

 546 
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Object-level behavioral comparison 547 

 We first examined the pattern of one-versus-all object-level behavior (termed “B.O1 548 

metric”) computed across all images and possible distractors. Since we tested 24 objects here, the 549 

B.O1 signature was 24 dimensional. Figure 2A shows the B.O1 signatures for the pooled human 550 

(pooling n=1472 human subjects), pooled monkey (pooling n=5 monkey subjects), and several 551 

DCNNIC models as 24-dimensional vectors using a color scale. Each element of the vector 552 

corresponds to the system’s discriminability of one object against all others that were tested (i.e. 553 

all other 23 objects). The color scales span each signature’s full performance range, and warm 554 

colors indicate lower discriminability. For example, red indicates that the tested visual system 555 

found the object corresponding to that element of the vector to be very challenging to 556 

discriminate from other objects (on average over all 23 discrimination tests, and on average over 557 

all images). Figure 2B directly compares the B.O1 signatures computed from the behavioral 558 

output of two visual system models—a pixel model (top panel) and a DCNNIC model (Inception-559 

v3, bottom panel)—against that of the human B.O1 signature. We observe a tighter 560 

correspondence to the human behavioral signature for the DCNNIC model visual system than for 561 

the baseline pixel model visual system. We quantified that similarity using a noise-adjusted 562 

correlation between each pair of B.O1 signatures (termed human-consistency, following 563 

(Johnson et al., 2002)); the noise adjustment means that a visual system that is identical to the 564 

human pool will have an expected human-consistency score of 1.0, even if it has irreducible trial-565 

by-trial stochasticity; see Methods). Figure 2C shows the B.O1 human-consistency for each of 566 

the tested model visual systems. We additionally tested the behavior of a held-out pool of five 567 

human subjects (black dot) and a pool of five macaque monkey subjects (gray dot), and we 568 

observed that both yielded B.O1 signatures that were highly human-consistent (human-569 

consistency �� = 0.90, 0.97 for monkey pool and held-out human pool, respectively). We defined 570 

a range of human-consistency values, termed the “primate zone” (shaded gray area), delimited by 571 

extrapolated human-consistency estimates of large pools of macaques (see Methods, Figure 4). 572 

We found that the baseline pixel visual system model and the low-level V1 visual system model 573 

were not within this zone (�� = 0.40, 0.67 for pixels and V1 models, respectively), while all tested 574 

DCNNIC visual system models were either within or very close to this zone. Indeed, we could not 575 

reject the hypothesis that DCNNIC models are primate-like (p = 0.54, exact test, see Methods). 576 

 577 
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Next, we compared the behavior of the visual systems at a slightly higher level of 578 

resolution. Specifically, instead of pooling over all discrimination tasks for each object, we 579 

computed the mean discriminability of each of the 276 pairwise discrimination tasks (still 580 

pooling over images within each of those tasks). This yielded a symmetric matrix that is referred 581 

to here as the B.O2 signature. Figure 2D shows the B.O2 signatures of the pooled human, pooled 582 

monkey, and several DCNNIC visual system models as 24x24 symmetric matrices. Each bin (i,j) 583 

corresponds to the system’s discriminability of objects i and j, where warmer colors indicate 584 

lower performance; color scales are not shown but span each signature’s full range. We observed 585 

strong qualitative similarities between the pairwise object confusion patterns of all of the high 586 

level visual systems (e.g. camel and dog are often confused with each other by all three systems). 587 

This similarity is quantified in Figure 2E, which shows the human-consistency of all examined 588 

visual system models with respect to this metric. Similar to the B.O1 metric, we observed that 589 

both a pool of macaque monkeys and a held-out pool of humans are highly human-consistent 590 

with respect to this metric (�� = 0.77, 0.94 for monkeys, humans respectively). Also similar to the 591 

B.O1 metric, we found that all DCNNIC visual system models are highly human-consistent (�� > 592 

0.8) while the baseline pixel visual system model and the low-level V1 visual system model were 593 

not (�� = 0.41, 0.57 for pixels, V1 models respectively). Indeed, all DCNNIC visual system 594 

models are within the defined “primate zone” of human-consistency, and we could not falsify the 595 

hypothesis that DCNNIC models are primate-like (p = 0.99, exact test). 596 

 597 

Taken together, humans, monkeys, and current DCNNIC models all share similar patterns 598 

of object-level behavioral performances (B.O1 and B.O2 signatures) that are not shared with 599 

lower-level visual representations (pixels and V1). However, object-level performance patterns 600 

do not capture the fact that some images of an object are more challenging than other images of 601 

the same object because of interactions of the variation in the object’s pose and position with the 602 

object’s class. To overcome this limitation, we next examined the patterns of behavior at the 603 

resolution of individual images on a subsampled set of images where we specifically obtained a 604 

large number of behavioral trials to accurately estimate behavioral performance on each image. 605 

Note that, from the point of view of the subjects, the behavioral tasks are identical to those 606 

already described. We simply aimed to measure and compare their patterns of performance at 607 

much higher resolution.  608 
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 609 

Image-level behavioral comparison 610 

To isolate purely image-level behavioral variance, i.e. variance that is not predicted by 611 

the object and thus already captured by the B.O1 signature, we computed the normalized image-612 

level signature. This normalization procedure is schematically illustrated in Figure 3A which 613 

shows that the one-versus-all image-level signature (240-dimensional, 10 images/object) is used 614 

to obtain the normalized one-versus-all image-level signature (termed B.I1n, see Behavioral 615 

metrics and signatures). Figure 3B shows the B.I1n signatures for the pooled human, pooled 616 

monkey, and several DCNNIC models as 240 dimensional vectors. Each bin’s color corresponds 617 

to the discriminability of a single image against all distractor options (after subtraction of object-618 

level discriminability, see Figure 3A), where warmer colors indicate lower values; color scales 619 

are not shown but span each signature’s full range. Figure 3D shows the human-consistency with 620 

respect to the B.I1n signature for all tested models. Unlike with object-level behavioral metrics, 621 

we now observe a divergence between DCNNIC models and primates. Both the monkey pool and 622 

the held-out human pool remain highly human-consistent (�� = 0.77, 0.96 for monkeys, humans 623 

respectively), but all DCNNIC models were significantly less human-consistent (Inception-624 

v3:  �� = 0.62) and well outside of the defined “primate zone” of B.I1n human-consistency. 625 

Indeed, the hypothesis that the human-consistency of DCNNIC models is within the primate zone 626 

is strongly rejected (p = 6.16e-8, exact test, see Methods). 627 

 628 

We can zoom in further by examining not only the overall performance for a given image 629 

but also the object confusions for each image, i.e. the additional behavioral variation that is due 630 

not only to the test image but to the interaction of that test image with the alternative (incorrect) 631 

object choice that is provided after the test image (see Fig. 1B). This is the highest level of 632 

behavioral accuracy resolution that our task design allows. In raw form, it corresponds to one-633 

versus-other image-level confusion matrix, where the size of that matrix is the total number of 634 

images by the total number of objects (here, 240x24). Each bin (i,j) corresponds to the behavioral 635 

discriminability of a single image i against distractor object j. Again, we isolate variance that is 636 

not predicted by object-level performance by subtracting the average performance on this binary 637 

task (mean over all images) to convert the raw matrix B.I2 above into the normalized matrix, 638 

referred to as B.I2n. Figure 3D shows the B.I2n signatures as 240x24 matrices for the pooled 639 
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human, pooled monkey and top DCNNIC visual system models. Color scales are not shown but 640 

span each signature’s full range; warmer colors correspond to images with lower performance in 641 

a given binary task, relative to all images of that object in the same task. Figure 3E shows the 642 

human-consistency with respect to the B.I2n metric for all tested visual system models. 643 

Extending our observations using B.I1n, we observe a similar divergence between primates and 644 

DCNNIC visual system models on the matrix pattern of image-by-distractor difficulties (B.I2n). 645 

Specifically, both the monkey pool and held-out human pool remain highly human-consistent 646 

( �� = 0.75, 0.77 for monkeys, humans respectively), while all tested DCNNIC models are 647 

significantly less human-consistent (Inception-v3: �� = 0.53) falling well outside of the defined 648 

“primate zone” of B.I2n human-consistency values. Once again, the hypothesis that the human-649 

consistency of DCNNIC models is within the primate zone is strongly rejected (p = 3.17e-18, 650 

exact test, see Methods). 651 

 652 

Natural subject-to-subject variation 653 

For each behavioral metric (B.O1, BO2, B.I1n, BI2n), we defined a “primate zone” as the 654 

range of consistency values delimited by human-consistency estimates ����and ����  as lower 655 

and upper bounds respectively. ����  corresponds to the extrapolated estimate of the human-656 

consistency of a large (i.e. infinitely many subjects) pool of rhesus macaque monkeys. Thus, the 657 

fact that a particular tested visual system model falls outside of the primate zone can be 658 

interpreted as a failure of that visual system model to accurately predict the behavior of the 659 

archetypal human at least as well as the archetypal monkey. 660 

 661 

However, from the above analyses, it is not yet clear whether a visual system model that 662 

fails to predict the archetypal human might nonetheless accurately correspond to one or more 663 

individual human subjects found within the natural variation of the human population. Given the 664 

difficulty of measuring individual subject behavior at the resolution of single images for large 665 

numbers of human and monkey subjects, we could not yet directly test this hypothesis. Instead, 666 

we examined it indirectly by asking whether an archetypal model—that is a pool that includes an 667 

increasing number of model “subjects”—would approach the human pool. We simulated model 668 

inter-subject variability by retraining a fixed DCNN architecture with a fixed training image set 669 

with random variation in the initial conditions and order of training images. This procedure 670 
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results in models that can still perform the task but with slightly different learned weight values. 671 

We note that this procedure is only one possible choice of generating inter-subject variability 672 

within each visual system model type, a choice that is an important open research direction that 673 

we do not address here. From this procedure, we constructed multiple trained model instances 674 

(“subjects”) for a fixed DCNN architecture, and asked whether an increasingly large pool of 675 

model “subjects” better captures the behavior of the human pool, at least as well as a monkey 676 

pool. This post-hoc analysis was conducted for the most human-consistent DCNN architecture 677 

(Inception-v3). 678 

 679 

Figure 4A shows, for each of the four behavioral metrics, the measured human-680 

consistency of subject pools of varying size (number of subjects n) of rhesus macaque monkeys 681 

(black) and ImageNet-trained Inception-v3 models (blue). The human-consistency increases with 682 

growing number of subjects for both visual systems across all behavioral metrics. To estimate 683 

the expected human-consistency for a pool of infinitely many monkey or model subjects, we fit 684 

an exponential function mapping n to the mean human-consistency values and obtained a 685 

parameter estimate for the asymptotic value (see Methods). We note that estimated asymptotic 686 

values are not significantly beyond the range of the measured data—the human-consistency of a 687 

pool of five monkey subjects reaches within 97% of the human-consistency of an estimated 688 

infinite pool of monkeys for all metrics—giving credence to the extrapolated human-consistency 689 

values. This analysis suggests that under this model of inter-subject variability, a pool of 690 

Inception-v3 subjects accurately capture archetypal human behavior at the resolution of objects 691 

(B.O1, B.O2) by our primate zone criterion (see Figure 4A, first two panels). In contrast, even a 692 

large pool of Inception-v3 subjects still fails at its final asymptote to accurately capture human 693 

behavior at the image-level (B.I1n, B.I2n) (Figure 4A, last two panels). 694 

 695 

Modification of visual system models to try to rescue their human-consistency 696 

Next, we wondered if some relatively simple changes to the DCNNIC visual system 697 

models tested here could bring them into better correspondence with the primate visual system 698 

behavior (with respect to B.I1n and B.I2n metrics). Specifically, we considered and tested the 699 

following modifications to the most human-consistent DCNNIC model visual system (Inception-700 

v3): we (1) changed the input to the model to be more primate-like in its retinal sampling 701 
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(Inception-v3 + retina-like), (2) changed the transformation (aka “decoder”) from the internal 702 

model feature representation into the behavioral output by augmenting the number of decoder 703 

training images or changing the decoder type (Inception-v3 + SVM, Inception-v3 + 704 

classifier_train), and (3) modified all of the internal filter weights of the model (aka “fine 705 

tuning”) by augmenting its ImageNet training with additional images drawn from the same 706 

distribution as our test images (Inception-v3 + synthetic-fine-tune). While some of these 707 

modifications (e.g. fine-tuning on synthetic images and increasing the number of classifier 708 

training images) had the expected effect of increasing mean overall performance (not shown, see 709 

Methods), we found that none of these modifications led to a significant improvement in its 710 

human-consistency on the behavioral metrics (Figure 4B). Thus, the failure of current DCNNIC 711 

models to accurately capture the image-level signatures of primates cannot be rescued by simple 712 

modifications on a fixed architecture.  713 

 714 

Looking for clues: Image-level comparisons of models and primates 715 

Taken together, Figures 2, 3 and 4 suggest that current DCNNIC visual system models fail 716 

to accurately capture the image-level signatures of humans and monkeys. To further examine this 717 

failure in the hopes of providing clues for model improvement, we examined the image-level 718 

residual signatures of all the visual system models, relative to the pooled human. For each model, 719 

we computed its residual signature as the difference (positive or negative) of a linear least 720 

squares regression of the model signature on the corresponding human signature. For this 721 

analysis, we focused on the B.I1n metric as it showed a clear divergence of DCNNIC models and 722 

primates, and the behavioral residual can be interpreted based only on the test images (whereas 723 

B.I2n depends on the interaction between test images and distractor choice).  724 

 725 

We first asked to what extent the residual signatures are shared between different visual 726 

system models. Figure 5A shows the similarity between the residual signatures of all pairs of 727 

models; the color of bin (i,j) indicates the proportion of explainable variance that is shared 728 

between the residual signatures of visual systems i and j. For ease of interpretation, we ordered 729 

visual system models based on their architecture and optimization procedure and partitioned this 730 

matrix into four distinct regions. Each region compares the residuals of a “source” model group 731 

with fixed architecture and optimization procedure (five Inception-v3 models optimized for 732 
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categorization on ImageNet, varying only in initial conditions and training image order) to a 733 

“target” model group. The target groups of models for each of the four regions are: 1) the pooled 734 

monkey, 2) other DCNNIC models from the source group, 3) DCNNIC models that differ in 735 

architecture but share the optimization procedure of the source group models and 4) DCNNIC 736 

models that differ slightly using an augmented optimization procedure but share the architecture 737 

of the source group models. Figure 5B shows the mean (±SD) variance shared in the residuals 738 

averaged within these four regions for all images (black dots), as well as for images that humans 739 

found to be particularly difficult (gray dots, selected based on held-out human data, see 740 

Methods). First, consistent with the results shown in Figure 3, we note that the residual 741 

signatures of this particular DCNNIC model are not well shared with the pooled monkey (r2=0.39 742 

in region 1), and this phenomenon is more pronounced for the images that humans found most 743 

difficult (r2=0.17 in region 1). However, this relatively low correlation between model and 744 

primate residuals is not indicative of spurious model residuals, as the model residual signatures 745 

were highly reliable between different instances of this fixed DCNNIC model, across random 746 

training initializations (region 2: r2=0.79, 0.77 for all and most difficult images, respectively). 747 

Interestingly, residual signatures were still largely shared with other DCNNIC models with vastly 748 

different architectures (region 3: r2=0.70, 0.65 for all and most difficult images, respectively). 749 

However, residual signatures were more strongly altered when the visual training diet of the 750 

same architecture was altered (region 4: r2=0.57, 0.46 for all and most difficult images 751 

respectively, cf. region 3). Taken together, these results indicate that the images where DCNNIC 752 

visual system models diverged from humans (and monkeys) were not spurious but were rather 753 

highly reliable across different model architectures, demonstrating that current DCNNIC models 754 

systematically and similarly diverge from primates. 755 

 756 

To look for clues for model improvement, we asked what, if any, characteristics of 757 

images might account for this divergence of models and primates. We regressed the residual 758 

signatures of DCNNIC models on four different image attributes (corresponding to the size, 759 

eccentricity, pose, and contrast of the object in each image). We used multiple linear regressions 760 

to predict the model residual signatures from all of these image attributes, and also considered 761 

each attribute individually using simple linear regressions. Figure 6A shows example images 762 

(sampled from the full set of 2400 images) with increasing attribute value for each of these four 763 
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image attributes. While the DCNNIC models were not directly optimized to display primate-like 764 

performance dependence on such attributes, we observed that the Inception-v3 visual system 765 

model nonetheless exhibited qualitatively similar performance dependencies as primates (see 766 

Figure 6B). For example, humans (black), monkeys (gray) and the Inception-v3 model (blue) all 767 

performed better, on average, for images in which the object is in the center of gaze (low 768 

eccentricity) and large in size. Furthermore, all three systems performed better, on average, for 769 

images when the pose of the object was closer to the canonical pose (see Figure 6B); this 770 

sensitivity to object pose manifested itself as a non-linear dependence due to the fact that all 771 

tested objects exhibited symmetry in at least one axis. The similarity of the patterns in Figure 6B 772 

between primates and the DCNNIC visual system models is not perfect but is striking, 773 

particularly in light of the fact that these models were not optimized to produce these patterns. 774 

However, this similarity is analogous to the similarity in the B.O1 and B.O2 metrics in that it 775 

only holds on average over many images. Looking more closely at the image-by-image 776 

comparison, we again found that the DCNNIC models failed to capture a large portion of the 777 

image-by-image variation (Figure 3). In particular, Figure 6C shows the proportion of variance 778 

explained by specific image attributes for the residual signatures of monkeys (black) and 779 

DCNNIC models (blue). We found that, taken together, all four of these image attributes 780 

explained only ~10% of the variance in DCNNIC residual signatures, and each individual 781 

attribute could explain at most a small amount of residual variance (<5% of the explainable 782 

variance). In sum, these analyses show that some behavioral effects that might provide intuitive 783 

clues to modify the DCNNIC models are already in place in those models (e.g. a dependence on 784 

eccentricity). But the quantitative image-by-image analyses of the remaining unexplained 785 

variance (Figure 6C) argue that the DCNNIC visual system models’ failure to capture primate 786 

image-level signatures cannot be further accounted for by these simple image attributes and 787 

likely stem from other factors. 788 

 789 

DISCUSSION 790 

 791 

The current work was motivated by the broad scientific goal of discovering models that 792 

quantitatively explain the neuronal mechanisms underlying primate invariant object recognition 793 

behavior. To this end, previous work had shown that specific artificial neural network models 794 
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(ANNs), drawn from a large family of deep convolutional neural networks (DCNNs) and 795 

optimized to achieve high levels of object categorization performance on large-scale image-sets, 796 

capture a large fraction of the variance in primate visual recognition behaviors (Rajalingham et 797 

al., 2015; Jozwik et al., 2016; Kheradpisheh et al., 2016; Kubilius et al., 2016; Peterson et al., 798 

2016; Wallis et al., 2017), and the internal hidden neurons of those same models also predict a 799 

large fraction of the image-driven response variance of brain activity at multiple stages of the 800 

primate ventral visual stream (Yamins et al., 2013; Cadieu et al., 2014; Khaligh-Razavi and 801 

Kriegeskorte, 2014; Yamins et al., 2014; Güçlü and van Gerven, 2015; Cichy et al., 2016; Hong 802 

et al., 2016; Seibert et al., 2016; Cadena et al., 2017; Wen et al., 2017). For clarity, we here 803 

referred to this sub-family of models as DCNNIC (to denote ImageNet-Categorization training), 804 

so as to distinguish them from all possible models in the DCNN family, and more broadly, from 805 

the super-family of all ANNs. In this work, we directly compared leading DCNNIC models to 806 

primates (humans and monkeys) with respect to their behavioral signatures at both object and 807 

image level resolution in the domain of core object recognition. In order to do so, we measured 808 

and characterized primate behavior at larger scale and higher resolution than previously possible. 809 

We first replicate prior work (Rajalingham et al., 2015) showing that, at the object level, 810 

DCNNIC models produce statistically indistinguishable behavior from primates, and we extend 811 

that work by showing that these models also match the average primate sensitivities to object 812 

contrast, eccentricity, size, and pose, a noteworthy similarity in light of the fact that these models 813 

were not optimized to produce these performance patterns. However, our primary novel result is 814 

that, examining behavior at the higher resolution of individual images, all leading DCNNIC 815 

models failed to replicate the image-level behavioral signatures of primates. An important related 816 

claim is that rhesus monkeys are more consistent with the archetypal human than any of the 817 

tested DCNNIC models (at the image-level). 818 

  819 

While it had previously been shown that DCNNIC models can diverge from human 820 

behavior on specifically chosen adversarial images (Szegedy et al., 2013), a strength of our work 821 

is that we did not optimize images to induce failure but instead randomly sampled the image 822 

generative parameter space broadly. As such, our results highlight a general, rather than 823 

adversarial-induced, failure of DCNNIC models to fully capture the neural mechanisms 824 

underlying primate core object recognition behavior. Furthermore, we showed that this failure of 825 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 12, 2018. ; https://doi.org/10.1101/240614doi: bioRxiv preprint 

https://doi.org/10.1101/240614
http://creativecommons.org/licenses/by-nc-nd/4.0/


current DCNNIC models cannot be explained by simple image attributes and cannot be rescued 826 

by simple model modifications (input image sampling, model training, and classifier variations). 827 

Taken together, these results suggest that new ANN models are needed to more precisely capture 828 

the neural mechanisms underlying primate object vision. 829 

 830 

With regards to new ANN models, we can attempt to make prospective inferences about 831 

future possible DCNNIC models from the data presented here. Based on the observed distribution 832 

of image-level human-consistency values for the DCNNIC models tested here, we infer that yet 833 

untested model instances sampled identically (i.e. from the DCNNIC model sub-family) are very 834 

likely to have similarly inadequate image-level human-consistency. While we cannot rule out the 835 

possibility that at least one model instance within the DCNNIC sub-family would fully match the 836 

image-level behavioral signatures, the probability of sampling such a model is vanishingly small 837 

(p<10-17 for B.I2n human-consistency, estimated using exact test using Gaussian kernel density 838 

estimation, see Methods, Results). An important caveat of this inference is that we may have a 839 

biased estimate of the human-consistency distribution of this model sub-family, as we did not 840 

exhaustively sample the sub-family. In particular, if the model sampling process is non-841 

stationary over time (e.g. increases in computational power over time allows larger models to be 842 

successfully trained), the human-consistency of new (i.e. yet to be sampled) models may lie 843 

outside the currently estimated distribution. Consistent with the latter, we observed that current 844 

DCNNIC cluster into two distinct “generations” separated in time (before/after the year 2015; e.g. 845 

Inception-v3 improves over AlexNet though both lie outside the primate zone in Figure 3). Thus, 846 

following this trend, it is possible that the evolution of “next-generation” models within the 847 

DCNNIC sub-family could meet our criteria for successful matching primate-like behavior.  848 

 849 

Alternatively, it is possible—and we think likely—that future DCNNIC models will also 850 

fail to capture primate-like image-level behavior, suggesting that either the architectural 851 

limitations (e.g. convolutional, feed-forward) and/or the optimization procedure (including the 852 

diet of visual images) that define this model sub-family are fundamentally limiting. Thus, ANN 853 

model sub-families utilizing different architectures (e.g. recurrent neural networks) and/or 854 

optimized for different behavioral goals (e.g. loss functions other than object classification 855 

performance, and/or images other than category-labeled ImageNet images) may be necessary to 856 
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accurately capture primate behavior. To this end, we propose that testing even individual 857 

changes to the DCNNIC models—each creating a new ANN model sub-family—may be the best 858 

way forward, because DCNNIC models currently offer the best explanations (in a predictive 859 

sense) of both the behavioral and neural phenomena of core object recognition. 860 

 861 

To reach that goal of finding a new ANN model sub-family that is a better mechanistic 862 

model of the primate ventral visual stream, we propose that even larger-scale, high-resolution 863 

behavioral measurements, such as expanded versions of the patterns of image-level performance 864 

presented here, could serve as a useful top-down optimization guides. Not only do these high-865 

resolution behavioral signatures have the statistical power to reject the currently leading ANN 866 

models, but they can also be efficiently collected at very large scale, in contrast to other guide 867 

data (e.g. large-scale neuronal measurements). Indeed, current technological tools for high-868 

throughput psychophysics in humans and monkeys (e.g. Amazon Mechanical Turk for humans, 869 

Monkey Turk for rhesus monkeys) enable time- and cost-efficient collection of large-scale 870 

behavioral datasets, such as the ~1 million behavioral trials obtained for the current work. These 871 

systems trade off an increase in efficiency with a decrease in experimental control. For example, 872 

we did not impose experimental constraints on subjects’ acuity and we can only infer likely head 873 

and gaze position. Previous work has shown that patterns of behavioral performance on object 874 

recognition tasks from in-lab and online subjects were equally reliable and virtually identical 875 

(Majaj et al., 2015), but it is not yet clear to what extent this holds at the resolution of individual 876 

images, as one might expect that variance in performance across images is more sensitive to 877 

precise head and gaze location. For this reason, we here refrain from making strong inferences 878 

from small behavioral differences, such as the small difference between humans and monkeys. 879 

Nevertheless, we argue that this sacrifice in exact experimental control while retaining sufficient 880 

power for model comparison is a good tradeoff for efficiently collecting large behavioral datasets 881 

toward the goal of constraining future models of the primate ventral visual stream.  882 

  883 
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TABLES 973 

Table 1  974 

Behavioral Metric Hit Rate False Alarm Rate 

One-versus all object-level performance  

(B.O1) (Nobjects x 1) 

"��
� 	 
#���
�$ � 
#����
�$, 


 	 1,2, … , (������� 

Proportion of trials when 

images of object i were 

correctly labeled as 

object i. 

 

Proportion of trials 

when any image was 

incorrectly labeled as 

object i. 

One-versus-other object-level performance 

B.O2 (Nobjects x Nobjects) 

"��
, )� 	 
#���
, )�$ � 
#����
, )�$, 


 	 1,2, … , (������� 

) 	 1,2, … , (������� 

Proportion of trials when 

images of object i were 

correctly labeled as i, 

when presented against 

distractor object j. 

Proportion of trials 

when images of object j 

were incorrectly 

labeled as object i 

One-versus-all image-level performance 

B.I1 (Nimages x 1) 

*��

� 	 
#���

�$ � 
#����

�$, 



 	 1,2, … , (������ 

Proportion of trials when 

image ii was correctly 

classified as object i. 

Proportion of trials 

when any image was 

incorrectly labeled as 

object i. 

One-versus-other image-level performance 

B.I2 (Nimages x Nobjects) 

*��

, )� 	 
#���

, )�$ � 
#����

, )�$, 



 	 1,2, … , (������ 

) 	 1,2, … , (������� 

Proportion of trials when 

image ii was correctly 

classified as object i, 

when presented against 

distractor object j. 

Proportion of trials 

when images of object j 

were incorrectly 

labeled as object i 

 975 

Table 1: Definition of behavioral performance metrics. The first column provides the name, 976 

abbreviation, dimensions, and equations for each of the raw performance metrics. The next two 977 

columns provide the definitions for computing the hit rate (HR) and false alarm rate (FAR) 978 

respectively. 979 

  980 
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FIGURE LEGENDS 981 

 982 

Figure 1. Images and behavioral task. (A) Two (out of 100) example images for each of the 24 983 

basic-level objects. To enforce true invariant object recognition behavior, we generated 984 

naturalistic synthetic images, each with one foreground object, by rendering a 3D model of each 985 

object with randomly chosen viewing parameters and placing that foreground object view onto a 986 

randomly chosen, natural image background. (B) Time course of example behavioral trial (zebra 987 

versus dog) for human psychophysics. Each trial initiated with a central fixation point for 500 988 

ms, followed by 100 ms presentation of a square test image (spanning 6-8° of visual angle). 989 

After extinction of the test image, two choice images were shown to the left and right. Human 990 

participants were allowed to freely view the response images for up to 1000 ms and responded 991 

by clicking on one of the choice images; no feedback was given. To neutralize top-down feature 992 

attention, all 276 binary object discrimination tasks were randomly interleaved on a trial-by-trial 993 

basis. The monkey task paradigm was nearly identical to the human paradigm, with the 994 

exception that trials were initiated by touching a fixation circle horizontally centered on the 995 

bottom third of the screen, and successful trials were rewarded with juice while incorrect choices 996 

resulted in timeouts of 1–2.5s. (C) Large-scale and high-throughput psychophysics in humans 997 

(top left), monkeys (top right), and models (bottom). Human behavior was measured using the 998 

online Amazon MTurk platform, which enabled the rapid collection ~1 million behavioral trials 999 

from 1472 human subjects. Monkey behavior was measured using a novel custom home-cage 1000 

behavioral system (MonkeyTurk), which leveraged a web-based behavioral task running on a 1001 

tablet to test many monkey subjects simultaneously in their home environment. Deep 1002 

convolutional neural network models were tested on the same images and tasks as those 1003 

presented to humans and monkeys by extracting features from the penultimate layer of each 1004 

visual system model and training back-end multi-class logistic regression classifiers. All 1005 

behavioral predictions of each visual system model were for images that were not seen in any 1006 

phase of model training.  1007 

Figure 2. Object-level comparison to human behavior. (A) One-versus-all object-level (B.O1) 1008 

signatures for the pooled human (n=1472 human subjects), pooled monkey (n=5 monkey 1009 

subjects), and several DCNNIC models. Each B.O1 signature is shown as a 24-dimensional 1010 

vector using a color scale; each colored bin corresponds to the system’s discriminability of one 1011 
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object against all others that were tested. The color scales span each signature’s full performance 1012 

range, and warm colors indicate lower discriminability. (B) Direct comparison of the B.O1 1013 

signatures of a pixel visual system model (top panel) and a DCNNIC visual system model 1014 

(Inception-v3, bottom panel) against that of the human B.O1 signature. (C) Human-consistency 1015 

of B.O1 signatures, for each of the tested model visual systems. The black and gray dots 1016 

correspond to a held-out pool of five human subjects and a pool of five macaque monkey 1017 

subjects respectively. The shaded area corresponds to the “primate zone,” a range of 1018 

consistencies delimited by the estimated human-consistency of a pool of infinitely many 1019 

monkeys (see Figure 4A). (D) One-versus-other object-level (B.O2) signatures for pooled 1020 

human, pooled monkey, and several DCNNIC models. Each B.O2 signature is shown as a 24x24 1021 

symmetric matrices using a color scale, where each bin (i,j) corresponds to the system’s 1022 

discriminability of objects i and j. Color scales similar to (A). (E) Human-consistency of B.O2 1023 

signatures for each of the tested model visual systems. Format is identical to (C).  1024 

Figure 3. Image-level comparison to human behavior. (A) Schematic for computing B.I1n. 1025 

First, the one-versus-all image-level signature (B.I1) is shown as a 240-dimensional vector (24 1026 

objects, 10 images/object) using a color scale, where each colored bin corresponds to the 1027 

system’s discriminability of one image against all distractor objects. From this pattern, the 1028 

normalized one-versus-all image-level signature (B.I1n) is estimated by subtracting the mean 1029 

performance value over all images of the same object. This normalization procedure isolates 1030 

behavioral variance that is specifically image-driven but not simply predicted by the object. (B) 1031 

Normalized one-versus-all object-level (B.I1n) signatures for the pooled human, pooled monkey, 1032 

and several DCNNIC models. Each B.I1n signature is shown as a 240-dimensional vector using a 1033 

color scale, formatted as in (A). Color scales similar to Figure 2A. (C) Human-consistency of 1034 

B.I1n signatures for each of the tested model visual systems. Format is identical to Figure 2C. 1035 

(D) Normalized one-versus-other image-level (B.I2n) signatures for pooled human, pooled 1036 

monkey, and several DCNNIC models. Each B.I2n signature is shown as a 240x24 matrix using a 1037 

color scale, where each bin (i,j) corresponds to the system’s discriminability of image i against 1038 

distractor object j. Color scales similar to Figure 2A. (E) Human-consistency of B.I2n signatures 1039 

for each of the tested model visual systems. Format is identical to Figure 2C.  1040 
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Figure 4. Effect of subject pool size and DCNN model modifications on consistency with 1041 

human behavior. (A) Accounting for natural subject-to-subject variability. For each of the four 1042 

behavioral metrics, the human-consistency distributions of monkey (blue markers) and model 1043 

(black markers) pools are shown as a function of the number of subjects in the pool (mean ± SD, 1044 

over subjects). The human consistency increases with growing number of subjects for all visual 1045 

systems across all behavioral metrics. The dashed lines correspond to fitted exponential 1046 

functions, and the parameter estimate (mean ± SE) of the asymptotic value, corresponding to the 1047 

estimated human-consistency of a pool of infinitely many subjects, is shown at the right most 1048 

point on each abscissa. (B) Model modifications that aim to rescue the DCNNIC models. We 1049 

tested several simple modifications (see Methods) to the most human-consistent DCNNIC visual 1050 

system model (Inception-v3). Each panel shows the resulting human-consistency per modified 1051 

model (mean ± SD over different model instances, varying in random filter initializations) for 1052 

each of the four behavioral metrics. 1053 

 1054 

Figure 5. Analysis of unexplained human behavioral variance. (A) Residual similarity 1055 

between all pairs of human visual system models. The color of bin (i,j) indicates the proportion 1056 

of explainable variance that is shared between the residual signatures of visual systems i and j. 1057 

For ease of interpretation, we ordered visual system models based on their architecture and 1058 

optimization procedure and partitioned this matrix into four distinct regions. (B) Summary of 1059 

residual similarity. For each of the four regions in Figure 5A, the similarity to the residuals of 1060 

Inception-v3 (region 2 in (A)) is shown (mean ± SD, within each region) for all images (black 1061 

dots), and for images that humans found to be particularly difficult (gray dots, selected based on 1062 

held-out human data).  1063 

 1064 

Figure 6. Dependence of primate and DCNN model behavior on image attributes. (A) 1065 

Example images with increasing attribute value, for each of the four pre-defined image attributes 1066 

(see Methods). (B) Dependence of performance (B.I1n) as a function of four image attributes, for 1067 

humans, monkeys and a DCNNIC model (Inception-v3). (C) Proportion of explainable variance 1068 

of the residual signatures of monkeys (black) and DCNNIC models (blue) that is accounted for by 1069 

each of the pre-defined image attributes. Error-bars correspond to SD over trial re-sampling for 1070 

monkeys, and over different models for DCNNIC models. 1071 
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