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ABSTRACT 

Accumulating evidence from genome wide association studies (GWAS) suggests an 

abundance of shared genetic influences among complex human traits and disorders, such 

as mental disorders. While current cross-trait analytical methods focus on genetic 

correlation between traits, we developed a novel statistical tool (MiXeR), which quantifies 

polygenic overlap independent of genetic correlation, using summary statistics from 

GWAS. MiXeR results can be presented as a Venn diagram of unique and shared polygenic 

components across traits. At 90% of SNP-heritability explained for each phenotype, MiXeR 

estimates that more than 9K variants causally influence schizophrenia, 7K influence 

bipolar disorder, and out of those variants 6.9K are shared between these two disorders, 

which have high genetic correlation. Further, MiXeR uncovers extensive polygenic overlap 

between schizophrenia and educational attainment. Despite a genetic correlation close to 

zero, these traits share more than 9K causal variants, while 3K additional variants only 

influence educational attainment. By considering the polygenicity, heritability and 

discoverability of complex phenotypes, MiXeR provides a more complete quantification of 

shared genetic architecture than offered by other available tools. 

INTRODUCTION 

In recent years, genome-wide association studies (GWASs) have successfully detected 

genetic variants associated with multiple complex human traits or disorders, providing 

important insights into human biology1. Understanding the degree to which complex 

human phenotypes share genetic influences is critical for identifying the etiology of 

phenotypic relationships, which can inform disease nosology, diagnostic practice and 

improve drug development. Most human phenotypes are known to be influenced by 

multiple genetic variants, many of which are expected to influence more than one 

phenotype (i.e. exhibit allelic pleiotropy)2,3. This has led to cross-trait analyses, 

quantifying genetic overlap, becoming a widespread endeavor in genetic research, made 

possible by the public availability of most GWAS summary statistics (p-values and z-

scores)4,5.  

Currently, the prevailing measure to quantify genetic overlap is genetic correlation. The 

sign of the correlation indicates whether the shared genetic effects predominantly have 

the same or the opposite effect directions. Available methods can quantify genetic 

correlation using raw genotypes6,7 or GWAS summary statistics8-10. However, these 

methods report overall positive, negative or no genetic correlation, but do not capture 

mixtures of effect directions across shared genetic variants. This scenario is exemplified 

by the genetic relationship between schizophrenia and educational attainment. Despite 

consistent estimates of a non-significant genetic correlation11,12, many genetic loci are 

found to be jointly associated with both phenotypes13. Among 25 shared loci14, 16 had 

effects in the opposite direction, while 9 had effects in the same direction. Thus, new 

statistical tools are needed to improve our understanding of the polygenic architecture of 

complex traits and their intricate relationships. 

Here we developed a statistical tool (MiXeR), which quantifies polygenic overlap 

independent of genetic correlation, using summary statistics from GWAS. To evaluate 
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polygenic overlap between two traits MiXeR estimates the total number of shared and 

trait-specific causal variants (i.e. variants with non-zero additive genetic effect on a trait). 

MiXeR bypasses the intrinsically difficult problem of detecting the exact location of causal 

variants, but rather aims at estimating their overall amount. MiXeR builds upon univariate 

causal mixture15-18, extending the model to four bivariate normal distributions as 

illustrated in Figure 1, with two causal components specific to each trait; one causal 

component of variants affecting both traits; and a null component of variants with no effect 

on either trait. From the prior distribution of genetic effects, we derive likelihood function 

of the observed signed test statistics (GWAS z-scores), incorporating effects of linkage 

disequilibrium (LD) structure, minor allele frequency, sample size, cryptic relationships, 

and sample overlap. The parameters of the mixture model are estimated from the 

summary statistics by direct optimization of the likelihood function. 

We show in simulations that MiXeR provides accurate estimates of model parameters in 

the presence of realistic LD structure. Using GWAS summary data, we quantify polygenic 

overlap of several psychiatric disorders, including schizophrenia and bipolar disorder, 

with educational attainment and human height, with large implications for understanding 

how genetic factors overlap between complex human phenotypes. 

RESULTS 

Simulations studies 

In our first set of simulations we generate synthetic GWAS data that follow model 

assumptions and check validity of MiXeR estimates (polygenic overlap, π12; correlation of 

effect sizes within the shared polygenic component, ���, and genetic correlation, ��) in the 

presence of realistic LD structure (Figure 2). We observe no bias in the estimates across a 

wide range of simulation scenarios (Supplementary Figure 1-3), except for a specific 

scenario with correlated effect sizes (���=0.5) and high polygenicity (��� =	3×10−3). In this 

case polygenic overlap (���) is underestimated, while correlation of effect sizes ���  is 

overestimated by the same factor, so that the estimated genetic correlation remains 

unbiased. This bias in ���  and ���  estimates is attributed to complete sample overlap. 

Additionally, the scenario with low heritability ( ℎ� = 0.1 ) and high polygenicity 

(���=3×10−3) shows large variation among estimates, which is due to low GWAS signal. 

Standard errors estimated by the model are shown in Supplementary Table 1. 

Additionally we show that univariate estimates of polygenicity and heritability are correct 

in all scenarios except when heritability is low and polygenicity is high (Supplementary 

Figure 4, Supplementary Table 2). This case corresponds to insufficiently powered GWAS, 

yielding large variation among parameters, which leads to the bias from truncation, as the 

polygenicity parameter is bound to be non-negative. 

Finally, we validate that the model accurately predicts GWAS quantile-quantile (Q-Q) plots 

(Supplementary Figure 5) and detailed Q-Q plots with SNPs partitioned into disjoint 

groups according to minor allele frequency (MAF) and LD score (Supplementary Figure 

6a,b). Detailed Q-Q plots show a stronger GWAS signal for SNPs with higher MAF and 

higher LD score. The model’s prediction follows the same pattern, indicating that it 

correctly captures dependency of GWAS association statistics on MAF and LD score. 
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Conditional Q-Q plots (Supplementary Figure 7) show observed versus expected −log10 

p-values in the primary trait as a function of significance of association with a secondary 

trait at the level of p≤0.1, p≤0.01, p≤0.001, with data Q-Q plots being closely reproduced 

by the model’s predictions. Interestingly, scenarios without polygenic overlap are also 

showing a minor enrichment, arising because GWAS p-values depend on allele frequency 

and LD structure, though this effect is generally smaller than enrichment arising due to 

shared causal variants. 

Sensitivity analysis 

For sensitivity analysis, we conducted simulations with traits that have a shared pattern 

of differential enrichment of heritability across genomic categories19, which is not 

accounted for by MiXeR model. Simulations were informed by the enrichment pattern of 

schizophrenia20, as estimated by stratified LD score regression21 (Supplementary Figure 

8a). In the univariate analysis, polygenicity was underestimated by about 20% 

(Supplementary Figure 9), indicating that the model may group adjacent causal variants 

together and interpret them as a single cluster. In the bivariate analysis we observe a small 

upwards bias in the estimate of polygenic overlap (Supplementary Table 3), but it did not 

exceed 10% of the polygenicity across all sufficiently powered scenarios. 

Another assumption of MiXeR model is that effect sizes are independent of allele 

frequencies. We run simulations where, in addition to differential enrichment of genomic 

categories, all causal variants equally contribute to heritability regardless of their allele 

frequency (as modeled by stratified LDSR), as opposite to MiXeR assumption where causal 

variants contribute depending on their allele frequency. The results are showing that 

heritability is underestimated by 10% to 40% of its true value, while polygenicity is 

underestimated by a factor of 10 (Supplementary Figure 10), i.e. a larger bias than was 

observed in simulations with genomic annotations alone. The implications are less notable 

for the bivariate model: the estimated number of shared causal variants is consistent with 

the actual number arising by chance due to high polygenicity (Supplementary Table 4). 

Finally, we run simulations with incomplete reference, and simulate phenotypes where 

causal variants are spread across our entire reference of N=11,015,833 variants, but only 

a fraction (50%, 25% or 12.5%) of the variants enter LD structure estimation and fit 

procedure. The results (Supplementary Table 5) show that the total number of causal 

SNPs, as well as the heritability, are estimated correctly, while polygenicity parameter is 

different from simulated value, because it reflects the fraction of all tagged causal variants 

with respect to the reference that went into LD structure estimation. 

GWAS Summary Statistics  

We apply MiXeR to summary statistics from GWAS representing 7 phenotypes11,20,22-26 

(see Supplementary Table 6 for metadata about the studies). 

MiXeR estimates of genetic correlation (Table 1, Supplementary Table 7) were generally 

consistent with those of cross-trait LD Score Regression8, with the highest genetic 

correlation observed between schizophrenia and bipolar disorder. Naturally, these 

disorders also exhibit substantial polygenic overlap, sharing 6.9K out of 9.5K causal 

variants involved. Here and below the numbers of causal variants are reported as 22.6% 
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of their total estimate, which jointly accounts for 90% of SNP heritability in each 

phenotype, to avoid extrapolating model parameters into the area of infinitesimally small 

effects (Supplementary Figure 11).  

Further, MiXeR reveals important differences among traits with low genetic correlation, 

represented as Venn diagrams of shared and unique polygenic components (Figure 3, 

Supplementary Figures 12, 13a-g). For example, schizophrenia and educational 

attainment exhibit substantial polygenic overlap, sharing 9.1K out of 12.1K of causal 

variants involved. On the contrary, schizophrenia and height share only about 1.1K out of 

11.9K causal variants. Intriguingly, educational attainment and height also show low 

polygenic overlap, sharing 1.8K out of 14.0K causal variants. Nevertheless, these traits 

have relatively high correlation of effect sizes within the shared component, ��� = 0.44 

(0.03), which at genome-wide level is observed as genetic correlation of rg=0.12 (0.01) 

according to MiXeR, or rg=0.14 (0.01) according to LDSR.  

MiXeR estimates of the unique polygenic components provide insight into the trait-specific 

genomic architecture. For example, while schizophrenia has 2.2K causal variants not 

shared with bipolar disorder, only 0.1K are not shared with educational attainment, and 

as many as 8.1K are non-overlapping with height. Also, for the other phenotypes the 

number of trait-specific causal variants varies across different pairs of traits (Figure 3). 

Figure 4 and Supplementary Figures 14a-g visualize bivariate density of the observed 

GWAS signed test statistics (���, ���), the predicted density ��̂��, �̂��� from MiXeR model, 

and estimated bivariate density of additive causal effects (���, ���) that underlie model 

prediction. Figure 4 gives real examples for the three different scenarios of polygenic 

overlap (genetically independent traits, polygenic overlap with and without genetic 

correlation, as previously shown by Figure 1). Finally, we use conditional Q-Q plots27,28, 

where a consecutive	deflection	of	the	curves	indicates	polygenic	overlap,	and	shows	that	
MiXeR-based prediction provides accurate estimates of the data Q-Q plots (Figure 5). 

DISCUSSION 

MiXeR is a novel method for cross-trait analysis of GWAS summary statistics, which 

enables a more complete quantification of polygenic overlap than provided by other 

existing tools8,9,29,30. In addition to genetic correlation, MiXeR estimates the total number 

of shared and trait-specific causal variants, providing new information into the genetic 

relationships between complex traits and disorders. 

MiXeR extends cross-trait LD score regression8 by incorporating a causal mixture model15-

18, thus relying on a biologically more plausible prior distribution of genetic effect sizes 

compared to the “infinitesimal” model31,32. We show that polygenicity, measured as a total 

number of causal variants, and discoverability33, measured as variance of individual causal 

variants, has major implications on the future of GWAS discoveries (Supplementary Figure 

15). 

Applying MiXeR to real phenotype data, we provide new insights into the genetic 

relationships between schizophrenia, bipolar disorder, educational attainment and height. 

In line with the strong clinical relationship34 between schizophrenia and bipolar disorder, 
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and prior genetic studies25,35, we find substantial polygenic overlap between these two 

disorders. Intriguingly, both schizophrenia and bipolar disorder are estimated to have a 

small fraction of causal variants conferring individual risk of a specific disorder (Figure 3). 

Identifying such genetic variants could provide critical knowledge about the distinct 

genetic risk architectures underlying these psychiatric disorders. Moreover, we find that 

nearly all causal variants influencing schizophrenia risk also appear to influence 

educational attainment, despite a genetic correlation close to zero (Table 1). This is in line 

with recent studies demonstrating shared genetic loci between schizophrenia and 

educational attainment14 and a strong genetic dependence between the phenotypes 

possibly related to different subtypes of schizophrenia13. In contrast, 85% of genetic 

variants influencing bipolar disorder also appear to influence educational attainment, but 

there is a significant positive genome-wide correlation of 0.20(0.03) in compliance with 

the cross-trait LD score regression estimate of 0.18(0.03) (Table 1, Supplementary Table 

7). 

We show that polygenicity is best expressed as a total number of causal variants 

(Supplementary Table 5). Previous studies presented it as a fraction, which is highly 

dependent on the used reference (1.1M hapmap in ref17, or 484K Affymetrix SNPs in ref18). 

When expressed as a total number, or estimates of polygenicity for schizophrenia, bipolar 

disorder, educational attainment and height are consistent with previously reported 

results. In addition, we estimate that just 5% of causal variants are needed to explain 50% 

of heritability, and 22.6% of causal variants are needed to explain 90% of heritability 

(Supplementary Figure 11). These numbers are expected to be less dependent on 

modeling assumptions, because with finite GWAS sample it is not possible to distinguish 

small effects from truly null effects. The actual number of causal variants is, potentially, 

even higher, as our model tends to clump together variants if they are located too close to 

each other (Supplementary Tables 3, 4). 

Some existing methods can already uncover polygenic overlap in the absence of genetic 

correlation. For example, conjFDR analysis27,28 is a non-parametric model-free approach, 

which detects shared genetic loci regardless of their allelic effect directions, by prioritizing 

variants with strong associations across more than one GWAS36. Other methods, including 

gwas-pw37 and HESS29, also aim at detecting genomic loci jointly associated with two 

traits. MiXeR complements these methods by providing an easily interpretable high-level 

overview of the shared and unique genomic architectures underlying complex 

phenotypes. 

MiXeR has some notable advantages compared to the existing methods that implement 

causal mixture. First, our mathematical model for the likelihood term +���,���  is 

conceptually simpler and more flexible, resulting in unbiased estimates of model 

parameters across a wide range of simulation scenarios (Supplementary Figure 1-3) and 

providing accurate prediction of GWAS z-scores across varying ranges of MAF and LD 

(Supplementary Figure 6a,b). Second, MiXeR implementation works well with a large 

reference of 10M variants, while other methods have reduced it to 1.1M HapMap SNPs (ref 
17) or 484K Affymetrix SNPs (ref 18). Finally, our model individually processes all SNPs, 

without grouping them into bins (ref 15). 
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MiXeR models causal effects as a single gaussian component, while recent work17,38 

suggests that certain phenotypes, including height, require at least two causal components 

of small and large effects. We note that MiXeR model still provides good fit for SNPs not 

reaching GWAS threshold (Supplementary Figure 16) and shows deviations only towards 

the tail of the distribution. To further investigate the effects of model misspecification we 

implemented right-censoring of genome-wide significant SNPs (see Online methods). 

Results (Supplementary Tables 7, 8) are consistent with our main analysis, except for 

height which received a lower estimate of heritability (65% instead of 70%), a slight 

increase in polygenicity, and increased polygenic overlap with other traits. We advocate 

that for a better estimate of height’s polygenicity it would be beneficial to run MiXeR on a 

residualized GWAS, after covarying association statistics for genotypes of all genome-wide 

significant SNPs. 

Recent work suggests the importance of MAF- and LD-dependent genetic 

architectures18,39, which are not directly modeled by MiXeR. Our simulations with an 

extreme case of a different MAF model shows 10-40% underestimation of heritability 

(Supplementary Figure 10), but less noticeable effect on the relative proportion of shared 

causal variants (Supplementary Table 4). On real data we observe effects of MAF-

dependent architectures by drawing Q-Q plots for subsets of SNPs (Supplementary 

Figures 17a-g) partitioned into 9 groups according to minor allele frequency (MAF) and 

LD score, where the model tends to underestimate z-scores in low MAF bins. This effect, 

however, is quite subtle, and does not manifest itself on the overall Q-Q plots 

(Supplementary Figure 16). 

The MiXeR method requires large GWAS studies. Our recommendation is to apply MiXeR 

to studies with at least N=50 000 participants, and inspect standard errors reported by 

MiXeR. Polygenicity estimation requires more GWAS power than heritability estimation, 

which can be visually explained by GWAS Q-Q plots (Supplementary Figure 16): 

heritability is determined by the overall departure of the GWAS curve from the null line, 

while polygenicity is determined by its curvature, i.e. the point where the GWAS curve 

begins to bend upwards from the null line, which is harder to estimate when GWAS signal 

is weak. This is captured by MiXeR standard errors, which show that individual 

parameters of the mixture model have lower estimation accuracy than their combinations 

– for example, relative errors for �� and -.� are larger than for the heritability estimate ℎ� ∝ ��-.� , due to inversely-correlated errors (Supplementary Table 2). Despite these 

limitations, there is still a clear minimum on the energy landscape of cost function 

(Supplementary Figures 18, 19, showing log-likelihood as a function of model parameters 

around the optimum).	
In our future work we are planning to incorporate an additional gaussian component to 

model small and large effects17, and explicitly account for MAF-dependent architectures39. 

Further extensions may account for differential enrichment for true associations across 

genomic annotations19. Another limitation to address is that MiXeR model assumes similar 

LD structure among studies and is not currently applicable for analysis across different 

ethnicities. We aim to extend the MiXeR modelling framework to be used to improve 

power for SNP discovery by estimating the posterior effect size of SNPs associated with 
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one trait given the test statistics in another trait, as well as for improving predictive power 

of polygenic risk scores. 

In conclusion, MiXeR represents a useful addition to the tool-box for cross-trait GWAS 

analysis. By taking into account the intricate polygenic architectures of complex 

phenotypes MiXeR allows for measures of polygenic overlap beyond genetic correlation. 

We expect this to lead to new insights into the pleiotropic nature of human genetic 

etiology. 
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FIGURES AND TABLES 

 

Figure 1. Components of the bivariate mixture in three scenarios of polygenic overlap. 

All figures are generated from synthetic data, where causal variants were drawn from 

MiXeR model, total polygenicity in each trait set to 0.01%, SNP heritability set to 0.4, 

GWAS N=100 000. First column shows two traits where causal variants do not overlap. 

Second column adds a component of causal variants affecting both traits in the same 

(concordant) direction. Third column shows scenario of polygenic overlap without 

genetic correlation. Top row shows simulated bivariate density of additive effects of 

allele substitution (���, ���), bottom row shows bivariate density of GWAS signed test 

statistics (���, ���) for GWAS SNPs (genotyped or imputed). Due to Linkage 

Disequilibrium, GWAS signed test statistic has substantially larger volume of SNPs 

associated with the phenotype. The aim of MiXeR model is to infer distribution of 

causal effects (top row), using GWAS data (bottom row) as an input. Figures are 

generated on a regular grid of 100x100 bins, color histogram indicates log10(N) where 

N is the number of SNPs projected into a bin.  
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Figure 2. Selected simulations with bivariate model: (A) estimates of polygenic overlap; 

(B) estimates of correlation of the effect sizes in shared polygenic component; (C) 

estimates of genetic correlation. The bars in blue indicate an average value of model 

estimates across 10 simulation runs. The bars in cyan show true (simulated) parameters. 

Error bars represent standard deviation of the model estimate across 10 simulation runs. 

Different bars correspond to levels of polygenic overlap: from zero (no overlap) to 

complete polygenic overlap. Simulated heritability is 0.4, simulated fraction of causal 

variants is 0.03% in both traits. 
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Figure 3. Venn diagrams of unique and shared polygenic component at the causal level, 

showing polygenic overlap (grey) between schizophrenia (SCZ, blue), bipolar disorder 

(BIP, orange), educational attainment (EDU, green) and height (red). The numbers 

indicate estimated quantity of causal variants (in 1,000) per component, explaining 90% 

of SNP heritability in each phenotype, followed by the standard error. The size of circles 

reflects the polygenicity.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 27, 2018. ; https://doi.org/10.1101/240275doi: bioRxiv preprint 

https://doi.org/10.1101/240275
http://creativecommons.org/licenses/by/4.0/


12 

 

Figure 4. Top row shows bivariate density of the observed GWAS signed test statistics (���, ���), middle row shows predicted density ��̂��, �̂��� from MiXeR model. Bottom row 

shows estimated bivariate density of additive causal effects (���, ���) that underlie model 

prediction. Three columns represent schizophrenia (SCZ) versus bipolar disorder (BIP), 

educational attainment (EDU) and height GWAS. Density is visualized using regular grid 

of 100x100 bins, color indicates log10(N) where N is the observed number (for the top 

row) or the expected number (for the middle and bottom rows) of SNPs projected into a 

bin. 
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Figure 5. Conditional Q-Q plots of observed versus expected −log10 p-values in the 

primary trait as a function of significance of association with a secondary trait at the 

level of p≤0.1, p≤0.01, p≤0.001. Blue line indicates all SNPs. Dotted lines indicate model 

predictions for each stratum. Points on the QQ plot are weighted according to LD 

structure, using n=64 iterations of random pruning at LD threshold r2=0.1. 
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trait1 trait2 n12 (se) n1 (se) n2 (se) 012 (se) rg (se) rgLDSR (se) 

SCZ BIP 6.88 (1.04) 2.25 (1.34) 0.36 (0.43) 0.837 (0.019) 0.708 (0.062) 0.717 (0.024) 

SCZ EDU 9.09 (0.92) 0.08 (0.04) 2.94 (1.12) 0.056 (0.015) 0.048 (0.014) 0.079 (0.022) 

SCZ Height 1.09 (0.12) 8.12 (0.97) 2.72 (0.14) -0.007 (0.057) -0.001 (0.011) -0.008 (0.019) 

BIP EDU 6.04 (1.34) 1.07 (0.94) 5.99 (1.49) 0.308 (0.054) 0.201 (0.030) 0.176 (0.026) 

BIP Height 1.08 (0.13) 6.05 (1.24) 2.71 (0.15) 0.000 (0.064) 0.000 (0.013) -0.011 (0.023) 

EDU Height 1.83 (0.11) 10.19 (0.64) 2.02 (0.11) 0.442 (0.034) 0.119 (0.009) 0.141 (0.012) 

Table 1. Results of cross-trait analysis with MiXeR model for schizophrenia (SCZ), bipolar 

disorder (BIP), educational attainment (EDU) and height GWAS. Columns: n12 – estimated 

number of shared causal variants, reported in 1,000; n1 (n2)– estimated number of causal 

variants, unique to trait1 (trait2), expressed in 1,000; ��� – correlation of effect sizes in 

shared polygenic component; rg – genetic correlation (�3 = ������/5������, see Online 

Methods); rgLDSR  - estimate of genetic correlation from LD Score Regression. Number of 

variants (n12, n1 and n2) are adjusted to explain 90% of heritability in the corresponding 

component. Parameters are fitted using ca. 1.1M HapMap3 SNPs. 
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ONLINE METHODS 

This article is accompanied by a Supplementary Note with further details. 

Bivariate causal mixture model. Consider simple additive model of genetic effects, 

ignoring gene-environment interactions, epistasis and dominance effects. Under these 

assumptions, the contribution of the genotype to the phenotype is modelled as a sum of 

individual contributions from genetic variants: 67 = ∑ ��7� �� , where 67 is a quantitative 

phenotype or disease liability of 9-th individual, ��7 is 0,1,2-coded number of reference 

alleles for :-th variant, and ��  is additive genetic effect of allele substitution. We say that 

genetic variant is causal for a trait if it has non-zero effect on that trait (�� ≠ 0).  

MiXeR builds upon univariate causal mixture model15, ��~		�=>(0,0) + ��>�0, -.��, which 

assumes that only a small fraction (��) of variants has an effect on the trait, while the effect 

of the remaining variants is zero. In a joint analysis of two traits we expect some variants 

to affect both traits; some variants to affect one trait but not the other; and most variants 

to have no effect on either trait. Based on these assumptions, MiXeR models additive 

genetic effects β1j, β2j of variant j on the two traits as a mixture of four bivariate Gaussian 

components (Figure 1): 

                      ����, ����		~		�=>(0,0) + ��>(0, @�) + ��>(0, @�) + ���>(0, @��), (1) 

                           @� = A-�� 00 0B , @� = A0 00 -��B , @�� = A -�� ���-�-����-�-� -�� B, (2) 

 

where π1 and π2 are weights of the unique components (variants with an effect on the first 

only, and on the second trait only); π12 is a weighting of the component affecting both 

traits; and π0 is a fraction of variants that are non-causal for both traits, �= + �� + �� +��� = 1; -�� and -�� control expected magnitudes of per-variant effect sizes; and ρ12 is the 

correlation coefficient of the effect sizes in the shared component. All parameters are 

assumed to be the same for all genetic variants. 

 

The effects (�C��, �C��) estimated by a GWAS, represent only proxies of the true causal effects (���, ���) , which are distorted by limited sample size (poor statistical power), cryptic 

relatedness within a GWAS sample as well as LD between variants. To disentangle these 

effects we derive the likelihood term for observed GWAS signed test statistics (���, ���), 

incorporating effects of LD structure (allelic correlation rij between variants i and j); 

heterozygosity D� = 	2+��1 − +�� where pj is the minor allele frequency of the j-th variant; 

number of subjects genotyped per variant (N1j and N2j); and variance distortion 

parameters -=�� , -=��  , and ρ0. Specifically (see Supplementary Note), 

                   ���� , ���� = �G��, G��� + >H(0,0), I -=�� �=-=�-=��=-=�-=� -=�� JK , 		 (3) 

G∙� = 5>∙� M5DN�N��∙�
N
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The nine parameters of the model (��, ��, ���, -��, -��, ���, -=�� , -=�� , �= ) are fit by direct 

optimization of the weighted log likelihood, with standard errors estimated from the 

Observed Fishers Information matrix. 

Forcing ��� = 1  (so that �= = �� = �� = 0 ) reduces our model to an “infinitesimal” 

assumption that underlie cross-trait LD score regression8. Under this constraint our model 

predicts that GWAS signed test statistics follow bivariate Gaussian distribution with zero 

mean and variance-covariance matrix 

Σ� = ℓ� I >��-�� 5>��>�����-�-�
5>��>�����-�-� >��-�� J + I -=�� �=-=�-=��=-=�-=� -=�� J, 

i.e., (z1j,z2j) ∼ N(0,Σj), where ℓ� = ∑ DN�N��N  is the LD score (adjusted for heterozygosity). This 

model is consistent with cross-trait LD score regression, with expected chi square 

statistics Q(���� ), Q(���� ) and cross-trait covariance Q(������) being proportional to the LD 

score of j-th SNP, and parameters �=, -=�, -=�	playing the role of LD score regression 

intercepts40. The only distinction here is that we choose to model effect sizes that are 

independent of allele frequency, leading to the incorporation of Hi in our model; this factor 

is absent from the LD score regression model due to the assumption there of effect sizes 

that are inversely proportional to Hi. Thus, MiXeR is a direct extension to cross-trait LD 

score regression, which relaxes the “infinitesimal” assumption. 

Model for bivariate distribution of GWAS z-scores. We derive two models for GWAS z-

scores, which we call “fast model” and “full model”. “fast model” is quicker to run, and we 

use it to perform initial search in the space of model’s parameters. “full” model is slower 

but more accurate, and we use it for a final tuning of model estimates. 

“full” model for GWAS z-scores approximates ����, ���� distribution of a given GWAS SNP 

as a mixture of K=20000 bivariate normal distributions, all having equal weight in the 

mixture. For each 9 = 1,… , S  we randomly draw the location of causal variants (��> 

causal variants specific to the first trait, ��> specific to the second trait, and ���> shared 

causal variants, where > denotes the total number of variants in the reference panel), and 

calculate the variance-covariance matrix Σ7�T  from (3), using estimated LD r2 correlations 

between the assumed causal variants and the GWAS SNP. Then 

����, ���� = �G�� , G��� + >H(0,0), I -=�� �=-=�-=��=-=�-=� -=�� JK,  (4) 

�G��/5>�� , G��/5>���~ 1S	 M >((0,0),
7U�..V

Σ7�T ). 
The “fast” model is derived from the method of moments (see Supplementary note): 

																					�G��/5>��, G��/5>���	~	W(1 − ���T )>(0,0) + ���T >�0, Σ��T �X ⊕ (5) 

                                            W�1 − ���T �>�0, Σ��T � + ���T >�0, Σ��T �X ⊕ 

                          																								W�1 − ���,�T �>�0, Σ��,�T � + ���,�T >�0, Σ��,�T �X, 
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where ⊕ denotes convolution of probabilistic distribution functions (so that right-hand 

size evaluates to a mixture of 8 components), �Z�T = ℓ��Z/η�  is adjusted weight of mixture 

component  (\ ∈ 1,2,12); ΣZ�T = η�ΣZ is adjusted variance-covariance matrix; ℓ� = ∑ DN�N��N  

is the LD score, adjusted for heterozygosity41; and ηZ� = ^�Zℓ� + (1 − �Z) ∑ _àb̀ cd`∑ _`b̀ ca` 	e can be 

interpreted as shape parameter that affects fourth and higher moments of the distribution. 

This model explains second moments Q[g��� ] , Q[g��g��] , 	Q[g��� ]  and fourth moments Q[g��i ] , Q[g��� g��� ] , 	Q[g��i ]  of z score distribution, and forms a theoretical basis for the 

mixture model of sparse and ubiquitous effects42,43. Of interest is that the “fast” model 

involves the forth power of allelic correlation �N�i , which is directly proportional to kurtosis 

(measure of heavy tails) of z-score distribution. 

LD structure estimation. To estimate LD structure we use 489 individuals of 1000 

Genome project44 (phase 3 data), obtained from LD score regression website8,21,45 (see 

URLs). 14 individuals were excluded due to relatedness46. For simulations LD scores were 

estimated from the genotypes that we use to produce synthetic GWAS data. LD r2 

coefficients were calculated using PLINK47 with LD r2 cutoff of 0.05 and fixed window size 

of 50 000 SNPs, corresponding on average to a window of 16 centimorgans. We 

deliberately choose a larger LD window compared to LDSR-recommended window of 1 

centimorgan because the later appears to truncate a noticeable part of LD structure. At the 

same time, we did not observe an effect of  using unbiased estimate48 of r2, thus fall back 

to the standard Pearson correlation coefficient. In simulations LD structure was re-

estimated from the actual genotypes used to generate synthetic summary statistics. We 

employ small integer compression49 for efficient storage of the LD matrix. 

Fit procedure. We fit the model by direct optimization of weighted log likelihood 

                                                          j(k) = ∑ l� log(+mn(��|k))� , (6) 

where k = (��, ��, ���, -��, -��, ���, -=�� , -=�� , �=)  is a vector of all parameters being 

optimized, and weights l�  chosen by random pruning (64 iterations at LD r2 0.1). 

Optimization is done by Nelder-Mead Simplex Method50 as implemented in MATLAB’s 

fminsearch. First, we fit univariate parameters separately for  each trait, i.e. ���, -��,	-=��  

for the first trait, and similarly for the second trait. Univariate fit employs a sequence of 

optimizations to ensure robust convergence: first, we use “fast” model under constraint ��� = 1 to find -�,Npq� 	and to initialize -=�� ; second, we use constraint ���-�� = -�,Npq�  to find 

initial values of ���  and -�� , again with “fast” model. Finally, we use full model and 

unconstrained optimization to jointly fit ���, -�� ,	-=��  parameters. The same procedure is 

repeated for the second trait, to find  ���, -��,	-=�� . To improve convergence, we parametrize 

univariate log-likelihood as a function of log	(���-��)  and log	(���/-��) , which represent 

almost independent dimensions of the energy landscape. In bivariate optimization use 

“fast” model and constraint ��� = 1	 to initialize ���  and �= . Then proceed with “full” 

model optimization of the parameters specific to bivariate model ( ��� , ��� , �= ), 

constraining all other parameters to their univariate estimates. The additional analysis 

(Supplementary Tables 7, 8) uses right-censoring51 of z-scores exceeding �r = 5.45, by 

using cumulative distribution function52 in the log likelihood:  
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             j(k) = ∑ l� log(+mn(��|k))�:,uc,vuw + ∑ l� log(\mn(�xyz|k))�:,uc,{uw .  (7) 

Standard error estimation. We estimate standard errors of all parameters from the 

observed Fisher’s information, based on the “fast” model. It is known from the likelihood 

optimization theory that the observed Fisher’s information may not be suitable for a 

parameter near its boundary, which is applicable to the mixture weights ��, ��, ��� and 

the correlation of effect sizes ���. To mitigate this problem we apply transformations — 

MATLAB’s logit() for � �, ��, ���, exp() for - ��, -��, -=�� , -=�� , and erf() for �=,	���, and 

estimated variance-covariance matrix of errors in the transformed parameter space. We 

validated that our estimates based on the observed Fisher’s information are in good 

agreement with block jack-knife estimates. To estimate standard errors for a function of 

the parameters, such as �3  or  ℎ� , we incorporate linear correlation among parameter 

errors in the transformed space. We sample N=1000 realizations of the parameter vector, 

calculating the function (e.g., �3 or ℎ�) on each of them, and report the standard deviations. 

In cases when joint hessian was not positive definite, we estimate marginal errors of fitted 

parameters. 

Large LD blocks. The log-likelihood cost function and the Q-Q plots apply a weighting 

scheme to SNPs to avoid overcounting evidence from large LD blocks. As an alternative to 

weighting by inverse LD score, we choose to infer the weights by random pruning. This 

technique is a stochastic procedure which averages log likelihood function across 

repeatedly selected subsets of variants, such that for each pair of variants |, : in a subset } 
the squared allelic correlation �N��  falls below certain threshold. Given ~  iterations of 

random pruning the log-likelihood function can be calculated as follows: 

                                                   j(k) = �
�∑ ∑ log(+mn(��|k�∈�w�rU� )) (8) 

which is equivalent to weighted log-likelihood j(k) = ∑ l� log(+mn(��|k))�  with weights l� = |��: : ∈ }r�|/~ , |�|  denotes cardinality of set S. Random pruning with stringent 

threshold r2=0.1 justify independent modeling of the residuals in (3) across SNPs, which 

otherwise would be correlated. 

Heritability estimates. In additive model, SNP heritability is defined as a sum across all 

causal variants: 	-.� ∑ 2+��1 − +���:.c�= , which we approximate from an average 

heterozygosity of all variants in the reference: ��Dr�ry�-.�, where Dr�ry� = ∑ 2+��1 − +��� . 

To estimate the proportion of causal variants that explain certain fraction of heritability 

(Supplementary Figure 11) we randomly sample N=10000 causal effects from the 

reference, draw their effects ��  from normal distribution, sort according to ���+��1 − +��, 

and report fraction of variants that cumulatively account 90% of heritability. 

Genetic correlation. Parameter ���  in MiXeR defines correlation of effect sizes within 

shared polygenic component. Genome-wide genetic correlation, calculated across all 

SNPs, is related to ��� by the following formula that involves polygenicity ��� = �� + ��� 

and ��� = �� +	��� of the traits, and polygenic overlap ���: 
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                                                      �3 = ������/5������ (9) 

For traits with K-fold difference in polygenicity (��� = S���) the formula predicts an upper 

bound on genome-wide genetic correlation: �3 ≤	���/√9, where equality holds if causal 

variants of the less polygenic trait form a subset of the higher-polygenic trait.  

Quantile-quantile plots. Univariate Q-Q plots and stratified Q-Q plots for the model were 

constructed from +mn�(�) density as defined by (3), given fitted parameters of the model 

and LD structure of j-th SNP, calculated across a fine grid of z-scores ranging from 0 to 38 

with 0.05 step. We average +mn�(�) across 1% of randomly sampled SNPs, and numerically 

integrate the resulting probability density function to convert it into cumulated 

distribution function. Error bars on data Q-Q plots represent the 95% binomial confidence 

interval � ± 1.96	5�(1 − �)	/�r�ry� , where �  is portability of observing a p-value as 

extreme as, or more extreme then the chosen p-value, and �r�ry�  is the effective number of 

SNPs after controlling for LD structure, which in our case was calculated as a sum of 

random pruning weights across all SNPs.  

GWAS power curves. Causal mixture model can project the future of GWAS discoveries, 

by estimating proportion �(>)  of narrow-sense heritability captured by genome-wide 

significant SNPs at a given sample size >. The 	�(>) is defined as follows: 

                                                             �(>) = ∑ � �(u,�,�)�u�:|�|��wc
∑ � �(u,�,�)�u�c ,  (10) 

where �r = 5.45 gives z-score corresponding to the standard genome-wide significance 

threshold 5∙10-8, and �(�, >, :) ≡ �(�, >, :) ⋅ 	Q(G�|�, >, :) denotes a posterior effect size Q(G�|�, >, :) of the non-centrality parameter G� for a GWAS SNP :, given certain z-score, 

multiplied by a prior probability of observing that z-score. Probability density function �(�, >, :) is given by (4), and Q(G�|�, >, :) can be calculated from the Bayesian rule. Thus, �(�, >, :) = � G��(�|G)�(G, :)mG  where 	�|G ∼ >(G, -=�) . Analytical expression for 

�(�, >, :) and � �(�, >, :)m�u:|u|�uw  is given in the Supplementary Note. 

SNPs in the analysis. To enable direct comparison of our model with LD score regression 

we use the same set of SNPs in our log likelihood optimization, which consist of approx. 

1.1 million variants, subset of 1000 Genomes and HapMap353, with MAF above 0.05, 

ambiguous SNPs excluded, imputation INFO above 0.9, MHC and other long-range LD 

regions excluded. Calculation of the LD structure, LD scores ℓ�  and shape parameter ��  are 

based on the approx. 10 million SNPs from 1000 Genomes Phase 3 data, downloaded from 

LD score regression website (see URLs). In simulations we generate GWAS and estimate 

LD structure on a subset of 11,015,833 SNPs from 1000 Genomes Phase 3, with MAF above 

0.002, call rate above 90%, excluding duplicated RS numbers; the fit procedure was 

constrained to approximately 130K GWAS SNPs, keeping only HapMap3 SNPs, and 

pruning SNPs at LD r2 threshold of 0.1. 

LD score regression estimates. For dichotomous phenotypes we used an effective 

sample size of >�qq = 4/(1/>Zy�� + 1/>Z�pr) to account for imbalanced number of cases 
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and controls, both in MiXeR and in LD score regression. Additionally, we run LDSR using 

MiXeR MAF model (using –per-allele flags in LD score estimation), and show the 

results alongside with original LDSR estimates (Supplementary Tables 7, 8). For 

case/control phenotypes heritability is reported on the observed scale. 

Simulations. In our simulations we use a panel of N = 100,000 samples, generated by 

HapGen254 using 1000 Genomes44 data to approximate the LD structure for European 

ancestry. For each simulation run we use PLINK to obtain GWAS summary statistics of two 

synthesized quantitative phenotypes, with complete sample overlap between GWAS 

samples. Quantitative phenotype 67  of k-th sample is calculated via simple additive 

genetic model, 67 = ∑ �7���� + �7 , where �7�  is the number of reference alleles for j-th 

SNP on k-th sample, ��  is causal effect size, and � is the residual vector drawn from normal 

distribution with zero mean and variance chosen in a way that sets heritability ℎ� =� �(¡�)/� �(6) to a predefined level. 

For the simulations shown in Figure 2, we draw effect sizes (���, ���)  from the four-

component mixture model (1), varying polygenicity of each phenotype (��� = �� + ��� 

and ��� = �� +	���), and polygenic overlap (π12). We choose total polygenicity in both 

traits to be 3×10−3 or 3×10−4 and include an additional scenario of uneven polygenicity 

(��� =3×10−3, ��� =3×10−4). For each combination ���, ���  and ℎ� we set polygenic overlap 

to be a fraction of total polygenicity ��� = n	��� , choosing the fraction n from six equally 

spaced values (0.0 to 1.0 with a step of 0.2). Correlation of effect sizes ��� set to 0.0 or 0.5. 

Heritability was set to 0.1, 0.4 or 0.7, which let us keep GWAS sample size constant 

(N=100,000) because the distribution of GWAS z-scores depends on N and ℎ�  only 

through their product, ℎ� × > (thus, simulations with N=700,000 and ℎ� = 0.1 would be 

equivalent to our scenario with N=100,000 and ℎ�=0.7). Finally, for each combination of 

heritability, polygenicity, polygenic overlap and correlation of effect sizes, we repeat 

simulations 10 times. 

For the simulations with differential enrichment, we simulate three levels of polygenicity 

(3K, 30K and 300K causal variants), three levels of heritability (0.1, 0.4 and 0.7), and for 

each combination generate 20 pairs of genetically independent traits (except for having 

shared pattern of enrichment). To simulate the enrichment, we keep a constant variance 

of effect sizes across all SNPs but modulate the probability of having causal variant 

proportionally to LDSR regression coefficient. We cover two scenarios: first, LDSR with 

MiXeR MAF model (using –per-allele flags in LD score estimation), and secondly with 

the original LDSR MAF model. 
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5. Sensitivity analysis: simulations with incomplete reference 

6. Summary statistics Metadata 

7. Results of bivariate analysis with MiXeR, with and without right-censoring 

8. Results of univariate analysis with MiXeR, with and without right-censoring 

EQUATIONS 

1 MiXeR (beta1, beta) prior distribution 

2 MiXeR Sigma1, Sigma2, Sigma12 

3 MiXeR (z1, z2) exact formula 
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8 MiXeR random pruning 
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