bioRxiv preprint doi: https://doi.org/10.1101/240275; this version posted November 27, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Bivariate causal mixture model
quantifies polygenic overlap between complex traits
beyond genetic correlation

Oleksandr Freil*, Dominic Holland?3%, Olav B. Smeland14%, Alexey A. Shadrin?, Chun Chieh
Fan256, Steffen Maeland!, Kevin S. O’Connelll, Yunpeng Wang!2¢, Srdjan Djurovic’s,
Wesley K. Thompson?19, Ole A. Andreassen!4, Anders M. Dale23.6.11+

Author affiliations

INORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of

Oslo, 0424 Oslo, Norway
ZCenter for Multimodal Imaging and Genetics, University of California at San Diego, La Jolla, CA

92037, USA
3Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA

“Division of Mental Health and Addiction, Oslo University Hospital, 0407 Oslo, Norway
5Department of Cognitive Sciences, University of California at San Diego, La Jolla, CA 92093, USA
6Department of Radiology, University of California, San Diego, La Jolla, CA 92093, USA
"Department of Medical Genetics, Oslo University Hospital, 0424, Oslo, Norway

SNORMENT, KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen,
5020 Bergen, Norway

9University of California, San Diego, Department of Family Medicine and Public Health
10]nstitute of Biological Psychiatry, Mental Health Center Sct. Hans, Capital Region of Denmark
Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA

&These authors contributed equally to this work.
*To whom correspondence ought to be addressed:

oleksandr.frei@gmail.com, andersmdale@gmail.com


https://doi.org/10.1101/240275
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/240275; this version posted November 27, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

ABSTRACT

Accumulating evidence from genome wide association studies (GWAS) suggests an
abundance of shared genetic influences among complex human traits and disorders, such
as mental disorders. While current cross-trait analytical methods focus on genetic
correlation between traits, we developed a novel statistical tool (MiXeR), which quantifies
polygenic overlap independent of genetic correlation, using summary statistics from
GWAS. MiXeR results can be presented as a Venn diagram of unique and shared polygenic
components across traits. At 90% of SNP-heritability explained for each phenotype, MiXeR
estimates that more than 9K variants causally influence schizophrenia, 7K influence
bipolar disorder, and out of those variants 6.9K are shared between these two disorders,
which have high genetic correlation. Further, MiXeR uncovers extensive polygenic overlap
between schizophrenia and educational attainment. Despite a genetic correlation close to
zero, these traits share more than 9K causal variants, while 3K additional variants only
influence educational attainment. By considering the polygenicity, heritability and
discoverability of complex phenotypes, MiXeR provides a more complete quantification of
shared genetic architecture than offered by other available tools.

INTRODUCTION

In recent years, genome-wide association studies (GWASs) have successfully detected
genetic variants associated with multiple complex human traits or disorders, providing
important insights into human biology!. Understanding the degree to which complex
human phenotypes share genetic influences is critical for identifying the etiology of
phenotypic relationships, which can inform disease nosology, diagnostic practice and
improve drug development. Most human phenotypes are known to be influenced by
multiple genetic variants, many of which are expected to influence more than one
phenotype (i.e. exhibit allelic pleiotropy)?3. This has led to cross-trait analyses,
quantifying genetic overlap, becoming a widespread endeavor in genetic research, made
possible by the public availability of most GWAS summary statistics (p-values and z-
scores)*s.

Currently, the prevailing measure to quantify genetic overlap is genetic correlation. The
sign of the correlation indicates whether the shared genetic effects predominantly have
the same or the opposite effect directions. Available methods can quantify genetic
correlation using raw genotypes®’ or GWAS summary statistics8-10. However, these
methods report overall positive, negative or no genetic correlation, but do not capture
mixtures of effect directions across shared genetic variants. This scenario is exemplified
by the genetic relationship between schizophrenia and educational attainment. Despite
consistent estimates of a non-significant genetic correlation!12, many genetic loci are
found to be jointly associated with both phenotypes!3. Among 25 shared locil4, 16 had
effects in the opposite direction, while 9 had effects in the same direction. Thus, new
statistical tools are needed to improve our understanding of the polygenic architecture of
complex traits and their intricate relationships.

Here we developed a statistical tool (MiXeR), which quantifies polygenic overlap
independent of genetic correlation, using summary statistics from GWAS. To evaluate
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polygenic overlap between two traits MiXeR estimates the total number of shared and
trait-specific causal variants (i.e. variants with non-zero additive genetic effect on a trait).
MiXeR bypasses the intrinsically difficult problem of detecting the exact location of causal
variants, but rather aims at estimating their overall amount. MiXeR builds upon univariate
causal mixturel>-18, extending the model to four bivariate normal distributions as
illustrated in Figure 1, with two causal components specific to each trait; one causal
component of variants affecting both traits; and a null component of variants with no effect
on either trait. From the prior distribution of genetic effects, we derive likelihood function
of the observed signed test statistics (GWAS z-scores), incorporating effects of linkage
disequilibrium (LD) structure, minor allele frequency, sample size, cryptic relationships,
and sample overlap. The parameters of the mixture model are estimated from the
summary statistics by direct optimization of the likelihood function.

We show in simulations that MiXeR provides accurate estimates of model parameters in
the presence of realistic LD structure. Using GWAS summary data, we quantify polygenic
overlap of several psychiatric disorders, including schizophrenia and bipolar disorder,
with educational attainment and human height, with large implications for understanding
how genetic factors overlap between complex human phenotypes.

RESULTS

Simulations studies

In our first set of simulations we generate synthetic GWAS data that follow model
assumptions and check validity of MiXeR estimates (polygenic overlap, m12; correlation of
effect sizes within the shared polygenic component, p;,, and genetic correlation, rg) in the
presence of realistic LD structure (Figure 2). We observe no bias in the estimates across a
wide range of simulation scenarios (Supplementary Figure 1-3), except for a specific
scenario with correlated effect sizes (p;,=0.5) and high polygenicity (7 = 3x10-3). In this
case polygenic overlap (m;,) is underestimated, while correlation of effect sizes p;, is
overestimated by the same factor, so that the estimated genetic correlation remains
unbiased. This bias in w5, and p;, estimates is attributed to complete sample overlap.
Additionally, the scenario with low heritability ( h, = 0.1 ) and high polygenicity
(m1=3x10-3) shows large variation among estimates, which is due to low GWAS signal.
Standard errors estimated by the model are shown in Supplementary Table 1.

Additionally we show that univariate estimates of polygenicity and heritability are correct
in all scenarios except when heritability is low and polygenicity is high (Supplementary
Figure 4, Supplementary Table 2). This case corresponds to insufficiently powered GWAS,
yielding large variation among parameters, which leads to the bias from truncation, as the
polygenicity parameter is bound to be non-negative.

Finally, we validate that the model accurately predicts GWAS quantile-quantile (Q-Q) plots
(Supplementary Figure 5) and detailed Q-Q plots with SNPs partitioned into disjoint
groups according to minor allele frequency (MAF) and LD score (Supplementary Figure
6a,b). Detailed Q-Q plots show a stronger GWAS signal for SNPs with higher MAF and
higher LD score. The model’s prediction follows the same pattern, indicating that it
correctly captures dependency of GWAS association statistics on MAF and LD score.
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Conditional Q-Q plots (Supplementary Figure 7) show observed versus expected —-log10
p-values in the primary trait as a function of significance of association with a secondary
trait at the level of p<0.1, p<0.01, p<0.001, with data Q-Q plots being closely reproduced
by the model’s predictions. Interestingly, scenarios without polygenic overlap are also
showing a minor enrichment, arising because GWAS p-values depend on allele frequency
and LD structure, though this effect is generally smaller than enrichment arising due to
shared causal variants.

Sensitivity analysis

For sensitivity analysis, we conducted simulations with traits that have a shared pattern
of differential enrichment of heritability across genomic categories!?, which is not
accounted for by MiXeR model. Simulations were informed by the enrichment pattern of
schizophrenia?9, as estimated by stratified LD score regression?! (Supplementary Figure
8a). In the univariate analysis, polygenicity was underestimated by about 20%
(Supplementary Figure 9), indicating that the model may group adjacent causal variants
together and interpret them as a single cluster. In the bivariate analysis we observe a small
upwards bias in the estimate of polygenic overlap (Supplementary Table 3), but it did not
exceed 10% of the polygenicity across all sufficiently powered scenarios.

Another assumption of MiXeR model is that effect sizes are independent of allele
frequencies. We run simulations where, in addition to differential enrichment of genomic
categories, all causal variants equally contribute to heritability regardless of their allele
frequency (as modeled by stratified LDSR), as opposite to MiXeR assumption where causal
variants contribute depending on their allele frequency. The results are showing that
heritability is underestimated by 10% to 40% of its true value, while polygenicity is
underestimated by a factor of 10 (Supplementary Figure 10), i.e. a larger bias than was
observed in simulations with genomic annotations alone. The implications are less notable
for the bivariate model: the estimated number of shared causal variants is consistent with
the actual number arising by chance due to high polygenicity (Supplementary Table 4).

Finally, we run simulations with incomplete reference, and simulate phenotypes where
causal variants are spread across our entire reference of N=11,015,833 variants, but only
a fraction (50%, 25% or 12.5%) of the variants enter LD structure estimation and fit
procedure. The results (Supplementary Table 5) show that the total number of causal
SNPs, as well as the heritability, are estimated correctly, while polygenicity parameter is
different from simulated value, because it reflects the fraction of all tagged causal variants
with respect to the reference that went into LD structure estimation.

GWAS Summary Statistics
We apply MiXeR to summary statistics from GWAS representing 7 phenotypes11.20.22-26
(see Supplementary Table 6 for metadata about the studies).

MiXeR estimates of genetic correlation (Table 1, Supplementary Table 7) were generally
consistent with those of cross-trait LD Score Regression8, with the highest genetic
correlation observed between schizophrenia and bipolar disorder. Naturally, these
disorders also exhibit substantial polygenic overlap, sharing 6.9K out of 9.5K causal
variants involved. Here and below the numbers of causal variants are reported as 22.6%
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of their total estimate, which jointly accounts for 90% of SNP heritability in each
phenotype, to avoid extrapolating model parameters into the area of infinitesimally small
effects (Supplementary Figure 11).

Further, MiXeR reveals important differences among traits with low genetic correlation,
represented as Venn diagrams of shared and unique polygenic components (Figure 3,
Supplementary Figures 12, 13a-g). For example, schizophrenia and educational
attainment exhibit substantial polygenic overlap, sharing 9.1K out of 12.1K of causal
variants involved. On the contrary, schizophrenia and height share only about 1.1K out of
11.9K causal variants. Intriguingly, educational attainment and height also show low
polygenic overlap, sharing 1.8K out of 14.0K causal variants. Nevertheless, these traits
have relatively high correlation of effect sizes within the shared component, p;, = 0.44
(0.03), which at genome-wide level is observed as genetic correlation of rg=0.12 (0.01)
according to MiXeR, or rg=0.14 (0.01) according to LDSR.

MiXeR estimates of the unique polygenic components provide insight into the trait-specific
genomic architecture. For example, while schizophrenia has 2.2K causal variants not
shared with bipolar disorder, only 0.1K are not shared with educational attainment, and
as many as 8.1K are non-overlapping with height. Also, for the other phenotypes the
number of trait-specific causal variants varies across different pairs of traits (Figure 3).

Figure 4 and Supplementary Figures 14a-g visualize bivariate density of the observed
GWAS signed test statistics (2, z;;), the predicted density (z”lj, z“zj) from MiXeR model,
and estimated bivariate density of additive causal effects (B, 5,;) that underlie model
prediction. Figure 4 gives real examples for the three different scenarios of polygenic
overlap (genetically independent traits, polygenic overlap with and without genetic
correlation, as previously shown by Figure 1). Finally, we use conditional Q-Q plots27.28,
where a consecutive deflection of the curves indicates polygenic overlap, and shows that
MiXeR-based prediction provides accurate estimates of the data Q-Q plots (Figure 5).

DISCUSSION

MiXeR is a novel method for cross-trait analysis of GWAS summary statistics, which
enables a more complete quantification of polygenic overlap than provided by other
existing tools82.29.30, [n addition to genetic correlation, MiXeR estimates the total number
of shared and trait-specific causal variants, providing new information into the genetic
relationships between complex traits and disorders.

MiXeR extends cross-trait LD score regression® by incorporating a causal mixture model15-
18, thus relying on a biologically more plausible prior distribution of genetic effect sizes
compared to the “infinitesimal” model31.32, We show that polygenicity, measured as a total
number of causal variants, and discoverability33, measured as variance of individual causal
variants, has major implications on the future of GWAS discoveries (Supplementary Figure
15).

Applying MiXeR to real phenotype data, we provide new insights into the genetic
relationships between schizophrenia, bipolar disorder, educational attainment and height.
In line with the strong clinical relationship3# between schizophrenia and bipolar disorder,
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and prior genetic studies2535, we find substantial polygenic overlap between these two
disorders. Intriguingly, both schizophrenia and bipolar disorder are estimated to have a
small fraction of causal variants conferring individual risk of a specific disorder (Figure 3).
Identifying such genetic variants could provide critical knowledge about the distinct
genetic risk architectures underlying these psychiatric disorders. Moreover, we find that
nearly all causal variants influencing schizophrenia risk also appear to influence
educational attainment, despite a genetic correlation close to zero (Table 1). This is in line
with recent studies demonstrating shared genetic loci between schizophrenia and
educational attainment!4 and a strong genetic dependence between the phenotypes
possibly related to different subtypes of schizophrenial3. In contrast, 85% of genetic
variants influencing bipolar disorder also appear to influence educational attainment, but
there is a significant positive genome-wide correlation of 0.20(0.03) in compliance with
the cross-trait LD score regression estimate of 0.18(0.03) (Table 1, Supplementary Table
7).

We show that polygenicity is best expressed as a total number of causal variants
(Supplementary Table 5). Previous studies presented it as a fraction, which is highly
dependent on the used reference (1.1M hapmap in refl?, or 484K Affymetrix SNPs in ref18).
When expressed as a total number, or estimates of polygenicity for schizophrenia, bipolar
disorder, educational attainment and height are consistent with previously reported
results. In addition, we estimate that just 5% of causal variants are needed to explain 50%
of heritability, and 22.6% of causal variants are needed to explain 90% of heritability
(Supplementary Figure 11). These numbers are expected to be less dependent on
modeling assumptions, because with finite GWAS sample it is not possible to distinguish
small effects from truly null effects. The actual number of causal variants is, potentially,
even higher, as our model tends to clump together variants if they are located too close to
each other (Supplementary Tables 3, 4).

Some existing methods can already uncover polygenic overlap in the absence of genetic
correlation. For example, conjFDR analysis27.28 is a non-parametric model-free approach,
which detects shared genetic loci regardless of their allelic effect directions, by prioritizing
variants with strong associations across more than one GWAS36, Other methods, including
gwas-pw37 and HESS29, also aim at detecting genomic loci jointly associated with two
traits. MiXeR complements these methods by providing an easily interpretable high-level
overview of the shared and unique genomic architectures underlying complex
phenotypes.

MiXeR has some notable advantages compared to the existing methods that implement
causal mixture. First, our mathematical model for the likelihood term p(zj|,8j) is
conceptually simpler and more flexible, resulting in unbiased estimates of model
parameters across a wide range of simulation scenarios (Supplementary Figure 1-3) and
providing accurate prediction of GWAS z-scores across varying ranges of MAF and LD
(Supplementary Figure 6a,b). Second, MiXeR implementation works well with a large
reference of 10M variants, while other methods have reduced it to 1.1M HapMap SNPs (ref
17) or 484K Affymetrix SNPs (ref 18). Finally, our model individually processes all SNPs,
without grouping them into bins (ref 1°).
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MiXeR models causal effects as a single gaussian component, while recent work7.38
suggests that certain phenotypes, including height, require at least two causal components
of small and large effects. We note that MiXeR model still provides good fit for SNPs not
reaching GWAS threshold (Supplementary Figure 16) and shows deviations only towards
the tail of the distribution. To further investigate the effects of model misspecification we
implemented right-censoring of genome-wide significant SNPs (see Online methods).
Results (Supplementary Tables 7, 8) are consistent with our main analysis, except for
height which received a lower estimate of heritability (65% instead of 70%), a slight
increase in polygenicity, and increased polygenic overlap with other traits. We advocate
that for a better estimate of height’s polygenicity it would be beneficial to run MiXeR on a
residualized GWAS, after covarying association statistics for genotypes of all genome-wide
significant SNPs.

Recent work suggests the importance of MAF- and LD-dependent genetic
architectures!839, which are not directly modeled by MiXeR. Our simulations with an
extreme case of a different MAF model shows 10-40% underestimation of heritability
(Supplementary Figure 10), but less noticeable effect on the relative proportion of shared
causal variants (Supplementary Table 4). On real data we observe effects of MAF-
dependent architectures by drawing Q-Q plots for subsets of SNPs (Supplementary
Figures 17a-g) partitioned into 9 groups according to minor allele frequency (MAF) and
LD score, where the model tends to underestimate z-scores in low MAF bins. This effect,
however, is quite subtle, and does not manifest itself on the overall Q-Q plots
(Supplementary Figure 16).

The MiXeR method requires large GWAS studies. Our recommendation is to apply MiXeR
to studies with at least N=50 000 participants, and inspect standard errors reported by
MiXeR. Polygenicity estimation requires more GWAS power than heritability estimation,
which can be visually explained by GWAS Q-Q plots (Supplementary Figure 16):
heritability is determined by the overall departure of the GWAS curve from the null line,
while polygenicity is determined by its curvature, i.e. the point where the GWAS curve
begins to bend upwards from the null line, which is harder to estimate when GWAS signal
is weak. This is captured by MiXeR standard errors, which show that individual
parameters of the mixture model have lower estimation accuracy than their combinations
- for example, relative errors for 7; and ag are larger than for the heritability estimate

h? « nla;, due to inversely-correlated errors (Supplementary Table 2). Despite these

limitations, there is still a clear minimum on the energy landscape of cost function
(Supplementary Figures 18, 19, showing log-likelihood as a function of model parameters
around the optimum).

In our future work we are planning to incorporate an additional gaussian component to
model small and large effects!’, and explicitly account for MAF-dependent architectures3®.
Further extensions may account for differential enrichment for true associations across
genomic annotations!®. Another limitation to address is that MiXeR model assumes similar
LD structure among studies and is not currently applicable for analysis across different
ethnicities. We aim to extend the MiXeR modelling framework to be used to improve
power for SNP discovery by estimating the posterior effect size of SNPs associated with
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one trait given the test statistics in another trait, as well as for improving predictive power
of polygenic risk scores.

In conclusion, MiXeR represents a useful addition to the tool-box for cross-trait GWAS
analysis. By taking into account the intricate polygenic architectures of complex
phenotypes MiXeR allows for measures of polygenic overlap beyond genetic correlation.
We expect this to lead to new insights into the pleiotropic nature of human genetic
etiology.
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Figure 1. Components of the bivariate mixture in three scenarios of polygenic overlap.
All figures are generated from synthetic data, where causal variants were drawn from
MiXeR model, total polygenicity in each trait set to 0.01%, SNP heritability set to 0.4,
GWAS N=100 000. First column shows two traits where causal variants do not overlap.
Second column adds a component of causal variants affecting both traits in the same
(concordant) direction. Third column shows scenario of polygenic overlap without
genetic correlation. Top row shows simulated bivariate density of additive effects of
allele substitution (4, f;), bottom row shows bivariate density of GWAS signed test
statistics (z4j, z,;) for GWAS SNPs (genotyped or imputed). Due to Linkage
Disequilibrium, GWAS signed test statistic has substantially larger volume of SNPs
associated with the phenotype. The aim of MiXeR model is to infer distribution of
causal effects (top row), using GWAS data (bottom row) as an input. Figures are
generated on a regular grid of 100x100 bins, color histogram indicates log10(N) where
N is the number of SNPs projected into a bin.
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Figure 2. Selected simulations with bivariate model: (A) estimates of polygenic overlap;
(B) estimates of correlation of the effect sizes in shared polygenic component; (C)
estimates of genetic correlation. The bars in blue indicate an average value of model
estimates across 10 simulation runs. The bars in cyan show true (simulated) parameters.
Error bars represent standard deviation of the model estimate across 10 simulation runs.
Different bars correspond to levels of polygenic overlap: from zero (no overlap) to
complete polygenic overlap. Simulated heritability is 0.4, simulated fraction of causal
variants is 0.03% in both traits.
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Figure 3. Venn diagrams of unique and shared polygenic component at the causal level,
showing polygenic overlap (grey) between schizophrenia (SCZ, blue), bipolar disorder
(BIP, orange), educational attainment (EDU, green) and height (red). The numbers
indicate estimated quantity of causal variants (in 1,000) per component, explaining 90%
of SNP heritability in each phenotype, followed by the standard error. The size of circles
reflects the polygenicity.
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Figure 4. Top row shows bivariate density of the observed GWAS signed test statistics
(21, 22j), middle row shows predicted density (z”lj, Z“Zj) from MiXeR model. Bottom row
shows estimated bivariate density of additive causal effects (B, , B2;) that underlie model
prediction. Three columns represent schizophrenia (SCZ) versus bipolar disorder (BIP),
educational attainment (EDU) and height GWAS. Density is visualized using regular grid
of 100x100 bins, color indicates log10(N) where N is the observed number (for the top
row) or the expected number (for the middle and bottom rows) of SNPs projected into a
bin.
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Figure 5. Conditional Q-Q plots of observed versus expected —logio p-values in the
primary trait as a function of significance of association with a secondary trait at the
level of p<0.1, p<0.01, p<0.001. Blue line indicates all SNPs. Dotted lines indicate model
predictions for each stratum. Points on the QQ plot are weighted according to LD
structure, using n=64 iterations of random pruning at LD threshold r2=0.1.
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traitl
scz
scz
scz
BIP
BIP
EDU

trait2
BIP
EDU
Height
EDU
Height
Height

ni2 (se)
6.88 (1.04)
9.09 (0.92)
1.09 (0.12)
6.04 (1.34)
1.08 (0.13)
1.83(0.11)

ni (se)
2.25(1.34)
0.08 (0.04)
8.12 (0.97)
1.07 (0.94)
6.05 (1.24)
10.19 (0.64)

nz (se)
0.36 (0.43)
2.94 (1.12)
2.72 (0.14)
5.99 (1.49)
2.71(0.15)
2.02 (0.11)

P12 (se)
0.837 (0.019)

0.056 (0.015)
-0.007 (0.057)
0.308 (0.054)
0.000 (0.064)
0.442 (0.034)

rg (se)
0.708 (0.062)
0.048 (0.014)
-0.001 (0.011)
0.201 (0.030)
0.000 (0.013)
0.119 (0.009)

rguosk (se)
0.717 (0.024)
0.079 (0.022)
-0.008 (0.019)
0.176 (0.026)
-0.011 (0.023)
0.141 (0.012)

Table 1. Results of cross-trait analysis with MiXeR model for schizophrenia (SCZ), bipolar
disorder (BIP), educational attainment (EDU) and height GWAS. Columns: n12 - estimated
number of shared causal variants, reported in 1,000; n1 (nz)- estimated number of causal
variants, unique to traitl (trait2), expressed in 1,000; p,, - correlation of effect sizes in

shared polygenic component; rg - genetic correlation (r; = p1,m,,/+/7] 5, see Online

Methods); rgLpsr - estimate of genetic correlation from LD Score Regression. Number of
variants (n12, n1 and n2) are adjusted to explain 90% of heritability in the corresponding
component. Parameters are fitted using ca. 1.1M HapMap3 SNPs.
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ONLINE METHODS
This article is accompanied by a Supplementary Note with further details.

Bivariate causal mixture model. Consider simple additive model of genetic effects,
ignoring gene-environment interactions, epistasis and dominance effects. Under these
assumptions, the contribution of the genotype to the phenotype is modelled as a sum of
individual contributions from genetic variants: y, = }.; gjx B, where y, is a quantitative
phenotype or disease liability of k-th individual, g is 0,1,2-coded number of reference
alleles for j-th variant, and f; is additive genetic effect of allele substitution. We say that
genetic variant is causal for a trait if it has non-zero effect on that trait (5; # 0).

MiXeR builds upon univariate causal mixture model?>, B~ moN(0,0) + nlN(O, aﬁ?), which
assumes that only a small fraction (7r;) of variants has an effect on the trait, while the effect
of the remaining variants is zero. In a joint analysis of two traits we expect some variants
to affect both traits; some variants to affect one trait but not the other; and most variants
to have no effect on either trait. Based on these assumptions, MiXeR models additive
genetic effects 1, 2 of variant j on the two traits as a mixture of four bivariate Gaussian
components (Figure 1):

(Baj, B2j) ~ moN(0,0) + myN(0,2;) + m,N(0,2,) + my,N(0,2y5), (1)

2 0] [ ] [ of P120107
1 0 0 2 O 0-2 12 p120-10-2 0-22 ( )

where m1 and w2 are weights of the unique components (variants with an effect on the first
only, and on the second trait only); mi12 is a weighting of the component affecting both
traits; and mo is a fraction of variants that are non-causal for both traits, 7y + m; + 7, +
T, = 1; 62 and o control expected magnitudes of per-variant effect sizes; and p12is the
correlation coefficient of the effect sizes in the shared component. All parameters are
assumed to be the same for all genetic variants.

The effects (5, jr e ;) estimated by a GWAS, represent only proxies of the true causal effects
(B1j, B2;), which are distorted by limited sample size (poor statistical power), cryptic
relatedness within a GWAS sample as well as LD between variants. To disentangle these
effects we derive the likelihood term for observed GWAS signed test statistics (zy}, z5),
incorporating effects of LD structure (allelic correlation rij between variants i and j);
heterozygosity H; = ij(l — 'pj) where pjis the minor allele frequency of the j-th variant;

number of subjects genotyped per variant (Nij and Nzj); and variance distortion
parameters o4, 64, , and po. Specifically (see Supplementary Note),

(71),22)) = (81, 82)) + N <(0 0), [ g 00021002]), (3)

Po001002 092

8;=yN; Z VHiriiB;
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The nine parameters of the model (7, ,, 715, 07, 0%, p12, 041, 04, Po) are fit by direct
optimization of the weighted log likelihood, with standard errors estimated from the
Observed Fishers Information matrix.

Forcing m;, = 1 (so that my = m; = m, = 0) reduces our model to an “infinitesimal”
assumption that underlie cross-trait LD score regression8. Under this constraint our model
predicts that GWAS signed test statistics follow bivariate Gaussian distribution with zero
mean and variance-covariance matrix
2
N,jof N1jN2j,012<71Uzl + l 0 P£0001002
P0001002 o

i.e, (z1,22) ~ N(0,Z)), where ¢; = }; Hirl%- is the LD score (adjusted for heterozygosity). This
model is consistent with cross-trait LD score regression, with expected chi square
statistics E (zlzj), E (zzzj) and cross-trait covariance E(z,;z,;) being proportional to the LD

)

2
N1jNyjp12010, N;jo;

score of j-th SNP, and parameters p,, 041,09, playing the role of LD score regression
intercepts#0. The only distinction here is that we choose to model effect sizes that are
independent of allele frequency, leading to the incorporation of Hiin our model; this factor
is absent from the LD score regression model due to the assumption there of effect sizes
that are inversely proportional to Hi. Thus, MiXeR is a direct extension to cross-trait LD
score regression, which relaxes the “infinitesimal” assumption.

Model for bivariate distribution of GWAS z-scores. We derive two models for GWAS z-
scores, which we call “fast model” and “full model”. “fast model” is quicker to run, and we
use it to perform initial search in the space of model’s parameters. “full” model is slower
but more accurate, and we use it for a final tuning of model estimates.

“full” model for GWAS z-scores approximates (21 jr 22 j) distribution of a given GWAS SNP

as a mixture of K=20000 bivariate normal distributions, all having equal weight in the
mixture. For each k = 1, ..., K we randomly draw the location of causal variants (m;N
causal variants specific to the first trait, 7, N specific to the second trait, and ;, N shared
causal variants, where N denotes the total number of variants in the reference panel), and
calculate the variance-covariance matrix X ; from (3), using estimated LD r? correlations

between the assumed causal variants and the GWAS SNP. Then

(le’ZZj)=(51j,52,-)+N<(0,0),[ 901 900'01o'ozl>, (4)

P0901002 a8,
1 !
(853N, 825 NN )~ > N((0.0), k).
k=1.K
The “fast” model is derived from the method of moments (see Supplementary note):
(61j/\Naj, 82/\[Nj) ~ [(1 = w1 IN(0,0) + ;N (0,5 )] © (5)

[(1 = m3;)N(0,25;) + m3;N(0,25;)] ©
[(1 —mi5;)N(0,%5, ;) + w15 ;N(0, 21, )],

18


https://doi.org/10.1101/240275
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/240275; this version posted November 27, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

where @ denotes convolution of probabilistic distribution functions (so that right-hand
size evaluates to a mixture of 8 components), 7.; = £;m./n; is adjusted weight of mixture
component (c € 1,2,12); EQJ- = 1,2, is adjusted variance-covariance matrix; ¢; = ZiHirl%-
ZiHl-zrfj
ZiHirizj
interpreted as shape parameter that affects fourth and higher moments of the distribution.

This model explains second moments E[lej], E[Z1jZ5;], E[Z§j] and fourth moments
E[Z3], E[Z3,Z3;], E[Z3;] of z score distribution, and forms a theoretical basis for the
mixture model of sparse and ubiquitous effects*243. Of interest is that the “fast” model
involves the forth power of allelic correlation r[}-, which is directly proportional to kurtosis

(measure of heavy tails) of z-score distribution.

is the LD score, adjusted for heterozygosity*!; and n.; = (nC{’j +(1—-m.) ) can be

LD structure estimation. To estimate LD structure we use 489 individuals of 1000
Genome project** (phase 3 data), obtained from LD score regression website82145 (see
URLSs). 14 individuals were excluded due to relatedness#t. For simulations LD scores were
estimated from the genotypes that we use to produce synthetic GWAS data. LD r?2
coefficients were calculated using PLINK#47 with LD r2 cutoff of 0.05 and fixed window size
of 50000 SNPs, corresponding on average to a window of 16 centimorgans. We
deliberately choose a larger LD window compared to LDSR-recommended window of 1
centimorgan because the later appears to truncate a noticeable part of LD structure. At the
same time, we did not observe an effect of using unbiased estimate#8 of r2, thus fall back
to the standard Pearson correlation coefficient. In simulations LD structure was re-
estimated from the actual genotypes used to generate synthetic summary statistics. We
employ small integer compression*? for efficient storage of the LD matrix.

Fit procedure. We fit the model by direct optimization of weighted log likelihood
F(8) = X;w;log(pdf (z10)), (6)

where 0 = (1, 7,5, T3, 02,02, P12, 041,08, P0) is a vector of all parameters being
optimized, and weights w; chosen by random pruning (64 iterations at LD r2 0.1).
Optimization is done by Nelder-Mead Simplex Method>? as implemented in MATLAB's
fminsearch. First, we fit univariate parameters separately for  each trait, i.e. n}‘, 012, 031
for the first trait, and similarly for the second trait. Univariate fit employs a sequence of
optimizations to ensure robust convergence: first, we use “fast” model under constraint
ni = 1to find 07, and to initialize o§;; second, we use constraint nj'o{ = o7, to find
initial values of 7} and 012, again with “fast” model. Finally, we use full model and
unconstrained optimization to jointly fit 7%, 62, 6%, parameters. The same procedure is
repeated for the second trait, to find ¥, 62, 6&,. To improve convergence, we parametrize
univariate log-likelihood as a function of log(m¥¢?) and log(¥/a?), which represent
almost independent dimensions of the energy landscape. In bivariate optimization use
“fast” model and constraint 7;, = 1 to initialize p;, and p,. Then proceed with “full”
model optimization of the parameters specific to bivariate model (7, P12, 2o )
constraining all other parameters to their univariate estimates. The additional analysis
(Supplementary Tables 7, 8) uses right-censoring>! of z-scores exceeding z; = 5.45, by
using cumulative distribution function>2 in the log likelihood:
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F(8) = 5 1js 2 W 108(DAF (2116)) + X s 52 W 108(Cf (Zax|6D).  (7)

Standard error estimation. We estimate standard errors of all parameters from the
observed Fisher’s information, based on the “fast” model. It is known from the likelihood
optimization theory that the observed Fisher’s information may not be suitable for a
parameter near its boundary, which is applicable to the mixture weights m,, ,, 7, and
the correlation of effect sizes p,,. To mitigate this problem we apply transformations —
MATLAB’s logit() form 4, 7, 5, €Xp() for o 2,02, 08,, 0%, and erf() for  pg, p12, and
estimated variance-covariance matrix of errors in the transformed parameter space. We
validated that our estimates based on the observed Fisher’s information are in good
agreement with block jack-knife estimates. To estimate standard errors for a function of
the parameters, such as 7 or h?, we incorporate linear correlation among parameter
errors in the transformed space. We sample N=1000 realizations of the parameter vector,
calculating the function (e.g., 1; or h?) on each of them, and report the standard deviations.
In cases when joint hessian was not positive definite, we estimate marginal errors of fitted
parameters.

Large LD blocks. The log-likelihood cost function and the Q-Q plots apply a weighting
scheme to SNPs to avoid overcounting evidence from large LD blocks. As an alternative to
weighting by inverse LD score, we choose to infer the weights by random pruning. This
technique is a stochastic procedure which averages log likelihood function across
repeatedly selected subsets of variants, such that for each pair of variants i, j in a subset J
the squared allelic correlation rl%- falls below certain threshold. Given T iterations of

random pruning the log-likelihood function can be calculated as follows:

F(0) = 231, 3 jej, log(pdf (z1)) 8)

which is equivalent to weighted log-likelihood F(8) = ¥ ; w; log(pdf (z;|0)) with weights
w; = |[{t:j € J}|/T, |S| denotes cardinality of set S. Random pruning with stringent

threshold r2=0.1 justify independent modeling of the residuals in (3) across SNPs, which
otherwise would be correlated.

Heritability estimates. In additive model, SNP heritability is defined as a sum across all
causal variants: ag > j:Bj%0 ij(l -p j) , which we approximate from an average

heterozygosity of all variants in the reference: antomla[?, where Hoeq = X ij(l - 'pj).
To estimate the proportion of causal variants that explain certain fraction of heritability
(Supplementary Figure 11) we randomly sample N=10000 causal effects from the
reference, draw their effects f; from normal distribution, sort according to ,szpj(l — 'pj),
and report fraction of variants that cumulatively account 90% of heritability.

Genetic correlation. Parameter p;, in MiXeR defines correlation of effect sizes within
shared polygenic component. Genome-wide genetic correlation, calculated across all
SNPs, is related to p;, by the following formula that involves polygenicity 7} = m; + mq,
and ¥ = m, + 1y, of the traits, and polygenic overlap m,,:
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Ty = P12T12/+ Ty, 9)

For traits with K-fold difference in polygenicity (7' = Kn¥) the formula predicts an upper
bound on genome-wide genetic correlation: r; < p12/Vk, where equality holds if causal
variants of the less polygenic trait form a subset of the higher-polygenic trait.

Quantile-quantile plots. Univariate Q-Q plots and stratified Q-Q plots for the model were
constructed from pdf;(z) density as defined by (3), given fitted parameters of the model
and LD structure of j-th SNP, calculated across a fine grid of z-scores ranging from 0 to 38
with 0.05 step. We average pdf;(z) across 1% of randomly sampled SNPs, and numerically
integrate the resulting probability density function to convert it into cumulated
distribution function. Error bars on data Q-Q plots represent the 95% binomial confidence

interval g + 1.96 \/q(l —q) /Ntorar » Where g is portability of observing a p-value as
extreme as, or more extreme then the chosen p-value, and n;,;,; is the effective number of
SNPs after controlling for LD structure, which in our case was calculated as a sum of
random pruning weights across all SNPs.

GWAS power curves. Causal mixture model can project the future of GWAS discoveries,
by estimating proportion S(N) of narrow-sense heritability captured by genome-wide
significant SNPs at a given sample size N. The S(N) is defined as follows:

Zj fz:lz|zzt C(zN,j)dz
% [,C@zN,)dz

S(N) = (10)

where z; = 5.45 gives z-score corresponding to the standard genome-wide significance
threshold 5:10-8, and C(z,N,j) = P(z,N,j) - E(6%|z N,j) denotes a posterior effect size
E(6%|z, N, j) of the non-centrality parameter §2 for a GWAS SNP j, given certain z-score,
multiplied by a prior probability of observing that z-score. Probability density function
P(z,N,j) is given by (4), and E(52|z, N, j) can be calculated from the Bayesian rule. Thus,
C(z,N,j) = [ 62P(z|86)P(5,j)d5 where z|§ ~ N(8,062) . Analytical expression for

C(z,N,j) and fz C(z, N, j)dz is given in the Supplementary Note.

:|z|2z¢
SNPs in the analysis. To enable direct comparison of our model with LD score regression
we use the same set of SNPs in our log likelihood optimization, which consist of approx.
1.1 million variants, subset of 1000 Genomes and HapMap3>33, with MAF above 0.05,
ambiguous SNPs excluded, imputation INFO above 0.9, MHC and other long-range LD
regions excluded. Calculation of the LD structure, LD scores ¢; and shape parameter n; are
based on the approx. 10 million SNPs from 1000 Genomes Phase 3 data, downloaded from
LD score regression website (see URLs). In simulations we generate GWAS and estimate
LD structure on a subset 0f 11,015,833 SNPs from 1000 Genomes Phase 3, with MAF above
0.002, call rate above 90%, excluding duplicated RS numbers; the fit procedure was
constrained to approximately 130K GWAS SNPs, keeping only HapMap3 SNPs, and
pruning SNPs at LD r2 threshold of 0.1.

LD score regression estimates. For dichotomous phenotypes we used an effective
sample size of Norr = 4/(1/N¢gse + 1/Ncone) to account for imbalanced number of cases
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and controls, both in MiXeR and in LD score regression. Additionally, we run LDSR using
MiXeR MAF model (using —per-allele flags in LD score estimation), and show the
results alongside with original LDSR estimates (Supplementary Tables 7, 8). For
case/control phenotypes heritability is reported on the observed scale.

Simulations. In our simulations we use a panel of N = 100,000 samples, generated by
HapGen2>54 using 1000 Genomes** data to approximate the LD structure for European
ancestry. For each simulation run we use PLINK to obtain GWAS summary statistics of two
synthesized quantitative phenotypes, with complete sample overlap between GWAS
samples. Quantitative phenotype y, of k-th sample is calculated via simple additive
genetic model, y, = X; gx;B; + €x, where gy is the number of reference alleles for j-th
SNP on k-th sample, f; is causal effect size, and € is the residual vector drawn from normal

distribution with zero mean and variance chosen in a way that sets heritability h? =
var(Gp)/var(y) to a predefined level.

For the simulations shown in Figure 2, we draw effect sizes (B}, B,;) from the four-
component mixture model (1), varying polygenicity of each phenotype (7} = m; + 1y,
and ¥ = m, + m,), and polygenic overlap (m12). We choose total polygenicity in both
traits to be 3x10-3 or 3x10-4 and include an additional scenario of uneven polygenicity
(3 =3x10-3, ¥ =3x10-4). For each combination 7}, m5 and h, we set polygenic overlap
to be a fraction of total polygenicity m;, = f m{, choosing the fraction f from six equally
spaced values (0.0 to 1.0 with a step of 0.2). Correlation of effect sizes p,, set to 0.0 or 0.5.
Heritability was set to 0.1, 0.4 or 0.7, which let us keep GWAS sample size constant
(N=100,000) because the distribution of GWAS z-scores depends on N and h, only
through their product, h, X N (thus, simulations with N=700,000 and h, = 0.1 would be
equivalent to our scenario with N=100,000 and h,=0.7). Finally, for each combination of
heritability, polygenicity, polygenic overlap and correlation of effect sizes, we repeat
simulations 10 times.

For the simulations with differential enrichment, we simulate three levels of polygenicity
(3K, 30K and 300K causal variants), three levels of heritability (0.1, 0.4 and 0.7), and for
each combination generate 20 pairs of genetically independent traits (except for having
shared pattern of enrichment). To simulate the enrichment, we keep a constant variance
of effect sizes across all SNPs but modulate the probability of having causal variant
proportionally to LDSR regression coefficient. We cover two scenarios: first, LDSR with
MiXeR MAF model (using —per-allele flags in LD score estimation), and secondly with

the original LDSR MAF model.
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