

1 **Large-scale, high-resolution comparison of the core visual object
2 recognition behavior of humans, monkeys, and state-of-the-art deep
3 artificial neural networks**

4
5 Abbreviated title: Comparing object recognition between primates and models
6

7 Rishi Rajalingham*, Elias B. Issa*, Pouya Bashivan, Kohitij Kar, Kailyn Schmidt, and James J.
8 DiCarlo
9

10 McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences
11 Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
12

13 *R.R. and E.B.I. contributed equally to this work.
14

15 Correspondence should be addressed to James J. DiCarlo, McGovern Institute for Brain
16 Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology,
17 77 Massachusetts Institute of Technology, 46-6161, Cambridge, MA 02139. E-mail:
18 dicarlo@mit.edu
19

20 E. Issa's present address: Department of Neuroscience, Zuckerman Mind Brain Behavior
21 Institute, Columbia University, New York, NY 10027
22

23 Targeting *Journal of Neuroscience*
24

25 Title 19 words
26

27 Abbreviated Title 50 characters
28

29 Abstract 242 words
30

31 Significance Statement 97 words
32

33 Introduction 649 words
34

35 Discussion 1188 words
36

37 Figures 6
38

39 *All word limits include citations
40

41 **AUTHOR CONTRIBUTIONS**
42

43 E.B.I., R.R., and J.J.D designed the experiments. E.B.I., K.S., R.R., and K.K. carried out the
44 experiments. R.R., E.B.I., and P.B. performed the data analysis and modeling. R.R., E.B.I., and
45 J.J.D. wrote the manuscript.
46

47 **ACKNOWLEDGEMENTS**
48

49 This research was supported by US National Eye Institute grants R01-EY014970 (J.J.D.) and
50 K99-EY022671 (E.B.I.), Office of Naval Research MURI-114407 (J.J.D.), IARPA Contract
51 D16PC00002 (J.J.D), Engineering Research Council of Canada (R.R.), and The McGovern
52 Institute for Brain Research
53

54 **COMPETING FINANCIAL INTERESTS**
55

56 The authors declare no competing financial interests.
57

47 **ABSTRACT**

48

49 Primates—including humans—can typically recognize objects in visual images at a
50 glance even in the face of naturally occurring identity-preserving image transformations (e.g.
51 changes in viewpoint). A primary neuroscience goal is to uncover neuron-level mechanistic
52 models that quantitatively explain this behavior by predicting primate performance for each and
53 every image. Here, we applied this stringent behavioral prediction test to the leading mechanistic
54 models of primate vision (specifically, deep, convolutional, artificial neural networks; ANNs) by
55 directly comparing their behavioral signatures against those of humans and rhesus macaque
56 monkeys. Using high-throughput data collection systems for human and monkey psychophysics,
57 we collected over one million behavioral trials for 2400 images over 276 binary object
58 discrimination tasks. Consistent with previous work, we observed that state-of-the-art deep, feed-
59 forward convolutional ANNs trained for visual categorization (termed DCNN_{IC} models)
60 accurately predicted primate patterns of object-level confusion. However, when we examined
61 behavioral performance for individual images within each object discrimination task, we found
62 that all tested DCNN_{IC} models were significantly non-predictive of primate performance, and
63 that this prediction failure was not accounted for by simple image attributes, nor rescued by
64 simple model modifications. These results show that current DCNN_{IC} models cannot account for
65 the image-level behavioral patterns of primates, and that new ANN models are needed to more
66 precisely capture the neural mechanisms underlying primate object vision. To this end, large-
67 scale, high-resolution primate behavioral benchmarks—such as those obtained here—could serve
68 as direct guides for discovering such models.

69

70

71 **SIGNIFICANCE STATEMENT**

72

73 Recently, specific feed-forward deep convolutional artificial neural networks (ANNs)
74 models have dramatically advanced our quantitative understanding of the neural mechanisms
75 underlying primate core object recognition. In this work, we tested the limits of those ANNs by
76 systematically comparing the behavioral responses of these models with the behavioral responses
77 of humans and monkeys, at the resolution of individual images. Using these high-resolution
78 metrics, we found that all tested ANN models significantly diverged from primate behavior.
79 Going forward, these high-resolution, large-scale primate behavioral benchmarks could serve as
80 direct guides for discovering better ANN models of the primate visual system.

81

82 **INTRODUCTION**

83

84 Primates—both human and non-human—can typically recognize objects in visual images
85 at a glance, even in the face of naturally occurring identity-preserving transformations such as
86 changes in viewpoint. This view-invariant visual object recognition ability is thought to be
87 supported primarily by the primate ventral visual stream (DiCarlo et al., 2012). A primary
88 neuroscience goal is to construct computational models that quantitatively explain the neural
89 mechanisms underlying this ability. That is, our goal is to discover artificial neural networks
90 (ANNs) that accurately predict neuronal firing rate responses at all levels of the ventral stream
91 and its behavioral output. To this end, specific models within a large family of deep,
92 convolutional neural networks (DCNNs), optimized by supervised training on large-scale
93 category-labeled image-sets (ImageNet) to match human-level categorization performance
94 (Krizhevsky et al., 2012; LeCun et al., 2015), have been put forth as the leading ANN models of
95 the ventral stream (Yamins and DiCarlo, 2016). We refer to this sub-family as DCNN_{IC} models
96 (IC to denote ImageNet-categorization pre-training), so as to distinguish them from all possible
97 models in the DCNN family, and more broadly, from the super-family of all ANNs. To date, it
98 has been shown that DCNN_{IC} models display internal feature representations similar to neuronal
99 representations along the primate ventral visual stream (Yamins et al., 2013; Cadieu et al., 2014;
100 Khaligh-Razavi and Kriegeskorte, 2014; Yamins et al., 2014), and they exhibit behavioral
101 patterns similar to the behavioral patterns of pairwise object confusions of primates
102 (Rajalingham et al., 2015). Thus, DCNN_{IC} models may provide a quantitative account of the
103 neural mechanisms underlying primate core object recognition behavior.

104

105 However, several studies have shown that DCNN_{IC} models can diverge drastically from
106 humans in object recognition behavior, especially with regards to particular images optimized to
107 be adversarial to these networks (Goodfellow et al., 2014; Nguyen et al., 2015). Related work
108 has shown that specific image distortions are disproportionately challenging to current DCNNs,
109 as compared to humans (RichardWebster et al., 2016; Dodge and Karam, 2017; Geirhos et al.,
110 2017; Hosseini et al., 2017). Such image-specific failures of the current ANN models would
111 likely not be captured by “object-level” behavioral metrics (e.g. the pattern of pairwise object
112 confusions mentioned above) that are computed by pooling over hundreds of images and thus are

113 not sensitive to variation in difficulty across images of the same object. To overcome this
114 limitation of prior work, we here aimed to use scalable behavioral testing methods to precisely
115 characterize primate behavior at the resolution of individual images and to directly compare
116 leading DCNN models to primates over the domain of core object recognition behavior at this
117 high resolution.

118

119 We focused on *core invariant object recognition*—the ability to identify objects in visual
120 images in the central visual field during a single, natural viewing fixation (DiCarlo et al., 2012).
121 We further restricted our behavioral domain to *basic-level* object discriminations, as defined
122 previously (Rosch et al., 1976). Within this domain, we collected large-scale, high-resolution
123 measurements of human and monkey behavior (over a million behavioral trials) using high-
124 throughput psychophysical techniques—including a novel home-cage behavioral system for
125 monkeys. These data enabled us to systematically compare all systems at progressively higher
126 resolution. At lower resolutions, we replicated previous findings that humans, monkeys, and
127 DCNN_{IC} models all share a common pattern of object-level confusion (Rajalingham et al., 2015).
128 However, at the higher resolution of individual images, we found that the behavior of all tested
129 DCNN_{IC} models was significantly different from human and monkey behavior, and this model
130 prediction failure could not be easily rescued by simple model modifications. These results show
131 that current DCNN_{IC} models do not fully account for the image-level behavioral patterns of
132 primates, suggesting that new ANN models are needed to more precisely capture the neural
133 mechanisms underlying primate object vision. To this end, large-scale high-resolution behavioral
134 benchmarks, such as those obtained here, could serve as a strong top-down constraint for
135 efficiently discovering such models.

136

137

138 MATERIALS & METHODS

139

140 *Visual images*

141 We examined basic-level, core object recognition behavior using a set of 24 broadly-
142 sampled objects that we previously found to be reliably labeled by independent human subjects,
143 based on the definition of basic-level proposed by (Rosch et al., 1976). For each object, we

144 generated 100 naturalistic synthetic images by first rendering a 3D model of the object with
145 randomly chosen viewing parameters (2D position, 3D rotation and viewing distance), and then
146 placing that foreground object view onto a randomly chosen, natural image background. To do
147 this, each object was first assigned a canonical position (center of gaze), scale (~2 degrees) and
148 pose, and then its viewing parameters were randomly sampled uniformly from the following
149 ranges for object translation ([-3,3] degrees in both h and v), rotation ([-180,180] degrees in all
150 three axes) and scale ([x0.7, x1.7]. Background images were sampled randomly from a large
151 database of high-dynamic range images of indoor and outdoor scenes obtained from Dosch
152 Design (www.doschdesign.com). This image generation procedure enforces invariant object
153 recognition, rather than image matching, as it requires the visual recognition system (human,
154 animal or model) to tackle the “invariance problem,” the computational crux of object
155 recognition (Ullman and Humphreys, 1996; Pinto et al., 2008). Using this procedure, we
156 previously generated 2400 images (100 images per object) rendered at 1024x1024 pixel
157 resolution with 256-level gray scale and subsequently resized to 256x256 pixel resolution for
158 human psychophysics, monkey psychophysics and model evaluation (Rajalingham et al., 2015).
159 In the current work, we focused our analyses on a randomly subsampled, and then fixed, sub-set
160 of 240 images (10 images per object; here referred to as the “primary test images”). Figure 1A
161 shows the full list of 24 objects, with two example images of each object.
162

163 Because all of the images were generated from synthetic 3D object models, we had
164 explicit knowledge of the viewpoint parameters (position, size, and pose) for each object in each
165 image, as well as perfect segmentation masks. Taking advantage of this feature, we characterized
166 each image based on these high-level attributes, consisting of size, eccentricity, relative pose and
167 contrast of the object in the image. The size and eccentricity of the object in each image were
168 computed directly from the corresponding viewpoint parameters, under the assumption that the
169 entire image would subtend 6° at the center of visual gaze (+/-3° in both azimuth and elevation;
170 see below). For each synthetic object, we first defined its “canonical” 3D pose vector, based on
171 independent human judgments. To compute the relative pose attribute of each image, we
172 estimated the difference between the object’s 3D pose and its canonical 3D pose. Pose
173 differences were computed as distances in unit quaternion representations: the 3D pose (r_{xy} , r_{xz} ,
174 r_{yz}) was first converted into unit quaternions, and distances between quaternions q_1 , q_2 were

175 estimated as $\cos^{-1}|q_1 \cdot q_2|$ (Huynh, 2009). To compute the object contrast, we measured the
176 absolute difference between the mean of the pixel intensities corresponding to the object and the
177 mean of the background pixel intensities in the vicinity of the object (specifically, within 25
178 pixels of any object pixel, analogous to computing the local foreground-background luminance
179 difference of a foreground object in an image). Figure 5C shows example images with varying
180 values for the four image attributes.

181

182 *Core object recognition behavioral paradigm*

183 Core object discrimination is defined as the ability to discriminate between two or more
184 objects in visual images presented under high view uncertainty in the central visual field (~10°),
185 for durations that approximate the typical primate, free-viewing fixation duration (~200 ms)
186 (DiCarlo and Cox, 2007; DiCarlo et al., 2012). As in our previous work (Rajalingham et al.,
187 2015), the behavioral task paradigm consisted of a interleaved set of binary discrimination tasks.
188 Each binary discrimination task is an object discrimination task between a pair of objects (e.g.
189 elephant vs. bear). Each such binary task is balanced in that the test image is equally likely
190 (50%) to be of either of the two objects. On each trial, a test image is presented, followed by a
191 choice screen showing canonical views of the two possible objects (the object that was not
192 displayed in the test image is referred to as the “distractor” object, but note that objects are
193 equally likely to be distractors and targets). Here, 24 objects were tested, which resulted in 276
194 binary object discrimination tasks. To neutralize feature attention, these 276 tasks are randomly
195 interleaved (trial by trial), and the global task is referred to as a basic-level, core object
196 recognition task paradigm.

197

198 *Testing human behavior*

199 All human behavioral data presented here were collected from 1476 human subjects on
200 Amazon Mechanical Turk (MTurk) performing the task paradigm described above. Subjects
201 were instructed to report the identity of the foreground object in each presented image from
202 among the two objects presented on the choice screen (Fig 1B). Because all 276 tasks were
203 interleaved randomly (trial-by-trial), subjects could not deploy feature attentional strategies
204 specific to each object or specific to each binary task to process each test image.

205

206 Figure 1B illustrates the time course of each behavioral trial, for a particular object
207 discrimination task (zebra versus dog). Each trial initiated with a central black point for 500 ms,
208 followed by 100 ms presentation of a test image containing one foreground object presented
209 under high variation in viewing parameters and overlaid on a random background, as described
210 above (see *Visual images* above). Immediately after extinction of the test image, two choice
211 images, each displaying a single object in a canonical view with no background, were shown to
212 the left and right. One of these two objects was always the same as the object that generated the
213 test image (i.e., the correct object choice), and the location of the correct object (left or right) was
214 randomly chosen on each trial. After clicking on one of the choice images, the subject was
215 queued with another fixation point before the next test image appeared. No feedback was given;
216 human subjects were never explicitly trained on the tasks. Under assumptions of typical
217 computer ergonomics, we estimate that images were presented at 6–8° of visual angle at the
218 center of gaze, and the choice object images were presented at ±6–8° of eccentricity along the
219 horizontal meridian.

220

221 We measured human behavior using the online Amazon MTurk platform (see Figure 1C),
222 which enables efficient collection of large-scale psychophysical data from crowd-sourced
223 “human intelligence tasks” (HITs). The reliability of the online MTurk platform has been
224 validated by comparing results obtained from online and in-lab psychophysical experiments
225 (Majaj et al., 2015; Rajalingham et al., 2015). We pooled 927,296 trials from 1472 human
226 subjects to characterize the aggregate human behavior, which we refer to as the “pooled” human
227 (or “archetypal” human). Each human subject performed only a small number of trials (~150) on
228 a subset of the images and binary tasks. All 2400 images were used for behavioral testing, but in
229 some of the HITs, we biased the image selection towards the 240 primary test images (1424 ± 70
230 trials/image on this subsampled set, versus 271 ± 93 trials/image on the remaining images, mean \pm
231 SD) to efficiently characterize behavior at image level resolution. Images were randomly drawn
232 such that each human subject was exposed to each image a relatively small number of times
233 (1.5 ± 2.0 trials/image per subject, mean \pm SD), in order to mitigate potential alternative
234 behavioral strategies (e.g. “memorization” of images) that could arise from a finite image set.
235 Behavioral signatures at the object-level (B.O1, B.O2, see *Behavioral metrics and signatures*)
236 were measured using all 2400 test images, while image-level behavioral signatures (B.I1n, B.I2n,

237 see *Behavioral metrics and signatures*) were measured using the 240 primary test images. (We
238 observed qualitatively similar results using those metrics on the full 2400 test images, but we
239 here focus on the primary test images as the larger number of trials leads to lower noise levels).

240

241 Five other human subjects were separately recruited on MTurk to each perform a large
242 number of trials on the same images and tasks ($53,097 \pm 15,278$ trials/subject, mean \pm SD).
243 Behavioral data from these five subjects was not included in the characterization of the pooled
244 human described above, but instead aggregated together to characterize a distinct held-out
245 human pool. For the scope of the current work, this held-out human pool—which largely
246 replicated all behavioral signatures of the larger archetypal human (see Figures 2 and 3)—served
247 as an independent validation of our human behavioral measurements.

248

249 *Testing monkey behavior*

250 Five adult male rhesus macaque monkeys (*Macaca mulatta*, subjects *M*, *Z*, *N*, *P*, *B*) were
251 tested on the same basic-level, core object recognition task paradigm described above, with
252 minor modification as described below. All procedures were performed in compliance with
253 National Institutes of Health guidelines and the standards of the Massachusetts Institute of
254 Technology Committee on Animal Care and the American Physiological Society. To efficiently
255 characterize monkey behavior, we used a novel home-cage behavioral system developed in our
256 lab (termed MonkeyTurk, see Fig. 1C). This system leveraged a tablet touchscreen (9" Google
257 Nexus or 10.5" Samsung Galaxy Tab S) and used a web application to wirelessly load the task
258 and collect the data (code available at <https://github.com/dicarlolab/mkturk>). Analogous to the
259 online Amazon Mechanical Turk, which allows for efficient psychophysical assays of a large
260 number (hundreds) of human users in their native environments, MonkeyTurk allowed us to test
261 many monkey subjects simultaneously in their home environment. Each monkey voluntarily
262 initiated trials, and each readily performed the task a few hours each day that the task apparatus
263 was made available to it. At an average rate of ~2,000 trials per day per monkey, we collected a
264 total of 836,117 trials from the five monkey subjects over a period of ~3 months.

265

266 Monkey training is described in detail elsewhere (Rajalingham et al., 2015). Briefly, all
267 monkeys were initially trained on the match-test-image-to-object rule using other images and

268 were also trained on discriminating the particular set of 24 objects tested here using a separate set
269 of training images rendered from these objects, in the same manner as the main testing images.
270 Two of the monkeys subjects (Z and M) were previously trained in the lab setting, and the
271 remaining three subjects were trained using MonkeyTurk directly in their home cages and did
272 not have significant prior lab exposure. Once monkeys reached saturation performance on
273 training images, we began the behavioral testing phase to collect behavior on test images.
274 Monkeys did improve throughout the testing phase, exhibiting an increase in performance
275 between the first and second half of trials of $4\% \pm 0.9\%$ (mean \pm SEM over five monkey subjects).
276 However, the image-level behavioral signatures obtained from the first and the second halves of
277 trials were highly correlated to each other (B.I1 noise-adjusted correlation of 0.85 ± 0.06 , mean \pm
278 SEM over five monkey subjects, see *Behavioral metrics and signatures* below), suggesting that
279 monkeys did not significantly alter strategies (e.g. did not “memorize” images) throughout the
280 behavioral testing phase.

281

282 The monkey task paradigm was nearly identical to the human paradigm (see Figure 1B),
283 with the exception that trials were initiated by touching a white “fixation” circle horizontally
284 centered on the bottom third of the screen (to avoid occluding centrally-presented test images
285 with the hand). This triggered a 100ms central presentation of a test image, followed
286 immediately by the presentation of the two choice images (Fig. 1B, location of correct choice
287 randomly assigned on each trial, identical to the human task). Unlike the main human task,
288 monkeys responded by directly touching the screen at the location of one of the two choice
289 images. Touching the choice image corresponding to the object shown in the test image resulted
290 in the delivery of a drop of juice through a tube positioned at mouth height (but not obstructing
291 view), while touching the distractor choice image resulted in a three second timeout. Because
292 gaze direction typically follows the hand during reaching movements, we assumed that the
293 monkeys were looking at the screen during touch interactions with the fixation or choice targets.
294 In both the lab and in the home cage, we maintained total test image size at ~ 6 degrees of visual
295 angle at the center of gaze, and we took advantage of the retina-like display qualities of the tablet
296 by presenting images pixel matched to the display (256 x 256 pixel image displayed using 256 x
297 256 pixels on the tablet at a distance of 8 inches) to avoid filtering or aliasing effects.
298

299 As with Mechanical Turk testing in humans, MonkeyTurk head-free home-cage testing
300 enables efficient collection of reliable, large-scale psychophysical data but it likely does not yet
301 achieve the level of experimental control that is possible in the head-fixed laboratory setting.
302 However, we note that when subjects were engaged in home-cage testing, they reliably had their
303 mouth on the juice tube and their arm positioned through an armhole. These spatial constraints
304 led to a high level of head position trial-by-trial reproducibility during performance of the task
305 paradigm. Furthermore, when subjects were in this position, they could not see other animals as
306 the behavior box was opaque, and subjects performed the task at a rapid pace 40 trials/minute
307 suggesting that they were not frequently distracted or interrupted. The location of the upcoming
308 test image (but not the location of the object within that test image) was perfectly predictable at
309 the start of each behavioral trial, which likely resulted in a reliable, reproduced gaze direction at
310 the moment that each test image was presented. The relatively short—but natural and high
311 performing (Cadieu et al., 2014)—test image duration (100 ms) ensured that saccadic eye
312 movements were unlikely to influence test image performance (as they generally take ~200 ms to
313 initiate in response to the test image, and thus well after the test image has been extinguished).

314

315 *Testing model behavior*

316 We tested a number of different deep convolutional neural network (DCNN) models on
317 the exact same images and tasks as those presented to humans and monkeys. Importantly, our
318 core object recognition task paradigm is closely analogous to the large-scale ImageNet 1000-way
319 object categorization task for which these networks were optimized and thus expected to perform
320 well. We focused on publicly available DCNN model architectures that have proven highly
321 successful with respect to this computer vision benchmark over the past five years: AlexNet
322 (Krizhevsky et al., 2012), NYU (Zeiler and Fergus, 2014), VGG (Simonyan and Zisserman,
323 2014), GoogleNet (Szegedy et al., 2013), Resnet (He et al., 2016), and Inception-v3 (Szegedy et
324 al., 2013). As this is only a subset of possible DCNN models, we refer to these as the DCNN_{IC}
325 (to denote ImageNet-Categorization) visual system model sub-family. For each of the publicly
326 available model architectures, we first used ImageNet-categorization-trained model instances,
327 either using publicly available trained model instances or training them to saturation on the 1000-
328 way classification task in-house. Training took several days on 1-2 GPUs.

329

330 We then performed psychophysical experiments on each ImageNet-trained DCNN model
331 to characterize their behavior on the exact same images and tasks as humans and monkeys. We
332 first adapted these ImageNet-trained models to our 24-way object recognition task by re-training
333 the final class probability layer (initially corresponding to the probability output of the 1000-way
334 ImageNet classification task) while holding all other layers fixed. In practice, this was done by
335 extracting features from the penultimate layer of each DCNN_{IC} (i.e. top-most prior to class
336 probability layer), on the same images that were presented to humans and monkeys, and training
337 back-end multi-class logistic regression classifiers to determine the cross-validated output class
338 probability for each image. This procedure is illustrated in Figure 1C. To estimate the hit rate of
339 a given image in a given binary classification task, we renormalized the 24-way class
340 probabilities of that image, considering only the two relevant classes, to sum to one. Object-level
341 and image-level behavioral metrics were computed based on these hit rate estimates (as
342 described in *Behavioral metrics and signatures* below). Importantly, this procedure assumes that
343 the model “retina” layer processes the central 6 degrees of the visual field. It also assumes that
344 linear discriminants (“readouts”) of the model’s top feature layer are its behavioral output (as
345 intended by the model designers). Manipulating either of these choices (e.g. resizing the input
346 images such that they span only part of the input layer, or building linear discriminates for
347 behavior using a different model feature layer) would result in completely new, testable ANN
348 models that we do not test here.

349

350 From these analyses, we selected the most *human-consistent* DCNN_{IC} architecture
351 (Inception-v3, see *Behavioral consistency* below), fixed that architecture, and then performed
352 post-hoc analyses in which we varied: the input image sampling, the initial parameter settings
353 prior to training, the filter training images, the type of classifiers used to generate the behavior
354 from the model features, and the classifier training images. To examine input image sampling,
355 we re-trained the Inception-v3 architecture on images from ImageNet that were first spatially
356 filtered to match the spatial sampling of the primate retina (i.e. an approximately exponential
357 decrease in cone density away from the fovea) by effectively simulating a fish-eye
358 transformation on each image. These images were at highest resolution at the “fovea” (i.e. center
359 of the image) with gradual decrease in resolution with increasing eccentricity. To examine the
360 analog of “inter-subject variability”, we constructed multiple trained model instances

361 (“subjects”), where the architecture and training images were held fixed (Inception-v3 and
362 ImageNet, respectively) but the model filter weights initial condition and order of training
363 images were randomly varied for each model instance. Importantly, this procedure is only one
364 possible choice for simulating inter-subject variability for DCNN models, a choice that is an
365 important open research direction that we do not address here. To examine the effect of model
366 training, we fine-tuned an ImageNet-trained Inception-v3 model on a synthetic image set
367 consisting of ~6.9 million images of 1049 objects (holding out 50,000 images for model
368 validation). These images were generated using the same rendering pipeline as our test images,
369 but the objects were non-overlapping with the 24 test objects presented here. As expected, fine-
370 tuning on synthetic images led to an overall increase in performance of ~5%. We tested the effect
371 of different classifiers to generate model behavior by testing both multi-class logistic regression
372 and support vector machine classifiers. Additionally, we tested the effect of varying the number
373 of training images used to train those classifiers (20 versus 50 images per class).

374

375 *Behavioral metrics and signatures*

376 To characterize the behavior of any visual system, we here introduce four behavioral (B)
377 metrics of increasing richness, requiring increasing amounts of data to measure reliably. Each
378 behavioral metric computes a pattern of unbiased behavioral performance, using a sensitivity
379 index: $d' = Z(\text{HitRate}) - Z(\text{FalseAlarmRate})$, where Z is the inverse of the cumulative
380 Gaussian distribution. The various metrics differ in the resolution at which hit rates and false
381 alarm rates are computed. Table 1 summarizes the four behavioral metrics, varying the hit-rate
382 resolution (object-level or image-level) and the false-alarm resolution (one-versus-all or one-
383 versus-other). When each metric is applied to the behavioral data of a visual system—biological
384 or artificial—we refer to the result as one behavioral “signature” of that system. Note that we do
385 not consider the signatures obtained here to be the final say on the behavior of these biological or
386 artificial systems—in the terms defined here, new experiments using new objects/images but the
387 same metrics would produce additional behavioral signatures.

388

389 The four behavioral metrics we chose are as follows: First, the one-versus-all object-level
390 performance metric (termed B.O1) estimates the discriminability of each object from all other
391 objects, pooling across all distractor object choices. Since we here tested 24 objects, the resulting

392 B.O1 signature has 24 independent values. Second, the one-versus-other object-level
393 performance metric (termed B.O2) estimates the discriminability of each specific pair of objects,
394 or the pattern of pairwise object confusions. Since we here tested 276 interleaved binary object
395 discrimination tasks, the resulting B.O2 signature has 276 independent values (the off-diagonal
396 elements on one half of the 24x24 symmetric matrix). Third, the one-versus-all image-level
397 performance metric (termed B.I1) estimates the discriminability of each image from all other
398 objects, pooling across all possible distractor choices. Since we here focused on the primary
399 image test set of 240 images (10 per object, see above), the resulting B.I1 signature has 240
400 independent values. Fourth, the one-versus-other image-level performance metric (termed B.I2)
401 estimates the discriminability of each image from each distractor object. Since we here focused
402 on the primary image test set of 240 images (10 per object, see above) with 23 distractors, the
403 resulting B.I2 signature has 5520 independent values.

404

405 Naturally, object-level and image-level behavioral signatures are tightly linked. For
406 example, images of a particularly difficult-to-discriminate object would inherit lower
407 performance values on average as compared to images from a less difficult-to-discriminate
408 object. To isolate the behavioral variance that is specifically driven by image variation and not
409 simply predicted by the objects (and thus already captured by B.O1 and B.O2), we defined
410 normalized image-level behavioral metrics (termed B.I1n, B.I2n) by subtracting the mean
411 performance values over all images of the same object and task. This process is schematically
412 illustrated in Figure 3A. We note that the resulting normalized image-level behavioral signatures
413 capture a significant proportion of the total image-level behavioral variance in our data (e.g.
414 52%, 58% of human B.I1 and B.I2 variance is driven by image variation, independent of object
415 identity). In this study, we use these normalized metrics for image-level behavioral comparisons
416 between models and primates (see Results).

417

418 *Behavioral Consistency*

419 To quantify the similarity between a model visual system and the human visual system
420 with respect to a given behavioral metric, we used a measure called the “*human-consistency*” as
421 previously defined (Johnson et al., 2002). *Human-consistency* ($\tilde{\rho}$) is computed, for each of the
422 four behavioral metrics, as a noise-adjusted correlation of behavioral signatures (DiCarlo and

423 Johnson, 1999). For each visual system, we randomly split all behavioral trials into two equal
424 halves and applied each behavioral metric to each half, resulting in two independent estimates of
425 the system's behavioral signature with respect to that metric. We took the Pearson correlation
426 between these two estimates of the behavioral signature as a measure of the reliability of that
427 behavioral signature given the amount of data collected, i.e. the split-half internal reliability. To
428 estimate the *human-consistency*, we computed the Pearson correlation over all the independent
429 estimates of the behavioral signature from the model (**m**) and the human (**h**), and we then divide
430 that raw Pearson correlation by the geometric mean of the split-half internal reliability of the
431 same behavioral signature measured for each system: $\tilde{\rho}(\mathbf{m}, \mathbf{h}) = \frac{\rho(\mathbf{m}, \mathbf{h})}{\sqrt{\rho(\mathbf{m}, \mathbf{m})\rho(\mathbf{h}, \mathbf{h})}}$.

432

433 Since all correlations in the numerator and denominator were computed using the same
434 amount of trial data (exactly half of the trial data), we did not need to make use of any prediction
435 formulas (e.g. extrapolation to larger number of trials using Spearman-Brown prediction
436 formula). This procedure was repeated 10 times with different random split-halves of trials. Our
437 rationale for using a reliability-adjusted correlation measure for *human-consistency* was to
438 account for variance in the behavioral signatures that arises from “noise,” i.e., variability that is
439 not replicable by the experimental condition (image and task) and thus that no model can be
440 expected to predict (DiCarlo and Johnson, 1999; Johnson et al., 2002). In sum, if the model (m)
441 is a replica of the archetypal human (h), then its expected human-consistency is 1.0, regardless of
442 the finite amount of data that are collected.

443

444 *Characterization of Residuals*

445 In addition to measuring the similarity between the behavioral signatures of primates and
446 models (using *human-consistency* analyses, as described above), we examined the corresponding
447 differences, termed “residual signatures.” Each candidate visual system model’s residual
448 signature was estimated as the residual of a linear least squares regression of the model’s
449 signature on the corresponding human signature and a free intercept parameter. This procedure
450 effectively captures the differences between human and model signatures after accounting for
451 overall performance differences. Residual signatures were estimated on disjoint split-halves of
452 trials, repeating 10 times with random trial permutations. Residuals were computed with respect
453 to the normalized one-versus-all image-level performance metric (B.I1n) as this metric showed a

454 clear difference between DCNN_{IC} models and primates, and the behavioral residual can be
455 interpreted based only the test images (i.e. we can assign a residual per image).

456
457 To examine the extent to which the difference between each model and the archetypal
458 human is reliably shared across different models, we measured the Pearson correlation between
459 the residual signatures of pairs of models. Residual similarity was quantified as the proportion of
460 shared variance, defined as the square of the noise-adjusted correlation between residual
461 signatures (the noise-adjustment was done as defined in equation above). Correlations of residual
462 signatures were always computed across distinct split-halves of data, to avoid introducing
463 spurious correlations from subtracting common noise in the human data. We measured the
464 residual similarity between all pairs of tested models, holding both architecture and optimization
465 procedure fixed (between instances of the ImageNet-categorization trained Inception-v3 model,
466 varying in filter initial conditions), varying the architecture while holding the optimization
467 procedure fixed (between all tested ImageNet-categorization trained DCNN architectures), and
468 holding the architecture fixed while varying the optimization procedure (between ImageNet-
469 categorization trained Inception-v3 and synthetic-categorization fine-tuned Inception-v3
470 models). This analysis addresses not only the reliability of the failure of DCNN_{IC} models to
471 predict human behavior (deviations from humans), but also the relative importance of the
472 characteristics defining similarities within the model sub-family (namely, the architecture and the
473 optimization procedure). We first performed this analysis for residual signatures over the 240
474 primary test images, and subsequently zoomed in on subsets of images that humans found to be
475 particularly difficult. This image selection was made relative to the distribution of image-level
476 performance of held-out human subjects (B.I1 metric from five subjects); difficult images were
477 defined as ones with performance below the 25th percentile of this distribution.

478
479 To examine whether the difference between each model and humans can be explained by
480 simple human-interpretable stimulus attributes, we regressed each DCNN_{IC} model's residual
481 signature on image attributes (object size, eccentricity, pose, and contrast). Briefly, we
482 constructed a design matrix from the image attributes (using individual attributes, or all
483 attributes), and used multiple linear least squares regression to predict the image-level residual
484 signature. The multiple linear regression was tested using two-fold cross-validation over trials.

485 The relative importance of each attribute (or groups of attributes) was quantified using the
486 proportion of explainable variance (i.e. variance remaining after accounting for noise variance)
487 explained from the residual signature.

488

489 *Primate behavior zone*

490 In this work, we are primarily concerned with the behavior of an “archetypal human”,
491 rather than the behavior of any given individual human subject. We operationally defined this
492 concept as the common behavior over many humans, obtained by pooling together trials from a
493 large number of individual human subjects and treating this human pool as if it were acquired
494 from a single behaving agent. Due to inter-subject variability, we do not expect any given human
495 or monkey subject to be perfectly consistent with this archetypal human (i.e. we do not expect it
496 to have a *human-consistency* of 1.0). Given current limitations of monkey psychophysics, we are
497 not yet able to measure the behavior of very large number of monkey subjects at high resolution
498 and consequently cannot directly estimate the *human-consistency* of the corresponding
499 “archetypal monkey” to the human pool. Rather, we indirectly estimated this value by first
500 measuring *human-consistency* as a function of number of individual monkey subjects pooled
501 together (n), and extrapolating the *human-consistency* estimate for pools of very large number of
502 subjects (as n approaches infinity). Extrapolations were done using least squares fitting of an
503 exponential function $\tilde{\rho}(n) = a + b \cdot e^{-cn}$ (see Figure 4).

504

505 For each behavioral metric, we defined a “primate zone” as the range of *human-*
506 *consistency* values delimited by estimates $\tilde{\rho}_{M\infty}$ and $\tilde{\rho}_{H\infty}$ as lower and upper bounds respectively.
507 $\tilde{\rho}_{M\infty}$ corresponds to the extrapolated estimate of *human-consistency* of a large (i.e. infinitely
508 many) pool of rhesus macaque monkeys; $\tilde{\rho}_{H\infty}$ is by definition equal to 1.0. Thus, the primate
509 zone defines a range of *human-consistency* values that correspond to models that accurately
510 capture the behavior of the human pool, at least as well as an extrapolation of our monkey
511 sample. In this work, we defined this range of *human-consistency* values as the criterion for
512 success for computational models of primate visual object recognition behavior.

513

514 To make a global statistical inference about whether models sampled from the DCNN_{IC}
515 sub-family meet or fall short of this criterion for success, we attempted to reject the hypothesis

516 that, for a given behavioral metric, the *human-consistency* of DCNN_{IC} models is within the
517 primate zone. To test this hypothesis, we estimated the empirical probability that the distribution
518 of *human-consistency* values, estimated over different model instances within this family, could
519 produce *human-consistency* values within the primate zone. Specifically, we estimated a p-value
520 for each behavioral metric using the following procedure: We first estimated an empirical
521 distribution of Fisher-transformed *human-consistency* values for this model family (i.e. over all
522 tested DCNN_{IC} models and over all trial-resampling of each DCNN_{IC} model). From this
523 empirical distribution, we fit a Gaussian kernel density function, optimizing the bandwidth
524 parameter to minimize the mean squared error to the empirical distribution. This kernel density
525 function was evaluated to compute a p-value, by computing the cumulative probability of
526 observing a *human-consistency* value greater than or equal to the criterion of success (i.e. the
527 Fisher transformed $\tilde{\rho}_{M\infty}$ value). This p-value indicates the probability that *human-consistency*
528 values sampled from the observed distribution would fall into the primate zone, with smaller p-
529 values indicating stronger evidence against the hypothesis that the *human-consistency* of DCNN
530 models is within the primate zone.

531

532 RESULTS

533

534 In the present work, we systematically compared the basic level core object recognition
535 behavior of primates and state-of-the-art artificial neural network models using a series of
536 behavioral metrics ranging from low to high resolution within a two-alternative forced choice
537 match-to-sample paradigm. The behavior of each visual system, whether biological or artificial,
538 was tested on the same 2400 images (24 objects, 100 images/object) in the same 276 interleaved
539 binary object recognition tasks. Each system's behavior was characterized at multiple resolutions
540 (see *Behavioral metrics and signatures* in Methods) and directly compared to the corresponding
541 behavioral metric applied on the archetypal human (defined as the average behavior of a large
542 pool of human subjects tested; see Methods). The overarching logic of this study was that, if two
543 visual systems are equivalent, they should produce statistically indistinguishable behavioral
544 signatures with respect to these metrics. Specifically, our goal was to compare the behavioral
545 signatures of visual system models with the corresponding behavioral signatures of primates.

546

547 *Object-level behavioral comparison*

548 We first examined the pattern of one-versus-all object-level behavior (termed “B.O1
549 metric”) computed across all images and possible distractors. Since we tested 24 objects here, the
550 B.O1 signature was 24 dimensional. Figure 2A shows the B.O1 signatures for the pooled human
551 (pooling n=1472 human subjects), pooled monkey (pooling n=5 monkey subjects), and several
552 DCNN_{IC} models as 24-dimensional vectors using a color scale. Each element of the vector
553 corresponds to the system’s discriminability of one object against all others that were tested (i.e.
554 all other 23 objects). The color scales span each signature’s full performance range, and warm
555 colors indicate lower discriminability. For example, red indicates that the tested visual system
556 found the object corresponding to that element of the vector to be very challenging to
557 discriminate from other objects (on average over all 23 discrimination tests, and on average over
558 all images). Figure 2B directly compares the B.O1 signatures computed from the behavioral
559 output of two visual system models—a pixel model (top panel) and a DCNN_{IC} model (Inception-
560 v3, bottom panel)—against that of the human B.O1 signature. We observe a tighter
561 correspondence to the human behavioral signature for the DCNN_{IC} model visual system than for
562 the baseline pixel model visual system. We quantified that similarity using a noise-adjusted
563 correlation between each pair of B.O1 signatures (termed *human-consistency*, following
564 (Johnson et al., 2002)); the noise adjustment means that a visual system that is identical to the
565 human pool will have an expected *human-consistency* score of 1.0, even if it has irreducible trial-
566 by-trial stochasticity; see Methods). Figure 2C shows the B.O1 *human-consistency* for each of
567 the tested model visual systems. We additionally tested the behavior of a held-out pool of five
568 human subjects (black dot) and a pool of five macaque monkey subjects (gray dot), and we
569 observed that both yielded B.O1 signatures that were highly human-consistent (*human-
570 consistency* $\tilde{\rho} = 0.90, 0.97$ for monkey pool and held-out human pool, respectively). We defined
571 a range of *human-consistency* values, termed the “primate zone” (shaded gray area), delimited by
572 extrapolated *human-consistency* estimates of large pools of macaques (see Methods, Figure 4).
573 We found that the baseline pixel visual system model and the low-level V1 visual system model
574 were not within this zone ($\tilde{\rho} = 0.40, 0.67$ for pixels and V1 models, respectively), while all tested
575 DCNN_{IC} visual system models were either within or very close to this zone. Indeed, we could not
576 reject the hypothesis that DCNN_{IC} models are primate-like ($p = 0.54$, exact test, see Methods).
577

578 Next, we compared the behavior of the visual systems at a slightly higher level of
579 resolution. Specifically, instead of pooling over all discrimination tasks for each object, we
580 computed the mean discriminability of each of the 276 pairwise discrimination tasks (still
581 pooling over images within each of those tasks). This yielded a symmetric matrix that is referred
582 to here as the B.O2 signature. Figure 2D shows the B.O2 signatures of the pooled human, pooled
583 monkey, and several DCNN_{IC} visual system models as 24x24 symmetric matrices. Each bin (i, j)
584 corresponds to the system's discriminability of objects i and j , where warmer colors indicate
585 lower performance; color scales are not shown but span each signature's full range. We observed
586 strong qualitative similarities between the pairwise object confusion patterns of all of the high
587 level visual systems (e.g. camel and dog are often confused with each other by all three systems).
588 This similarity is quantified in Figure 2E, which shows the *human-consistency* of all examined
589 visual system models with respect to this metric. Similar to the B.O1 metric, we observed that
590 both a pool of macaque monkeys and a held-out pool of humans are highly *human-consistent*
591 with respect to this metric ($\tilde{\rho} = 0.77, 0.94$ for monkeys, humans respectively). Also similar to the
592 B.O1 metric, we found that all DCNN_{IC} visual system models are highly *human-consistent* ($\tilde{\rho} >$
593 0.8) while the baseline pixel visual system model and the low-level V1 visual system model were
594 not ($\tilde{\rho} = 0.41, 0.57$ for pixels, V1 models respectively). Indeed, all DCNN_{IC} visual system
595 models are within the defined “primate zone” of *human-consistency*, and we could not falsify the
596 hypothesis that DCNN_{IC} models are primate-like ($p = 0.99$, exact test).

597

598 Taken together, humans, monkeys, and current DCNN_{IC} models all share similar patterns
599 of object-level behavioral performances (B.O1 and B.O2 signatures) that are not shared with
600 lower-level visual representations (pixels and V1). However, object-level performance patterns
601 do not capture the fact that some images of an object are more challenging than other images of
602 the same object because of interactions of the variation in the object's pose and position with the
603 object's class. To overcome this limitation, we next examined the patterns of behavior at the
604 resolution of individual images on a subsampled set of images where we specifically obtained a
605 large number of behavioral trials to accurately estimate behavioral performance on each image.
606 Note that, from the point of view of the subjects, the behavioral tasks are identical to those
607 already described. We simply aimed to measure and compare their patterns of performance at
608 much higher resolution.

609

610 *Image-level behavioral comparison*

611 To isolate purely image-level behavioral variance, i.e. variance that is not predicted by
612 the object and thus already captured by the B.O1 signature, we computed the normalized image-
613 level signature. This normalization procedure is schematically illustrated in Figure 3A which
614 shows that the one-versus-all image-level signature (240-dimensional, 10 images/object) is used
615 to obtain the normalized one-versus-all image-level signature (termed B.I1n, see *Behavioral*
616 *metrics and signatures*). Figure 3B shows the B.I1n signatures for the pooled human, pooled
617 monkey, and several DCNN_{IC} models as 240 dimensional vectors. Each bin's color corresponds
618 to the discriminability of a single image against all distractor options (after subtraction of object-
619 level discriminability, see Figure 3A), where warmer colors indicate lower values; color scales
620 are not shown but span each signature's full range. Figure 3D shows the *human-consistency* with
621 respect to the B.I1n signature for all tested models. Unlike with object-level behavioral metrics,
622 we now observe a divergence between DCNN_{IC} models and primates. Both the monkey pool and
623 the held-out human pool remain highly *human-consistent* ($\tilde{\rho} = 0.77, 0.96$ for monkeys, humans
624 respectively), but all DCNN_{IC} models were significantly less *human-consistent* (Inception-
625 v3: $\tilde{\rho} = 0.62$) and well outside of the defined “primate zone” of B.I1n *human-consistency*.
626 Indeed, the hypothesis that the *human-consistency* of DCNN_{IC} models is within the primate zone
627 is strongly rejected ($p = 6.16e-8$, exact test, see Methods).

628

629 We can zoom in further by examining not only the overall performance for a given image
630 but also the object confusions for each image, i.e. the additional behavioral variation that is due
631 not only to the test image but to the interaction of that test image with the alternative (incorrect)
632 object choice that is provided after the test image (see Fig. 1B). This is the highest level of
633 behavioral accuracy resolution that our task design allows. In raw form, it corresponds to one-
634 versus-other image-level confusion matrix, where the size of that matrix is the total number of
635 images by the total number of objects (here, 240x24). Each bin (i,j) corresponds to the behavioral
636 discriminability of a single image i against distractor object j . Again, we isolate variance that is
637 not predicted by object-level performance by subtracting the average performance on this binary
638 task (mean over all images) to convert the raw matrix B.I2 above into the normalized matrix,
639 referred to as B.I2n. Figure 3D shows the B.I2n signatures as 240x24 matrices for the pooled

640 human, pooled monkey and top DCNN_{IC} visual system models. Color scales are not shown but
641 span each signature's full range; warmer colors correspond to images with lower performance in
642 a given binary task, relative to all images of that object in the same task. Figure 3E shows the
643 *human-consistency* with respect to the B.I2n metric for all tested visual system models.
644 Extending our observations using B.I1n, we observe a similar divergence between primates and
645 DCNN_{IC} visual system models on the matrix pattern of image-by-distractor difficulties (B.I2n).
646 Specifically, both the monkey pool and held-out human pool remain highly *human-consistent*
647 ($\tilde{\rho} = 0.75, 0.77$ for monkeys, humans respectively), while all tested DCNN_{IC} models are
648 significantly less *human-consistent* (Inception-v3: $\tilde{\rho} = 0.53$) falling well outside of the defined
649 “primate zone” of B.I2n *human-consistency* values. Once again, the hypothesis that the *human-*
650 *consistency* of DCNN_{IC} models is within the primate zone is strongly rejected ($p = 3.17e-18$,
651 exact test, see Methods).

652

653 *Natural subject-to-subject variation*

654 For each behavioral metric (B.O1, BO2, B.I1n, BI2n), we defined a “primate zone” as the
655 range of consistency values delimited by *human-consistency* estimates $\tilde{\rho}_{M\infty}$ and $\tilde{\rho}_{H\infty}$ as lower
656 and upper bounds respectively. $\tilde{\rho}_{M\infty}$ corresponds to the extrapolated estimate of the *human-*
657 *consistency* of a large (i.e. infinitely many subjects) pool of rhesus macaque monkeys. Thus, the
658 fact that a particular tested visual system model falls outside of the primate zone can be
659 interpreted as a failure of that visual system model to accurately predict the behavior of the
660 archetypal human at least as well as the archetypal monkey.

661

662 However, from the above analyses, it is not yet clear whether a visual system model that
663 fails to predict the archetypal human might nonetheless accurately correspond to one or more
664 individual human subjects found within the natural variation of the human population. Given the
665 difficulty of measuring individual subject behavior at the resolution of single images for large
666 numbers of human and monkey subjects, we could not yet directly test this hypothesis. Instead,
667 we examined it indirectly by asking whether an archetypal model—that is a pool that includes an
668 increasing number of model “subjects”—would approach the human pool. We simulated model
669 inter-subject variability by retraining a fixed DCNN architecture with a fixed training image set
670 with random variation in the initial conditions and order of training images. This procedure

671 results in models that can still perform the task but with slightly different learned weight values.
672 We note that this procedure is only one possible choice of generating inter-subject variability
673 within each visual system model type, a choice that is an important open research direction that
674 we do not address here. From this procedure, we constructed multiple trained model instances
675 (“subjects”) for a fixed DCNN architecture, and asked whether an increasingly large pool of
676 model “subjects” better captures the behavior of the human pool, at least as well as a monkey
677 pool. This post-hoc analysis was conducted for the most *human-consistent* DCNN architecture
678 (Inception-v3).

679

680 Figure 4A shows, for each of the four behavioral metrics, the measured *human-*
681 *consistency* of subject pools of varying size (number of subjects n) of rhesus macaque monkeys
682 (black) and ImageNet-trained Inception-v3 models (blue). The *human-consistency* increases with
683 growing number of subjects for both visual systems across all behavioral metrics. To estimate
684 the expected *human-consistency* for a pool of infinitely many monkey or model subjects, we fit
685 an exponential function mapping n to the mean *human-consistency* values and obtained a
686 parameter estimate for the asymptotic value (see Methods). We note that estimated asymptotic
687 values are not significantly beyond the range of the measured data—the *human-consistency* of a
688 pool of five monkey subjects reaches within 97% of the *human-consistency* of an estimated
689 infinite pool of monkeys for all metrics—giving credence to the extrapolated *human-consistency*
690 values. This analysis suggests that under this model of inter-subject variability, a pool of
691 Inception-v3 subjects accurately capture archetypal human behavior at the resolution of objects
692 (B.O1, B.O2) by our primate zone criterion (see Figure 4A, first two panels). In contrast, even a
693 large pool of Inception-v3 subjects still fails at its final asymptote to accurately capture human
694 behavior at the image-level (B.I1n, B.I2n) (Figure 4A, last two panels).

695

696 *Modification of visual system models to try to rescue their human-consistency*

697 Next, we wondered if some relatively simple changes to the DCNN_{IC} visual system
698 models tested here could bring them into better correspondence with the primate visual system
699 behavior (with respect to B.I1n and B.I2n metrics). Specifically, we considered and tested the
700 following modifications to the most *human-consistent* DCNN_{IC} model visual system (Inception-
701 v3): we (1) changed the input to the model to be more primate-like in its retinal sampling

702 (Inception-v3 + retina-like), (2) changed the transformation (aka “decoder”) from the internal
703 model feature representation into the behavioral output by augmenting the number of decoder
704 training images or changing the decoder type (Inception-v3 + SVM, Inception-v3 +
705 classifier_train), and (3) modified all of the internal filter weights of the model (aka “fine
706 tuning”) by augmenting its ImageNet training with additional images drawn from the same
707 distribution as our test images (Inception-v3 + synthetic-fine-tune). While some of these
708 modifications (e.g. fine-tuning on synthetic images and increasing the number of classifier
709 training images) had the expected effect of increasing mean overall performance (not shown, see
710 Methods), we found that none of these modifications led to a significant improvement in its
711 *human-consistency* on the behavioral metrics (Figure 4B). Thus, the failure of current DCNN_{IC}
712 models to accurately capture the image-level signatures of primates cannot be rescued by simple
713 modifications on a fixed architecture.

714

715 *Looking for clues: Image-level comparisons of models and primates*

716 Taken together, Figures 2, 3 and 4 suggest that current DCNN_{IC} visual system models fail
717 to accurately capture the image-level signatures of humans and monkeys. To further examine this
718 failure in the hopes of providing clues for model improvement, we examined the image-level
719 residual signatures of all the visual system models, relative to the pooled human. For each model,
720 we computed its residual signature as the difference (positive or negative) of a linear least
721 squares regression of the model signature on the corresponding human signature. For this
722 analysis, we focused on the B.I1n metric as it showed a clear divergence of DCNN_{IC} models and
723 primates, and the behavioral residual can be interpreted based only on the test images (whereas
724 B.I2n depends on the interaction between test images and distractor choice).

725

726 We first asked to what extent the residual signatures are shared between different visual
727 system models. Figure 5A shows the similarity between the residual signatures of all pairs of
728 models; the color of bin (i,j) indicates the proportion of explainable variance that is shared
729 between the residual signatures of visual systems i and j . For ease of interpretation, we ordered
730 visual system models based on their architecture and optimization procedure and partitioned this
731 matrix into four distinct regions. Each region compares the residuals of a “source” model group
732 with fixed architecture and optimization procedure (five Inception-v3 models optimized for

733 categorization on ImageNet, varying only in initial conditions and training image order) to a
734 “target” model group. The target groups of models for each of the four regions are: 1) the pooled
735 monkey, 2) other DCNN_{IC} models from the source group, 3) DCNN_{IC} models that differ in
736 architecture but share the optimization procedure of the source group models and 4) DCNN_{IC}
737 models that differ slightly using an augmented optimization procedure but share the architecture
738 of the source group models. Figure 5B shows the mean (\pm SD) variance shared in the residuals
739 averaged within these four regions for all images (black dots), as well as for images that humans
740 found to be particularly difficult (gray dots, selected based on held-out human data, see
741 Methods). First, consistent with the results shown in Figure 3, we note that the residual
742 signatures of this particular DCNN_{IC} model are not well shared with the pooled monkey ($r^2=0.39$
743 in region 1), and this phenomenon is more pronounced for the images that humans found most
744 difficult ($r^2=0.17$ in region 1). However, this relatively low correlation between model and
745 primate residuals is not indicative of spurious model residuals, as the model residual signatures
746 were highly reliable between different instances of this fixed DCNN_{IC} model, across random
747 training initializations (region 2: $r^2=0.79$, 0.77 for all and most difficult images, respectively).
748 Interestingly, residual signatures were still largely shared with other DCNN_{IC} models with vastly
749 different architectures (region 3: $r^2=0.70$, 0.65 for all and most difficult images, respectively).
750 However, residual signatures were more strongly altered when the visual training diet of the
751 same architecture was altered (region 4: $r^2=0.57$, 0.46 for all and most difficult images
752 respectively, cf. region 3). Taken together, these results indicate that the images where DCNN_{IC}
753 visual system models diverged from humans (and monkeys) were not spurious but were rather
754 highly reliable across different model architectures, demonstrating that current DCNN_{IC} models
755 systematically and similarly diverge from primates.

756

757 To look for clues for model improvement, we asked what, if any, characteristics of
758 images might account for this divergence of models and primates. We regressed the residual
759 signatures of DCNN_{IC} models on four different image attributes (corresponding to the size,
760 eccentricity, pose, and contrast of the object in each image). We used multiple linear regressions
761 to predict the model residual signatures from all of these image attributes, and also considered
762 each attribute individually using simple linear regressions. Figure 6A shows example images
763 (sampled from the full set of 2400 images) with increasing attribute value for each of these four

764 image attributes. While the DCNN_{IC} models were not directly optimized to display primate-like
765 performance dependence on such attributes, we observed that the Inception-v3 visual system
766 model nonetheless exhibited qualitatively similar performance dependencies as primates (see
767 Figure 6B). For example, humans (black), monkeys (gray) and the Inception-v3 model (blue) all
768 performed better, on average, for images in which the object is in the center of gaze (low
769 eccentricity) and large in size. Furthermore, all three systems performed better, on average, for
770 images when the pose of the object was closer to the canonical pose (see Figure 6B); this
771 sensitivity to object pose manifested itself as a non-linear dependence due to the fact that all
772 tested objects exhibited symmetry in at least one axis. The similarity of the patterns in Figure 6B
773 between primates and the DCNN_{IC} visual system models is not perfect but is striking,
774 particularly in light of the fact that these models were not optimized to produce these patterns.
775 However, this similarity is analogous to the similarity in the B.O1 and B.O2 metrics in that it
776 only holds on average over many images. Looking more closely at the image-by-image
777 comparison, we again found that the DCNN_{IC} models failed to capture a large portion of the
778 image-by-image variation (Figure 3). In particular, Figure 6C shows the proportion of variance
779 explained by specific image attributes for the residual signatures of monkeys (black) and
780 DCNN_{IC} models (blue). We found that, taken together, all four of these image attributes
781 explained only ~10% of the variance in DCNN_{IC} residual signatures, and each individual
782 attribute could explain at most a small amount of residual variance (<5% of the explainable
783 variance). In sum, these analyses show that some behavioral effects that might provide intuitive
784 clues to modify the DCNN_{IC} models are already in place in those models (e.g. a dependence on
785 eccentricity). But the quantitative image-by-image analyses of the remaining unexplained
786 variance (Figure 6C) argue that the DCNN_{IC} visual system models' failure to capture primate
787 image-level signatures cannot be further accounted for by these simple image attributes and
788 likely stem from other factors.

789

790 **DISCUSSION**

791

792 The current work was motivated by the broad scientific goal of discovering models that
793 quantitatively explain the neuronal mechanisms underlying primate invariant object recognition
794 behavior. To this end, previous work had shown that specific artificial neural network models

795 (ANNs), drawn from a large family of deep convolutional neural networks (DCNNs) and
796 optimized to achieve high levels of object categorization performance on large-scale image-sets,
797 capture a large fraction of the variance in primate visual recognition behaviors (Rajalingham et
798 al., 2015; Jozwik et al., 2016; Kheradpisheh et al., 2016; Kubilius et al., 2016; Peterson et al.,
799 2016; Wallis et al., 2017), and the internal hidden neurons of those same models also predict a
800 large fraction of the image-driven response variance of brain activity at multiple stages of the
801 primate ventral visual stream (Yamins et al., 2013; Cadieu et al., 2014; Khaligh-Razavi and
802 Kriegeskorte, 2014; Yamins et al., 2014; Güçlü and van Gerven, 2015; Cichy et al., 2016; Hong
803 et al., 2016; Seibert et al., 2016; Cadena et al., 2017; Wen et al., 2017). For clarity, we here
804 referred to this sub-family of models as DCNN_{IC} (to denote ImageNet-Categorization training),
805 so as to distinguish them from all possible models in the DCNN family, and more broadly, from
806 the super-family of all ANNs. In this work, we directly compared leading DCNN_{IC} models to
807 primates (humans and monkeys) with respect to their behavioral signatures at both object and
808 image level resolution in the domain of core object recognition. In order to do so, we measured
809 and characterized primate behavior at larger scale and higher resolution than previously possible.
810 We first replicate prior work (Rajalingham et al., 2015) showing that, at the object level,
811 DCNN_{IC} models produce statistically indistinguishable behavior from primates, and we extend
812 that work by showing that these models also match the *average* primate sensitivities to object
813 contrast, eccentricity, size, and pose, a noteworthy similarity in light of the fact that these models
814 were not optimized to produce these performance patterns. However, our primary novel result is
815 that, examining behavior at the higher resolution of individual images, all leading DCNN_{IC}
816 models failed to replicate the image-level behavioral signatures of primates. An important related
817 claim is that rhesus monkeys are more consistent with the archetypal human than any of the
818 tested DCNN_{IC} models (at the image-level).

819
820 While it had previously been shown that DCNN_{IC} models can diverge from human
821 behavior on specifically chosen adversarial images (Szegedy et al., 2013), a strength of our work
822 is that we did not optimize images to induce failure but instead randomly sampled the image
823 generative parameter space broadly. As such, our results highlight a *general*, rather than
824 adversarial-induced, failure of DCNN_{IC} models to fully capture the neural mechanisms
825 underlying primate core object recognition behavior. Furthermore, we showed that this failure of

826 current DCNN_{IC} models cannot be explained by simple image attributes and cannot be rescued
827 by simple model modifications (input image sampling, model training, and classifier variations).
828 Taken together, these results suggest that new ANN models are needed to more precisely capture
829 the neural mechanisms underlying primate object vision.

830

831 With regards to new ANN models, we can attempt to make prospective inferences about
832 future possible DCNN_{IC} models from the data presented here. Based on the observed distribution
833 of image-level *human-consistency* values for the DCNN_{IC} models tested here, we infer that yet
834 untested model instances sampled identically (i.e. from the DCNN_{IC} model sub-family) are very
835 likely to have similarly inadequate image-level *human-consistency*. While we cannot rule out the
836 possibility that at least one model instance within the DCNN_{IC} sub-family would fully match the
837 image-level behavioral signatures, the probability of sampling such a model is vanishingly small
838 ($p < 10^{-17}$ for B.I2n *human-consistency*, estimated using exact test using Gaussian kernel density
839 estimation, see Methods, Results). An important caveat of this inference is that we may have a
840 biased estimate of the *human-consistency* distribution of this model sub-family, as we did not
841 exhaustively sample the sub-family. In particular, if the model sampling process is non-
842 stationary over time (e.g. increases in computational power over time allows larger models to be
843 successfully trained), the *human-consistency* of new (i.e. yet to be sampled) models may lie
844 outside the currently estimated distribution. Consistent with the latter, we observed that current
845 DCNN_{IC} cluster into two distinct “generations” separated in time (before/after the year 2015; e.g.
846 Inception-v3 improves over AlexNet though both lie outside the primate zone in Figure 3). Thus,
847 following this trend, it is possible that the evolution of “next-generation” models within the
848 DCNN_{IC} sub-family could meet our criteria for successful matching primate-like behavior.

849

850 Alternatively, it is possible—and we think likely—that future DCNN_{IC} models will also
851 fail to capture primate-like image-level behavior, suggesting that either the architectural
852 limitations (e.g. convolutional, feed-forward) and/or the optimization procedure (including the
853 diet of visual images) that define this model sub-family are fundamentally limiting. Thus, ANN
854 model sub-families utilizing different architectures (e.g. recurrent neural networks) and/or
855 optimized for different behavioral goals (e.g. loss functions other than object classification
856 performance, and/or images other than category-labeled ImageNet images) may be necessary to

857 accurately capture primate behavior. To this end, we propose that testing even individual
858 changes to the DCNN_{IC} models—each creating a new ANN model sub-family—may be the best
859 way forward, because DCNN_{IC} models currently offer the best explanations (in a predictive
860 sense) of both the behavioral and neural phenomena of core object recognition.

861

862 To reach that goal of finding a new ANN model sub-family that is a better mechanistic
863 model of the primate ventral visual stream, we propose that even larger-scale, high-resolution
864 behavioral measurements, such as expanded versions of the patterns of image-level performance
865 presented here, could serve as a useful top-down optimization guides. Not only do these high-
866 resolution behavioral signatures have the statistical power to reject the currently leading ANN
867 models, but they can also be efficiently collected at very large scale, in contrast to other guide
868 data (e.g. large-scale neuronal measurements). Indeed, current technological tools for high-
869 throughput psychophysics in humans and monkeys (e.g. Amazon Mechanical Turk for humans,
870 Monkey Turk for rhesus monkeys) enable time- and cost-efficient collection of large-scale
871 behavioral datasets, such as the ~1 million behavioral trials obtained for the current work. These
872 systems trade off an increase in efficiency with a decrease in experimental control. For example,
873 we did not impose experimental constraints on subjects' acuity and we can only infer likely head
874 and gaze position. Previous work has shown that patterns of behavioral performance on object
875 recognition tasks from in-lab and online subjects were equally reliable and virtually identical
876 (Majaj et al., 2015), but it is not yet clear to what extent this holds at the resolution of individual
877 images, as one might expect that variance in performance across images is more sensitive to
878 precise head and gaze location. For this reason, we here refrain from making strong inferences
879 from small behavioral differences, such as the small difference between humans and monkeys.
880 Nevertheless, we argue that this sacrifice in exact experimental control while retaining sufficient
881 power for model comparison is a good tradeoff for efficiently collecting large behavioral datasets
882 toward the goal of constraining future models of the primate ventral visual stream.

883

884 **REFERENCES**

885
886 Cadena SA, Denfield GH, Walker EY, Gatys LA, Tolias AS, Bethge M, Ecker AS (2017) Deep
887 convolutional models improve predictions of macaque V1 responses to natural images.
888 bioRxiv:201764.
889 Cadieu CF, Hong H, Yamins DL, Pinto N, Ardila D, Solomon EA, Majaj NJ, DiCarlo JJ (2014)
890 Deep neural networks rival the representation of primate IT cortex for core visual object
891 recognition. PLoS computational biology 10:e1003963.
892 Cichy RM, Khosla A, Pantazis D, Torralba A, Oliva A (2016) Comparison of deep neural
893 networks to spatio-temporal cortical dynamics of human visual object recognition reveals
894 hierarchical correspondence. Scientific reports 6:27755.
895 DiCarlo JJ, Johnson KO (1999) Velocity invariance of receptive field structure in somatosensory
896 cortical area 3b of the alert monkey. Journal of Neuroscience 19:401-419.
897 DiCarlo JJ, Cox DD (2007) Untangling invariant object recognition. Trends in cognitive sciences
898 11:333-341.
899 DiCarlo JJ, Zoccolan D, Rust NC (2012) How does the brain solve visual object recognition?
900 Neuron 73:415-434.
901 Dodge S, Karam L (2017) A Study and Comparison of Human and Deep Learning Recognition
902 Performance Under Visual Distortions. arXiv preprint arXiv:170502498.
903 Geirhos R, Janssen DH, Schütt HH, Rauber J, Bethge M, Wichmann FA (2017) Comparing
904 deep neural networks against humans: object recognition when the signal gets weaker. arXiv
905 preprint arXiv:170606969.
906 Goodfellow IJ, Shlens J, Szegedy C (2014) Explaining and harnessing adversarial examples.
907 arXiv preprint arXiv:14126572.
908 Güçlü U, van Gerven MA (2015) Deep neural networks reveal a gradient in the complexity of
909 neural representations across the ventral stream. Journal of Neuroscience 35:10005-10014.
910 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In:
911 Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770-778.
912 Hong H, Yamins DL, Majaj NJ, DiCarlo JJ (2016) Explicit information for category-orthogonal
913 object properties increases along the ventral stream. Nature neuroscience 19:613.
914 Hosseini H, Xiao B, Jaiswal M, Poovendran R (2017) On the Limitation of Convolutional Neural
915 Networks in Recognizing Negative Images. human performance 4:6.
916 Huynh DQ (2009) Metrics for 3D rotations: Comparison and analysis. Journal of Mathematical
917 Imaging and Vision 35:155-164.
918 Johnson KO, Hsiao SS, Yoshioka T (2002) Neural coding and the basic law of psychophysics.
919 The Neuroscientist 8:111-121.
920 Jozwik KM, Kriegeskorte N, Mur M (2016) Visual features as stepping stones toward semantics:
921 Explaining object similarity in IT and perception with non-negative least squares.
922 Neuropsychologia 83:201-226.
923 Khaligh-Razavi S-M, Kriegeskorte N (2014) Deep supervised, but not unsupervised, models
924 may explain IT cortical representation. PLoS computational biology 10:e1003915.
925 Kheradpisheh SR, Ghodrati M, Ganjtabesh M, Masquelier T (2016) Deep networks can
926 resemble human feed-forward vision in invariant object recognition. Scientific reports 6:32672.
927 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional
928 neural networks. In: Advances in neural information processing systems, pp 1097-1105.
929 Kubilius J, Bracci S, de Beeck HPO (2016) Deep neural networks as a computational model for
930 human shape sensitivity. PLoS computational biology 12:e1004896.
931 LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436-444.

932 Majaj NJ, Hong H, Solomon EA, DiCarlo JJ (2015) Simple Learned Weighted Sums of Inferior
933 Temporal Neuronal Firing Rates Accurately Predict Human Core Object Recognition
934 Performance. *The Journal of Neuroscience* 35:13402-13418.

935 Nguyen A, Yosinski J, Clune J (2015) Deep neural networks are easily fooled: High confidence
936 predictions for unrecognizable images. In: *Proceedings of the IEEE Conference on Computer*
937 *Vision and Pattern Recognition*, pp 427-436.

938 Peterson JC, Abbott JT, Griffiths TL (2016) Adapting deep network features to capture
939 psychological representations. *arXiv preprint arXiv:160802164*.

940 Pinto N, Cox DD, DiCarlo JJ (2008) Why is real-world visual object recognition hard? *PLoS*
941 *computational biology* 4:e27.

942 Rajalingham R, Schmidt K, DiCarlo JJ (2015) Comparison of Object Recognition Behavior in
943 Human and Monkey. *The Journal of Neuroscience* 35:12127-12136.

944 RichardWebster B, Anthony SE, Scheirer WJ (2016) PsyPhy: A Psychophysics Driven
945 Evaluation Framework for Visual Recognition. *arXiv preprint arXiv:161106448*.

946 Rosch E, Mervis CB, Gray WD, Johnson DM, Boyes-Braem P (1976) Basic objects in natural
947 categories. *Cognitive psychology* 8:382-439.

948 Seibert D, Yamins DL, Ardila D, Hong H, DiCarlo JJ, Gardner JL (2016) A performance-
949 optimized model of neural responses across the ventral visual stream. *bioRxiv:036475*.

950 Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image
951 recognition. *arXiv preprint arXiv:14091556*.

952 Szegedy C, Zaremba W, Sutskever I, Bruna J, Erhan D, Goodfellow I, Fergus R (2013)
953 Intriguing properties of neural networks. *arXiv preprint arXiv:13126199*.

954 Ullman S, Humphreys GW (1996) High-level vision: Object recognition and visual cognition: MIT
955 press Cambridge, MA.

956 Wallis TS, Funke CM, Ecker AS, Gatys LA, Wichmann FA, Bethge M (2017) A parametric
957 texture model based on deep convolutional features closely matches texture appearance for
958 humans. *Journal of vision* 17:5-5.

959 Wen H, Shi J, Zhang Y, Lu K-H, Cao J, Liu Z (2017) Neural encoding and decoding with deep
960 learning for dynamic natural vision. *Cerebral Cortex*:1-25.

961 Yamins DL, DiCarlo JJ (2016) Using goal-driven deep learning models to understand sensory
962 cortex. *Nature neuroscience* 19:356-365.

963 Yamins DL, Hong H, Cadieu C, DiCarlo JJ (2013) Hierarchical modular optimization of
964 convolutional networks achieves representations similar to macaque IT and human ventral
965 stream. In: *Advances in neural information processing systems*, pp 3093-3101.

966 Yamins DL, Hong H, Cadieu CF, Solomon EA, Seibert D, DiCarlo JJ (2014) Performance-
967 optimized hierarchical models predict neural responses in higher visual cortex. *Proceedings of*
968 *the National Academy of Sciences*:201403112.

969 Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. In: *Computer*
970 *Vision–ECCV 2014*, pp 818-833: Springer.

971

972

973 **TABLES**

974 **Table 1**

Behavioral Metric	Hit Rate	False Alarm Rate
One-versus all object-level performance (B.O1) ($N_{\text{objects}} \times 1$) $O_1(i) = Z(HR(i)) - Z(FAR(i)),$ $i = 1, 2, \dots, N_{\text{objects}}$	Proportion of trials when images of object i were correctly labeled as object i .	Proportion of trials when any image was incorrectly labeled as object i .
One-versus-other object-level performance B.O2 ($N_{\text{objects}} \times N_{\text{objects}}$) $O_2(i, j) = Z(HR(i, j)) - Z(FAR(i, j)),$ $i = 1, 2, \dots, N_{\text{objects}}$ $j = 1, 2, \dots, N_{\text{objects}}$	Proportion of trials when images of object i were correctly labeled as i , when presented against distractor object j .	Proportion of trials when images of object j were incorrectly labeled as object i
One-versus-all image-level performance B.I1 ($N_{\text{images}} \times 1$) $I_1(ii) = Z(HR(ii)) - Z(FAR(ii)),$ $ii = 1, 2, \dots, N_{\text{images}}$	Proportion of trials when image ii was correctly classified as object i .	Proportion of trials when any image was incorrectly labeled as object i .
One-versus-other image-level performance B.I2 ($N_{\text{images}} \times N_{\text{objects}}$) $I_2(ii, j) = Z(HR(ii, j)) - Z(FAR(ii, j)),$ $ii = 1, 2, \dots, N_{\text{images}}$ $j = 1, 2, \dots, N_{\text{objects}}$	Proportion of trials when image ii was correctly classified as object i , when presented against distractor object j .	Proportion of trials when images of object j were incorrectly labeled as object i

975

976 **Table 1: Definition of behavioral performance metrics.** The first column provides the name,
977 abbreviation, dimensions, and equations for each of the raw performance metrics. The next two
978 columns provide the definitions for computing the hit rate (HR) and false alarm rate (FAR)
979 respectively.

980

981 **FIGURE LEGENDS**

982

983 **Figure 1. Images and behavioral task.** **(A)** Two (out of 100) example images for each of the 24
984 basic-level objects. To enforce true invariant object recognition behavior, we generated
985 naturalistic synthetic images, each with one foreground object, by rendering a 3D model of each
986 object with randomly chosen viewing parameters and placing that foreground object view onto a
987 randomly chosen, natural image background. **(B)** Time course of example behavioral trial (zebra
988 versus dog) for human psychophysics. Each trial initiated with a central fixation point for 500
989 ms, followed by 100 ms presentation of a square test image (spanning 6-8° of visual angle).
990 After extinction of the test image, two choice images were shown to the left and right. Human
991 participants were allowed to freely view the response images for up to 1000 ms and responded
992 by clicking on one of the choice images; no feedback was given. To neutralize top-down feature
993 attention, all 276 binary object discrimination tasks were randomly interleaved on a trial-by-trial
994 basis. The monkey task paradigm was nearly identical to the human paradigm, with the
995 exception that trials were initiated by touching a fixation circle horizontally centered on the
996 bottom third of the screen, and successful trials were rewarded with juice while incorrect choices
997 resulted in timeouts of 1–2.5s. **(C)** Large-scale and high-throughput psychophysics in humans
998 (top left), monkeys (top right), and models (bottom). Human behavior was measured using the
999 online Amazon MTurk platform, which enabled the rapid collection ~1 million behavioral trials
1000 from 1472 human subjects. Monkey behavior was measured using a novel custom home-cage
1001 behavioral system (MonkeyTurk), which leveraged a web-based behavioral task running on a
1002 tablet to test many monkey subjects simultaneously in their home environment. Deep
1003 convolutional neural network models were tested on the same images and tasks as those
1004 presented to humans and monkeys by extracting features from the penultimate layer of each
1005 visual system model and training back-end multi-class logistic regression classifiers. All
1006 behavioral predictions of each visual system model were for images that were not seen in any
1007 phase of model training.

1008 **Figure 2. Object-level comparison to human behavior.** **(A)** One-versus-all object-level (B.O1)
1009 signatures for the pooled human (n=1472 human subjects), pooled monkey (n=5 monkey
1010 subjects), and several DCNN_{IC} models. Each B.O1 signature is shown as a 24-dimensional
1011 vector using a color scale; each colored bin corresponds to the system's discriminability of one

1012 object against all others that were tested. The color scales span each signature's full performance
1013 range, and warm colors indicate lower discriminability. **(B)** Direct comparison of the B.O1
1014 signatures of a pixel visual system model (top panel) and a DCNN_{IC} visual system model
1015 (Inception-v3, bottom panel) against that of the human B.O1 signature. **(C)** *Human-consistency*
1016 of B.O1 signatures, for each of the tested model visual systems. The black and gray dots
1017 correspond to a held-out pool of five human subjects and a pool of five macaque monkey
1018 subjects respectively. The shaded area corresponds to the “primate zone,” a range of
1019 consistencies delimited by the estimated *human-consistency* of a pool of infinitely many
1020 monkeys (see Figure 4A). **(D)** One-versus-other object-level (B.O2) signatures for pooled
1021 human, pooled monkey, and several DCNN_{IC} models. Each B.O2 signature is shown as a 24x24
1022 symmetric matrices using a color scale, where each bin (i,j) corresponds to the system's
1023 discriminability of objects i and j . Color scales similar to (A). **(E)** Human-consistency of B.O2
1024 signatures for each of the tested model visual systems. Format is identical to (C).

1025 **Figure 3. Image-level comparison to human behavior.** **(A)** Schematic for computing B.I1n.
1026 First, the one-versus-all image-level signature (B.I1) is shown as a 240-dimensional vector (24
1027 objects, 10 images/object) using a color scale, where each colored bin corresponds to the
1028 system's discriminability of one image against all distractor objects. From this pattern, the
1029 normalized one-versus-all image-level signature (B.I1n) is estimated by subtracting the mean
1030 performance value over all images of the same object. This normalization procedure isolates
1031 behavioral variance that is specifically image-driven but not simply predicted by the object. **(B)**
1032 Normalized one-versus-all object-level (B.I1n) signatures for the pooled human, pooled monkey,
1033 and several DCNN_{IC} models. Each B.I1n signature is shown as a 240-dimensional vector using a
1034 color scale, formatted as in (A). Color scales similar to Figure 2A. **(C)** *Human-consistency* of
1035 B.I1n signatures for each of the tested model visual systems. Format is identical to Figure 2C.
1036 **(D)** Normalized one-versus-other image-level (B.I2n) signatures for pooled human, pooled
1037 monkey, and several DCNN_{IC} models. Each B.I2n signature is shown as a 240x24 matrix using a
1038 color scale, where each bin (i,j) corresponds to the system's discriminability of image i against
1039 distractor object j . Color scales similar to Figure 2A. **(E)** Human-consistency of B.I2n signatures
1040 for each of the tested model visual systems. Format is identical to Figure 2C.

1041 **Figure 4. Effect of subject pool size and DCNN model modifications on consistency with**
1042 **human behavior.** **(A)** Accounting for natural subject-to-subject variability. For each of the four
1043 behavioral metrics, the *human-consistency* distributions of monkey (blue markers) and model
1044 (black markers) pools are shown as a function of the number of subjects in the pool (mean \pm SD,
1045 over subjects). The human consistency increases with growing number of subjects for all visual
1046 systems across all behavioral metrics. The dashed lines correspond to fitted exponential
1047 functions, and the parameter estimate (mean \pm SE) of the asymptotic value, corresponding to the
1048 estimated *human-consistency* of a pool of infinitely many subjects, is shown at the right most
1049 point on each abscissa. **(B)** Model modifications that aim to rescue the DCNN_{IC} models. We
1050 tested several simple modifications (see Methods) to the most *human-consistent* DCNN_{IC} visual
1051 system model (Inception-v3). Each panel shows the resulting *human-consistency* per modified
1052 model (mean \pm SD over different model instances, varying in random filter initializations) for
1053 each of the four behavioral metrics.

1054

1055 **Figure 5. Analysis of unexplained human behavioral variance.** **(A)** Residual similarity
1056 between all pairs of human visual system models. The color of bin (i,j) indicates the proportion
1057 of explainable variance that is shared between the residual signatures of visual systems i and j .
1058 For ease of interpretation, we ordered visual system models based on their architecture and
1059 optimization procedure and partitioned this matrix into four distinct regions. **(B)** Summary of
1060 residual similarity. For each of the four regions in Figure 5A, the similarity to the residuals of
1061 Inception-v3 (region 2 in (A)) is shown (mean \pm SD, within each region) for all images (black
1062 dots), and for images that humans found to be particularly difficult (gray dots, selected based on
1063 held-out human data).

1064

1065 **Figure 6. Dependence of primate and DCNN model behavior on image attributes.** **(A)**
1066 Example images with increasing attribute value, for each of the four pre-defined image attributes
1067 (see Methods). **(B)** Dependence of performance (B.I1n) as a function of four image attributes, for
1068 humans, monkeys and a DCNN_{IC} model (Inception-v3). **(C)** Proportion of explainable variance
1069 of the residual signatures of monkeys (black) and DCNN_{IC} models (blue) that is accounted for by
1070 each of the pre-defined image attributes. Error-bars correspond to SD over trial re-sampling for
1071 monkeys, and over different models for DCNN_{IC} models.

Figure 1

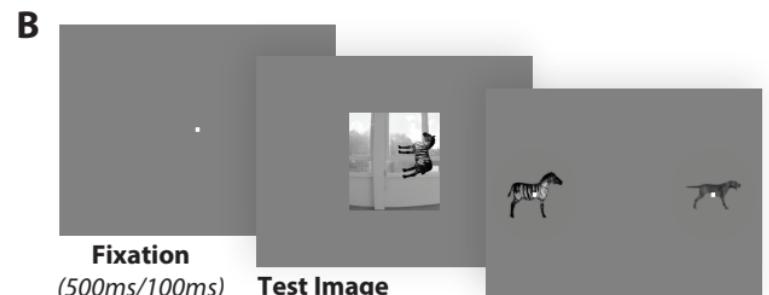
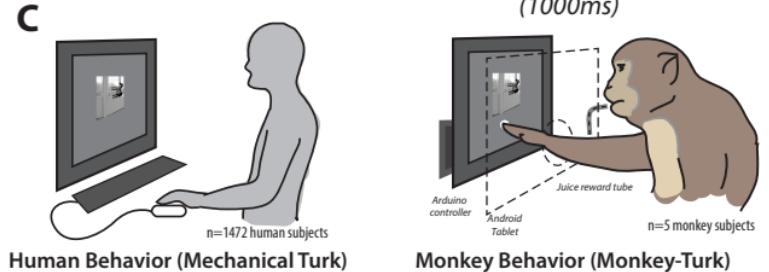
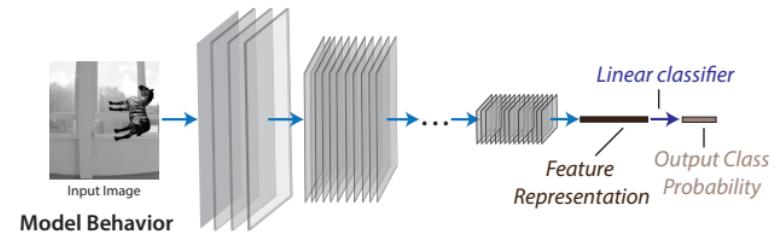


Figure 2

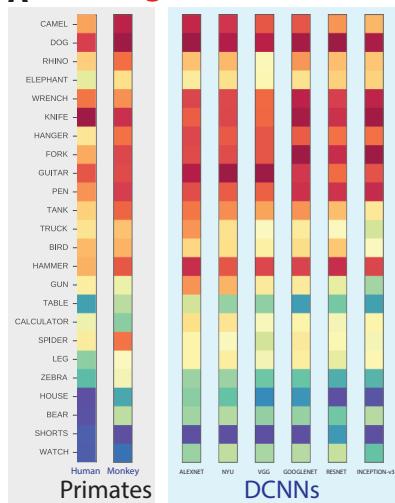
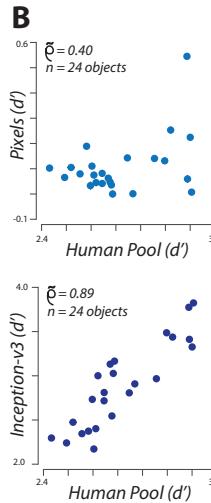
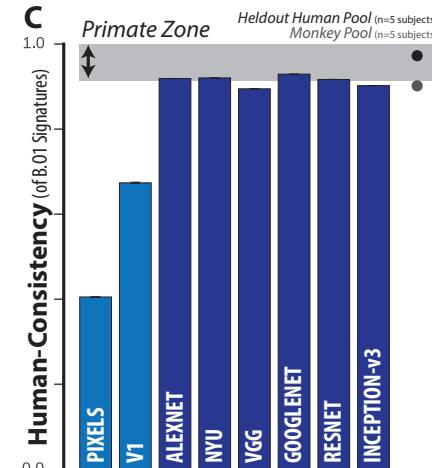
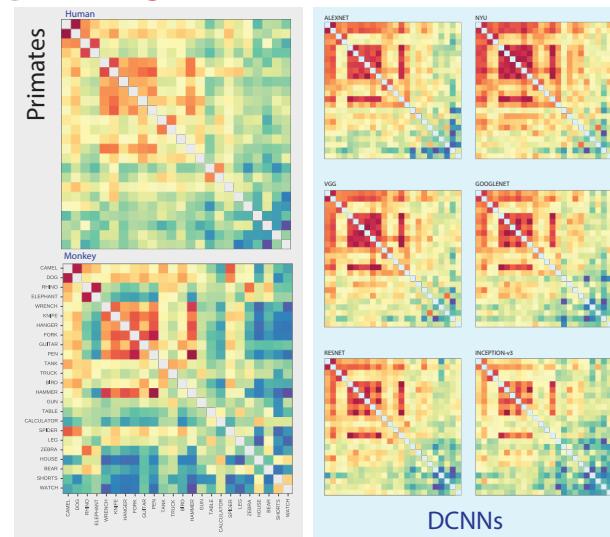
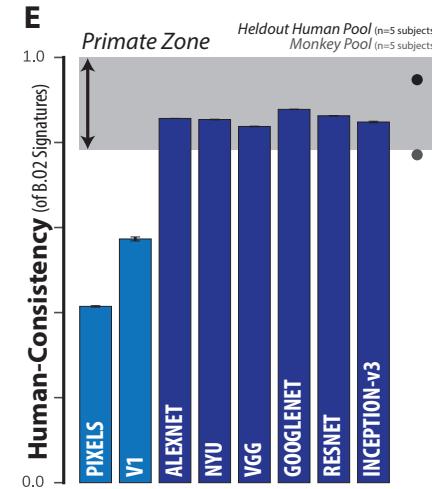
A B.O1 Signatures (~object difficulties)**D B.O2 Signatures (~object confusions)**

Figure 3**A B.I1n Signatures** (~normalized image difficulties)

10 images/object

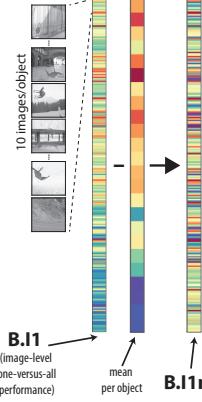
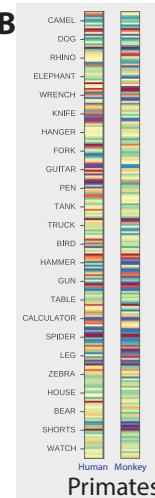
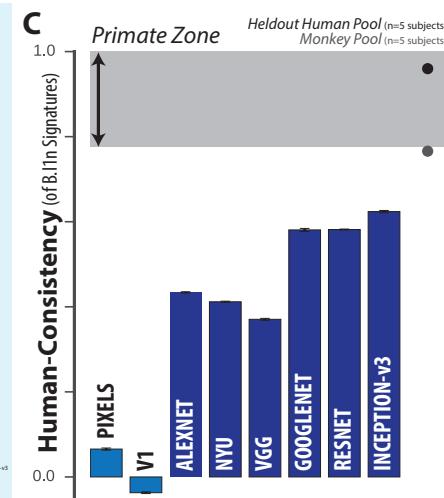
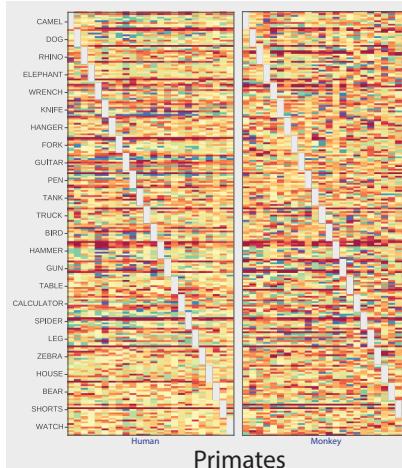
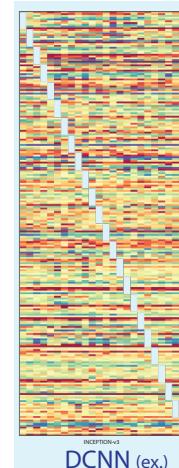
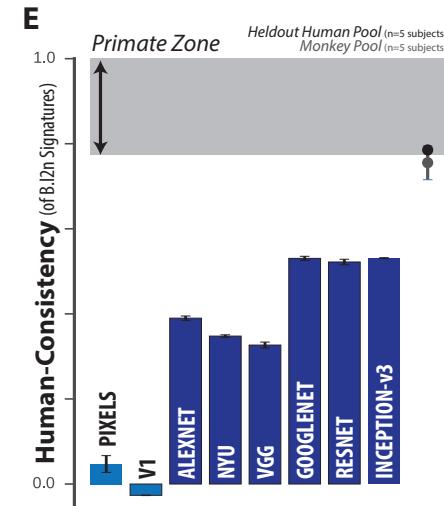
**D B.I2n Signatures** (~normalized image confusions)

Figure 4

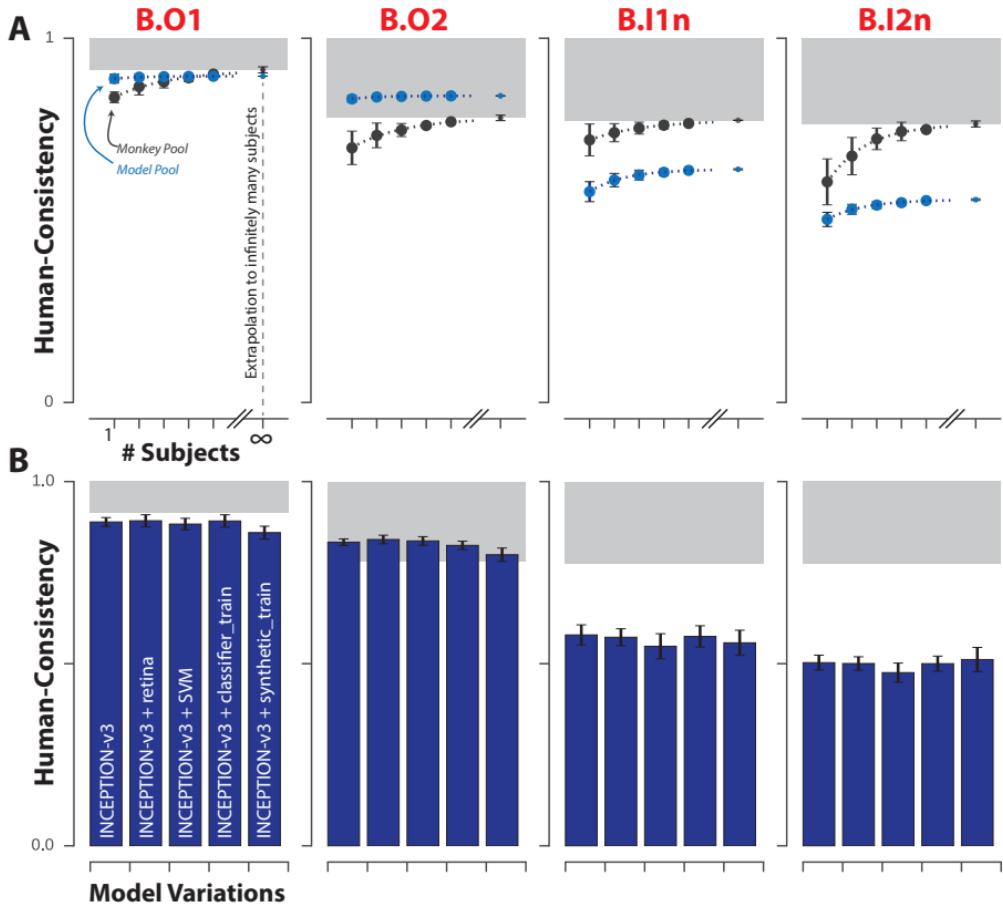


Figure 5

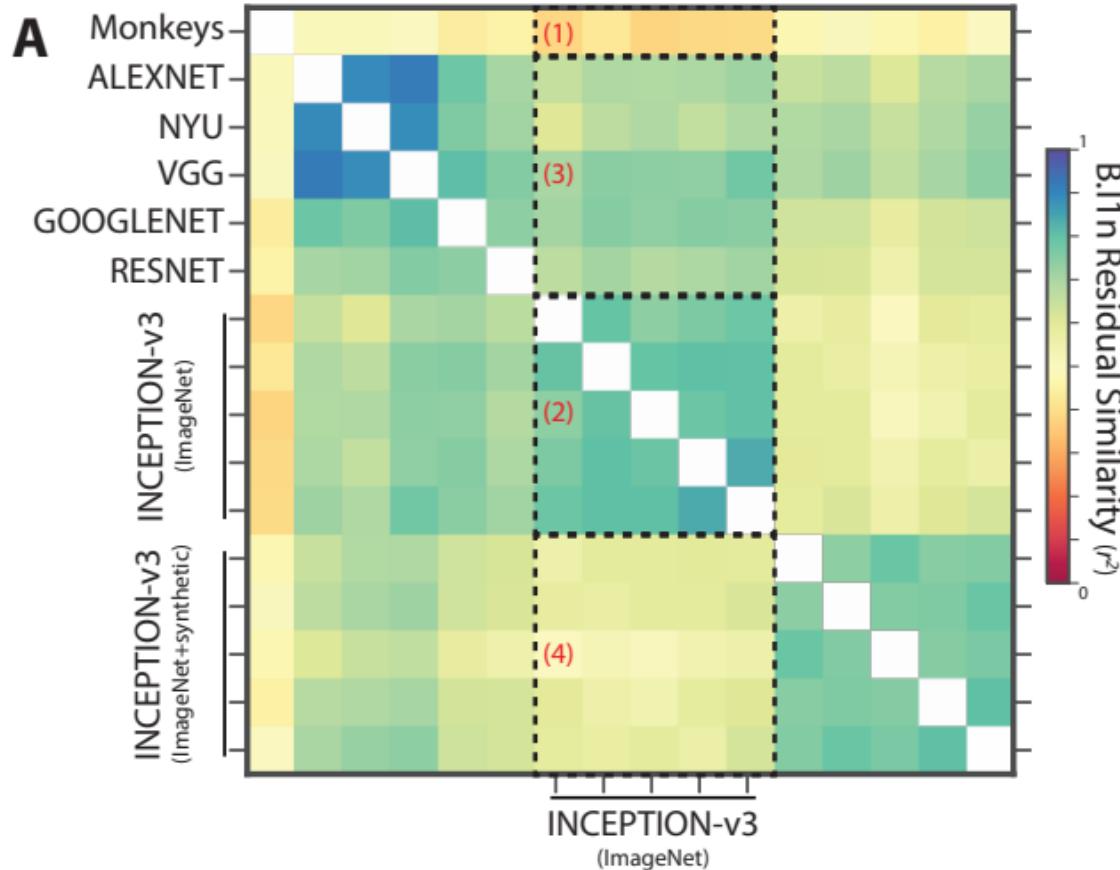
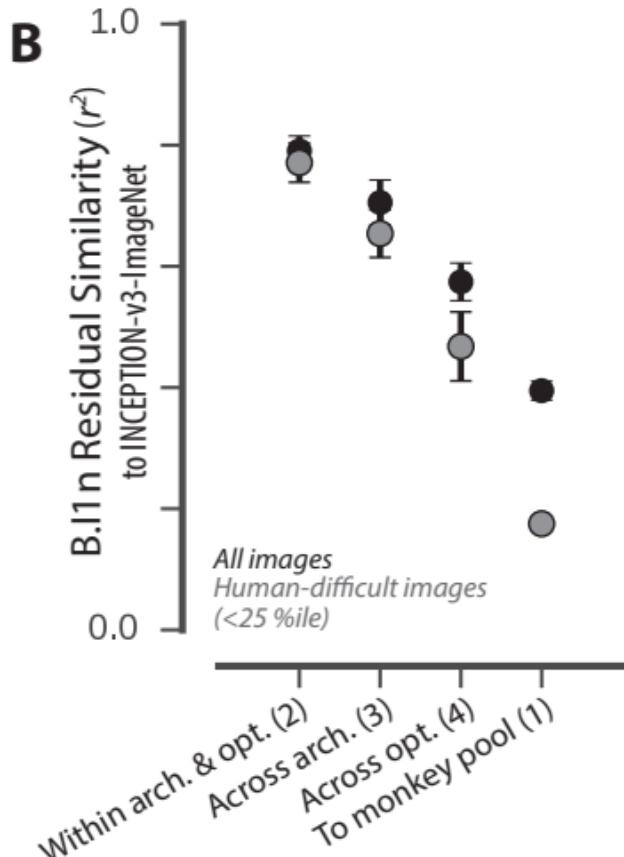


Figure 6

