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ABSTRACT

Primates—including humans—can typically recognize objects in visual images at a
glance even in the face of naturally occurring identity-preserving image transformations (e.g.
changes in viewpoint). A primary neuroscience goal is to uncover neuron-level mechanistic
models that quantitatively explain this behavior by predicting primate performance for each and
every image. Here, we applied this stringent behavioral prediction test to the leading mechanistic
models of primate vision (specifically, deep, convolutional, artificial neural networks, ANNS) by
directly comparing their behavioral signatures againgt those of humans and rhesus macaque
monkeys. Using high-throughput data collection systems for human and monkey psychophysics,
we collected over one million behavioral trials for 2400 images over 276 binary object
discrimination tasks. Consistent with previous work, we observed that state-of-the-art deep, feed-
forward convolutional ANNs trained for visual categorization (termed DCNN,c models)
accurately predicted primate patterns of object-level confusion. However, when we examined
behavioral performance for individual images within each object discrimination task, we found
that all tested DCNN,c models were significantly non-predictive of primate performance, and
that this prediction failure was not accounted for by simple image attributes, nor rescued by
simple model modifications. These results show that current DCNN,c models cannot account for
the image-level behavioral patterns of primates, and that new ANN models are needed to more
precisely capture the neural mechanisms underlying primate object vision. To this end, large-
scale, high-resolution primate behavioral benchmarks—such as those obtained here—could serve
as direct guides for discovering such models.
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SIGNIFICANCE STATEMENT

Recently, specific feed-forward deep convolutional artificial neural networks (ANNS)
models have dramatically advanced our quantitative understanding of the neural mechanisms
underlying primate core object recognition. In this work, we tested the limits of those ANNSs by
systematically comparing the behavioral responses of these models with the behavioral responses
of humans and monkeys, at the resolution of individual images. Using these high-resolution
metrics, we found that all tested ANN models significantly diverged from primate behavior.
Going forward, these high-resolution, large-scale primate behavioral benchmarks could serve as
direct guides for discovering better ANN models of the primate visual system.
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82 INTRODUCTION
83
84 Primates—both human and non-human—can typically recognize objects in visual images
85 a aglance, even in the face of naturally occurring identity-preserving transformations such as
86  changes in viewpoint. This view-invariant visual object recognition ability is thought to be
87  supported primarily by the primate ventral visual stream (DiCarlo et al., 2012). A primary
88  neuroscience goal is to construct computational models that quantitatively explain the neural
89  mechanisms underlying this ability. That is, our goal is to discover artificial neural networks
90 (ANNS) that accurately predict neuronal firing rate responses at all levels of the ventral stream
91 and its behavioral output. To this end, specific models within a large family of deep,
92  convolutional neural networks (DCNNSs), optimized by supervised training on large-scale
93 category-labeled image-sets (ImageNet) to match human-level categorization performance
94  (Krizhevsky et al., 2012; LeCun et al., 2015), have been put forth as the leading ANN models of
95 theventra stream (Yamins and DiCarlo, 2016). We refer to this sub-family as DCNN,c models
96 (IC to denote ImageNet-categorization pre-training), so as to distinguish them from all possible
97  models in the DCNN family, and more broadly, from the super-family of al ANNs. To date, it
98 hasbeen shown that DCNN,c models display internal feature representations similar to neuronal
99  representations aong the primate ventral visual stream (Yamins et a., 2013; Cadieu et a., 2014;
100 Khaligh-Razavi and Kriegeskorte, 2014; Yamins et al., 2014), and they exhibit behavioral
101 patterns smilar to the behavioral patterns of pairwise object confusions of primates
102  (Ragalingham et al., 2015). Thus, DCNN,c models may provide a quantitative account of the
103  neural mechanisms underlying primate core object recognition behavior.
104
105 However, several studies have shown that DCNN,c models can diverge drastically from
106  humansin object recognition behavior, especially with regards to particular images optimized to
107  be adversarial to these networks (Goodfellow et al., 2014; Nguyen et al., 2015). Related work
108  has shown that specific image distortions are disproportionately challenging to current DCNNS,
109  as compared to humans (RichardWebster et al., 2016; Dodge and Karam, 2017; Geirhos et al.,
110  2017; Hosseini et a., 2017). Such image-specific failures of the current ANN models would
111  likely not be captured by “object-level” behavioral metrics (e.g. the pattern of pairwise object
112  confusions mentioned above) that are computed by pooling over hundreds of images and thus are
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113 not sensitive to variation in difficulty across images of the same object. To overcome this
114  limitation of prior work, we here aimed to use scalable behavioral testing methods to precisely
115 characterize primate behavior at the resolution of individual images and to directly compare
116 leading DCNN models to primates over the domain of core object recognition behavior at this
117  high resolution.

118

119 We focused on core invariant object recognition—the ability to identify objectsin visual
120  imagesin the central visua field during a single, natural viewing fixation (DiCarlo et a., 2012).
121  We further restricted our behavioral domain to basic-level object discriminations, as defined
122 previously (Rosch et al., 1976). Within this domain, we collected large-scale, high-resolution
123  measurements of human and monkey behavior (over a million behavioral trials) using high-
124  throughput psychophysical techniques—including a novel home-cage behavioral system for
125 monkeys. These data enabled us to systematically compare all systems at progressively higher
126  resolution. At lower resolutions, we replicated previous findings that humans, monkeys, and
127  DCNN,c models all share acommon pattern of object-level confusion (Rajalingham et al., 2015).
128 However, at the higher resolution of individual images, we found that the behavior of all tested
129  DCNN,;c models was significantly different from human and monkey behavior, and this model
130  prediction failure could not be easily rescued by simple model modifications. These results show
131  that current DCNN,c models do not fully account for the image-level behavioral patterns of
132 primates, suggesting that new ANN models are needed to more precisely capture the neural
133 mechanisms underlying primate object vision. To this end, large-scale high-resolution behavioral
134  benchmarks, such as those obtained here, could serve as a strong top-down constraint for
135  efficiently discovering such models.

136

137

138 MATERIALS& METHODS

139

140  Visual images

141 We examined basic-level, core object recognition behavior using a set of 24 broadly-
142  sampled objects that we previously found to be reliably labeled by independent human subjects,
143  based on the definition of basic-level proposed by (Rosch et al., 1976). For each object, we
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144  generated 100 naturalistic synthetic images by first rendering a 3D model of the object with
145 randomly chosen viewing parameters (2D position, 3D rotation and viewing distance), and then
146  placing that foreground object view onto a randomly chosen, natural image background. To do
147  this, each object was first assigned a canonical position (center of gaze), scale (~2 degrees) and
148 pose, and then its viewing parameters were randomly sampled uniformly from the following
149  ranges for object trandation ([-3,3] degrees in both h and v), rotation ([-180,180] degrees in all
150 three axes) and scale ([x0.7, x1.7]. Background images were sampled randomly from a large
151 database of high-dynamic range images of indoor and outdoor scenes obtained from Dosch
152 Design (www.doschdesign.com). This image generation procedure enforces invariant object
153  recognition, rather than image matching, as it requires the visual recognition system (human,
154 animal or modd) to tackle the “invariance problem,” the computational crux of object
155  recognition (Ullman and Humphreys, 1996; Pinto et al., 2008). Using this procedure, we
156  previousy generated 2400 images (100 images per object) rendered at 1024x1024 pixel
157  resolution with 256-level gray scale and subsequently resized to 256x256 pixel resolution for
158  human psychophysics, monkey psychophysics and model evaluation (Rgjalingham et al., 2015).
159  Inthe current work, we focused our analyses on a randomly subsampled, and then fixed, sub-set
160  of 240 images (10 images per object; here referred to as the “primary test images’). Figure 1A
161  showsthefull list of 24 objects, with two example images of each object.

162

163 Because al of the images were generated from synthetic 3D object models, we had
164  explicit knowledge of the viewpoint parameters (position, size, and pose) for each object in each
165 image, as well as perfect segmentation masks. Taking advantage of this feature, we characterized
166  each image based on these high-level attributes, consisting of size, eccentricity, relative pose and
167  contrast of the object in the image. The size and eccentricity of the object in each image were
168  computed directly from the corresponding viewpoint parameters, under the assumption that the
169  entire image would subtend 6° at the center of visual gaze (+/-3° in both azimuth and elevation;
170  see below). For each synthetic object, we first defined its “canonical” 3D pose vector, based on
171  independent human judgments. To compute the relative pose attribute of each image, we
172  estimated the difference between the object’'s 3D pose and its canonical 3D pose. Pose

173 differences were computed as distances in unit quaternion representations: the 3D pose (I, 'xz,

174 ry) was first converted into unit quaternions, and distances between quaternions q,, q, were
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175 estimated as cos™|q, - g,| (Huynh, 2009). To compute the object contrast, we measured the
176  absolute difference between the mean of the pixel intensities corresponding to the object and the
177 mean of the background pixel intensities in the vicinity of the object (specifically, within 25
178  pixels of any object pixel, analogous to computing the local foreground-background luminance
179  difference of aforeground object in an image). Figure 5C shows example images with varying
180  valuesfor the four image attributes.

181

182  Core object recognition behavioral paradigm

183 Core object discrimination is defined as the ability to discriminate between two or more
184  objectsin visual images presented under high view uncertainty in the central visual field (~10°),
185  for durations that approximate the typical primate, free-viewing fixation duration (~200 ms)
186 (DiCarlo and Cox, 2007; DiCarlo et al., 2012). As in our previous work (Raalingham et al.,
187  2015), the behavioral task paradigm consisted of ainterleaved set of binary discrimination tasks.
188  Each binary discrimination task is an object discrimination task between a pair of objects (e.g.
189  eephant vs. bear). Each such binary task is balanced in that the test image is equally likely
190  (50%) to be of either of the two objects. On each trial, a test image is presented, followed by a
191 choice screen showing canonical views of the two possible objects (the object that was not
192 displayed in the test image is referred to as the “distractor” object, but note that objects are
193  equally likely to be distractors and targets). Here, 24 objects were tested, which resulted in 276
194  binary object discrimination tasks. To neutralize feature attention, these 276 tasks are randomly
195 interleaved (trial by trial), and the global task is referred to as a basic-level, core object
196  recognition task paradigm.

197
198  Testing human behavior
199 All human behavioral data presented here were collected from 1476 human subjects on

200 Amazon Mechanical Turk (MTurk) performing the task paradigm described above. Subjects
201  were instructed to report the identity of the foreground object in each presented image from
202  among the two objects presented on the choice screen (Fig 1B). Because all 276 tasks were
203 interleaved randomly (trial-by-trial), subjects could not deploy feature attentional strategies
204  specific to each object or specific to each binary task to process each test image.

205
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206 Figure 1B illustrates the time course of each behaviora trial, for a particular object
207  discrimination task (zebra versus dog). Each trial initiated with a central black point for 500 ms,
208 followed by 100 ms presentation of a test image containing one foreground object presented
209  under high variation in viewing parameters and overlaid on a random background, as described
210 above (see Visual images above). Immediately after extinction of the test image, two choice
211  images, each displaying a single object in a canonical view with no background, were shown to
212 theleft and right. One of these two objects was always the same as the object that generated the
213  testimage (i.e, the correct object choice), and the location of the correct object (left or right) was
214 randomly chosen on each trial. After clicking on one of the choice images, the subject was
215 queued with another fixation point before the next test image appeared. No feedback was given;
216  human subjects were never explicitly trained on the tasks. Under assumptions of typical
217  computer ergonomics, we estimate that images were presented at 6-8° of visual angle at the
218 center of gaze, and the choice object images were presented at £6-8° of eccentricity along the
219  horizontal meridian.

220

221 We measured human behavior using the online Amazon M Turk platform (see Figure 1C),
222  which enables efficient collection of large-scale psychophysical data from crowd-sourced
223 “human intelligence tasks’ (HITs). The reliability of the online MTurk platform has been
224  validated by comparing results obtained from online and in-lab psychophysical experiments
225 (Majg et al., 2015; Rgalingham et a., 2015). We pooled 927,296 trials from 1472 human
226  subjectsto characterize the aggregate human behavior, which we refer to as the “pooled” human
227  (or “archetypal” human). Each human subject performed only a small number of trials (~150) on
228  asubset of theimages and binary tasks. All 2400 images were used for behaviora testing, but in
229 some of the HITs, we biased the image selection towards the 240 primary test images (1424+70
230 trials/image on this subsampled set, versus 271+93 trials/image on the remaining images, mean +
231  SD) to efficiently characterize behavior at image level resolution. Images were randomly drawn
232 such that each human subject was exposed to each image a relatively small number of times
233  (1.5+2.0 trialsimage per subject, mean + SD), in order to mitigate potential alternative
234  behaviora strategies (e.g. “memorization” of images) that could arise from a finite image set.
235 Behaviora signatures at the object-level (B.O1, B.O2, see Behavioral metrics and signatures)
236  were measured using all 2400 test images, while image-level behavioral signatures (B.I1n, B.I2n,
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237  see Behavioral metrics and signatures) were measured using the 240 primary test images. (We
238  observed qualitatively similar results using those metrics on the full 2400 test images, but we
239  herefocus on the primary test images as the larger number of trials leads to lower noise levels).
240

241 Five other human subjects were separately recruited on MTurk to each perform a large
242 number of trials on the same images and tasks (53,097+15,278 trials/subject, mean = SD).
243  Behaviora data from these five subjects was not included in the characterization of the pooled
244  human described above, but instead aggregated together to characterize a distinct held-out
245 human pool. For the scope of the current work, this held-out human pool—which largely
246  replicated all behavioral signatures of the larger archetypal human (see Figures 2 and 3)—served
247  asanindependent validation of our human behavioral measurements.

248

249  Testing monkey behavior

250 Five adult male rhesus macague monkeys (Macaca mulatta, subjects M, Z, N, P, B) were
251 tested on the same basic-level, core object recognition task paradigm described above, with
252 minor modification as described below. All procedures were performed in compliance with
253  National Institutes of Health guidelines and the standards of the Massachusetts Institute of
254  Technology Committee on Animal Care and the American Physiological Society. To efficiently
255  characterize monkey behavior, we used a novel home-cage behavioral system developed in our
256  lab (termed MonkeyTurk, see Fig. 1C). This system leveraged a tablet touchscreen (9" Google
257  Nexus or 10.5" Samsung Galaxy Tab S) and used a web application to wirelessly load the task
258 and callect the data (code available at https://github.com/dicarlolab/mkturk). Analogous to the

259  online Amazon Mechanical Turk, which alows for efficient psychophysical assays of a large
260  number (hundreds) of human usersin their native environments, MonkeyTurk allowed usto test
261  many monkey subjects simultaneoudy in their home environment. Each monkey voluntarily
262  initiated trials, and each readily performed the task a few hours each day that the task apparatus
263  was made available to it. At an average rate of ~2,000 trials per day per monkey, we collected a
264  total of 836,117 trials from the five monkey subjects over a period of ~3 months.

265

266 Monkey training is described in detail elsewhere (Rajalingham et a., 2015). Briefly, all

267  monkeys were initially trained on the match-test-image-to-object rule using other images and
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268  were also trained on discriminating the particular set of 24 objects tested here using a separate set
269  of training images rendered from these objects, in the same manner as the main testing images.
270  Two of the monkeys subjects (Z and M) were previoudly trained in the lab setting, and the
271  remaining three subjects were trained usng MonkeyTurk directly in their home cages and did
272 not have significant prior lab exposure. Once monkeys reached saturation performance on
273  training images, we began the behavioral testing phase to collect behavior on test images.
274  Monkeys did improve throughout the testing phase, exhibiting an increase in performance
275  between thefirst and second half of trials of 4%+0.9% (mean = SEM over five monkey subjects).
276  However, the image-level behavioral signatures obtained from the first and the second halves of
277  trials were highly correlated to each other (B.11 noise-adjusted correlation of 0.85+0.06, mean +
278  SEM over five monkey subjects, see Behavioral metrics and signatures below), suggesting that
279  monkeys did not significantly alter strategies (e.g. did not “memorize” images) throughout the
280  behavioral testing phase.

281

282 The monkey task paradigm was nearly identical to the human paradigm (see Figure 1B),
283  with the exception that trials were initiated by touching a white “fixation” circle horizontally
284  centered on the bottom third of the screen (to avoid occluding centrally-presented test images
285 with the hand). This triggered a 100ms central presentation of a test image, followed
286 immediately by the presentation of the two choice images (Fig. 1B, location of correct choice
287  randomly assigned on each trial, identical to the human task). Unlike the main human task,
288  monkeys responded by directly touching the screen at the location of one of the two choice
289  images. Touching the choice image corresponding to the object shown in the test image resulted
290 inthe ddivery of a drop of juice through a tube positioned at mouth height (but not obstructing
291  view), while touching the distractor choice image resulted in a three second timeout. Because
292  gaze direction typically follows the hand during reaching movements, we assumed that the
293  monkeys were looking at the screen during touch interactions with the fixation or choice targets.
294  In both the lab and in the home cage, we maintained total test image size at ~6 degrees of visual
295 angleat the center of gaze, and we took advantage of the retina-like display qualities of the tablet
296 by presenting images pixel matched to the display (256 x 256 pixel image displayed using 256 x
297 256 pixelson thetablet at a distance of 8 inches) to avoid filtering or aliasing effects.

298
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299 As with Mechanical Turk testing in humans, MonkeyTurk head-free home-cage testing
300 enables efficient collection of reliable, large-scale psychophysical data but it likely does not yet
301 achieve the level of experimental control that is possible in the head-fixed laboratory setting.
302  However, we note that when subjects were engaged in home-cage testing, they reliably had their
303  mouth on the juice tube and their arm positioned through an armhole. These spatial constraints
304 led to a high leve of head position trial-by-trial reproducibility during performance of the task
305  paradigm. Furthermore, when subjects were in this position, they could not see other animals as
306 the behavior box was opague, and subjects performed the task at a rapid pace 40 trials/minute
307  suggesting that they were not frequently distracted or interrupted. The location of the upcoming
308 test image (but not the location of the object within that test image) was perfectly predictable at
309 the start of each behavioral trial, which likely resulted in areliable, reproduced gaze direction at
310 the moment that each test image was presented. The relatively short—but natural and high
311 peforming (Cadieu et al., 2014)—test image duration (100 ms) ensured that saccadic eye
312  movements were unlike to influence test image performance (as they generally take ~200 ms to
313 initiatein response to the test image, and thus well after the test image has been extinguished).
314

315  Testing model behavior

316 We tested a number of different deep convolutional neural network (DCNN) models on
317 the exact same images and tasks as those presented to humans and monkeys. Importantly, our
318  core object recognition task paradigm is closely analogous to the large-scale ImageNet 1000-way
319  object categorization task for which these networks were optimized and thus expected to perform
320 well. We focused on publicly available DCNN model architectures that have proven highly
321  successful with respect to this computer vision benchmark over the past five years. AlexNet
322  (Krizhevsky et a., 2012), NYU (Zeiler and Fergus, 2014), VGG (Simonyan and Zisserman,
323  2014), GoogleNet (Szegedy et al., 2013), Resnet (He et a., 2016), and Inception-v3 (Szegedy et
324 a., 2013). Asthisis only a subset of possible DCNN models, we refer to these as the DCNN¢c
325  (to denote ImageNet-Categorization) visual system model sub-family. For each of the publicly
326 available model architectures, we first used ImageNet-categorization-trained model instances,
327  either using publicly available trained model instances or training them to saturation on the 1000-
328  way classification task in-house. Training took several days on 1-2 GPUs.

329
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330 We then performed psychophysical experiments on each ImageNet-trained DCNN model
331  to characterize their behavior on the exact same images and tasks as humans and monkeys. We
332  first adapted these ImageNet-trained models to our 24-way object recognition task by re-training
333 thefinal class probability layer (initialy corresponding to the probability output of the 1000-way
334 ImageNet classification task) while holding all other layers fixed. In practice, this was done by
335  extracting features from the penultimate layer of each DCNNc (i.e. top-most prior to class
336  probability layer), on the same images that were presented to humans and monkeys, and training
337  back-end multi-class logistic regression classifiers to determine the cross-validated output class
338  probability for each image. This procedure isillustrated in Figure 1C. To estimate the hit rate of
339 a given image in a given binary classification task, we renormalized the 24-way class
340  probabilities of that image, considering only the two relevant classes, to sum to one. Object-level
341 and imagelevel behavioral metrics were computed based on these hit rate estimates (as
342  described in Behavioral metrics and signatures below). Importantly, this procedure assumes that
343 the modd “retind’ layer processes the central 6 degrees of the visual field. It also assumes that
344  linear discriminants (“readouts’) of the model’s top feature layer are its behavioral output (as
345 intended by the model designers). Manipulating either of these choices (e.g. resizing the input
346  images such that they span only part of the input layer, or building linear discriminates for
347  behavior using a different model feature layer) would result in completely new, testable ANN
348 modelsthat we do not test here.

349

350 From these analyses, we selected the most human-consistent DCNN,c architecture
351  (Inception-v3, see Behavioral consistency below), fixed that architecture, and then performed
352  post-hoc analyses in which we varied: the input image sampling, the initial parameter settings
353  prior to training, the filter training images, the type of classifiers used to generate the behavior
354  from the model features, and the classifier training images. To examine input image sampling,
355  we retrained the Inception-v3 architecture on images from ImageNet that were first spatially
356 filtered to match the spatial sampling of the primate retina (i.e. an approximately exponential
357 decrease in cone density away from the fovea) by effectively simulating a fish-eye
358 transformation on each image. These images were at highest resolution at the “fovea” (i.e. center
359 of the image) with gradual decrease in resolution with increasing eccentricity. To examine the
360 analog of “inter-subject variability”, we constructed multiple trained model instances
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361 (“subjects’), where the architecture and training images were held fixed (Inception-v3 and
362 ImageNet, respectively) but the mode filter weights initial condition and order of training
363  images were randomly varied for each model instance. Importantly, this procedure is only one
364 possible choice for smulating inter-subject variability for DCNN models, a choice that is an
365 important open research direction that we do not address here. To examine the effect of model
366 training, we fine-tuned an ImageNet-trained Inception-v3 model on a synthetic image set
367 consigting of ~6.9 million images of 1049 objects (holding out 50,000 images for model
368 validation). These images were generated using the same rendering pipeline as our test images,
369  but the objects were non-overlapping with the 24 test objects presented here. As expected, fine-
370  tuning on synthetic images led to an overall increase in performance of ~5%. We tested the effect
371  of different classifiers to generate model behavior by testing both multi-class logistic regression
372  and support vector machine classifiers. Additionally, we tested the effect of varying the number
373  of training images used to train those classifiers (20 versus 50 images per class).

374

375  Behavioral metrics and signatures

376 To characterize the behavior of any visual system, we here introduce four behavioral (B)
377  metrics of increasing richness, requiring increasing amounts of data to measure reliably. Each
378 behavioral metric computes a pattern of unbiased behavioral performance, usng a sensitivity
379 index: d' = Z(HitRate) — Z(FalseAlarmRate), where Z is the inverse of the cumulative
380 Gaussian distribution. The various metrics differ in the resolution at which hit rates and false
381 alarm rates are computed. Table 1 summarizes the four behavioral metrics, varying the hit-rate
382  resolution (object-level or image-level) and the false-alarm resolution (one-versus-all or one-
383  versus-other). When each metric is applied to the behavioral data of a visual system—abiological
384  or artificial—we refer to the result as one behavioral “signature” of that system. Note that we do
385  not consider the signatures obtained here to be the final say on the behavior of these biological or
386 artificial systems—in the terms defined here, new experiments using new objects/images but the
387  same metrics would produce additional behavioral signatures.

388

389 The four behavioral metrics we chose are as follows: First, the one-versus-all object-level
390 performance metric (termed B.O1) estimates the discriminability of each object from all other
391 objects, pooling across all distractor object choices. Since we here tested 24 objects, the resulting
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392 B.O1 dgnature has 24 independent values. Second, the one-versus-other object-level
393  performance metric (termed B.O2) estimates the discriminability of each specific pair of objects,
394  or the pattern of pairwise object confusions. Since we here tested 276 interleaved binary object
395  discrimination tasks, the resulting B.O2 signature has 276 independent vaues (the off-diagonal
396 elements on one half of the 24x24 symmetric matrix). Third, the one-versus-all image-level
397 peformance metric (termed B.l1) estimates the discriminability of each image from all other
398 objects, pooling across all possible distractor choices. Since we here focused on the primary
399 image test set of 240 images (10 per object, see above), the resulting B.l11 signature has 240
400 independent values. Fourth, the one-versus-other image-level performance metric (termed B.12)
401 estimates the discriminability of each image from each distractor object. Since we here focused
402  on the primary image test set of 240 images (10 per object, see above) with 23 distractors, the
403  resulting B.12 signature has 5520 independent values.

404

405 Naturally, object-level and image-level behaviora signatures are tightly linked. For
406 example, images of a particularly difficult-to-discriminate object would inherit lower
407  performance values on average as compared to images from a less difficult-to-discriminate
408  object. To isolate the behavioral variance that is specifically driven by image variation and not
409 simply predicted by the objects (and thus already captured by B.O1 and B.O2), we defined
410 normalized image-level behaviora metrics (termed B.11n, B.I2n) by subtracting the mean
411  performance values over al images of the same object and task. This process is schematically
412  illustrated in Figure 3A. We note that the resulting normalized image-level behavioral signatures
413  capture a significant proportion of the total image-level behavioral variance in our data (e.g.
414  52%, 58% of human B.I1 and B.12 variance is driven by image variation, independent of object
415  identity). In this study, we use these normalized metrics for image-level behavioral comparisons
416  between models and primates (see Results).

417

418 Behavioral Consistency

419 To quantify the similarity between a model visual system and the human visual system
420  with respect to a given behavioral metric, we used a measure called the “human-consistency” as
421  previoudy defined (Johnson et al., 2002). Human-consistency (5) is computed, for each of the
422  four behavioral metrics, as a noise-adjusted correlation of behavioral signatures (DiCarlo and
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423  Johnson, 1999). For each visual system, we randomly split all behavioral trials into two equal
424  halves and applied each behavioral metric to each half, resulting in two independent estimates of
425  the system’'s behavioral signature with respect to that metric. We took the Pearson correlation
426  between these two estimates of the behavioral signature as a measure of the reliability of that
427  behavioral signature given the amount of data collected, i.e. the split-half internal reliability. To
428  estimate the human-consistency, we computed the Pearson correlation over al the independent
429  edtimates of the behavioral signature from the model (m) and the human (h), and we then divide
430 that raw Pearson correlation by the geometric mean of the split-half internal reliability of the

431 same behavioral signature measured for each system: g = __poh)

3 9 system: p(m, h) =

432

433 Since al correlations in the numerator and denominator were computed using the same

434  amount of trial data (exactly half of the trial data), we did not need to make use of any prediction
435 formulas (e.g. extrapolation to larger number of trials using Spearman-Brown prediction
436  formula). This procedure was repeated 10 times with different random split-halves of trials. Our
437 rationale for using a reliability-adjusted correlation measure for human-consistency was to
438  account for variance in the behavioral signatures that arises from “noise,” i.e., variability that is
439  not replicable by the experimental condition (image and task) and thus that no model can be
440  expected to predict (DiCarlo and Johnson, 1999; Johnson et al., 2002). In sum, if the model (m)
441 isareplicaof the archetypal human (h), then its expected human-consistency is 1.0, regardless of
44?2  thefinite amount of datathat are collected.

443

444  Characterization of Residuals

445 In addition to measuring the smilarity between the behavioral signatures of primates and
446  modeds (using human-cons stency anayses, as described above), we examined the corresponding
447  differences, termed “residual signatures.” Each candidate visual system model’s residual
448  signature was estimated as the residual of a linear least squares regression of the modd’s
449  signature on the corresponding human signature and a free intercept parameter. This procedure
450  effectively captures the differences between human and model signatures after accounting for
451  overal performance differences. Residual signatures were estimated on digoint split-halves of
452  trias, repeating 10 times with random trial permutations. Residuals were computed with respect

453  tothe normalized one-versus-all image-level performance metric (B.11n) as this metric showed a
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454  clear difference between DCNN,c models and primates, and the behavioral residual can be
455  interpreted based only the test images (i.e. we can assign aresidual per image).

456

457 To examine the extent to which the difference between each model and the archetypal
458 human is reliably shared across different models, we measured the Pearson correlation between
459  theresidual signatures of pairs of models. Residual similarity was quantified as the proportion of
460 shared variance, defined as the square of the noise-adjusted correlation between residual
461  signatures (the noise-adjustment was done as defined in equation above). Correlations of residual
462  dignatures were aways computed across distinct split-halves of data, to avoid introducing
463  spurious correlations from subtracting common noise in the human data. We measured the
464  residua similarity between all pairs of tested models, holding both architecture and optimization
465  procedure fixed (between instances of the ImageNet-categorization trained Inception-v3 model,
466 varying in filter initial conditions), varying the architecture while holding the optimization
467  procedure fixed (between all tested ImageNet-categorization trained DCNN architectures), and
468 holding the architecture fixed while varying the optimization procedure (between ImageNet-
469  categorization trained Inception-v3 and synthetic-categorization fine-tuned Inception-v3
470 models). This analysis addresses not only the reliability of the failure of DCNN,c models to
471  predict human behavior (deviations from humans), but also the relative importance of the
472  characteristics defining similarities within the model sub-family (namely, the architecture and the
473  optimization procedure). We first performed this analysis for residual signatures over the 240
474  primary test images, and subsequently zoomed in on subsets of images that humans found to be
475  particularly difficult. This image selection was made relative to the distribution of image-level
476  performance of held-out human subjects (B.I1 metric from five subjects); difficult images were
477  defined as ones with performance below the 25" percentile of this distribution.

478

479 To examine whether the difference between each model and humans can be explained by
480 simple human-interpretable stimulus attributes, we regressed each DCNN,c mode’s residual
481 signature on image attributes (object size, eccentricity, pose, and contrast). Briefly, we
482  constructed a design matrix from the image attributes (using individual attributes, or all
483  attributes), and used multiple linear least squares regression to predict the image-level residual
484  signature. The multiple linear regression was tested using two-fold cross-validation over trials.
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485 The relative importance of each attribute (or groups of attributes) was quantified using the
486  proportion of explainable variance (i.e. variance remaining after accounting for noise variance)
487  explained from the residual signature.

488

489  Primate behavior zone

490 In this work, we are primarily concerned with the behavior of an “archetypal human”,
491  rather than the behavior of any given individual human subject. We operationally defined this
492  concept as the common behavior over many humans, obtained by pooling together trials from a
493  large number of individual human subjects and treating this human pool as if it were acquired
494  from a single behaving agent. Due to inter-subject variability, we do not expect any given human
495  or monkey subject to be perfectly consistent with this archetypal human (i.e. we do not expect it
496  to have a human-consistency of 1.0). Given current limitations of monkey psychophysics, we are
497  not yet able to measure the behavior of very large number of monkey subjects at high resolution
498 and consequently cannot directly estimate the human-consistency of the corresponding
499  *“archetypal monkey” to the human pool. Rather, we indirectly estimated this value by first
500 measuring human-consistency as a function of number of individual monkey subjects pooled
501 together (n), and extrapolating the human-consistency estimate for pools of very large number of
502  subjects (as n approaches infinity). Extrapolations were done using least squares fitting of an
503  exponentia functiong(n) = a+ b - e~ " (see Figure 4).

504

505 For each behavioral metric, we defined a “primate zone” as the range of human-
506 consistency values delimited by estimates gy, and py aslower and upper bounds respectively.
507 Py COrresponds to the extrapolated estimate of human-consistency of a large (i.e. infinitely
508 many) pool of rhesus macague monkeys; gy IS by definition equal to 1.0. Thus, the primate
509 zone defines a range of human-consistency values that correspond to models that accurately
510  capture the behavior of the human pool, at least as well as an extrapolation of our monkey
511 sample. In this work, we defined this range of human-consistency values as the criterion for
512  success for computational models of primate visual object recognition behavior.

513

514 To make a global statistical inference about whether models sampled from the DCNN¢c
515  sub-family meet or fall short of this criterion for success, we attempted to rgject the hypothesis
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516 that, for a given behavioral metric, the human-consistency of DCNN;c models is within the
517  primate zone. To test this hypothesis, we estimated the empirical probability that the distribution
518 of human-consistency values, estimated over different model instances within this family, could
519  produce human-consistency values within the primate zone. Specifically, we estimated a p-value
520 for each behaviora metric usng the following procedure: We first estimated an empirical
521 distribution of Fisher-transformed human-consistency values for this model family (i.e. over all
522  tested DCNN;c models and over all trial-resampling of each DCNN;c model). From this
523 empirical distribution, we fit a Gaussian kerndl density function, optimizing the bandwidth
524  parameter to minimize the mean squared error to the empirical distribution. This kernel density
525  function was evaluated to compute a p-value, by computing the cumulative probability of
526  observing a human-consistency value greater than or equal to the criterion of success (i.e. the
527  Fsher transformed py., value). This p-value indicates the probability that human-consistency
528  values sampled from the observed distribution would fall into the primate zone, with smaller p-
529  vauesindicating stronger evidence againgt the hypothesis that the human-consistency of DCNN

530 modelsiswithin the primate zone.

531

532 RESULTS

533

534 In the present work, we systematically compared the basic level core object recognition

535 behavior of primates and state-of-the-art artificial neural network models using a series of
536  behavioral metrics ranging from low to high resolution within a two-aternative forced choice
537  match-to-sample paradigm. The behavior of each visual system, whether biological or artificial,
538  was tested on the same 2400 images (24 objects, 100 images/object) in the same 276 interleaved
539  binary object recognition tasks. Each system’s behavior was characterized at multiple resolutions
540 (see Behavioral metrics and signatures in Methods) and directly compared to the corresponding
541 behavioral metric applied on the archetypal human (defined as the average behavior of a large
542  pool of human subjects tested; see Methods). The overarching logic of this study was that, if two
543 visua systems are equivalent, they should produce statistically indistinguishable behavioral
544  gignatures with respect to these metrics. Specifically, our goal was to compare the behavioral
545  signatures of visual system models with the corresponding behavioral signatures of primates.

546
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547  Object-level behavioral comparison

548 We first examined the pattern of one-versus-all object-level behavior (termed “B.O1
549 metric’) computed across all images and possible distractors. Since we tested 24 objects here, the
550 B.O1 signature was 24 dimensional. Figure 2A shows the B.O1 signatures for the pooled human
551  (pooling n=1472 human subjects), pooled monkey (pooling n=5 monkey subjects), and several
552 DCNN,c models as 24-dimensional vectors using a color scale. Each element of the vector
553  corresponds to the system’s discriminability of one object against all others that were tested (i.e.
554  all other 23 objects). The color scales span each signature’s full performance range, and warm
555 colors indicate lower discriminability. For example, red indicates that the tested visual system
556 found the object corresponding to that element of the vector to be very challenging to
557  discriminate from other objects (on average over all 23 discrimination tests, and on average over
558 all images). Figure 2B directly compares the B.O1 signatures computed from the behavioral
559  output of two visual system models—a pixel modd (top panel) and a DCNN,c model (Inception-
560 v3, bottom pane)—against that of the human B.Ol1 signature. We observe a tighter
561  correspondence to the human behavioral signature for the DCNN,;c model visua system than for
562 the baseline pixel model visual system. We quantified that similarity using a noise-adjusted
563 correlation between each pair of B.O1 signatures (termed human-consistency, following
564  (Johnson et a., 2002)); the noise adjustment means that a visual system that is identical to the
565  human pool will have an expected human-consistency score of 1.0, even if it hasirreducible trial-
566 by-trid stochasticity; see Methods). Figure 2C shows the B.O1 human-consistency for each of
567 the tested model visual systems. We additionally tested the behavior of a held-out pool of five
568 human subjects (black dot) and a pool of five macague monkey subjects (gray dot), and we
569 observed that both yielded B.Ol signatures that were highly human-consistent (human-
570  consistency p = 0.90, 0.97 for monkey pool and held-out human pool, respectively). We defined
571 arange of human-consistency values, termed the “primate zone” (shaded gray area), delimited by
572  extrapolated human-consistency estimates of large pools of macaques (see Methods, Figure 4).
573  Wefound that the baseline pixel visual system model and the low-level V1 visual system model
574  werenot within this zone (p = 0.40, 0.67 for pixels and V1 models, respectively), while all tested
575 DCNNc visual system models were either within or very close to this zone. Indeed, we could not
576  rgect the hypothesisthat DCNN,c models are primate-like (p = 0.54, exact test, see Methods).
577
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578 Next, we compared the behavior of the visual systems at a dlightly higher level of
579  resolution. Specifically, instead of pooling over al discrimination tasks for each object, we
580 computed the mean discriminability of each of the 276 pairwise discrimination tasks (till
581 pooling over images within each of those tasks). This yielded a symmetric matrix that is referred
582  to here asthe B.O2 signature. Figure 2D shows the B.O2 signatures of the pooled human, pooled
583  monkey, and several DCNN;c visual system models as 24x24 symmetric matrices. Each bin (i,])
584  corresponds to the system’s discriminability of objects i and j, where warmer colors indicate
585  lower performance; color scales are not shown but span each signature’ s full range. We observed
586  strong qualitative similarities between the pairwise object confusion patterns of all of the high
587 level visual systems (e.g. camel and dog are often confused with each other by all three systems).
588 This amilarity is quantified in Figure 2E, which shows the human-consistency of all examined
589  visua system models with respect to this metric. Similar to the B.O1 metric, we observed that
590 both a pool of macague monkeys and a held-out pool of humans are highly human-cons stent
591  with respect to thismetric (5 = 0.77, 0.94 for monkeys, humans respectively). Also similar to the
592  B.O1 metric, we found that all DCNN,c visual system models are highly human-consistent (p >
593  0.8) whilethe baseline pixel visual system model and the low-level V1 visual system model were
594 not (p = 0.41, 0.57 for pixels, V1 models respectively). Indeed, al DCNN,c visua system
595 models are within the defined “primate zone” of human-cons stency, and we could not falsify the
596 hypothesisthat DCNN,c models are primate-like (p = 0.99, exact test).

597

598 Taken together, humans, monkeys, and current DCNN,c models all share similar patterns
599 of object-level behavioral performances (B.O1 and B.O2 signatures) that are not shared with
600 lower-level visual representations (pixels and V1). However, object-level performance patterns
601 do not capture the fact that some images of an object are more challenging than other images of
602  the same object because of interactions of the variation in the object’s pose and position with the
603  object’s class. To overcome this limitation, we next examined the patterns of behavior at the
604  resolution of individual images on a subsampled set of images where we specifically obtained a
605 large number of behavioral trials to accurately estimate behavioral performance on each image.
606 Note that, from the point of view of the subjects, the behavioral tasks are identical to those
607 aready described. We simply aimed to measure and compare their patterns of performance at

608  much higher resolution.


https://doi.org/10.1101/240614
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/240614; this version posted February 12, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

609

610 Image-level behavioral comparison

611 To isolate purely image-level behavioral variance, i.e. variance that is not predicted by
612 theobject and thus already captured by the B.O1 signature, we computed the normalized image-
613 level signature. This normalization procedure is schematically illustrated in Figure 3A which
614  shows that the one-versus-all image-level signature (240-dimensional, 10 images/object) is used
615 to obtain the normalized one-versus-all image-level signature (termed B.l11n, see Behavioral
616  metrics and signatures). Figure 3B shows the B.I1n signatures for the pooled human, pooled
617  monkey, and several DCNN,c models as 240 dimensional vectors. Each bin’s color corresponds
618  tothediscriminability of asingleimage against all distractor options (after subtraction of object-
619 level discriminability, see Figure 3A), where warmer colors indicate lower values; color scales
620  arenot shown but span each signature’ s full range. Figure 3D shows the human-consi stency with
621  respect to the B.I1n signature for all tested models. Unlike with object-level behavioral metrics,
622  we now observe a divergence between DCNN,c models and primates. Both the monkey pool and
623  the held-out human pool remain highly human-consistent (9 = 0.77, 0.96 for monkeys, humans
624  respectively), but all DCNN,c models were significantly less human-consistent (Inception-
625 v3:p = 0.62) and well outside of the defined “primate zone” of B.I1n human-consstency.
626  Indeed, the hypothesis that the human-consistency of DCNN,c models is within the primate zone
627 isstrongly rgected (p = 6.16e-8, exact test, see Methods).

628

629 We can zoom in further by examining not only the overall performance for a given image
630 but also the object confusions for each image, i.e. the additional behavioral variation that is due
631 not only to the test image but to the interaction of that test image with the alternative (incorrect)
632  object choice that is provided after the test image (see Fig. 1B). This is the highest level of
633  behavioral accuracy resolution that our task design allows. In raw form, it corresponds to one-
634  versus-other image-level confusion matrix, where the size of that matrix is the total number of
635  images by the total number of objects (here, 240x24). Each bin (i,j) corresponds to the behavioral
636  discriminability of a single image i against distractor object j. Again, we isolate variance that is
637  not predicted by object-level performance by subtracting the average performance on this binary
638 task (mean over al images) to convert the raw matrix B.12 above into the normalized matrix,
639 referred to as B.12n. Figure 3D shows the B.I2n signatures as 240x24 matrices for the pooled
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640  human, pooled monkey and top DCNNc visua system models. Color scales are not shown but
641  span each signature' s full range; warmer colors correspond to images with lower performance in
642 agiven binary task, relative to all images of that object in the same task. Figure 3E shows the
643 human-consistency with respect to the B.I2n metric for all tested visua system models.
644  Extending our observations using B.11n, we observe a similar divergence between primates and
645 DCNN;c visua system models on the matrix pattern of image-by-distractor difficulties (B.12n).
646  Specifically, both the monkey pool and held-out human pool remain highly human-consistent
647 (p = 0.75, 0.77 for monkeys, humans respectively), while al tested DCNN;c models are
648  significantly less human-consistent (Inception-v3: p = 0.53) falling well outside of the defined
649  “primate zone” of B.I12n human-consistency values. Once again, the hypothesis that the human-
650 consistency of DCNN,c models is within the primate zone is strongly rejected (p = 3.17e-18,
651  exact test, see Methods).

652
653  Natural subject-to-subject variation
654 For each behavioral metric (B.O1, BO2, B.I1n, BI2n), we defined a “ primate zone” as the

655  range of consistency values delimited by human-consistency estimates py..and py.. as lower
656 and upper bounds respectively. gy, corresponds to the extrapolated estimate of the human-
657  consistency of alarge (i.e. infinitely many subjects) pool of rhesus macague monkeys. Thus, the
658 fact that a particular tested visual system model falls outside of the primate zone can be
659 interpreted as a failure of that visual system modd to accurately predict the behavior of the
660  archetypal human at least as well as the archetypal monkey.

661

662 However, from the above analyses, it is not yet clear whether a visual system model that
663 fails to predict the archetypal human might nonetheless accurately correspond to one or more
664  individual human subjects found within the natural variation of the human population. Given the
665  difficulty of measuring individual subject behavior at the resolution of single images for large
666  numbers of human and monkey subjects, we could not yet directly test this hypothesis. Instead,
667 weexamined it indirectly by asking whether an archetypal model—that is a pool that includes an
668  increasing number of model “subjects’—would approach the human pool. We simulated model
669 inter-subject variability by retraining a fixed DCNN architecture with a fixed training image set
670  with random variation in the initial conditions and order of training images. This procedure
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671  resultsin models that can still perform the task but with slightly different learned weight values.
672  We note that this procedure is only one possible choice of generating inter-subject variability
673  within each visual system model type, a choice that is an important open research direction that
674  we do not address here. From this procedure, we constructed multiple trained model instances
675 (“subjects’) for a fixed DCNN architecture, and asked whether an increasingly large pool of
676  model “subjects’ better captures the behavior of the human pool, at least as well as a monkey
677  pool. This post-hoc analysis was conducted for the most human-consistent DCNN architecture
678  (Inception-v3).

679

680 Figure 4A shows, for each of the four behavioral metrics, the measured human-
681  consistency of subject pools of varying size (number of subjects n) of rhesus macaque monkeys
682  (black) and ImageNet-trained Inception-v3 models (blue). The human-consistency increases with
683  growing number of subjects for both visual systems across all behavioral metrics. To estimate
684  the expected human-consistency for a pool of infinitely many monkey or mode subjects, we fit
685 an exponential function mapping n to the mean human-consistency values and obtained a
686  parameter estimate for the asymptotic value (see Methods). We note that estimated asymptotic
687  values are not significantly beyond the range of the measured data—the human-consistency of a
688  pool of five monkey subjects reaches within 97% of the human-consistency of an estimated
689 infinite pool of monkeys for all metrics—giving credence to the extrapolated human-consistency
690 values. This analysis suggests that under this model of inter-subject variability, a pool of
691  Inception-v3 subjects accurately capture archetypal human behavior at the resolution of objects
692 (B.O1, B.O2) by our primate zone criterion (see Figure 4A, first two panels). In contrast, even a
693 large pool of Inception-v3 subjects ill fails at its final asymptote to accurately capture human
694  behavior at theimage-level (B.11n, B.I2n) (Figure 4A, last two panels).

695

696  Modification of visual system modelsto try to rescue their human-consi stency

697 Next, we wondered if some relatively ssmple changes to the DCNNc visual system
698 models tested here could bring them into better correspondence with the primate visual system
699  behavior (with respect to B.I1n and B.I2n metrics). Specifically, we considered and tested the
700  following modifications to the most human-consistent DCNN,c model visual system (Inception-
701 v3): we (1) changed the input to the model to be more primate-like in its retina sampling
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702  (Inception-v3 + retina-like), (2) changed the transformation (aka “decoder”) from the internal
703  mode feature representation into the behavioral output by augmenting the number of decoder
704  training images or changing the decoder type (Inception-v3 + SVM, Inception-v3d +
705  classfier_train), and (3) modified al of the internal filter weights of the mode (aka “fine
706  tuning”’) by augmenting its ImageNet training with additional images drawn from the same
707  digtribution as our test images (Inception-v3 + synthetic-fine-tune). While some of these
708 modifications (e.g. fine-tuning on synthetic images and increasing the number of classifier
709  training images) had the expected effect of increasing mean overall performance (not shown, see
710  Methods), we found that none of these modifications led to a significant improvement in its
711  human-consistency on the behavioral metrics (Figure 4B). Thus, the failure of current DCNN¢c
712  models to accurately capture the image-level signatures of primates cannot be rescued by simple
713  modifications on afixed architecture.

714

715  Looking for clues: Image-level comparisons of models and primates

716 Taken together, Figures 2, 3 and 4 suggest that current DCNN ¢ visual system modelsfail
717  to accurately capture the image-level signatures of humans and monkeys. To further examine this
718  failure in the hopes of providing clues for model improvement, we examined the image-level
719  residua signatures of all the visual system models, relative to the pooled human. For each model,
720  we computed its residual signature as the difference (positive or negative) of a linear least
721 sguares regression of the modd signature on the corresponding human signature. For this
722  analysis, we focused on the B.11n metric as it showed a clear divergence of DCNN,c models and
723  primates, and the behavioral residual can be interpreted based only on the test images (whereas
724  B.I2n depends on the interaction between test images and distractor choice).

725

726 We first asked to what extent the residual signatures are shared between different visual
727  system models. Figure 5A shows the similarity between the residual signatures of all pairs of
728 modes; the color of bin (i,j) indicates the proportion of explainable variance that is shared
729  between the residual signatures of visual systemsi and j. For ease of interpretation, we ordered
730  visual system models based on their architecture and optimization procedure and partitioned this
731  matrix into four distinct regions. Each region compares the residuals of a “source” model group
732 with fixed architecture and optimization procedure (five Inception-v3 models optimized for
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733  categorization on ImageNet, varying only in initial conditions and training image order) to a
734  “target” model group. The target groups of models for each of the four regions are: 1) the pooled
735 monkey, 2) other DCNN,c models from the source group, 3) DCNN,c models that differ in
736  architecture but share the optimization procedure of the source group models and 4) DCNNc
737  models that differ slightly using an augmented optimization procedure but share the architecture
738  of the source group models. Figure 5B shows the mean (£SD) variance shared in the residuals
739  averaged within these four regions for all images (black dots), as well as for images that humans
740 found to be particularly difficult (gray dots, selected based on held-out human data, see
741 Methods). First, consstent with the results shown in Figure 3, we note that the residual
742  signatures of this particular DCNN,c model are not well shared with the pooled monkey (r*=0.39
743  inregion 1), and this phenomenon is more pronounced for the images that humans found most
744  difficult (*=0.17 in region 1). However, this relatively low correlation between model and
745  primate residualsis not indicative of spurious model residuals, as the model residual signatures
746  were highly reliable between different instances of this fixed DCNN,c model, across random
747  training initializations (region 2: r’=0.79, 0.77 for all and most difficult images, respectively).
748  Interestingly, residual signatures were still largely shared with other DCNN,c models with vastly
749  different architectures (region 3: r’=0.70, 0.65 for all and most difficult images, respectively).
750  However, residual signatures were more strongly altered when the visual training diet of the
751 same architecture was atered (region 4: r’=0.57, 0.46 for al and most difficult images
752  respectively, cf. region 3). Taken together, these results indicate that the images where DCNN ¢
753  visua system models diverged from humans (and monkeys) were not spurious but were rather
754  highly reliable across different model architectures, demonstrating that current DCNN,c models
755  systematically and similarly diverge from primates.

756

757 To look for clues for model improvement, we asked what, if any, characteristics of
758  images might account for this divergence of models and primates. We regressed the residual
759  signatures of DCNN,c models on four different image attributes (corresponding to the size,
760  eccentricity, pose, and contrast of the object in each image). We used multiple linear regressions
761  to predict the model residual signatures from all of these image attributes, and also considered
762  each attribute individually using simple linear regressions. Figure 6A shows example images
763  (sampled from the full set of 2400 images) with increasing attribute value for each of these four
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764  image attributes. While the DCNN,c models were not directly optimized to display primate-like
765  performance dependence on such attributes, we observed that the Inception-v3 visual system
766  mode nonetheless exhibited qualitatively similar performance dependencies as primates (see
767  Figure 6B). For example, humans (black), monkeys (gray) and the Inception-v3 model (blue) all
768  performed better, on average, for images in which the object is in the center of gaze (low
769  eccentricity) and large in size. Furthermore, all three systems performed better, on average, for
770  images when the pose of the object was closer to the canonical pose (see Figure 6B); this
771  senditivity to object pose manifested itself as a non-linear dependence due to the fact that all
772  tested objects exhibited symmetry in at least one axis. The similarity of the patternsin Figure 6B
773  between primates and the DCNNic visual system models is not perfect but is striking,
774  particularly in light of the fact that these models were not optimized to produce these patterns.
775  However, this similarity is analogous to the similarity in the B.O1 and B.O2 metrics in that it
776 only holds on average over many images. Looking more closdly at the image-by-image
777  comparison, we again found that the DCNN,c models failed to capture a large portion of the
778  image-by-image variation (Figure 3). In particular, Figure 6C shows the proportion of variance
779 explained by specific image attributes for the residual signatures of monkeys (black) and
780 DCNN,c modes (blue). We found that, taken together, all four of these image attributes
781 explained only ~10% of the variance in DCNNc residual signatures, and each individual
782  attribute could explain a most a small amount of residual variance (<5% of the explainable
783  variance). In sum, these analyses show that some behavioral effects that might provide intuitive
784  clues to modify the DCNN,c models are already in place in those models (e.g. a dependence on
785  eccentricity). But the quantitative image-by-image analyses of the remaining unexplained
786  variance (Figure 6C) argue that the DCNN,c visual system models' failure to capture primate
787 image-level signatures cannot be further accounted for by these simple image attributes and

788  likely stem from other factors.

789

790 DISCUSSION

791

792 The current work was motivated by the broad scientific goal of discovering models that

793  quantitatively explain the neuronal mechanisms underlying primate invariant object recognition
794  behavior. To this end, previous work had shown that specific artificial neural network models
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795 (ANNSs), drawn from a large family of deep convolutional neural networks (DCNNs) and
796  optimized to achieve high levels of object categorization performance on large-scale image-sets,
797  capture a large fraction of the variance in primate visual recognition behaviors (Rgjalingham et
798 a., 2015; Jozwik et al., 2016; Kheradpisheh et al., 2016; Kubilius et al., 2016; Peterson et al.,
799  2016; Wallis et al., 2017), and the internal hidden neurons of those same models also predict a
800 large fraction of the image-driven response variance of brain activity at multiple stages of the
801 primate ventral visual stream (Yamins et al., 2013; Cadieu et a., 2014; Khaligh-Razavi and
802  Kriegeskorte, 2014; Yamins et a., 2014; Gii¢li and van Gerven, 2015; Cichy et al., 2016; Hong
803 et a., 2016; Seibert et al., 2016; Cadena et a., 2017; Wen et al., 2017). For clarity, we here
804 referred to this sub-family of models as DCNN,c (to denote ImageNet-Categorization training),
805  so asto distinguish them from all possible models in the DCNN family, and more broadly, from
806  the super-family of all ANNSs. In this work, we directly compared leading DCNN,c models to
807  primates (humans and monkeys) with respect to their behavioral signatures at both object and
808 image level resolution in the domain of core object recognition. In order to do so, we measured
809  and characterized primate behavior at larger scale and higher resolution than previously possible.
810  We first replicate prior work (Rajaingham et al., 2015) showing that, at the object level,
811 DCNN,c models produce statistically indistinguishable behavior from primates, and we extend
812  that work by showing that these models also match the average primate sensitivities to object
813  contrast, eccentricity, size, and pose, a noteworthy similarity in light of the fact that these models
814  were not optimized to produce these performance patterns. However, our primary novel result is
815 that, examining behavior at the higher resolution of individual images, all leading DCNN,c
816 modelsfailed to replicate the image-level behavioral signatures of primates. An important related
817 claim is that rhesus monkeys are more consistent with the archetypal human than any of the
818  tested DCNN,c models (at the image-level).

819

820 While it had previously been shown that DCNN,c models can diverge from human
821  behavior on specifically chosen adversarial images (Szegedy et al., 2013), a strength of our work
822 s that we did not optimize images to induce failure but instead randomly sampled the image
823 generative parameter space broadly. As such, our results highlight a general, rather than
824  adversarial-induced, failure of DCNN,c models to fully capture the neural mechanisms
825  underlying primate core object recognition behavior. Furthermore, we showed that this failure of
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826  current DCNN;c models cannot be explained by simple image attributes and cannot be rescued
827 by simple model modifications (input image sampling, model training, and classifier variations).
828  Taken together, these results suggest that new ANN models are needed to more precisely capture
829  theneura mechanisms underlying primate object vision.

830

831 With regards to new ANN models, we can attempt to make prospective inferences about
832  future possible DCNN;c models from the data presented here. Based on the observed distribution
833  of image-level human-consistency values for the DCNN,c models tested here, we infer that yet
834  untested model instances sampled identically (i.e. from the DCNN,;c model sub-family) are very
835  likely to have similarly inadequate image-level human-cons stency. While we cannot rule out the
836  possibility that at least one model instance within the DCNN, ¢ sub-family would fully match the
837 image-level behavioral signatures, the probability of sampling such a model is vanishingly small
838  (p<10* for B.I2n human-consistency, estimated using exact test using Gaussian kernel density
839  estimation, see Methods, Results). An important caveat of this inference is that we may have a
840 biased estimate of the human-consistency distribution of this model sub-family, as we did not
841 exhaustively sample the sub-family. In particular, if the model sampling process is non-
842  dstationary over time (e.g. increases in computational power over time allows larger models to be
843  successfully trained), the human-consistency of new (i.e. yet to be sampled) models may lie
844  outside the currently estimated distribution. Consistent with the latter, we observed that current
845 DCNNc cluster into two distinct “generations’ separated in time (before/after the year 2015; e.g.
846  Inception-v3 improves over AlexNet though both lie outside the primate zone in Figure 3). Thus,
847 following this trend, it is possible that the evolution of “next-generation” models within the
848 DCNN;c sub-family could meet our criteriafor successful matching primate-like behavior.

849

850 Alternatively, it is possible—and we think likely—that future DCNN,c models will also
851 fail to capture primate-like image-level behavior, suggesting that either the architectural
852 limitations (e.g. convolutional, feed-forward) and/or the optimization procedure (including the
853  diet of visual images) that define this model sub-family are fundamentally limiting. Thus, ANN
854 mode sub-families utilizing different architectures (e.g. recurrent neural networks) and/or
855  optimized for different behavioral goals (e.g. loss functions other than object classification
856  performance, and/or images other than category-labeled ImageNet images) may be necessary to
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857  accurately capture primate behavior. To this end, we propose that testing even individual
858  changes to the DCNN,c models—each creating a new ANN model sub-family—may be the best
859 way forward, because DCNN,c models currently offer the best explanations (in a predictive
860  sense) of both the behavioral and neural phenomena of core object recognition.

861

862 To reach that goal of finding a new ANN model sub-family that is a better mechanistic
863 model of the primate ventral visual stream, we propose that even larger-scale, high-resolution
864  behavioral measurements, such as expanded versions of the patterns of image-level performance
865  presented here, could serve as a useful top-down optimization guides. Not only do these high-
866  resolution behavioral signatures have the statistical power to reject the currently leading ANN
867 models, but they can also be efficiently collected at very large scale, in contrast to other guide
868 data (eg. large-scale neuronal measurements). Indeed, current technological tools for high-
869  throughput psychophysics in humans and monkeys (e.g. Amazon Mechanical Turk for humans,
870 Monkey Turk for rhesus monkeys) enable time- and cost-efficient collection of large-scale
871  behavioral datasets, such asthe ~1 million behavioral trials obtained for the current work. These
872  systems trade off an increase in efficiency with a decrease in experimental control. For example,
873  wedid not impose experimental constraints on subjects’ acuity and we can only infer likely head
874  and gaze position. Previous work has shown that patterns of behavioral performance on object
875  recognition tasks from in-lab and online subjects were equally reliable and virtually identical
876 (Majg et al., 2015), but it isnot yet clear to what extent this holds at the resolution of individual
877  images, as one might expect that variance in performance across images is more sensitive to
878  precise head and gaze location. For this reason, we here refrain from making strong inferences
879  from small behavioral differences, such as the small difference between humans and monkeys.
880  Nevertheless, we argue that this sacrifice in exact experimental control while retaining sufficient
881  power for model comparison isagood tradeoff for efficiently collecting large behavioral datasets
882  toward the goal of constraining future models of the primate ventral visual stream.

883
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Behavioral Metric

Hit Rate

False Alarm Rate

One-versus all object-level performance
(B.Ol) (Nob]ectsx 1)
0,(i) = Z(HR(®)) — Z(FAR(D),

i= 1,2, "'JNObjeCtS

Proportion of trials when
images of object i were
correctly labeled as
object i.

Proportion of trials
when any image was
incorrectly labeled as
object i.

One-versus-other object-level performance
B.O2 (Nabjects X Nobjects)
0,(i,j)) = Z(HR(,j)) — Z(FAR(, )),

i = 1,2, e, Nopjects

j = 1:2' "-ﬂNobjects

Proportion of trials when
Images of object i were
correctly labeled asi,
when presented against

distractor object j.

Proportion of trials
when images of object |
were incorrectly
labeled as object i

One-versus-all image-level performance
L (it) = Z(HR(i))) — Z(FAR(iD)),

ii = 1,2, ., Nimages

Proportion of trials when
image ii was correctly
classified as object i.

Proportion of trials
when any image was
incorrectly labeled as

objecti.

One-versus-other image-level performance

B.12 (Nimages X Nopjects)

I,(ii,j) = Z(HR(ii,j)) — Z(FARC(i, ),
ii =12, ..., Nimages

j = 1:2' "-ﬂNobjects

Proportion of trials when
image ii was correctly
classified as object |,
when presented against

distractor object j.

Proportion of trials
when images of object |
were incorrectly
labeled as object i

Table 1. Definition of behavioral performance metrics. The first column provides the name,

abbreviation, dimensions, and equations for each of the raw performance metrics. The next two

columns provide the definitions for computing the hit rate (HR) and false alarm rate (FAR)

respectively.
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981 FIGURE LEGENDS
982
983 Figurel. Images and behavioral task. (A) Two (out of 100) example images for each of the 24
984 basic-level objects. To enforce true invariant object recognition behavior, we generated
985 naturalistic synthetic images, each with one foreground object, by rendering a 3D model of each
986  object with randomly chosen viewing parameters and placing that foreground object view onto a
987  randomly chosen, natural image background. (B) Time course of example behavioral trial (zebra
988  versus dog) for human psychophysics. Each trial initiated with a central fixation point for 500
989 ms, followed by 100 ms presentation of a square test image (spanning 6-8° of visual angle).
990  After extinction of the test image, two choice images were shown to the left and right. Human
991 participants were allowed to freely view the response images for up to 1000 ms and responded
992 by clicking on one of the choice images; no feedback was given. To neutralize top-down feature
993  attention, all 276 binary object discrimination tasks were randomly interleaved on atrial-by-trial
994  basis. The monkey task paradigm was nearly identical to the human paradigm, with the
995  exception that trials were initiated by touching a fixation circle horizontally centered on the
996  bottom third of the screen, and successful trials were rewarded with juice while incorrect choices
997  resulted in timeouts of 1-2.5s. (C) Large-scale and high-throughput psychophysics in humans
998  (top left), monkeys (top right), and models (bottom). Human behavior was measured using the
999  online Amazon MTurk platform, which enabled the rapid collection ~1 million behavioral trials
1000 from 1472 human subjects. Monkey behavior was measured using a novel custom home-cage
1001  behavioral system (MonkeyTurk), which leveraged a web-based behavioral task running on a
1002 tablet to test many monkey subjects smultaneously in their home environment. Deep
1003  convolutional neural network modes were tested on the same images and tasks as those
1004 presented to humans and monkeys by extracting features from the penultimate layer of each
1005 visua system model and training back-end multi-class logistic regression classfiers. All
1006  behavioral predictions of each visual system model were for images that were not seen in any
1007  phase of model training.

1008  Figure 2. Object-level comparison to human behavior. (A) One-versus-all object-level (B.O1)
1009  signatures for the pooled human (n=1472 human subjects), pooled monkey (n=5 monkey
1010  subjects), and severa DCNN,c models. Each B.O1 signature is shown as a 24-dimensional

1011  vector using a color scale; each colored bin corresponds to the system’s discriminability of one
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1012  object against all others that were tested. The color scales span each signature’ s full performance
1013 range, and warm colors indicate lower discriminability. (B) Direct comparison of the B.O1
1014  signatures of a pixel visua system model (top panel) and a DCNNc visua system model
1015  (Inception-v3, bottom panel) against that of the human B.O1 signature. (C) Human-consistency
1016 of B.Ol signatures, for each of the tested mode visual systems. The black and gray dots
1017  correspond to a held-out pool of five human subjects and a pool of five macague monkey
1018  subjects respectively. The shaded area corresponds to the “primate zone” a range of
1019 consistencies delimited by the estimated human-consistency of a pool of infinitely many
1020 monkeys (see Figure 4A). (D) One-versus-other object-level (B.O2) signatures for pooled
1021  human, pooled monkey, and several DCNN,c models. Each B.O2 signature is shown as a 24x24
1022  symmetric matrices using a color scale, where each bin (i,j) corresponds to the system’s
1023  discriminability of objectsi and j. Color scales smilar to (A). (E) Human-consistency of B.O2
1024  signaturesfor each of the tested model visual systems. Format isidentical to (C).

1025  Figure 3. Image-level comparison to human behavior. (A) Schematic for computing B.I1n.
1026  Firdt, the one-versus-all image-level signature (B.I1) is shown as a 240-dimensional vector (24
1027  objects, 10 images/object) using a color scale, where each colored bin corresponds to the
1028 system’s discriminability of one image againgt all distractor objects. From this pattern, the
1029 normalized one-versus-all image-level signature (B.I1n) is estimated by subtracting the mean
1030 performance value over all images of the same object. This normalization procedure isolates
1031  behavioral variance that is specifically image-driven but not smply predicted by the object. (B)
1032  Normalized one-versus-all object-level (B.11n) signatures for the pooled human, pooled monkey,
1033  and several DCNN,c models. Each B.I1n signature is shown as a 240-dimensional vector using a
1034  color scale, formatted as in (A). Color scales similar to Figure 2A. (C) Human-consistency of
1035  B.l1n signatures for each of the tested model visual systems. Format is identical to Figure 2C.
1036 (D) Normalized one-versus-other image-level (B.12n) signatures for pooled human, pooled
1037  monkey, and several DCNN,c models. Each B.12n signature is shown as a 240x24 matrix using a
1038  color scale, where each bin (i,j) corresponds to the system’s discriminability of image i against
1039  digractor object j. Color scales similar to Figure 2A. (E) Human-consistency of B.I2n signatures
1040 for each of the tested model visual systems. Format is identical to Figure 2C.
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1041 Figure 4. Effect of subject pool sze and DCNN model modifications on consistency with
1042  human behavior. (A) Accounting for natural subject-to-subject variability. For each of the four
1043  behavioral metrics, the human-consistency distributions of monkey (blue markers) and model
1044  (black markers) pools are shown as afunction of the number of subjects in the pool (mean £ SD,
1045  over subjects). The human consistency increases with growing number of subjects for all visual
1046 systems across all behavioral metrics. The dashed lines correspond to fitted exponentia
1047  functions, and the parameter estimate (mean + SE) of the asymptotic value, corresponding to the
1048 estimated human-consistency of a pool of infinitely many subjects, is shown at the right most
1049 point on each abscissa (B) Model modifications that aim to rescue the DCNN,c models. We
1050 tested severa simple modifications (see Methods) to the most human-consistent DCNN¢ visual
1051  system model (Inception-v3). Each pand shows the resulting human-consistency per modified
1052 modd (mean + SD over different model instances, varying in random filter initializations) for
1053  each of the four behavioral metrics.

1054

1055 Figure 5. Analysis of unexplained human behavioral variance. (A) Residual similarity
1056  between all pairs of human visual system models. The color of bin (i,j) indicates the proportion
1057  of explainable variance that is shared between the residual signatures of visual systemsi and j.
1058  For ease of interpretation, we ordered visual system models based on their architecture and
1059  optimization procedure and partitioned this matrix into four distinct regions. (B) Summary of
1060 residua similarity. For each of the four regions in Figure 5A, the smilarity to the residuals of
1061  Inception-v3 (region 2 in (A)) is shown (mean £ SD, within each region) for all images (black
1062  dots), and for images that humans found to be particularly difficult (gray dots, selected based on
1063  held-out human data).

1064

1065 Figure 6. Dependence of primate and DCNN model behavior on image attributes. (A)
1066  Example images with increasing attribute value, for each of the four pre-defined image attributes
1067  (see Methods). (B) Dependence of performance (B.I11n) as afunction of four image attributes, for
1068  humans, monkeys and a DCNN,;c modd (Inception-v3). (C) Proportion of explainable variance
1069  of theresidua signatures of monkeys (black) and DCNN,c models (blue) that is accounted for by
1070  each of the pre-defined image attributes. Error-bars correspond to SD over trial re-sampling for
1071  monkeys, and over different models for DCNN,c models.
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Figure 6
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