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Abstract 13 

A minimal model for oscillating between quiescent and growth/proliferation states, 14 

dependent on the availability of a central metabolic resource, is presented. From the 15 

yeast metabolic cycles (YMCs), metabolic oscillations in oxygen consumption are 16 

represented as transitions between quiescent and growth states. We consider metabolic 17 

resource availability, growth rates, and switching rates (between states) to model a 18 

relaxation oscillator explaining transitions between these states. This frustrated 19 

bistability model reveals a required communication between the metabolic resource that 20 

determines oscillations, and the quiescent and growth state cells. Cells in each state 21 

reflect memory, or hysteresis of their current state, and “push-pull” cells from the other 22 

state. Finally, a parsimonious argument is made for a specific central metabolite as the 23 

controller of switching between quiescence and growth states. We discuss how an 24 

oscillator built around the availability of such a metabolic resource is sufficient to 25 

generally regulate oscillations between growth and quiescence, through committed 26 

transitions. 27 

 28 

Keywords: quiescence, growth, metabolic oscillation, bistability, acetyl-CoA, NADPH 29 

 30 

 31 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 26, 2018. ; https://doi.org/10.1101/239897doi: bioRxiv preprint 

https://doi.org/10.1101/239897
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

Introduction 32 

 33 

While all cells can exist in a variety of states, two opposite ends of the spectrum are the 34 

“growth” state (leading to mitotic division and proliferation), and a non-proliferative 35 

“quiescent” state. The quiescent state, operationally defined here as a reversibly non-36 

dividing state, is the predominant state of all living cells (Lewis and Gattie, 1991; Gray et 37 

al., 2004). Understanding how cells reversibly transition from a quiescent state, to a 38 

growth state coupled with cell division and proliferation (henceforth called “growth” in 39 

this manuscript) is therefore a fundamental biological question. Current explanations for 40 

how cells commit to growth and cell division account for metabolic regulation, 41 

biomolecule synthesis, and regulated progression through the cell cycle, presenting 42 

multiple, integrated mechanisms of information transfer within a cell that lead to the 43 

eventual growth outcome. 44 

 45 

However, when a population of genetically identical cells are present in a uniform 46 

environment, how can individual cells within such a population decide to switch between 47 

a quiescent (effective “G0”) state and a growth/proliferation state? Indeed, such 48 

heterogeneity of cell states within populations is widely observed and acknowledged. 49 

Numerous examples exist in nearly all systems studied, from simple eukaryotes like the 50 

budding yeast, to complex mammalian systems (Cooper, 1998, 2003; Coller et al., 51 

2006; Daignan-Fornier and Sagot, 2011; Klosinska et al., 2011; De Virgilio, 2012; 52 

Dhawan and Laxman, 2015), with multiple molecular events correlating with transitions 53 

between growth and quiescence. For any population transitioning into either of these 54 

states, experimentalists have asked: (i) what hallmarks allow discrimination between 55 

actively proliferating and G0 cells? (ii) how do cells transit back and forth between these 56 

two states? And (iii) how are different signals processed and integrated into an 57 

appropriate cellular response? The regulation of the final cellular outcome occurs at 58 

multiple levels, including differential gene expression programs, and signaling 59 

responses to growth factors, which can be different depending upon the type of cell or 60 

organism studied. At its very core, however, this transition between quiescent and 61 

growth states is a metabolic problem; cells must be in a metabolic state capable of 62 
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committing to growth/proliferation, and must sense this state, which the pushes cells 63 

towards growth. Indeed, several lines of evidence now reiterate a primary metabolic 64 

determinant for cells committing to a growth state (exiting quiescence), or remaining in a 65 

quiescent state (Futcher, 2006; Daignan-Fornier and Sagot, 2011; Laporte et al., 2011; 66 

Cai and Tu, 2012; De Virgilio, 2012; Lee and Finkel, 2013; Dhawan and Laxman, 2015; 67 

Kalucka et al., 2015; Kaplon et al., 2015). While multiple factors can regulate the 68 

transition between quiescence and growth, all such studies suggest that without this 69 

core metabolic transformation, switching states is impossible. Given this absolute 70 

metabolic requirement to switch to growth, if there is an isogenic (“identical”) population 71 

of cells present in a uniform environment, how can there be a two-state outcome where 72 

some cells undergo growth/proliferation, while the rest remain quiescent? 73 

 74 

Surprisingly, there are few rigorous theoretical, mathematical models that attempt to 75 

provide a conceptual framework sufficient to explain this, and suggest experimentally 76 

testable predictions. This is in contrast to the extensive, elegant, and often prescient 77 

models that have been built to explain progress through the classical cell division cycle 78 

(CDC), by incorporating existing experimental data of phase specific cell-cycle 79 

activators and inhibitors (Tyson and Novak, 2001; Tyson et al., 2003; Ferrell et al., 80 

2009; Tyson and Novák, 2015). Such modeling of the CDC has a long history 81 

(examples include (Goldbeter, 1991; J, 1991; Norel and Agur, 1991; Novak and Tyson, 82 

1993; Ferrell et al., 2009; Tyson and Novák, 2015)), and these types of theoretical 83 

studies have revealed biological possibilities that were experimentally determined only 84 

much later (such as (Cross et al., 2002; Pomerening et al., 2003; Wei et al., 2003; 85 

Mirchenko and Uhlmann, 2010)). Given this, there is considerable value in building 86 

coarse-grained but rigorous theoretical models to understand switching between 87 

quiescence and growth states. In such a model, the switching between quiescence and 88 

growth states could be treated as a biological oscillation (Tyson et al., 2003; Novák and 89 

Tyson, 2008; Tsai et al., 2008; Ferrell et al., 2009), while considering a dependence on 90 

a metabolic “resource” as a driver of the oscillator. For building such a model, we 91 

therefore require extensive experimental data from biological systems where metabolic 92 

oscillations are demonstrably closely coupled with exiting quiescence/entering the CDC. 93 
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Such data are readily available from the budding yeast, S. cerevisiae. Yeast have been 94 

the instrumental cellular model in revealing processes that define both the CDC 95 

(Hartwell, 1974), and the quiescence cycle (Gray et al., 2004; Daignan-Fornier and 96 

Sagot, 2011; Daignan-Fornier B and Sagot I, 2011; De Virgilio, 2012; Dhawan and 97 

Laxman, 2015). The classical CDC involves progression through the G1, S, and G2/M 98 

phases. In contrast, during a quiescence (or effective “G0”) cycle, cells remain non-99 

dividing, but can exit quiescence and enter the G1 phase of the cell cycle to 100 

subsequently complete the CDC.  101 

 102 

Experimentally dissecting specific processes driving entry into, and exit from, 103 

quiescence (into the CDC) is challenging in asynchronous, heterogeneous cultures of 104 

cells. However, synchronized yeast populations in well-mixed cultures (as manifest by 105 

oscillations in oxygen consumption) have long been observed and studied using batch 106 

and chemostat conditions limited for a carbon source (glucose or ethanol), which are 107 

subsequently fed continuously with limited concentrations of glucose or ethanol 108 

(Chance et al., 1964; Hommes, 1964; Hess and Boiteux, 1971; Satroutdinov et al., 109 

1992; Keulers et al., 1996; Jules et al., 2005; Lloyd and Murray, 2005). Gene 110 

expression studies from such glucose-limited yeast metabolic cycles or oscillations (we 111 

will utilize the term YMC henceforth in this manuscript for consistency) showed that a 112 

majority of the genome is expressed highly periodically, further revealing a molecular 113 

organization of growth and quiescent states (Klevecz et al., 2004; Tu et al., 2005; 114 

Futcher, 2006; Mellor, 2016). In general, both the shorter (Klevecz et al., 2004; Murray 115 

et al., 2007), and the longer oxygen consumption oscillations in yeast (Tu et al., 2005) 116 

showed this general pattern. Notably, genes associated with biosynthesis and growth 117 

(comprehensively further described in (Brauer et al., 2008)) typically peak during a high 118 

oxygen consumption phase in the YMC (Tu et al., 2005; Rowicka et al., 2007; Slavov 119 

and Botstein, 2011, 2013), while genes that mark autophagy, vacuolar function and a 120 

“quiescence” state peak during a steady, low oxygen consumption phase. Strikingly, in 121 

these continuous YMC cultures, cell division is tightly gated to a temporal window. Cells 122 

divide synchronously only once during each metabolic cycle (Küenzi and Fiechter, 123 

1969; Tu et al., 2005; Robertson et al., 2008; Laxman et al., 2010) and remain in a non-124 
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dividing state during the rest of the cycle. The non-dividing population in the low oxygen 125 

consumption phase exhibits typical hallmarks of quiescent cells (Tu et al., 2005, 2007; 126 

Shi et al., 2010; Cai et al., 2011; Shi and Tu, 2013; Dhawan and Laxman, 2015). 127 

Furthermore, in each YMC, during the tight temporal window when cells do divide, the 128 

culture has two, visibly distinct sub-populations: dividing and nondividing (Tu et al., 129 

2005; Robertson et al., 2008; Laxman et al., 2010). These data have suggested a close 130 

coupling between the metabolic and the cell division cycles. Importantly, the YMC itself 131 

is metabolite/nutrient regulated, and controlled by the amount of available glucose. The 132 

distinct phases of the YMC correspondingly show a separation of metabolic processes 133 

(Tu et al., 2005, 2007; Murray et al., 2007; Machné and Murray, 2012), and several 134 

lines of evidence suggest that key metabolite amounts are critical for entering or exiting 135 

a proliferative or a non-proliferative state (Murray et al., 2003, 2007; Tu et al., 2007; Shi 136 

et al., 2010; Cai et al., 2011; Machné and Murray, 2012; Mellor, 2016). These studies 137 

collectively indicate the following: (i) a separation of two states (proliferative, and 138 

effectively G0) in cell populations, dependent on metabolic states, and (ii) a loose 139 

metabolic framework within which it may be possible to study transitions between 140 

quiescence and growth transitions. Thus, these studies provide extensive experimental 141 

data using which a theoretical, mathematical model can be built to sufficiently explain 142 

oscillations between a “quiescent” state and a “growth” state. 143 

 144 

Here, we use existing data from these YMCs to build a robust, general model for 145 

oscillations between a quiescent and a growth state. Importantly, the model 146 

necessitates the requirement of a tripartite communication - between the metabolic 147 

resource, the quiescent cells, and the cells exiting quiescence and entering growth - in 148 

order for the cells to sustain oscillation between these two states. The model oscillations 149 

depend on an underlying bistability, suggesting that cells in either state exhibit 150 

hysteresis, or memory, of their states. Finally, using this model, we show how two 151 

central metabolites, thought to be critical for entry into a growth state, satisfy the 152 

required criteria for the currency that controls oscillations between these two cell 153 
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states. Collectively, we provide a coarse-grained, sufficiency model to explain general 154 

principles of how cells can oscillate between a quiescent and growth state, depending 155 

upon amounts and utilization of an internal metabolic currency. 156 

 157 

Results 158 

 159 

Apparent bistable states during yeast metabolic cycles 160 

 161 

Yeast cells grown to a high cell density (in batch culture mode) in a chemostat, and 162 

when subsequently fed limited amounts of glucose medium, spontaneously undergo 163 

robust oscillations in oxygen consumption (YMCs) (Figure 1A) and (Klevecz et al., 2004; 164 

Tu et al., 2005; Murray et al., 2007; Silverman et al., 2010; Burnetti et al., 2015), with 165 

the period of each oscillation ranging from ~2.5-5 hours (Figure 1A). For these 166 

oscillations to occur, the batch culture typically needs to first be starved for a few hours 167 

(Figure 1A), during which time all glucose is depleted, and all cells enter a non-dividing 168 

state (although the extended starvation is not an absolute requirement, as observed 169 

historically in breweries). After starvation, when cells are continuously provided limited 170 

glucose in the medium, the oscillations in oxygen consumption spontaneously start and 171 

continue indefinitely (Figure 1A). Comprehensive gene expression analysis across 172 

these longer-period oscillations (1.5-4.5 hr cycles) has revealed highly periodic 173 

transcript expression (Tu et al., 2005; Rowicka et al., 2007), and proteins encoded by 174 

these transcripts can be binned into three general classes (Figure 1B, 1C). These 175 

represent “growth genes” during the high oxygen consumption phase, followed by the 176 

rapid decrease in oxygen consumption coupled with “cell division” (Figure 1B, 1C) 177 

(Kudlicki et al., 2007; Rowicka et al., 2007). The cells exhibiting the “growth” signature 178 

during the high oxygen consumption phase all go on to enter and complete the CDC 179 

(42). Finally, the YMC enters a state of ~stable oxygen consumption, where the gene 180 

expression profile revealed a “quiescent”-like state (Figure 1B, 1C). Mitotic cell division 181 

is tightly gated only to a narrow window (Figure 1B, 1C). Interestingly, in this phase, 182 

only a fixed fraction of the cells (~35%) (and not all cells) divide during each cycle 183 

(Figure 1D). During the stable oxygen consumption phase, there are almost no budding 184 
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cells observed (Figure 1D). Note: given that this is a controlled chemostat system, the 185 

overall cell number/density is constant throughout these oscillations (Klevecz et al., 186 

2004; Tu et al., 2005), which becomes important for our mathematical model.  187 

 188 

Defining the two states and apparent bistability 189 

 190 

If these data are more grossly binned into groups, there appears to be ~2 effective 191 

equilibrium states in this system. If binned based on the gene/metabolic patterns, there 192 

is the oxidative phase (high oxygen consumption) closely coupled to growth, 193 

immediately followed by the reductive mitotic phase, which depends upon (and follows 194 

directly from), the oxidative phase. Indeed, experimental data suggest that these two 195 

steps, the growth and proliferation steps, are irreversibly coupled (Laxman et al., 2010). 196 

This can therefore be conceived as one bin, representing a “growth” state. The 197 

extended, low oxygen consumption phase where there is a long, steady build-up of 198 

resources, can be viewed as a second bin. Both these states or bins appear to be 199 

somewhat stable, contained systems, with what appears to be a transition or inflection 200 

point leading to a committed switch to the other state. Thus, there appears to be an 201 

apparent cellular state bistability occurring during these oscillations in oxygen 202 

consumption. The stable, low oxygen consumption phase can therefore be practically 203 

envisioned as representing the non-dividing, “quiescent” state (Q), while the rapid 204 

increase in oxygen consumption followed by the reduction in oxygen consumption 205 

phase represents the “growth” state (G) (Figure 1E). Considering this, our objective was 206 

to build a mathematical model that conceptualized the oscillations in oxygen 207 

consumption as oscillations between these two (Q and G) states. 208 

 209 

For this, we first needed to define what plausible, broad scenarios this YMC system 210 

might fit into. We therefore considered the currently accepted explanations for 211 

commonly observed cellular heterogeneity within clonal populations. Many microbial 212 

cells at high cell densities put out “quorum/alarmone” molecules that affect the entire 213 

population, and lead to collective behavior along with heterogeneity (Miller and Bassler, 214 

2001; Schauder et al., 2001; Whitehead et al., 2001; Zhu et al., 2003; Chen et al., 2004; 215 
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Farewell et al., 2005; Srivatsan and Wang, 2008). Other possibilities emerge from 216 

metabolic resource sharing, seen widely in systems ranging from microbial populations 217 

to cancer cells (Veening et al., 2008; Cairns et al., 2011; Campbell et al., 2015, 2016). 218 

This extends to regulation at the levels of metabolic specialization and stochastic gene 219 

expression resulting in phenotypic heterogeneity (Avery, 2006; Ibanez et al., 2013; 220 

Holland et al., 2014; Ackermann, 2015; Sumner and Avery, 2017). From within this 221 

range of possibilities, we envisaged three general scenarios that could result in the type 222 

of oscillations (Q <-> G) seen in the YMC, and could make biological sense (Figure 1F): 223 

(i) there could be the production and secretion of a resource by a sub-population of cells 224 

(“feeders”), which is taken up by other cells that will go on to divide; (ii) there could be 225 

the secretion and accumulation of a metabolite that is sensed and taken up by only 226 

some cells (but is not consumed); (iii) there is a build up of a metabolite, which is 227 

consumed by the cells at some threshold concentration (Figure 1F). Starting from these 228 

scenarios, we built simple models to test which one could create an oscillatory system 229 

between the two states, which can come from an apparent bistability in the system. 230 

 231 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 26, 2018. ; https://doi.org/10.1101/239897doi: bioRxiv preprint 

https://doi.org/10.1101/239897
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

 232 
Figure	
  1:	
  Apparent	
  two-­‐state	
  bistability	
  during	
  Yeast	
  Metabolic	
  Cycles.	
  233 
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A)	
  A	
  representative	
  YMC,	
  indicating	
  stable	
  oscillations	
  in	
  oxygen	
  consumption	
  (based	
  on	
  dissolved	
  234 

oxygen	
  dO2)	
  in	
  yeast	
  cultures,	
  reflecting	
  the	
  yeast	
  metabolic	
  cycle.	
  Note	
  that	
  the	
  stable	
  oscillations	
  are	
  235 

driven	
  by	
  restricted	
  feeding.	
  236 

B)	
  A	
  more	
  detailed	
  illustration	
  of	
  each	
  oscillation	
  cycle,	
  also	
  indicating	
  the	
  phases	
  of	
  the	
  237 

YMC.	
  238 

C)	
  Functional	
  outputs	
  based	
  on	
  gene	
  expression	
  studies	
  (from	
  (33)),	
  which	
  clearly	
  define	
  the	
  oxygen	
  239 

consumption	
  phases	
  of	
  the	
  YMC	
  into	
  a	
  general	
  “growth/proliferation”	
  phase,	
  and	
  a	
  “quiescence”	
  phase.	
  240 

D)	
  Observed	
  cell	
  division	
  during	
  the	
  YMC.	
  Cell	
  division	
  is	
  tightly	
  gated	
  to	
  a	
  narrow	
  window	
  of	
  the	
  YMC.	
  241 

Note	
  that	
  only	
  a	
  fraction	
  of	
  cells,	
  and	
  not	
  all	
  cells,	
  divide	
  during	
  this	
  window	
  of	
  each	
  cycle.	
  242 

E)	
  Reducing	
  the	
  oxygen	
  consumption	
  (dO2)	
  oscillation	
  into	
  a	
  two-­‐state	
  (Q	
  state	
  and	
  G	
  state)	
  system.	
  The	
  243 

apparent	
  bistability	
  is	
  also	
  illustrated.	
  244 

F)	
  Plausible	
  biological	
  scenarios	
  that	
  could	
  result	
  in	
  an	
  oscillation	
  between	
  Q	
  and	
  G	
  states,	
  based	
  on	
  245 

observed	
  phenomena.	
  These	
  scenarios	
  are	
  considered	
  for	
  building	
  the	
  model.	
  246 

 247 

A “push-pull” model, requiring communication between the Q state, G state and 248 

the resource, produces oscillatory behavior 249 

 250 

Model framework for a two-state yeast population 251 

 252 

In order to model such a two-state population of cells, the variables to consider would 253 

be the following: (a) The number of cells in the quiescent state and in the growth state, 254 

(b) some indicator of resource availability (dependent on the accumulation and 255 

consumption of the resource) which could modulate the switching rate between Q and 256 

G states, and the growth rate. 257 

 258 

Thus, using this framework, we build the following equations that can describe the 259 

dynamics of a two-state population of yeast cells in a well-mixed system: 260 

 261 

“Change in Q population over time”:  262 

dQ/dt = νGQG − νQGQ − φQ, (1) 263 

 264 
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“Change in G population over time”:  265 

dG/dt = γG − νGQG + νQGQ − φG, (2) 266 

 267 

where Q(t) is the number of cells in the quiescent state at time t, G(t) the number of 268 

cells in the growing/dividing state, each ν represents a switching rate, φ(t) is the 269 

chemostat outflux rate (which could vary with time), and γ is the growth rate of cells in 270 

the growing/dividing state. If we further assume that the chemostat is working in a mode 271 

that maintains the total population (or density) of cells at some constant level, i.e., the 272 

outflux from the chemostat balances the growth of cells at all times, this means φ(t) = 273 

γG/(G + Q). In this case, the population dynamics can be described by a single 274 

equation: 275 

 276 

dq/dt = νGQ(1 − q) − νQGq − γ (1 − q)q, (3) 277 

 278 

where q ≡ Q/(G + Q) is the fraction of cells in the quiescent state.  279 

 280 

Next, we assume that the cells contain some ‘resource’ that they require for growth, 281 

without making any further assumptions about the resource. Let a(t) denote the 282 

concentration per cell of this resource at time t, and let σ denote the rate at which 283 

additional amounts of this resource enter each cell from the surroundings (where the 284 

resource is replenished due to the influx of fresh medium into the chemostat). a is 285 

depleted both by dilution due to the outflux (at a rate γ(1−q) as explained above), as well 286 

as by consumption by growing cells (this rate is also proportional to γ(1−q), which is the 287 

net rate of production of new cells). The dynamics of this resource can thus be 288 

described by the equation: 289 

 290 

“Change in resource over time”:  291 

da/dt  = σ − µγ(1 − q)a − γ (1 − q)a,   (4) 292 

 293 
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 12 

where µ is a proportionality constant that sets just how much resource is consumed by a 294 

growing cell, compared to the amount that is depleted by dilution.  295 

 296 

In writing equations 3 and 4, we have assumed that all cells have the same amount of 297 

this internal resource a. A less restrictive assumption that still gives the same equation 298 

is to assume that a represents the average concentration of the resource across the 299 

population of cells, but that the distribution of resource levels is similar for Q and G 300 

cells. Further, the same equations also model the case where the resource is not an 301 

intracellular one, but an extracellular one - σ then is just reinterpreted as the rate at 302 

which the resource is added to the extracellular medium either by an external feed or by 303 

secretion of the resource by the cells themselves (e.g., by making σ dependent on q). 304 

 305 

By choosing which of the parameters in the above equations are zero or non-zero, and 306 

how they depend on q and/or a, this framework can be used to model a variety of 307 

scenarios, which subsume the broad, biological scenarios illustrated in Figure 1E. 308 

These mathematically distinct scenarios are described below (and illustrated in Figures 309 

2A and 2B): 310 

1. A sub-population of feeder cells (in the Q state) secrete a resource that is sensed by 311 

other cells that can grow and divide (G state); resource accumulation σ increases with 312 

q. 313 

Such a scenario can be modelled with the G cells either consuming the resource (µ ≠ 314 

0), or only sensing but not consuming the resource (µ = 0) in the processes of 315 

growing/dividing. The growth rate in the G state may be a constant, or may depend on 316 

the level of the resource (e.g., γ proportional to a). There are three sub-scenarios for 317 

how cells may switch between the two states: 318 

a. There is no switching between Q and G states (νQG and νGQ both zero). 319 

b. There is random switching between Q and G states (νQG and/or νGQ are non-zero 320 

constants). 321 

c. Switching between Q and G states is dependent on cell density and/or the resource 322 

level (νQG and νGQ both functions of q and/or a). 323 
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 324 

2. All cells produce and secrete a resource that is sensed only by a sub-population of 325 

(G) cells that can grow and divide, i.e., σ is a constant. As in scenario 1, the G cells may 326 

or may not consume the resource, the growth rate in the G state may or may not 327 

depend on the level of the resource, and there are three sub-scenarios for how cells 328 

may switch between the two states: no switching, random switching or density/resource 329 

dependent switching. 330 

 331 

3. There is a build up of a resource, which is directly supplied from outside into the 332 

chemostat medium (σ is a constant). This metabolite is sensed or consumed by the G 333 

cells when they grow/divide. Again, the growth rate in the G state may or may not 334 

depend on the level of the resource and switching may work in one of three ways: none, 335 

random or density/resource dependent switching. 336 

 337 

While scenarios (2) and (3) may appear mechanistically very different, they are in fact 338 

mathematically no different from each other; both result in a constant production of the 339 

resource (Figure 2B). Hence, we need not distinguish between these two. Testing all 340 

the scenarios above, using equations 3 and 4, we show in the next section that 341 

oscillations are not possible in the absence of switching, or even with random switching, 342 

when there is no substantial time delay between resource utilization and division events 343 

(as assumed in writing equations 3 and 4). Thus, scenarios 1c, 2c and 3c are the only 344 

possibilities left that give oscillations (Figure 2C). This means that the switching 345 

between Q and G states is a stochastic event, but with a probability that depends on the 346 

resource level, and/or the density of cells in the Q or G state, implying some form of 347 

communication between the resource, the cells in the Q state and the cells in the G 348 

state. 349 

 350 
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 351 
Figure	
  2:	
  A	
  “push-­‐pull”	
  model	
  for	
  oscillations	
  arising	
  from	
  an	
  underlying	
  bistability	
  between	
  Q	
  and	
  G	
  352 

states.	
  353 
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A)	
  A	
  range	
  of	
  biologically	
  plausible	
  scenarios	
  from	
  Figure	
  1F,	
  now	
  broken	
  down	
  into	
  precise	
  categories,	
  354 

where	
  parameters	
  affecting	
  the	
  rates	
  of	
  	
  proliferation	
  (g),	
  switching	
  	
  355 

between	
  Q	
  and	
  G	
  states	
  (n),	
  as	
  well	
  as	
  consumption	
  (m)	
  and	
  supply	
  (s)	
  of	
  the	
  resource	
  are	
  included.	
  The	
  356 

variations	
  in	
  these	
  parameters	
  are	
  used	
  to	
  build	
  and	
  test	
  our	
  model.	
  357 

B)	
  Schematic	
  illustration	
  of	
  Figure	
  1A,	
  indicating	
  feedback	
  loops	
  and	
  parameters	
  considered,	
  to	
  test	
  for	
  358 

possible	
  oscillations	
  between	
  Q	
  and	
  G	
  states.	
  For	
  clarity,	
  potential	
  feedback	
  loops	
  caused	
  by	
  the	
  359 

parameters	
  being	
  dependent	
  on	
  the	
  resource	
  a	
  are	
  not	
  shown,	
  but	
  are	
  included	
  in	
  our	
  models.	
  360 

C)	
  A	
  hysteretic	
  oscillator,	
  based	
  on	
  switching	
  between	
  Q	
  and	
  G	
  states,	
  a	
  required	
  communication	
  361 

between	
  Q,	
  G	
  and	
  the	
  resource,	
  and	
  the	
  oscillation	
  of	
  the	
  amounts	
  of	
  resource	
  itself	
  that	
  controls	
  the	
  Q<-­‐362 

>G	
  transitions	
  (see	
  the	
  Methods	
  for	
  the	
  parameter	
  values	
  that	
  that	
  produce	
  this	
  dynamics).	
  In	
  the	
  left	
  363 

panel:	
  The	
  thin	
  black	
  curve	
  shows	
  the	
  path	
  traced	
  by	
  the	
  oscillation	
  in	
  the	
  q-­‐a	
  plane,	
  the	
  thick	
  dashed	
  line	
  364 

is	
  the	
  curve	
  along	
  which	
  production	
  of	
  resource	
  exactly	
  balances	
  consumption/dilution,	
  and	
  the	
  solid	
  365 

black	
  dots	
  trace	
  the	
  high	
  and	
  low	
  branches	
  of	
  the	
  steady	
  state	
  q	
  levels	
  when	
  the	
  resource	
  level	
  is	
  held	
  366 

constant	
  (the	
  grey	
  rectangle	
  indicates	
  the	
  region	
  of	
  bistability).	
  In	
  the	
  right	
  panel:	
  blue	
  and	
  green	
  curves	
  367 

show,	
  respectively,	
  the	
  fraction	
  of	
  quiescent	
  cells	
  and	
  the	
  resource	
  level	
  as	
  a	
  function	
  of	
  time.	
  368 

 369 

Some necessary conditions for oscillations 370 

 371 

Within the framework of our model we can show that a density-dependent switching rate 372 

is necessary to get oscillations. 373 

 374 

(i) No oscillations in the absence of switching: 375 

When both νQG and νGQ are zero, then equation 3 above becomes: 376 

dq/dt = − γ(1 − q). (5) 377 

As long as γ is always positive, irrespective of its dependence on a, this has only one 378 

stable steady-state solution, q = 0, because the rate of change of q is always negative. 379 

And this is globally stable, i.e., every initial value of q (except q = 1) will flow to q = 0. 380 

The q = 1 state is an unstable steady state, i.e., any fluctuations away from it, however 381 

small, will result in the system moving to q = 0. Thus, there can be no oscillations in the 382 

absence of switching. 383 

 384 
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(ii) No oscillations with constant parameters: 385 

When all the parameters in equations 3 and 4 are constants, independent of q and a, 386 

then no oscillations are possible because eq. 3 becomes independent of eq. 4, and 387 

therefore, being a one dimensional ordinary differential equation without explicit time-388 

dependence, cannot show oscillations (an oscillation in q requires that dq/dt take both 389 

positive and negative values for the same value of q, for at least within some range of q, 390 

and this is not possible for a 1D ordinary differential equation).  391 

 392 

(iii) No oscillations for random (density-independent) switching: 393 

A less restrictive assumption is that νGQ and νQG are constants (which includes zero - 394 

we've already examined the case where both are zero above), but γ and σ may be 395 

functions of q and/or a. In the scenarios we examine, γ may be an increasing function of 396 

a (all scenarios), while σ may be an increasing function of q (scenario 1). In this 397 

situation, the dependence of each variable on the other is `monotonic' (dq/dt is a 398 

decreasing function of a, while da/dt is an increasing function of q). Equations with such 399 

monotonic dependencies have been studied mathematically in detail (Pigolotti et al., 400 

2007; Tiana et al., 2007), which show explicitly that when such a coupled set of 401 

equations has only two variables (here, q and a), then sustained oscillations are not 402 

possible. Intuitively, there is not enough time delay in such a small two-leg feedback 403 

loop to destabilise the overall negative feedback that pulls the variables into a single 404 

stable steady-state value. 405 

 406 

Hysteretic oscillator based on the two-state model 407 

 408 

Apart from there being broadly two states, a second crucial observation from the 409 

experiments is that there is a distinct separation of timescales. The transitions from a 410 

situation where almost 100% of cells are in the Q state to one where 30-40% are in the 411 

G state, and vice versa, are very rapid. Whereas, between these two transitions the 412 

dynamics proceeds on much slower timescales. A simple way to obtain such a two-413 

timescale oscillator from this two-state model uses the strategy of `frustrated bistability’ 414 

previously suggested by (Krishna et al., 2009). It requires three ingredients: (1) a 415 
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negative feedback loop between q and a, (2) bistability in q in the absence of the 416 

feedback, and (3) the assumption that changes in q happen on a relatively fast 417 

timescale compared to changes in a. While the first can be achieved in several ways, 418 

the two simplest, biologically plausible, scenarios are where growing cells consume a 419 

resource a and: (i) the growth rate γ is proportional to the resource a; or, (ii) one or both 420 

switching rates depend on a such that the net switching rate from G to Q decreases with 421 

a. However, the third requirement of separation of timescales means that the switching 422 

rates must be at least several-fold higher than γ and σ. This means that the term γq(1-q) 423 

in equation 3 is practically negligible and hence the dependence of γ on a, or lack of it, 424 

would have little effect. We therefore concentrate on the case (ii) where the switching 425 

rates depend on a to implement the negative feedback, and for simplicity keep γ 426 

independent of a.  427 

 428 

Bistability in q in the absence of the feedback implies that when a is kept fixed, for some 429 

range of a values, equation 3 should allow two stable steady state levels of q, one lower 430 

and one higher. This is shown in Figure 2C left panel, where one can see the high and 431 

low ‘branches’ traced by the solid black circles - every point on these branches is a 432 

stable steady state q can attain for the corresponding a value, using a version of 433 

equation 3 derived from scenario 3 in Figure 2B (see Methods for the full equation). 434 

When the resource a is sufficiently small, then there is only one high steady-state level 435 

possible for q. Similarly, when a is sufficiently large, there is only one low steady-state 436 

possible. However, for intermediate values of a, the system exhibits bistability and both 437 

low and high steady-state levels co-exist. In this bistable region, which steady-state 438 

level q attains depends on where it started (i.e., its ‘initial condition’). Importantly, in 439 

these oscillations, the system exhibits a ‘memory’ (or a ‘hysteresis’) - the steady-state 440 

level that q eventually settles into depends on the history of the system.  441 

 442 

When there exists such bistability, then one can get oscillations from the system 443 

described by equations 3 and 4, provided the switching rates are a few-fold faster than 444 

the rates of consumption and accumulation of the resource (Krishna et al., 2009), as 445 

follows: when q is high, a increases due to lack of consumption, so the system creeps 446 
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along the high branch in Figure 2C left panel (see the trajectory traced by the thin black 447 

line) until it hits the edge of the bistable region. At that point, cells start switching to the 448 

G state, which happens relatively rapidly due to the separation of timescales. Thus, the 449 

trajectory “falls off” the edge down to the low branch. On the low branch, with more G 450 

cells, the now increased consumption of the resource causes a to start decreasing, 451 

leading to the system creeping down along the low branch. When the system reaches 452 

the left edge of the bistability, the trajectory jumps up to the high branch as cells rapidly 453 

switch to the Q state. For a range of parameter values, this settles into a stable 454 

oscillation, as shown in Figure 2C right panel, which shows how q and a vary with time 455 

as one follows the black trajectory in Figure 2C left panel. 456 

 457 

For this kind of oscillation, as we have demonstrated in the previous section, νQG and/or 458 

νGQ must necessarily be functions of q, not constants independent of q. This can be 459 

interpreted as a form of ‘quorum/cell number sensing’ - implying some form of cell-cell 460 

communication (or a cell density dependent phenomenon). More specifically, we find 461 

that choosing either νQG to be a decreasing step-function of q (as in Figure 2C), or νGQ 462 

to be an increasing step-function of q (see Supplemental Figure S1) is sufficient to 463 

produce frustrated bistability. Other shapes that we have not explored may also produce 464 

bistability, and hence oscillations. However, our purpose here is not to find the ‘best-fit’ 465 

model, but rather to demonstrate the basic ingredients which are sufficient to produce 466 

hysteretic oscillations that are similar to the experimental observations. The requirement 467 

for νQG to be a decreasing step-function of q, or νGQ to be an increasing step-function of 468 

q, is basically a requirement for a “push-pull” mechanism - the more the Q cells, the 469 

more other Q cells get pulled to remain in that state, and the more G cells get pushed to 470 

switch away from their state, and vice versa. Irrespective of the precise molecular 471 

means by which this is achieved, cell-cell communication is a necessary ingredient for 472 

implementing such a push-pull mechanism. 473 

Possible variations in the shape of the oscillations 474 

 475 

From our gross model explained in Figure 2, we obtain predictable oscillations with a 476 

specific pattern. The model oscillations exhibit a fast drop in q when exiting the 477 
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predominantly quiescent phase, followed by a slow(er) drop, and then a rapid rise back 478 

to a high q level. Experimentally however, a few variations within the general oscillation 479 

patterns are known to occur, depending upon the strain background (Burnetti et al., 480 

2015). In the CEN.PK strain (our major reference system, from where the gene and 481 

metabolite oscillation datasets were obtained (Tu et al., 2005, 2007; Mohler et al., 482 

2008)) dO2 levels (which we equate with q) show a fast drop, a slow further drop, and 483 

then a rapid rise (Figure 3A scenario (i)). However, as comprehensively described in 484 

(Burnetti et al., 2015), three other variations have been extensively documented. 485 

Following a fast drop in dO2 levels, some strains then show a slower drop followed by a 486 

more extended low dO2 phase (bump), and a fast rise in dO2 (Figure 3A, scenario (ii)). 487 

Other strains show an overall fast drop in dO2, an extended low dO2 phase and bump, 488 

and a fast rise (Figure 3A, scenario (iii)), or a fast drop in dO2 (increased oxygen 489 

consumption), followed by a slower, extended rise in dO2 (Figure 3A, scenario (iv)).  490 

 491 

Can our model explain this small diversity of shapes seen during the overall drop and 492 

rise in oxygen concentrations? 493 

 494 

In the model, the shape observed depends on the shapes of the two branches of q 495 

steady-states (solid black circles in Figure 2C, left panel). Because the lower branch 496 

starts at a q value of around 0.5 and then increases as a increases, therefore there is a 497 

slow drop in q after the fast drop. To produce the experimental dO2 oscillations in other 498 

yeast strains (as shown in Figure 3A), the lower branch must have a different shape. 499 

For example, for strains which show a slow increase after the first rapid decrease of q, 500 

the low q branch must decrease as a increases. Similarly, the other waveforms would 501 

involve other shapes of the lower or higher branches. In Figure 3C we show that simple 502 

changes in the dependence of the switching rate νQG on a produce different waveforms 503 

for the oscillations. Here we’ve shown how to get different shapes of the low-q phase of 504 

the oscillation by manipulating the lower branch of the bistability - changes to the high-q 505 

phase could similarly be easily made by manipulating the upper branch. The main point 506 

is that the shape of the waveform is primarily determined by the shape of the bistability 507 

branches, which in turn are determined by how νQG and νGQ depend on q and a. Thus, 508 
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our model predicts that these switching rates are what must vary between strains that 509 

show different oscillation waveforms.  510 

 511 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 26, 2018. ; https://doi.org/10.1101/239897doi: bioRxiv preprint 

https://doi.org/10.1101/239897
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

Figure	
  3:	
  Diverse	
  waveforms	
  in	
  the	
  oscillations:	
  experimentally	
  observed	
  and	
  model	
  predictions.	
  512 

A)	
  Experimentally	
  observed	
  patterns	
  of	
  oscillations	
  in	
  dissolved	
  oxygen/	
  oxygen	
  consumption,	
  which	
  is	
  513 

dependent	
  on	
  yeast	
  strain	
  backgrounds	
  and	
  chemostat	
  growth	
  conditions.	
  	
  514 

B)	
  Altering	
  the	
  communication	
  loops	
  between	
  Q,	
  G	
  and	
  a,	
  to	
  change	
  the	
  overall	
  oscillation	
  waveform.	
  515 

Here	
  g	
  (growth	
  rate)	
  is	
  constant	
  and	
  nQG	
  is	
  a	
  decreasing	
  step-­‐function	
  of	
  q.	
  To	
  obtain	
  different	
  516 

waveforms,	
  we	
  vary	
  the	
  way	
  the	
  step	
  function	
  parameters	
  nm	
  depends	
  on	
  a.	
  	
  517 

C)	
  Predicted	
  oscillation	
  patterns	
  from	
  the	
  model	
  (as	
  altered	
  described	
  in	
  panel	
  B).	
  The	
  illustrated	
  panels	
  518 

cover	
  the	
  range	
  of	
  waveforms	
  observed	
  experimentally	
  in	
  panel	
  A.	
  (i)	
  same	
  as	
  Fig	
  2C;	
  nm	
  decreases	
  with	
  519 

a.	
  (ii)	
  nm	
  first	
  increases	
  then	
  decreases	
  with	
  a.	
  (iii)	
  nm	
  first	
  decreases	
  and	
  then	
  increases	
  with	
  a.	
  (iv)	
  nm	
  520 

increases	
  with	
  a.	
  	
  Additionally,	
  in	
  all	
  four	
  cases,	
  K	
  increases	
  with	
  a	
  and	
  other	
  parameters	
  have	
  been	
  521 

chosen	
  so	
  that	
  the	
  time	
  period	
  of	
  oscillations	
  is	
  close	
  to	
  4	
  hours	
  (see	
  Methods	
  for	
  the	
  full	
  equations,	
  with	
  522 

parameter	
  values,	
  for	
  each	
  case).	
  	
  523 

 524 

Predicting oscillatory outcomes based on resource availability 525 

 526 

We have used scenario 3c (from Figure 2) to produce oscillations in Figures 2 and 3 527 

above. We reiterate that mathematically scenarios 2 and 3 are the same, so scenario 2c 528 

can produce exactly the same oscillations. Further, we also find that scenario 1c (where 529 

the resource is not supplied externally, but produced/secreted by only the Q cells) is 530 

also capable of producing similar oscillations, based on highly constrained choices for 531 

how the production rate of the resource (σ) depends on q and a (see Supplemental 532 

Figure S2). Thus, while scenarios 3c and 2c are identical, all three scenarios, 1c, 2c, 3c, 533 

with appropriate choices for how the switching rates, and production and consumption 534 

depend on the resource and fraction of quiescent cells, are sufficient to explain the YMC 535 

oscillations. Scenario 2c and 3c are largely indistinguishable, and both appear 536 

biologically most plausible. Given our experimental understanding of the YMC (and the 537 

need for a consumable resource, glucose, to control the oscillations), we think scenario 538 

3c is most likely (and we will explore this further in a subsequent section). 539 

 540 

Breakdown of the oscillations. 541 

 542 
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In Figures 2 and 3 above, we have chosen the particular “default” values of each of the 543 

model parameters such that the oscillation period became approximately 4 hours, to 544 

match the experimental observations in Figure 1. Of course, varying these parameter 545 

values changes the time period, and for large enough variation the oscillation may also 546 

disappear. Our model predicts how the oscillation shape and period will vary, and when 547 

oscillations will break down, in response to experimentally tunable parameters. For 548 

instance, Figure 4A shows how the oscillations change as the resource production rate, 549 

σ, is varied around its default value, for the same equations that produced the 550 

oscillations in Figures 2 and 3. When σ is decreased below the default value, the 551 

oscillation period initially increases, with more time being spent in the high-q phase. For 552 

low enough σ, the model exhibits damped oscillations, and then as σ is lowered further, 553 

the model exhibits the absence of oscillations, with q settling into a high steady-state 554 

value (see Figure 4A, and also Supplemental Figure S3 for more such plots). When σ is 555 

increased from its default value, we again find that the period initially decreases, with 556 

less time being spent in the high-q phase. We are able to produce oscillations having a 557 

time period as low as ~2.5 hours (see Figure 4A(iii)). When σ is increased beyond this, 558 

the oscillation period starts increasing again, and the low-q phase of the oscillation 559 

starts becoming pronounced (see Supplemental Figure S3). Eventually, the oscillations 560 

disappear, with q settling into a (relatively) low steady-state value. These predictions 561 

largely mirror known experimental observations, where decreasing or increasing feed 562 

rate (at these scales) control oscillations similarly. 563 

 564 

The resource production rate σ is a parameter that can be tuned relatively easily in a 565 

chemostat by controlling the amount of fresh glucose or ethanol being supplied per unit 566 

time. However, another parameter that may be tunable by genetic modifications is γ, the 567 

growth rate of cells when they are in the G state. Figure 4B shows how the oscillations 568 

vary as γ is varied. The results are qualitatively similar but inverse to what was observed 569 

with σ variation - an increase in γ from the default value results in an increasing period, 570 

damped oscillations and eventually no oscillations, while a decrease first results in a 571 

decrease of period, then a distorted shape and increasing period (see Supplemental 572 

Figure S4 for more such plots). 573 
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 574 

The location of the dashed black lines in Figure 4 (left panels) help to understand this 575 

behaviour. Each dashed line traces the q and a values where resource production 576 

exactly balances resource consumption/dilution. To the right of the line the production is 577 

less than the consumption so the resource must decrease, and vice versa to the left of 578 

the line. The closer one is to the dashed line, the slower the rate of change of a. As 579 

explained in (Krishna et al., 2009), oscillations occur only when this dashed black line 580 

passes between the upper and lower bistable branches (solid black circles) - because 581 

then the resource keeps increasing (decreasing) when it reaches the end of the high 582 

(low) branch making the trajectory “fall off the edge” and continue the oscillation. When 583 

σ is decreased the dashed black line shifts leftward in the plot, coming closer to the high 584 

q branch which causes the oscillating trajectory to spend more and more time on the 585 

high q branch (because it is closer to the dashed line and so the resource accumulates 586 

slower). Eventually, as the dashed line just touches the high q branch, the time period of 587 

oscillations increases to infinity (logarithmically – see Supplemental Figure S5). For σ 588 

values lower than this critical value there is no sustained oscillation and the system 589 

settles into a steady-state on the high branch at the point where it crosses the dashed 590 

line. A similar behaviour happens as σ is increased and the dashed line comes closer to 591 

the lower branch, with the only difference being that the oscillating trajectory spends 592 

more time at lower q values.  593 

 594 

A universal feature of the YMC oscillations seen in diverse yeast strains is that the time 595 

period of the oscillations decreases with an increase in the dilution/supply rate in the 596 

chemostat. The time period appears to be dominated by the time spent in the high-q 597 

phase, which also increases with dilution/supply rate, whereas the time spent in the low-598 

q phase is less and decreases slightly with increase in the dilution/supply rate 599 

(described in (Burnetti et al., 2015)). As described above, in our model, we find that as 600 

we vary σ or γ, there are two regimes. In one the time period is dominated by the high-q 601 

phase, and the behaviour matches the above experimental observations (see 602 

Supplemental Figure S5). However, there is also another regime, where the time period 603 

is dominated by the low-q phase. Our model therefore predicts that: (i) the observed 604 
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YMC oscillations are closer to the lower end of the σ range that produces oscillations, 605 

so one should be able to increase σ more than decrease it before breaking the 606 

oscillations, and (ii) if one increased σ enough while remaining in the oscillatory regime 607 

one should observe low-q dominated oscillations such as those shown in Supplemental 608 

Figure S3. These are both testable predictions of our model.   609 

 610 
Figure	
  4:	
  Breakdown	
  of	
  oscillations.	
  611 

A)	
  Varying	
  the	
  rate	
  of	
  production	
  of	
  resource	
  σ.	
  (i)	
  σ	
  =	
  0.346	
  hr,	
  (ii)	
  σ	
  =	
  0.400	
  hr	
  612 

(default	
  parameters,	
  same	
  as	
  Figure	
  3),	
  (iii)	
  σ	
  =	
  0.866	
  hr.	
  613 

B)	
  Varying	
  the	
  growth	
  rate	
  of	
  cells	
  γ.	
  (i)	
  γ	
  =	
  0.500	
  hr,	
  (ii)	
  γ	
  =	
  1.665	
  hr	
  (default	
  614 

parameters,	
  same	
  as	
  Figure	
  3),	
  (iii)	
  γ	
  =	
  2.000	
  hr.	
  Equations	
  used,	
  and	
  other	
  parameter	
  values,	
  are	
  the	
  615 

same	
  as	
  those	
  that	
  produced	
  Figs	
  2C	
  and	
  3C(i).	
  616 

 617 

Acetyl-CoA and NADPH satisfy the requirements of the consumable resource that 618 

controls oscillations between Q and G states 619 

 620 

Based on our model, the metabolic resource oscillates with a unique pattern, and this 621 
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drives the oscillation between the Q and G states. From the model, some resource 622 

builds up within the cell, and is highest at the point of commitment to the switch to the G 623 

state (Figure 5A). It is then rapidly consumed/eliminated to fall below a certain 624 

threshold, resetting the oscillation, after which the cycle of building up for consumption 625 

resumes. When superimposed to the actual YMC phases (and the Q to G switch), this 626 

build-up of the resource would necessitate its highest amounts at the beginning of the 627 

phase where cells commit to entering high oxygen consumption (Figure 5A). We note 628 

that these features of the resource oscillation are a very robust prediction of our model. 629 

Across all the oscillations in Figs 2-5 we see the same behaviour, and we would see 630 

this for any parameter choice that gives oscillations because this behaviour depends 631 

only on our assumption that the resource is consumed by growing/dividing cells and not 632 

by quiescent cells. Therefore, according to our model, in order for any metabolite to be 633 

the resource that controls the oscillation between the two states, this molecule must 634 

fully satisfy the above criteria. Furthermore, for completing this switch to the G state, the 635 

metabolite must be able to drive all the downstream biological events for growth. So do 636 

any central metabolites satisfy these requirements, and could therefore be the internal 637 

resource that controls these Q-G oscillations? 638 

 639 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 26, 2018. ; https://doi.org/10.1101/239897doi: bioRxiv preprint 

https://doi.org/10.1101/239897
http://creativecommons.org/licenses/by-nc-nd/4.0/


 26 

 640 

Figure 5: Acetyl-CoA satisfies the requirements for the metabolic resource 641 

controlling the Q and G oscillations. 642 

A) Predicted pattern of oscillation of the resource, during the Q and G oscillations, 643 

based on the model (top panel, same oscillations as Figure 2C), and experimentally 644 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 26, 2018. ; https://doi.org/10.1101/239897doi: bioRxiv preprint 

https://doi.org/10.1101/239897
http://creativecommons.org/licenses/by-nc-nd/4.0/


 27 

observed oscillations of acetyl-CoA and NADPH during the dO2 oscillations (bottom 645 

panel). 646 

B) Predicted phase portrait of the the fraction of quiescent cells vs the resource per cell 647 

based on the model (top panel), and experimentally observed oscillations in dO2 and 648 

acetyl-CoA. 649 

C) Predicted effect on the oscillation waveforms and the Q and G states, when a bolus 650 

of the resource is added to cells in the Q state (see Methods for details), vs 651 

experimentally observed data on oxygen consumption when a resource, acetate (the 652 

trace is similar with for resources like ethanol, acetate, acetaldehyde, glucose) is added 653 

to cells in the low oxygen consumption phase. Supplemental Fig S6 shows how the 654 

response varies as the time of adding the bolus is varied. 655 

D) Acetyl-CoA as a central regulator of a switch to the growth (G) state. The schematic 656 

illustrates a cascade of biological processes leading to growth that acetyl-CoA amounts 657 

regulate (coupled with coincident, required NADPH utilization). Note that all resources 658 

that reset the oscillations, as indicated in (C) are utilized after they are converted to 659 

acetyl-CoA. 660 

 661 

Comprehensive datasets of 50-100 oscillating metabolites in the YMC exist (Murray et 662 

al., 2007; Tu et al., 2007; Mohler et al., 2008). From these studies, the oscillations of 663 

only two metabolites, acetyl-CoA and NADPH, fully fit the criteria demanded by our 664 

model. The acetyl-CoA and NADPH oscillations as a function of the metabolic cycle, 665 

and transitions between the Q and G state are shown in Figure 5A and 5B. The 666 

oscillations of acetyl-CoA during the YMC almost perfectly superimposes with the 667 

oscillation pattern of the hypothetical metabolic resource predicted by the model (Figure 668 

5A). We plotted phase diagrams of the fraction of quiescent cells vs the amount of 669 

resource in the cell (from the model), and also plotted phase diagrams from 670 

experimental data for the dO2 oscillations plotted against acetyl-CoA amounts (Figure 671 

5B). The two phase diagrams (from the model, and from experiments) strikingly 672 

resemble each other (Figure 5B). This is despite the fact that the experimental data for 673 

acetyl-CoA is of low resolution, with only a few sampling/time points covered, and also 674 

only reflects overall (bulk population) measurements of acetyl-CoA, suggesting that the 675 
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actual phase diagram might be even more similar. Thus the model appears to capture 676 

key universal features of these yeast oscillations, including the point of exit from low 677 

oxygen consumption (Q) to high oxygen consumption and back (G), and the parameters 678 

important in the waveform (i.e. the low and high oxygen consumption phases are 679 

important, while the precise form of the dip and increase in dissolved oxygen may not 680 

be so). The model also supports an inference that the acetyl-CoA oscillations are 681 

sufficient to explain the bistability between the Q and G states, and retains the 682 

hysteresis component.  683 

 684 

Using our model, we next simulated what would happen if the resource was increased 685 

to just above the threshold level, at a different time. In our model, during normal 686 

oscillations, the amount of resource steadily increases, while the cells are in the Q state. 687 

In our simulation, we provided a single bolus of the resource, while cells were in the Q 688 

state (Figure 5C). We observed a predictable, sharp exit from the Q state and entry into 689 

the G state (Figure 5C), effectively resetting the oscillation, which then continued and 690 

restored itself to the normal, ~4 hour period in the next cycle. We compared this to 691 

available experimental data, where oscillations have been reset by adding a bolus of an 692 

external agent, typically glucose, acetate, acetaldehyde or ethanol (Murray et al., 2003; 693 

Klevecz et al., 2004; Tu et al., 2005; Cai et al., 2011). All these agents show near-694 

identical patterns of resetting of oscillations (exit from Q and entry into G), and a 695 

representative figure (for acetate addition) is shown in Figure 5C. Here, cells exit the 696 

low oxygen consumption phase and enter and exit the high oxygen consumption phase, 697 

and subsequently quickly restore normal (in this case ~4 hr) oscillations. This simulation 698 

can be done in any part of the oscillation, and whenever most cells are in Q, adding a 699 

bolus of the resource similarly resets the oscillation (Supplemental Figure S6). Also 700 

notably, adding this resource when cells have switched to the G state does not alter the 701 

oscillations much (Supplemental Figure S6), which is also something widely established 702 

in experiments. Thus, the oscillations predicted by the model very closely recapitulates 703 

the patterns of oscillations observed in experiments, how the central, controlling 704 

resource might oscillate, and how the oscillations are affected upon perturbing the 705 
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resource. This strongly suggests that the threshold amounts of the resource are 706 

sufficient to set the oscillations and switching between Q and G states. 707 

 708 

Multiple lines of experimental data suggest that these two metabolites, acetyl-CoA and 709 

NADPH, are key in controlling exit from quiescence and entry into growth (Tu et al., 710 

2007; Cai et al., 2011; Cai and Tu, 2012; Machné and Murray, 2012; Shi and Tu, 2013, 711 

2014; Mellor, 2016). Based on our knowledge of the metabolic prerequisites for entering 712 

growth, and known functional endpoints or outcomes of these two molecules (Figure 713 

5D), we can now make a strong, parsimony based argument suggesting that oscillations 714 

in these two metabolites are sufficient to control oscillations between the Q and G state. 715 

Particularly, several lines of study suggest that the entry into growth (from quiescence) 716 

depends on carbon source utilization (Shi et al., 2010; Cai et al., 2011; Daignan-Fornier 717 

and Sagot, 2011; Laporte et al., 2011). As pointed out earlier, studies from the yeast 718 

metabolic cycle show that the oscillations depend upon carbon sources (primarily 719 

glucose) (Klevecz et al., 2004; Tu et al., 2005), and oscillations can be reset (to enter 720 

the growth program) by adding acetate, acetaldehyde, etc. (Murray et al., 2003; Tu et 721 

al., 2005; Cai et al., 2011). Notably, these carbon sources end up being converted 722 

directly to acetyl-CoA, and can only then be utilized (Figure 5D). Additionally, a growth 723 

program will require not just sufficient energy (ATP) to sustain the anabolic processes 724 

within it, but also activate a program boosting anabolic processes that lead to cell 725 

division, including making enough lipid moieties required for cell membranes and other 726 

constituents of a new cell. Notably, acetyl-CoA satisfies all these requirements in the 727 

following manner (Figure 5D): it directly enters the TCA cycle to generate ATP (Nelson, 728 

DL; Cox, 2017); it can be utilized for the biosynthesis of numerous cellular metabolites, 729 

including fatty acids, sterols, and amino acids (Nelson, DL; Cox, 2017); and directly 730 

regulates cell growth and ribosome biogenesis by the acetylation of histones at “growth 731 

promoting genes”, especially histones at ribosome subunit, tRNA and ribi genes, and 732 

activates their transcription by the SAGA complex (Cai et al., 2011). The genes that 733 

breakdown storage carbohydrates (such as glycogen and trehalose) that produce 734 

acetyl-CoA all peak before the maximal acetyl-CoA concentration (Tu et al., 2005; 735 

Kudlicki et al., 2007). Finally, the exit from quiescence requires the liquidation of these 736 
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storage carbohydrates (Shi et al., 2010; Laporte et al., 2011; Shi and Tu, 2013), and 737 

conversion to acetyl-CoA (and the subsequent gene expression program) (Shi and Tu, 738 

2013). Perturbations in the ability to sense and utilize acetyl-CoA (particularly for the 739 

gene expression program) completely abolish oscillations (Cai et al., 2011). 740 

Physiologically, this anabolic commitment also absolutely requires the process of 741 

reduction for anabolic biosynthesis, and this reductive capacity is supplied by NADPH 742 

(Nelson, DL; Cox, 2017) (Figure 5D). NADPH is primarily synthesized from the pentose 743 

phosphate pathway, which branches from this same central carbon network, and this 744 

NADPH will fuel the required reductive biosynthesis to make molecules required for 745 

anabolism (Figure 5D). Finally, genes encoding proteins that increase the synthesis of 746 

NADPH are similarly coincident with those that lead to the generation of acetyl-CoA, 747 

and disrupting NADPH production slightly results in a collapse of oscillations (Tu et al., 748 

2005, 2007). Relatedly, studies from the YMC show multiple other metabolite 749 

oscillations coupled to or dependent upon NADPH, although any hierarchical 750 

organization was not immediately apparent (Murray et al., 2007). Without a necessary 751 

coupling of the two molecules, the overall process of entry to growth cannot be 752 

completed. There is substantial data, particularly from the studies of various cancers, to 753 

show the close coupling of acetyl-CoA and NADPH for growth (Heiden et al., 2009), as 754 

well as direct evidence of acetyl-CoA promoting NADPH synthesis (Patra and Hay, 755 

2014; Shan et al., 2014). Summarizing, based on the pattern of oscillation of the 756 

resource predicted by our model, acetyl-CoA and NADPH (based on production and 757 

utilization) satisfy sufficiency requirements to be the molecules that control the Q-G 758 

state oscillations. Our model thus strongly supports an argument for oscillations in 759 

acetyl-CoA being sufficient to control Q-G state oscillations. 760 

 761 

Discussion 762 

 763 

In this study, we present a simple frustrated bistability model to explain how the 764 

amounts of an internal metabolic resource can determine oscillations between a 765 

quiescent and growth state. For this, we relied on extensive data coming from the YMC, 766 

and represented the oscillations in dissolved oxygen (seen during YMCs) as a reflection 767 
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of growth and quiescent states (Figure 1). Our model incorporates factors dependent on 768 

growth rate and amounts of the resource, as well as switching rates (between the G and 769 

Q states). Importantly, the model emphasizes a necessary communication between the 770 

cells in the quiescent state and the growth state, both of which interact with the 771 

metabolic resource during such transitions (Figure 2). Quiescent cells “push” cells in the 772 

growth state into quiescence, and “pull” other quiescent cells to remain quiescent, with 773 

the feedback requirements imposed by the resource being distinct and opposite for the 774 

Q and G states. Given this communication requirement between the Q and G states, 775 

our model suggests that such oscillations will eventually breakdown when the cell 776 

numbers are small and cells are no longer in contact with each other (something that 777 

has been experimentally observed (Laxman et al., 2010)). This model also provides 778 

insight into understanding the “growth/division” rate of cells once committed to growth. 779 

While healthy debates continue on the rate of growth in a cell and stages of the cell 780 

cycle (Johnston et al., 1977; Conlon and Raff, 2003; Jorgensen et al., 2004; Brauer et 781 

al., 2008; Goranov et al., 2013). our model shows that it is sufficient for oscillations to 782 

have a fixed “growth rate” once the metabolic resource has crossed its threshold 783 

concentration, and triggered a committed growth program, after which the growth and 784 

division process is no longer dependent on available nutrients. This is also analogous to 785 

studies of the CDC, which are built around committed, “no return” steps that proceed at 786 

constant, predictable rates once committed to. In our model, because there is a 787 

timescale separation between growth and switching rates, making the growth rate 788 

dependent on the resource would make some quantitative difference to the rate of 789 

accumulation/consumption of the resource, but would leave the Q-G oscillations largely 790 

unchanged. Finally, using a parsimony based argument, we suggest that acetyl-CoA 791 

(along with NADPH) satisfies all requirements for the resource that drive these 792 

oscillations between the Q and G states (Figure 5). With acetyl-CoA as a resource, our 793 

model, which builds oscillations on an underlying hysteresis, reproduces universal 794 

features observed in these yeast metabolic oscillations, and provides a fairly simple 795 

sufficiency argument for how cells transition between Q and G states. We reiterate that 796 

our model only provides a paradigm to explain how the oscillations in an internal 797 

metabolic resource is sufficient to control oscillations between quiescent and growth 798 
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states. This allows for (but doesn’t include) other necessary elements in cells (e.g., 799 

unique gene transcription programs, or subsequent metabolic events that typically must 800 

follow), that may also be required to build a more detailed model for Q-G oscillations. 801 

 802 

The kind of oscillator we have built falls under the class of “relaxation oscillators”, which 803 

have been used to model a very wide variety of phenomena, ranging from electronic 804 

oscillations to oscillating chemical reactions (Balthasar, 1926; Strogatz, 1994). These 805 

are a subset of several possible types of oscillators that arise in biological systems, and 806 

are especially relevant for the CDC (Novák and Tyson, 2008; Tsai et al., 2008; Ferrell et 807 

al., 2009; Ferrell, 2011). Relaxation oscillators typically involve the cyclic slow build-up 808 

of some quantity, like charge in a capacitor, until it reaches a threshold level which then 809 

triggers a “discharge” event, resulting in a rapid drop of the quantity. Thus, relaxation 810 

oscillators are often characterised by processes happening on two very different 811 

timescales, with the time period mainly determined by the slow process (Tyson et al., 812 

2003; Novák and Tyson, 2008; Tsai et al., 2008; Ferrell et al., 2009; Ferrell, 2011). This 813 

is why, in contrast to linear, harmonic oscillators, they can produce non-smooth 814 

oscillations like a square or sawtooth waveform. We note that the YMC oscillations 815 

show a clear signature of multiple timescales - in Figure 1 it is evident that the exit from 816 

quiescence (fast drop in dO2), as well as the re-entry into quiescence (fast rise in dO2), 817 

happen at much faster timescales than the other phases of the oscillation. In our 818 

relaxation oscillator model of the YMC, these differing timescales arise from the fact that 819 

the switching rates are an order of magnitude larger than the rates of production and 820 

consumption of the resource, and even the growth rate of the cells. The latter processes 821 

are therefore what determine the time period of the YMC. Within the class of relaxation 822 

oscillators, our models fall into a sub-class that depends on an underlying bistability, 823 

which is ‘frustrated’ (Krishna et al., 2009). The bistability, and the resultant hysteresis, 824 

are what determine the threshold points at which the behaviour of the system rapidly 825 

switches between accumulating or consuming the metabolic resource. Interestingly, our 826 

model necessitates this strong hysteresis element within the Q and G state cells. The 827 

phenomenon of hysteresis has been extremely well studied (and established) 828 

particularly during many phases of the classical CDC, or proliferation cycle ((Pomerantz 829 
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and McCloskey, 1990; Tyson and Novak, 2001; Solomon, 2003; Wei et al., 2003; Angeli 830 

et al., 2004; Han et al., 2005; Ferrell et al., 2009; Ferrell, 2011; Yao et al., 2011) and 831 

many more). In contrast, a hysteresis phenomenon has not been extensively explored 832 

when cells transition between a growth state and an effective quiescence state. Yet, in 833 

such conditions where the transition between the two states is substantially determined 834 

by a metabolic oscillator, as seen in the YMC and several other studies from simple 835 

models like yeast, the hysteresis phenomenon is clearly revealed by our model. Given 836 

this, experimental studies can be designed to dissect the nature of this hysteresis 837 

phenomenon. 838 

 839 

General features emerging from the model to understand oscillations between 840 

quiescence and growth:  841 

 842 

Although our model is relatively simple, uses data from a fairly elementary system, and 843 

makes minimal assumptions, it does surprisingly well to constrain the possibilities for 844 

how transitions between quiescence and growth are regulated. The model successfully 845 

captures universally observed waveforms of oscillations, can reset the oscillations, can 846 

predict how the oscillations of a resource can control the two states, and can predict 847 

breakdown of oscillation fairly well, as observed in experiments. From the very large set 848 

of metabolites known to oscillate during the YMC (Tu et al., 2007; Mohler et al., 2008), 849 

our model constrains possibilities to a few, that oscillate in a way that can permit such a 850 

bistability to exist. From this, and consistent with extensive experimental data 851 

(discussed earlier, and in Figure 5), it is possible to make parsimonious arguments for 852 

acetyl-CoA (coincident with NADPH) as the metabolic resources controlling transitions 853 

from quiescence to growth, and vice versa. Our model helps differentiate this small set 854 

of metabolites from other metabolites that are important to maintain oscillations, but not 855 

initiate them (i.e. they may only allow the cell to continue in one state, or the other). For 856 

example, sulfur metabolism is critical to maintain oscillations (Murray et al., 2003, 2007; 857 

Tu et al., 2007). It is also essential for the completion of a growth program, post entry 858 

into the high oxygen consuming phase. But this metabolite peaks after acetyl-CoA in the 859 

YMC (Tu et al., 2007), and can be viewed as a consequence of initiating a growth 860 
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program, and also critical to sustain/complete this growth program, but not to initiate the 861 

oscillation. Substantiating this explanation is the fact that sulfur metabolism is highly 862 

dependent upon the utilization of NADPH for reduction, and NADPH (as described 863 

earlier) is coincident with acetyl-CoA. A similar argument can be made for the 864 

sustained, high respiration seen in the YMC, which produces ATP that will be required 865 

to maintain the growth program once committed to by the cell. Separately, other studies 866 

have shown that “quiescent” cells can show metabolic oscillations without entry into the 867 

CDC (Slavov et al., 2011). Here, these cells appear to show a commitment to the CDC 868 

during these oscillations, based on gene expression patterns (Slavov et al., 2011). This 869 

can also be viewed through our interpretation of the commitment of cells to the CDC 870 

due to a central resource. Cells will commit to the CDC, which however may not be 871 

completed if a subsequent metabolic resource, normally dependent upon the 872 

central/controlling resource (predicted to be acetyl-CoA/NADPH here), becomes 873 

limiting. In other words, for a cell, usually if this committing resource is at the correct 874 

threshold, other resources should not be limiting unless artificially constrained in an 875 

experimental set-up. In (Slavov et al., 2011), the limiting resource was phosphate, which 876 

typically should be available and not limiting, and be assimilated into nucleotides in an 877 

NADPH and acetyl-CoA dependent manner. If in a specific instance this resource 878 

becomes limiting, the cells would commit to the growth/CDC state, but will not be able to 879 

complete this, and will fall back into the Q state. 880 

 881 

Our model provides a foundation to build new models to resolve other aspects observed 882 

during the YMCs. First, in each cycle of the YMC, a fraction of the cells exit quiescence 883 

and divide. It is not fully clear if the same cell divides in each cycle, or if a cell that has 884 

entered division in one cycle does not in the next, and so on. The decision to divide has 885 

been viewed as a stochastic, but irreversible step (Laxman et al., 2010; Burnetti et al., 886 

2015). While our model as it stands cannot directly address these questions, the 887 

dependence of the oscillations on the build-up and utilization of a specific resource, 888 

allows the following argument to be made. First, the decision to divide in a cell would be 889 

purely made by the amount of resource (acetyl-CoA) that has been built up in the cell. 890 

Once acetyl-CoA reaches a certain threshold, the decision to divide is irreversible. 891 
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However, the build up of acetyl-CoA within an individual cell itself would be dependent 892 

on small differences in overall metabolic homeostasis (compared to its neighbor), and 893 

thus which cell reaches the threshold level first could be purely stochastic. Second, we 894 

may speculate that if a cell has reached this threshold level and then used up its 895 

resource during division, it is unlikely to be in a position to divide in the next round/next 896 

cycle, whereas a cell that had not reached the threshold level in the previous cycle 897 

would be best poised to divide instead. Our model does not take this into account, but it 898 

provides a framework within which one could model the entire distribution of cells in 899 

different Q/G states and with different levels of the resource. Despite the overall 900 

stochastic aspect of Q-G transitions, such models would be able to make testable 901 

predictions about the switching process even at the level of single cells. It is also 902 

apparent that this level of synchrony requires high cell density in the system. 903 

Separately, most studies have noted that upon initiating feeding in the chemostat, there 904 

is a short period of tiny, non-robust oscillations. Based on our model, we would argue 905 

that this is a situation where the quiescent cells are all now building up just sufficient 906 

reserves of acetyl-CoA, within this stochastic process, and are starting to divide, but the 907 

unusual steady-state condition in the chemostat will eventually lead to stable 908 

oscillations.  909 

 910 

Finally: Given the existing frameworks to describe Q-G state oscillations, our model is 911 

necessarily coarse grained, and is intended only to build a more rigorous conceptual 912 

framework within which to investigate the process of cells switching between 913 

quiescence and growth states. For instance, it is straightforward to extend our models, 914 

by adding space and diffusion processes, to account for scenarios where nutrients are 915 

not well mixed and equally accessible, and where there is a high degree of spatial 916 

rigidity within cell populations. It is also easy to alter other assumptions underlying our 917 

model. For instance, our conclusions regarding acetyl-CoA being the driving resource 918 

depend on an assumption we made in building the model that G cells consume the 919 

resource. While this is biologically plausible, mathematically we could have assumed 920 

the opposite, namely that the resource is consumed by cells in the Q state and not by 921 

cells in the G state. In that case too our model could give similar oscillations - switching 922 
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rates would still need to be density/resource dependent, but the form of dependence on 923 

resource would need to be reversed so that the high and low-q branches would be the 924 

mirror images, with the low q branch being the only one at low a and the high q branch 925 

being the only one at large values of a. And hence the waveform of the oscillating 926 

resource would be flipped compared to Figures 2 and 3 - i.e., when q is high a would be 927 

decreasing, while when q is low a would be increasing. If one could find a metabolite 928 

that exhibited this waveform, then that metabolite would be an equally likely possibility 929 

as a driver of the Q-G transition, except that it would have to act such that it caused a 930 

switch from Q to G when it crossed a low threshold, or caused the opposite transition 931 

when it crossed a high threshold. From the considerable data available, we have not 932 

found a reasonable molecule with such a reversed waveform. Moreover, we know of no 933 

process which consumes a metabolite in the Q state in the way described, so for now 934 

acetyl-CoA driving the Q-G transition and being consumed during growth is the most 935 

parsimonious explanation. Nevertheless, this shows how our framework could be easily 936 

used in alternate scenarios. 937 

 938 

Currently, existing experimental approaches to study such metabolically-driven Q-G 939 

oscillations are very limited. Crude readouts, such as oxygen consumption, have very 940 

limited resolution even to show the Q and G states, as the bistability begins to break 941 

down. Gene expression analysis (even when done in single cells) is a late, end-point 942 

readout which cannot explain this bistability but instead occurs after a switch. The key to 943 

experimentally studying such bistability, therefore, will be the development of in vivo 944 

intracellular metabolic sensors with excellent dynamic range and sensitivity, for 945 

metabolites like acetyl-CoA or NADPH. This will allow the development of more precise 946 

models to predict commitment steps, and identify differences within the population of 947 

cells, that will help understand reversibility (between states), hysteresis and other 948 

apparent phenomena. 949 

 950 

 951 

 952 

 953 
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Methods 954 

Experimental methods and data sets: 955 

Chemostat culture and cell division datasets: All dO2 data were obtained from YMCs 956 

set up similar to already published data (Tu et al., 2005, 2007; Kudlicki et al., 2007; 957 

Mohler et al., 2008). In these studies, yeast cells were grown in chemostat cultures 958 

using semi-defined medium, and yeast metabolic cycles were set up as described 959 

earlier (Tu et al., 2005; Tu, 2010). Data for cell division across three metabolic cycles 960 

was obtained from earlier studies (Tu et al., 2005; Laxman et al., 2010). YMC gene 961 

expression and metabolite datasets: Gene expression datasets were obtained from (Tu 962 

et al., 2005; Kudlicki et al., 2007), and metabolite oscillation datasets were obtained 963 

from (Tu et al., 2007; Mohler et al., 2008; Cai et al., 2011; Machné and Murray, 2012), 964 

including acetyl-CoA oscillation datasets. 965 

 966 

Parameter values and their q/a dependencies 967 

 968 

Figures  2C, 3C(i), 4A(ii), 4B(ii), 5A and 5B (default choices): 969 

To produce the oscillation shown in these figures, we make the following choices (within 970 

scenario 3c): 971 

γ=1.665 hr-1. σ=0.3996 hr-1, µ=1, νGQ=16.65 hr-1, νQG=h(q), where h(q) is the Hill function 972 

h(q) = νm(1+β(q/K)20)/(1+(q/K)20) with β=0.01, K=a2/(0.752+a2), νm=16.65x(1.65-1.25K). 973 

We use this Hill function with such a high Hill coefficient to approximate a step function 974 

which drops rapidly from νm to βνm at q=K. 975 

 976 

Figure 4, other panels: 977 

The other panels of Fig 4 are made using exactly the same equations and parameter 978 

choices as above, except for varying 𝜎 and 𝛾 as mentioned in the Fig 4 caption. 979 

 980 

Figure 3C, other panels: 981 

As above, except that 982 

(ii) νm=16.65x(1.65-1.25K)x2.25K hr-1 and σ=0.3596 hr-1. 983 

(iii) νm=16.65x(1.65-1.25K)+16.65x1.85a10/(200+a10) hr-1 and σ=0.3297 hr-1. 984 
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(iv) νm=16.65x2.25K hr-1 and σ=0.3397 hr-1. 985 

𝜎 values were varied in order to keep the time period close to 4 hours. 986 

 987 

Figure 5C, addition of bolus: 988 

Until time t = 11.5 hours, the simulation is the same as in Fig 2C. At t = 11.5 hrs, the 989 

resource level is abruptly changed to 1.75 (just above its peak value in previous cycles, 990 

which was 1.73), and then the simulation is continued with the same equations and 991 

parameter values. 992 

 993 

In all the above cases, the simulations were started, at t = 0 hours, with initial conditions 994 

q=1 and a=10-6 (i.e., we start with all cells in a quiescent state and starved of the 995 

resource). Simulations and figures were produced in Matlab. We used the ode45 996 

differential equation integrator. The code is provided in Supplemental material. As extra 997 

controls, we checked that the stiff solver ode15s also provided the same results for the 998 

simulations in Fig 2 and 5, and a Mathematica notebook which repeats many of the 999 

same simulations, using the default NDSolve algorithm within Mathematica, is also 1000 

provided with the Supplemental material. 1001 
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