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Abstract

A minimal model for oscillating between quiescent and growth/proliferation states,
dependent on the availability of a central metabolic resource, is presented. From the
yeast metabolic cycles (YMCs), metabolic oscillations in oxygen consumption are
represented as transitions between quiescent and growth states. We consider metabolic
resource availability, growth rates, and switching rates (between states) to model a
relaxation oscillator explaining transitions between these states. This frustrated
bistability model reveals a required communication between the metabolic resource that
determines oscillations, and the quiescent and growth state cells. Cells in each state
reflect memory, or hysteresis of their current state, and “push-pull” cells from the other
state. Finally, a parsimonious argument is made for a specific central metabolite as the
controller of switching between quiescence and growth states. We discuss how an
oscillator built around the availability of such a metabolic resource is sufficient to
generally regulate oscillations between growth and quiescence, through committed

transitions.
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Introduction

While all cells can exist in a variety of states, two opposite ends of the spectrum are the
“growth” state (leading to mitotic division and proliferation), and a non-proliferative
“‘quiescent” state. The quiescent state, operationally defined here as a reversibly non-
dividing state, is the predominant state of all living cells (Lewis and Gattie, 1991; Gray et
al., 2004). Understanding how cells reversibly transition from a quiescent state, to a
growth state coupled with cell division and proliferation (henceforth called “growth” in
this manuscript) is therefore a fundamental biological question. Current explanations for
how cells commit to growth and cell division account for metabolic regulation,
biomolecule synthesis, and regulated progression through the cell cycle, presenting
multiple, integrated mechanisms of information transfer within a cell that lead to the

eventual growth outcome.

However, when a population of genetically identical cells are present in a uniform
environment, how can individual cells within such a population decide to switch between
a quiescent (effective “G0”) state and a growth/proliferation state? Indeed, such
heterogeneity of cell states within populations is widely observed and acknowledged.
Numerous examples exist in nearly all systems studied, from simple eukaryotes like the
budding yeast, to complex mammalian systems (Cooper, 1998, 2003; Coller et al.,
2006; Daignan-Fornier and Sagot, 2011; Klosinska et al., 2011; De Virgilio, 2012;
Dhawan and Laxman, 2015), with multiple molecular events correlating with transitions
between growth and quiescence. For any population transitioning into either of these
states, experimentalists have asked: (i) what hallmarks allow discrimination between
actively proliferating and GO cells? (ii) how do cells transit back and forth between these
two states? And (iii) how are different signals processed and integrated into an
appropriate cellular response? The regulation of the final cellular outcome occurs at
multiple levels, including differential gene expression programs, and signaling
responses to growth factors, which can be different depending upon the type of cell or
organism studied. At its very core, however, this transition between quiescent and

growth states is a metabolic problem; cells must be in a metabolic state capable of
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committing to growth/proliferation, and must sense this state, which the pushes cells
towards growth. Indeed, several lines of evidence now reiterate a primary metabolic
determinant for cells committing to a growth state (exiting quiescence), or remaining in a
quiescent state (Futcher, 2006; Daignan-Fornier and Sagot, 2011; Laporte et al., 2011;
Cai and Tu, 2012; De Virgilio, 2012; Lee and Finkel, 2013; Dhawan and Laxman, 2015;
Kalucka et al., 2015; Kaplon et al., 2015). While multiple factors can regulate the
transition between quiescence and growth, all such studies suggest that without this
core metabolic transformation, switching states is impossible. Given this absolute
metabolic requirement to switch to growth, if there is an isogenic (“identical”) population
of cells present in a uniform environment, how can there be a two-state outcome where

some cells undergo growth/proliferation, while the rest remain quiescent?

Surprisingly, there are few rigorous theoretical, mathematical models that attempt to
provide a conceptual framework sufficient to explain this, and suggest experimentally
testable predictions. This is in contrast to the extensive, elegant, and often prescient
models that have been built to explain progress through the classical cell division cycle
(CDC), by incorporating existing experimental data of phase specific cell-cycle
activators and inhibitors (Tyson and Novak, 2001; Tyson et al., 2003; Ferrell et al.,
2009; Tyson and Novak, 2015). Such modeling of the CDC has a long history
(examples include (Goldbeter, 1991; J, 1991; Norel and Agur, 1991; Novak and Tyson,
1993; Ferrell et al., 2009; Tyson and Novak, 2015)), and these types of theoretical
studies have revealed biological possibilities that were experimentally determined only
much later (such as (Cross et al., 2002; Pomerening et al., 2003; Wei et al., 2003;
Mirchenko and Uhlmann, 2010)). Given this, there is considerable value in building
coarse-grained but rigorous theoretical models to understand switching between
quiescence and growth states. In such a model, the switching between quiescence and
growth states could be treated as a biological oscillation (Tyson et al., 2003; Novak and
Tyson, 2008; Tsai et al., 2008; Ferrell et al., 2009), while considering a dependence on
a metabolic “resource” as a driver of the oscillator. For building such a model, we
therefore require extensive experimental data from biological systems where metabolic

oscillations are demonstrably closely coupled with exiting quiescence/entering the CDC.
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94  Such data are readily available from the budding yeast, S. cerevisiae. Yeast have been
95 the instrumental cellular model in revealing processes that define both the CDC
96 (Hartwell, 1974), and the quiescence cycle (Gray et al., 2004; Daignan-Fornier and
97  Sagot, 2011; Daignan-Fornier B and Sagot |, 2011; De Virgilio, 2012; Dhawan and
98 Laxman, 2015). The classical CDC involves progression through the G1, S, and G2/M
99 phases. In contrast, during a quiescence (or effective “G0”) cycle, cells remain non-
100 dividing, but can exit quiescence and enter the G1 phase of the cell cycle to
101 subsequently complete the CDC.
102
103  Experimentally dissecting specific processes driving entry into, and exit from,
104 quiescence (into the CDC) is challenging in asynchronous, heterogeneous cultures of
105 cells. However, synchronized yeast populations in well-mixed cultures (as manifest by
106  oscillations in oxygen consumption) have long been observed and studied using batch
107  and chemostat conditions limited for a carbon source (glucose or ethanol), which are
108  subsequently fed continuously with limited concentrations of glucose or ethanol
109 (Chance et al., 1964; Hommes, 1964; Hess and Boiteux, 1971; Satroutdinov et al.,
110  1992; Keulers et al., 1996; Jules et al., 2005; Lloyd and Murray, 2005). Gene
111 expression studies from such glucose-limited yeast metabolic cycles or oscillations (we
112 will utilize the term YMC henceforth in this manuscript for consistency) showed that a
113  maijority of the genome is expressed highly periodically, further revealing a molecular
114  organization of growth and quiescent states (Klevecz et al., 2004; Tu et al., 2005;
115  Futcher, 2006; Mellor, 2016). In general, both the shorter (Klevecz et al., 2004; Murray
116 et al., 2007), and the longer oxygen consumption oscillations in yeast (Tu et al., 2005)
117  showed this general pattern. Notably, genes associated with biosynthesis and growth
118  (comprehensively further described in (Brauer et al., 2008)) typically peak during a high
119  oxygen consumption phase in the YMC (Tu et al., 2005; Rowicka et al., 2007; Slavov
120 and Botstein, 2011, 2013), while genes that mark autophagy, vacuolar function and a
121 “quiescence” state peak during a steady, low oxygen consumption phase. Strikingly, in
122  these continuous YMC cultures, cell division is tightly gated to a temporal window. Cells
123  divide synchronously only once during each metabolic cycle (Kienzi and Fiechter,
124  1969; Tu et al., 2005; Robertson et al., 2008; Laxman et al., 2010) and remain in a non-
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125  dividing state during the rest of the cycle. The non-dividing population in the low oxygen
126  consumption phase exhibits typical hallmarks of quiescent cells (Tu et al., 2005, 2007;
127  Shi et al., 2010; Cai et al., 2011; Shi and Tu, 2013; Dhawan and Laxman, 2015).

128  Furthermore, in each YMC, during the tight temporal window when cells do divide, the
129  culture has two, visibly distinct sub-populations: dividing and nondividing (Tu et al.,

130  2005; Robertson et al., 2008; Laxman et al., 2010). These data have suggested a close
131 coupling between the metabolic and the cell division cycles. Importantly, the YMC itself
132  is metabolite/nutrient regulated, and controlled by the amount of available glucose. The
133  distinct phases of the YMC correspondingly show a separation of metabolic processes
134  (Tu et al., 2005, 2007; Murray et al., 2007; Machné and Murray, 2012), and several

135 lines of evidence suggest that key metabolite amounts are critical for entering or exiting
136  a proliferative or a non-proliferative state (Murray et al., 2003, 2007; Tu et al., 2007; Shi
137 et al., 2010; Cai et al., 2011; Machné and Murray, 2012; Mellor, 2016). These studies
138  collectively indicate the following: (i) a separation of two states (proliferative, and

139  effectively GO) in cell populations, dependent on metabolic states, and (ii) a loose

140  metabolic framework within which it may be possible to study transitions between

141 quiescence and growth transitions. Thus, these studies provide extensive experimental
142  data using which a theoretical, mathematical model can be built to sufficiently explain
143  oscillations between a “quiescent” state and a “growth” state.

144

145 Here, we use existing data from these YMCs to build a robust, general model for

146  oscillations between a quiescent and a growth state. Importantly, the model

147  necessitates the requirement of a tripartite communication - between the metabolic

148  resource, the quiescent cells, and the cells exiting quiescence and entering growth - in
149  order for the cells to sustain oscillation between these two states. The model oscillations
150 depend on an underlying bistability, suggesting that cells in either state exhibit

151  hysteresis, or memory, of their states. Finally, using this model, we show how two

152  central metabolites, thought to be critical for entry into a growth state, satisfy the

153  required criteria for the currency that controls oscillations between these two cell
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154  states. Collectively, we provide a coarse-grained, sufficiency model to explain general
155  principles of how cells can oscillate between a quiescent and growth state, depending
156  upon amounts and utilization of an internal metabolic currency.

157

158 Results

159

160  Apparent bistable states during yeast metabolic cycles

161

162  Yeast cells grown to a high cell density (in batch culture mode) in a chemostat, and
163  when subsequently fed limited amounts of glucose medium, spontaneously undergo
164  robust oscillations in oxygen consumption (YMCs) (Figure 1A) and (Klevecz et al., 2004;
165 Tu et al., 2005; Murray et al., 2007; Silverman et al., 2010; Burnetti et al., 2015), with
166  the period of each oscillation ranging from ~2.5-5 hours (Figure 1A). For these

167  oscillations to occur, the batch culture typically needs to first be starved for a few hours
168  (Figure 1A), during which time all glucose is depleted, and all cells enter a non-dividing
169  state (although the extended starvation is not an absolute requirement, as observed
170  historically in breweries). After starvation, when cells are continuously provided limited
171 glucose in the medium, the oscillations in oxygen consumption spontaneously start and
172 continue indefinitely (Figure 1A). Comprehensive gene expression analysis across

173  these longer-period oscillations (1.5-4.5 hr cycles) has revealed highly periodic

174  transcript expression (Tu et al., 2005; Rowicka et al., 2007), and proteins encoded by
175 these transcripts can be binned into three general classes (Figure 1B, 1C). These

176  represent “growth genes” during the high oxygen consumption phase, followed by the
177  rapid decrease in oxygen consumption coupled with “cell division” (Figure 1B, 1C)

178  (Kudlicki et al., 2007; Rowicka et al., 2007). The cells exhibiting the “growth” signature
179  during the high oxygen consumption phase all go on to enter and complete the CDC
180  (42). Finally, the YMC enters a state of ~stable oxygen consumption, where the gene
181  expression profile revealed a “quiescent’-like state (Figure 1B, 1C). Mitotic cell division
182 s tightly gated only to a narrow window (Figure 1B, 1C). Interestingly, in this phase,
183  only a fixed fraction of the cells (~35%) (and not all cells) divide during each cycle

184  (Figure 1D). During the stable oxygen consumption phase, there are almost no budding
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185  cells observed (Figure 1D). Note: given that this is a controlled chemostat system, the
186  overall cell number/density is constant throughout these oscillations (Klevecz et al.,

187  2004; Tu et al., 2005), which becomes important for our mathematical model.

188

189  Defining the two states and apparent bistability

190

191  If these data are more grossly binned into groups, there appears to be ~2 effective

192  equilibrium states in this system. If binned based on the gene/metabolic patterns, there
193 is the oxidative phase (high oxygen consumption) closely coupled to growth,

194  immediately followed by the reductive mitotic phase, which depends upon (and follows
195  directly from), the oxidative phase. Indeed, experimental data suggest that these two
196  steps, the growth and proliferation steps, are irreversibly coupled (Laxman et al., 2010).
197  This can therefore be conceived as one bin, representing a “growth” state. The

198  extended, low oxygen consumption phase where there is a long, steady build-up of

199 resources, can be viewed as a second bin. Both these states or bins appear to be

200 somewhat stable, contained systems, with what appears to be a transition or inflection
201  point leading to a committed switch to the other state. Thus, there appears to be an

202 apparent cellular state bistability occurring during these oscillations in oxygen

203 consumption. The stable, low oxygen consumption phase can therefore be practically
204  envisioned as representing the non-dividing, “quiescent” state (Q), while the rapid

205 increase in oxygen consumption followed by the reduction in oxygen consumption

206 phase represents the “growth” state (G) (Figure 1E). Considering this, our objective was
207  to build a mathematical model that conceptualized the oscillations in oxygen

208 consumption as oscillations between these two (Q and G) states.

209

210  For this, we first needed to define what plausible, broad scenarios this YMC system

211 might fit into. We therefore considered the currently accepted explanations for

212 commonly observed cellular heterogeneity within clonal populations. Many microbial
213  cells at high cell densities put out “quorum/alarmone” molecules that affect the entire
214  population, and lead to collective behavior along with heterogeneity (Miller and Bassler,
215  2001; Schauder et al., 2001; Whitehead et al., 2001; Zhu et al., 2003; Chen et al., 2004;
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Farewell et al., 2005; Srivatsan and Wang, 2008). Other possibilities emerge from
metabolic resource sharing, seen widely in systems ranging from microbial populations
to cancer cells (Veening et al., 2008; Cairns et al., 2011; Campbell et al., 2015, 2016).
This extends to regulation at the levels of metabolic specialization and stochastic gene
expression resulting in phenotypic heterogeneity (Avery, 2006; Ibanez et al., 2013;
Holland et al., 2014; Ackermann, 2015; Sumner and Avery, 2017). From within this
range of possibilities, we envisaged three general scenarios that could result in the type
of oscillations (Q <-> G) seen in the YMC, and could make biological sense (Figure 1F):
(i) there could be the production and secretion of a resource by a sub-population of cells
(“feeders”), which is taken up by other cells that will go on to divide; (ii) there could be
the secretion and accumulation of a metabolite that is sensed and taken up by only
some cells (but is not consumed); (iii) there is a build up of a metabolite, which is
consumed by the cells at some threshold concentration (Figure 1F). Starting from these
scenarios, we built simple models to test which one could create an oscillatory system

between the two states, which can come from an apparent bistability in the system.
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233  Figure 1: Apparent two-state bistability during Yeast Metabolic Cycles.
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A) A representative YMC, indicating stable oscillations in oxygen consumption (based on dissolved
oxygen d02) in yeast cultures, reflecting the yeast metabolic cycle. Note that the stable oscillations are
driven by restricted feeding.

B) A more detailed illustration of each oscillation cycle, also indicating the phases of the

YMC.

C) Functional outputs based on gene expression studies (from (33)), which clearly define the oxygen
consumption phases of the YMC into a general “growth/proliferation” phase, and a “quiescence” phase.
D) Observed cell division during the YMC. Cell division is tightly gated to a narrow window of the YMC.
Note that only a fraction of cells, and not all cells, divide during this window of each cycle.

E) Reducing the oxygen consumption (d02) oscillation into a two-state (Q state and G state) system. The
apparent bistability is also illustrated.

F) Plausible biological scenarios that could result in an oscillation between Q and G states, based on

observed phenomena. These scenarios are considered for building the model.

A “push-pull” model, requiring communication between the Q state, G state and

the resource, produces oscillatory behavior

Model framework for a two-state yeast population

In order to model such a two-state population of cells, the variables to consider would
be the following: (a) The number of cells in the quiescent state and in the growth state,
(b) some indicator of resource availability (dependent on the accumulation and
consumption of the resource) which could modulate the switching rate between Q and

G states, and the growth rate.

Thus, using this framework, we build the following equations that can describe the

dynamics of a two-state population of yeast cells in a well-mixed system:

“Change in Q population over time”:
dQ/dt = veaG — vacQ - ¢Q, (1)

10
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265 “Change in G population over time”:

266 dG/dt =vyG - veaG + vacQ — ¢G, (2)

267

268 where Q(t) is the number of cells in the quiescent state at time t, G(t) the number of
269 cells in the growing/dividing state, each v represents a switching rate, ¢(?) is the

270 chemostat outflux rate (which could vary with time), and y is the growth rate of cells in
271  the growing/dividing state. If we further assume that the chemostat is working in a mode
272  that maintains the total population (or density) of cells at some constant level, i.e., the
273  outflux from the chemostat balances the growth of cells at all times, this means ¢(t) =
274  yG/(G + Q). In this case, the population dynamics can be described by a single

275 equation:

276

277 dq/dt = vea(1 - q) ~vacq — v (1 - 9)q, (3)

278

279  where g = Q/(G + Q) is the fraction of cells in the quiescent state.

280

281  Next, we assume that the cells contain some ‘resource’ that they require for growth,
282  without making any further assumptions about the resource. Let a(t) denote the

283  concentration per cell of this resource at time ¢, and let o denote the rate at which

284  additional amounts of this resource enter each cell from the surroundings (where the
285 resource is replenished due to the influx of fresh medium into the chemostat). a is

286 depleted both by dilution due to the outflux (at a rate y(1—-q) as explained above), as well
287  as by consumption by growing cells (this rate is also proportional to y(1—-q), which is the
288 net rate of production of new cells). The dynamics of this resource can thus be

289  described by the equation:

290

291  “Change in resource over time”:

292 da/dt =o-wy(1-q)a-y(1-9q)a, (4)

293

11
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294  where u is a proportionality constant that sets just how much resource is consumed by a
295  growing cell, compared to the amount that is depleted by dilution.

296

297 In writing equations 3 and 4, we have assumed that all cells have the same amount of
298 this internal resource a. A less restrictive assumption that still gives the same equation
299 is to assume that a represents the average concentration of the resource across the
300 population of cells, but that the distribution of resource levels is similar for Q and G

301 cells. Further, the same equations also model the case where the resource is not an
302 intracellular one, but an extracellular one - o then is just reinterpreted as the rate at
303 which the resource is added to the extracellular medium either by an external feed or by
304 secretion of the resource by the cells themselves (e.g., by making o dependent on q).
305

306 By choosing which of the parameters in the above equations are zero or non-zero, and
307 how they depend on q and/or a, this framework can be used to model a variety of

308 scenarios, which subsume the broad, biological scenarios illustrated in Figure 1E.

309 These mathematically distinct scenarios are described below (and illustrated in Figures
310 2A and 2B):

311 1. A sub-population of feeder cells (in the Q state) secrete a resource that is sensed by
312  other cells that can grow and divide (G state); resource accumulation o increases with
313 q.

314  Such a scenario can be modelled with the G cells either consuming the resource (u #
315 0), or only sensing but not consuming the resource (u = 0) in the processes of

316  growing/dividing. The growth rate in the G state may be a constant, or may depend on
317  the level of the resource (e.g., y proportional to a). There are three sub-scenarios for
318  how cells may switch between the two states:

319  a. There is no switching between Q and G states (vqe and veq both zero).

320 b. There is random switching between Q and G states (vqs and/or veq are non-zero
321 constants).

322  c. Switching between Q and G states is dependent on cell density and/or the resource

323 level (vae and vgq both functions of q and/or a).

12
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324

325 2. All cells produce and secrete a resource that is sensed only by a sub-population of
326 (G) cells that can grow and divide, i.e., o is a constant. As in scenario 1, the G cells may
327  or may not consume the resource, the growth rate in the G state may or may not

328 depend on the level of the resource, and there are three sub-scenarios for how cells
329 may switch between the two states: no switching, random switching or density/resource
330 dependent switching.

331

332 3. There is a build up of a resource, which is directly supplied from outside into the

333 chemostat medium (o is a constant). This metabolite is sensed or consumed by the G
334 cells when they grow/divide. Again, the growth rate in the G state may or may not

335 depend on the level of the resource and switching may work in one of three ways: none,
336 random or density/resource dependent switching.

337

338 While scenarios (2) and (3) may appear mechanistically very different, they are in fact
339 mathematically no different from each other; both result in a constant production of the
340 resource (Figure 2B). Hence, we need not distinguish between these two. Testing all
341  the scenarios above, using equations 3 and 4, we show in the next section that

342 oscillations are not possible in the absence of switching, or even with random switching,
343  when there is no substantial time delay between resource utilization and division events
344  (as assumed in writing equations 3 and 4). Thus, scenarios 1c, 2c and 3c are the only
345 possibilities left that give oscillations (Figure 2C). This means that the switching

346 between Q and G states is a stochastic event, but with a probability that depends on the
347  resource level, and/or the density of cells in the Q or G state, implying some form of

348 communication between the resource, the cells in the Q state and the cells in the G

349  state.

350
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354  A) Arange of biologically plausible scenarios from Figure 1F, now broken down into precise categories,
355 where parameters affecting the rates of proliferation (g), switching

356 between Q and G states (n), as well as consumption (m) and supply (s) of the resource are included. The
357 variations in these parameters are used to build and test our model.

358 B) Schematic illustration of Figure 1A, indicating feedback loops and parameters considered, to test for
359  possible oscillations between Q and G states. For clarity, potential feedback loops caused by the

360  parameters being dependent on the resource a are not shown, but are included in our models.

361 C) A hysteretic oscillator, based on switching between Q and G states, a required communication

362 between Q, G and the resource, and the oscillation of the amounts of resource itself that controls the Q<-
363  >G transitions (see the Methods for the parameter values that that produce this dynamics). In the left
364  panel: The thin black curve shows the path traced by the oscillation in the g-a plane, the thick dashed line
365 is the curve along which production of resource exactly balances consumption/dilution, and the solid
366 black dots trace the high and low branches of the steady state q levels when the resource level is held
367 constant (the grey rectangle indicates the region of bistability). In the right panel: blue and green curves
368  show, respectively, the fraction of quiescent cells and the resource level as a function of time.

369

370  Some necessary conditions for oscillations

371

372  Within the framework of our model we can show that a density-dependent switching rate
373 is necessary to get oscillations.

374

375 (i) No oscillations in the absence of switching:

376  When both vog and vgq are zero, then equation 3 above becomes:

377 dg/dt=-y(1 - q). (5)

378 Aslong as y is always positive, irrespective of its dependence on a, this has only one
379 stable steady-state solution, g = 0, because the rate of change of q is always negative.
380 And this is globally stable, i.e., every initial value of g (except g = 1) will flow to g = 0.
381 The g = 1 state is an unstable steady state, i.e., any fluctuations away from it, however
382  small, will result in the system moving to q = 0. Thus, there can be no oscillations in the
383 absence of switching.

384
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385 (i) No oscillations with constant parameters:

386 When all the parameters in equations 3 and 4 are constants, independent of g and a,
387 then no oscillations are possible because eq. 3 becomes independent of eq. 4, and

388 therefore, being a one dimensional ordinary differential equation without explicit time-
389 dependence, cannot show oscillations (an oscillation in g requires that dq/dt take both
390 positive and negative values for the same value of g, for at least within some range of q,
391  and this is not possible for a 1D ordinary differential equation).

392

393 (iii) No oscillations for random (density-independent) switching:

394 A less restrictive assumption is that vgq and vqg are constants (which includes zero -
395 we've already examined the case where both are zero above), but y and o may be

396 functions of g and/or a. In the scenarios we examine, y may be an increasing function of
397 a (all scenarios), while 6 may be an increasing function of g (scenario 1). In this

398 situation, the dependence of each variable on the other is ‘'monotonic' (dqg/dt is a

399 decreasing function of a, while da/dt is an increasing function of q). Equations with such
400 monotonic dependencies have been studied mathematically in detail (Pigolotti et al.,
401 2007; Tiana et al., 2007), which show explicitly that when such a coupled set of

402 equations has only two variables (here, g and a), then sustained oscillations are not
403 possible. Intuitively, there is not enough time delay in such a small two-leg feedback
404  loop to destabilise the overall negative feedback that pulls the variables into a single
405 stable steady-state value.

406

407  Hysteretic oscillator based on the two-state model

408

409  Apart from there being broadly two states, a second crucial observation from the

410 experiments is that there is a distinct separation of timescales. The transitions from a
411  situation where almost 100% of cells are in the Q state to one where 30-40% are in the
412 G state, and vice versa, are very rapid. Whereas, between these two transitions the
413  dynamics proceeds on much slower timescales. A simple way to obtain such a two-
414  timescale oscillator from this two-state model uses the strategy of “frustrated bistability’

415  previously suggested by (Krishna et al., 2009). It requires three ingredients: (1) a
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416  negative feedback loop between g and a, (2) bistability in g in the absence of the

417  feedback, and (3) the assumption that changes in g happen on a relatively fast

418 timescale compared to changes in a. While the first can be achieved in several ways,
419 the two simplest, biologically plausible, scenarios are where growing cells consume a
420 resource a and: (i) the growth rate y is proportional to the resource a; or, (ii) one or both
421  switching rates depend on a such that the net switching rate from G to Q decreases with
422  a. However, the third requirement of separation of timescales means that the switching
423 rates must be at least several-fold higher than y and o. This means that the term yq(7-q)
424  in equation 3 is practically negligible and hence the dependence of y on a, or lack of it,
425 would have little effect. We therefore concentrate on the case (ii) where the switching
426 rates depend on a to implement the negative feedback, and for simplicity keep y

427 independent of a.

428

429 Bistability in g in the absence of the feedback implies that when a is kept fixed, for some
430 range of a values, equation 3 should allow two stable steady state levels of g, one lower
431 and one higher. This is shown in Figure 2C left panel, where one can see the high and
432 low ‘branches’ traced by the solid black circles - every point on these branches is a

433 stable steady state g can attain for the corresponding a value, using a version of

434  equation 3 derived from scenario 3 in Figure 2B (see Methods for the full equation).

435 When the resource a is sufficiently small, then there is only one high steady-state level
436 possible for g. Similarly, when a is sufficiently large, there is only one low steady-state
437 possible. However, for intermediate values of a, the system exhibits bistability and both
438 low and high steady-state levels co-exist. In this bistable region, which steady-state

439 level g attains depends on where it started (i.e., its ‘initial condition’). Importantly, in

440 these oscillations, the system exhibits a ‘memory’ (or a ‘hysteresis’) - the steady-state
441  level that g eventually settles into depends on the history of the system.

442

443  When there exists such bistability, then one can get oscillations from the system

444  described by equations 3 and 4, provided the switching rates are a few-fold faster than
445  the rates of consumption and accumulation of the resource (Krishna et al., 2009), as

446  follows: when q is high, a increases due to lack of consumption, so the system creeps
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447  along the high branch in Figure 2C left panel (see the trajectory traced by the thin black
448 line) until it hits the edge of the bistable region. At that point, cells start switching to the
449 G state, which happens relatively rapidly due to the separation of timescales. Thus, the
450 trajectory “falls off’ the edge down to the low branch. On the low branch, with more G
451  cells, the now increased consumption of the resource causes a to start decreasing,

452 leading to the system creeping down along the low branch. When the system reaches
453 the left edge of the bistability, the trajectory jumps up to the high branch as cells rapidly
454  switch to the Q state. For a range of parameter values, this settles into a stable

455  oscillation, as shown in Figure 2C right panel, which shows how g and a vary with time
456  as one follows the black trajectory in Figure 2C left panel.

457

458  For this kind of oscillation, as we have demonstrated in the previous section, vqoe and/or
459  vgq must necessarily be functions of g, not constants independent of q. This can be

460 interpreted as a form of ‘quorum/cell number sensing’ - implying some form of cell-cell
461  communication (or a cell density dependent phenomenon). More specifically, we find
462 that choosing either vqg to be a decreasing step-function of g (as in Figure 2C), or vgao
463 to be an increasing step-function of g (see Supplemental Figure S1) is sufficient to

464  produce frustrated bistability. Other shapes that we have not explored may also produce
465  bistability, and hence oscillations. However, our purpose here is not to find the ‘best-fit’
466  model, but rather to demonstrate the basic ingredients which are sufficient to produce
467 hysteretic oscillations that are similar to the experimental observations. The requirement
468 for vqe to be a decreasing step-function of q, or vgq to be an increasing step-function of
469 q, is basically a requirement for a “push-pull” mechanism - the more the Q cells, the

470  more other Q cells get pulled to remain in that state, and the more G cells get pushed to
471  switch away from their state, and vice versa. Irrespective of the precise molecular

472  means by which this is achieved, cell-cell communication is a necessary ingredient for
473  implementing such a push-pull mechanism.

474  Possible variations in the shape of the oscillations

475

476  From our gross model explained in Figure 2, we obtain predictable oscillations with a

477  specific pattern. The model oscillations exhibit a fast drop in ¢ when exiting the

18


https://doi.org/10.1101/239897
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/239897; this version posted June 26, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

478 predominantly quiescent phase, followed by a slow(er) drop, and then a rapid rise back
479 to a high q level. Experimentally however, a few variations within the general oscillation
480 patterns are known to occur, depending upon the strain background (Burnetti et al.,

481  2015). In the CEN.PK strain (our major reference system, from where the gene and

482 metabolite oscillation datasets were obtained (Tu et al., 2005, 2007; Mohler et al.,

483  2008)) dO2 levels (which we equate with q) show a fast drop, a slow further drop, and
484  then arapid rise (Figure 3A scenario (i)). However, as comprehensively described in
485  (Burnetti et al., 2015), three other variations have been extensively documented.

486 Following a fast drop in dO2 levels, some strains then show a slower drop followed by a
487  more extended low dO2 phase (bump), and a fast rise in dO2 (Figure 3A, scenario (ii)).
488  Other strains show an overall fast drop in dO2, an extended low dO2 phase and bump,
489 and a fast rise (Figure 3A, scenario (iii)), or a fast drop in dO2 (increased oxygen

490 consumption), followed by a slower, extended rise in dO2 (Figure 3A, scenario (iv)).

491

492  Can our model explain this small diversity of shapes seen during the overall drop and
493  rise in oxygen concentrations?

494

495 In the model, the shape observed depends on the shapes of the two branches of g

496 steady-states (solid black circles in Figure 2C, left panel). Because the lower branch
497 starts at a g value of around 0.5 and then increases as a increases, therefore there is a
498 slow drop in q after the fast drop. To produce the experimental dO2 oscillations in other
499 yeast strains (as shown in Figure 3A), the lower branch must have a different shape.
500 For example, for strains which show a slow increase after the first rapid decrease of q,
501 the low q branch must decrease as a increases. Similarly, the other waveforms would
502 involve other shapes of the lower or higher branches. In Figure 3C we show that simple
503 changes in the dependence of the switching rate vqs on a produce different waveforms
504 for the oscillations. Here we’ve shown how to get different shapes of the low-q phase of
505 the oscillation by manipulating the lower branch of the bistability - changes to the high-q
506 phase could similarly be easily made by manipulating the upper branch. The main point
507 is that the shape of the waveform is primarily determined by the shape of the bistability

508 branches, which in turn are determined by how vqg and veq depend on g and a. Thus,
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509 our model predicts that these switching rates are what must vary between strains that
510 show different oscillation waveforms.
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512 Figure 3: Diverse waveforms in the oscillations: experimentally observed and model predictions.

513  A) Experimentally observed patterns of oscillations in dissolved oxygen/ oxygen consumption, which is
514 dependent on yeast strain backgrounds and chemostat growth conditions.

515 B) Altering the communication loops between Q, G and a, to change the overall oscillation waveform.
516 Here g (growth rate) is constant and nqg is a decreasing step-function of q. To obtain different

517 waveforms, we vary the way the step function parameters n,, depends on a.

518 () Predicted oscillation patterns from the model (as altered described in panel B). The illustrated panels
519 cover the range of waveforms observed experimentally in panel A. (i) same as Fig 2C; n,, decreases with
520 a. (ii) ny, first increases then decreases with a. (iii) n,, first decreases and then increases with a. (iv) np,
521 increases with a. Additionally, in all four cases, K increases with a and other parameters have been

522 chosen so that the time period of oscillations is close to 4 hours (see Methods for the full equations, with
523  parameter values, for each case).

524

525  Predicting oscillatory outcomes based on resource availability

526

527  We have used scenario 3c (from Figure 2) to produce oscillations in Figures 2 and 3
528 above. We reiterate that mathematically scenarios 2 and 3 are the same, so scenario 2c
529 can produce exactly the same oscillations. Further, we also find that scenario 1c (where
530 the resource is not supplied externally, but produced/secreted by only the Q cells) is
531  also capable of producing similar oscillations, based on highly constrained choices for
532  how the production rate of the resource (o) depends on q and a (see Supplemental

533  Figure S2). Thus, while scenarios 3c and 2c are identical, all three scenarios, 1c, 2c, 3c,
534  with appropriate choices for how the switching rates, and production and consumption
535 depend on the resource and fraction of quiescent cells, are sufficient to explain the YMC
536  oscillations. Scenario 2c and 3c are largely indistinguishable, and both appear

537  Dbiologically most plausible. Given our experimental understanding of the YMC (and the
538 need for a consumable resource, glucose, to control the oscillations), we think scenario
539  3cis most likely (and we will explore this further in a subsequent section).

540

541  Breakdown of the oscillations.

542

21


https://doi.org/10.1101/239897
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/239897; this version posted June 26, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

543 In Figures 2 and 3 above, we have chosen the particular “default” values of each of the
544  model parameters such that the oscillation period became approximately 4 hours, to
545 match the experimental observations in Figure 1. Of course, varying these parameter
546  values changes the time period, and for large enough variation the oscillation may also
547  disappear. Our model predicts how the oscillation shape and period will vary, and when
548  oscillations will break down, in response to experimentally tunable parameters. For

549 instance, Figure 4A shows how the oscillations change as the resource production rate,
550 o, is varied around its default value, for the same equations that produced the

551  oscillations in Figures 2 and 3. When o is decreased below the default value, the

552  oscillation period initially increases, with more time being spent in the high-q phase. For
553 low enough o, the model exhibits damped oscillations, and then as o is lowered further,
554  the model exhibits the absence of oscillations, with g settling into a high steady-state
555 value (see Figure 4A, and also Supplemental Figure S3 for more such plots). When o is
556 increased from its default value, we again find that the period initially decreases, with
557 less time being spent in the high-q phase. We are able to produce oscillations having a
558 time period as low as ~2.5 hours (see Figure 4A(iii)). When o is increased beyond this,
559 the oscillation period starts increasing again, and the low-q phase of the oscillation

560 starts becoming pronounced (see Supplemental Figure S3). Eventually, the oscillations
561  disappear, with g settling into a (relatively) low steady-state value. These predictions
562 largely mirror known experimental observations, where decreasing or increasing feed
563 rate (at these scales) control oscillations similarly.

564

565 The resource production rate o is a parameter that can be tuned relatively easily in a
566 chemostat by controlling the amount of fresh glucose or ethanol being supplied per unit
567 time. However, another parameter that may be tunable by genetic modifications is y, the
568 growth rate of cells when they are in the G state. Figure 4B shows how the oscillations
569 vary as vy is varied. The results are qualitatively similar but inverse to what was observed
570 with o variation - an increase in y from the default value results in an increasing period,
571 damped oscillations and eventually no oscillations, while a decrease first results in a
572  decrease of period, then a distorted shape and increasing period (see Supplemental

573  Figure S4 for more such plots).
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574

575 The location of the dashed black lines in Figure 4 (left panels) help to understand this
576  behaviour. Each dashed line traces the q and a values where resource production

577  exactly balances resource consumption/dilution. To the right of the line the production is
578 less than the consumption so the resource must decrease, and vice versa to the left of
579 the line. The closer one is to the dashed line, the slower the rate of change of a. As

580 explained in (Krishna et al., 2009), oscillations occur only when this dashed black line
581 passes between the upper and lower bistable branches (solid black circles) - because
582  then the resource keeps increasing (decreasing) when it reaches the end of the high
583 (low) branch making the trajectory “fall off the edge” and continue the oscillation. When
584 o is decreased the dashed black line shifts leftward in the plot, coming closer to the high
585 g branch which causes the oscillating trajectory to spend more and more time on the
586 high g branch (because it is closer to the dashed line and so the resource accumulates
587  slower). Eventually, as the dashed line just touches the high q branch, the time period of
588 oscillations increases to infinity (logarithmically — see Supplemental Figure S5). For o
589  values lower than this critical value there is no sustained oscillation and the system

590 settles into a steady-state on the high branch at the point where it crosses the dashed
591 line. A similar behaviour happens as o is increased and the dashed line comes closer to
592  the lower branch, with the only difference being that the oscillating trajectory spends
593  more time at lower g values.

594

595 A universal feature of the YMC oscillations seen in diverse yeast strains is that the time
596  period of the oscillations decreases with an increase in the dilution/supply rate in the
597 chemostat. The time period appears to be dominated by the time spent in the high-q
598 phase, which also increases with dilution/supply rate, whereas the time spent in the low-
599 g phase is less and decreases slightly with increase in the dilution/supply rate

600 (described in (Burnetti et al., 2015)). As described above, in our model, we find that as
601  we vary o or vy, there are two regimes. In one the time period is dominated by the high-q
602 phase, and the behaviour matches the above experimental observations (see

603  Supplemental Figure S5). However, there is also another regime, where the time period

604 is dominated by the low-q phase. Our model therefore predicts that: (i) the observed
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605 YMC oscillations are closer to the lower end of the ¢ range that produces oscillations,
606 so one should be able to increase o more than decrease it before breaking the
607  oscillations, and (ii) if one increased o enough while remaining in the oscillatory regime

608 one should observe low-g dominated oscillations such as those shown in Supplemental
609 Figure S3. These are both testable predictions of our model.
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610 Figure 4

611 Figure 4: Breakdown of oscillations.

612  A) Varying the rate of production of resource o. (i) o = 0.346 hr, (ii) o = 0.400 hr

613  (default parameters, same as Figure 3), (iii) o = 0.866 hr.

614  B) Varying the growth rate of cells y. (i) y = 0.500 hr, (ii) y = 1.665 hr (default

615 parameters, same as Figure 3), (iii) y = 2.000 hr. Equations used, and other parameter values, are the
616  same as those that produced Figs 2C and 3C(i).

617

618 Acetyl-CoA and NADPH satisfy the requirements of the consumable resource that
619 controls oscillations between Q and G states
620

621 Based on our model, the metabolic resource oscillates with a unique pattern, and this
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622  drives the oscillation between the Q and G states. From the model, some resource

623  builds up within the cell, and is highest at the point of commitment to the switch to the G
624  state (Figure 5A). It is then rapidly consumed/eliminated to fall below a certain

625 threshold, resetting the oscillation, after which the cycle of building up for consumption
626 resumes. When superimposed to the actual YMC phases (and the Q to G switch), this
627  build-up of the resource would necessitate its highest amounts at the beginning of the
628 phase where cells commit to entering high oxygen consumption (Figure 5A). We note
629 that these features of the resource oscillation are a very robust prediction of our model.
630 Across all the oscillations in Figs 2-5 we see the same behaviour, and we would see
631 this for any parameter choice that gives oscillations because this behaviour depends
632 only on our assumption that the resource is consumed by growing/dividing cells and not
633 by quiescent cells. Therefore, according to our model, in order for any metabolite to be
634 the resource that controls the oscillation between the two states, this molecule must
635 fully satisfy the above criteria. Furthermore, for completing this switch to the G state, the
636 metabolite must be able to drive all the downstream biological events for growth. So do
637 any central metabolites satisfy these requirements, and could therefore be the internal
638 resource that controls these Q-G oscillations?

639
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641  Figure 5: Acetyl-CoA satisfies the requirements for the metabolic resource
642 controlling the Q and G oscillations.
643 A) Predicted pattern of oscillation of the resource, during the Q and G oscillations,

644  based on the model (top panel, same oscillations as Figure 2C), and experimentally
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645 observed oscillations of acetyl-CoA and NADPH during the dO2 oscillations (bottom
646  panel).

647  B) Predicted phase portrait of the the fraction of quiescent cells vs the resource per cell
648  based on the model (top panel), and experimentally observed oscillations in dO2 and
649 acetyl-CoA.

650 C) Predicted effect on the oscillation waveforms and the Q and G states, when a bolus
651  of the resource is added to cells in the Q state (see Methods for details), vs

652 experimentally observed data on oxygen consumption when a resource, acetate (the
653  trace is similar with for resources like ethanol, acetate, acetaldehyde, glucose) is added
654  to cells in the low oxygen consumption phase. Supplemental Fig S6 shows how the
655 response varies as the time of adding the bolus is varied.

656 D) Acetyl-CoA as a central regulator of a switch to the growth (G) state. The schematic
657 llustrates a cascade of biological processes leading to growth that acetyl-CoA amounts
658 regulate (coupled with coincident, required NADPH utilization). Note that all resources
659 that reset the oscillations, as indicated in (C) are utilized after they are converted to

660 acetyl-CoA.

661

662 Comprehensive datasets of 50-100 oscillating metabolites in the YMC exist (Murray et
663 al., 2007; Tu et al., 2007; Mohler et al., 2008). From these studies, the oscillations of
664 only two metabolites, acetyl-CoA and NADPH, fully fit the criteria demanded by our

665 model. The acetyl-CoA and NADPH oscillations as a function of the metabolic cycle,
666 and transitions between the Q and G state are shown in Figure 5A and 5B. The

667  oscillations of acetyl-CoA during the YMC almost perfectly superimposes with the

668  oscillation pattern of the hypothetical metabolic resource predicted by the model (Figure
669 5A). We plotted phase diagrams of the fraction of quiescent cells vs the amount of

670 resource in the cell (from the model), and also plotted phase diagrams from

671  experimental data for the dO2 oscillations plotted against acetyl-CoA amounts (Figure
672 5B). The two phase diagrams (from the model, and from experiments) strikingly

673 resemble each other (Figure 5B). This is despite the fact that the experimental data for
674 acetyl-CoA is of low resolution, with only a few sampling/time points covered, and also

675 only reflects overall (bulk population) measurements of acetyl-CoA, suggesting that the
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676 actual phase diagram might be even more similar. Thus the model appears to capture
677 key universal features of these yeast oscillations, including the point of exit from low
678  oxygen consumption (Q) to high oxygen consumption and back (G), and the parameters
679 important in the waveform (i.e. the low and high oxygen consumption phases are

680 important, while the precise form of the dip and increase in dissolved oxygen may not
681  be so). The model also supports an inference that the acetyl-CoA oscillations are

682  sufficient to explain the bistability between the Q and G states, and retains the

683  hysteresis component.

684

685 Using our model, we next simulated what would happen if the resource was increased
686 to just above the threshold level, at a different time. In our model, during normal

687  oscillations, the amount of resource steadily increases, while the cells are in the Q state.
688 In our simulation, we provided a single bolus of the resource, while cells were in the Q
689 state (Figure 5C). We observed a predictable, sharp exit from the Q state and entry into
690 the G state (Figure 5C), effectively resetting the oscillation, which then continued and
691  restored itself to the normal, ~4 hour period in the next cycle. We compared this to

692 available experimental data, where oscillations have been reset by adding a bolus of an
693 external agent, typically glucose, acetate, acetaldehyde or ethanol (Murray et al., 2003;
694 Klevecz et al., 2004; Tu et al., 2005; Cai et al., 2011). All these agents show near-

695 identical patterns of resetting of oscillations (exit from Q and entry into G), and a

696 representative figure (for acetate addition) is shown in Figure 5C. Here, cells exit the
697 low oxygen consumption phase and enter and exit the high oxygen consumption phase,
698 and subsequently quickly restore normal (in this case ~4 hr) oscillations. This simulation
699 can be done in any part of the oscillation, and whenever most cells are in Q, adding a
700  bolus of the resource similarly resets the oscillation (Supplemental Figure S6). Also

701  notably, adding this resource when cells have switched to the G state does not alter the
702  oscillations much (Supplemental Figure S6), which is also something widely established
703  in experiments. Thus, the oscillations predicted by the model very closely recapitulates
704  the patterns of oscillations observed in experiments, how the central, controlling

705 resource might oscillate, and how the oscillations are affected upon perturbing the
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706  resource. This strongly suggests that the threshold amounts of the resource are

707  sufficient to set the oscillations and switching between Q and G states.

708

709  Multiple lines of experimental data suggest that these two metabolites, acetyl-CoA and
710  NADPH, are key in controlling exit from quiescence and entry into growth (Tu et al.,

711 2007; Cai et al., 2011; Cai and Tu, 2012; Machné and Murray, 2012; Shi and Tu, 2013,
712  2014; Mellor, 2016). Based on our knowledge of the metabolic prerequisites for entering
713 growth, and known functional endpoints or outcomes of these two molecules (Figure
714 5D), we can now make a strong, parsimony based argument suggesting that oscillations
715  in these two metabolites are sufficient to control oscillations between the Q and G state.
716  Particularly, several lines of study suggest that the entry into growth (from quiescence)
717  depends on carbon source utilization (Shi et al., 2010; Cai et al., 2011; Daignan-Fornier
718 and Sagot, 2011; Laporte et al., 2011). As pointed out earlier, studies from the yeast
719  metabolic cycle show that the oscillations depend upon carbon sources (primarily

720 glucose) (Klevecz et al., 2004; Tu et al., 2005), and oscillations can be reset (to enter
721  the growth program) by adding acetate, acetaldehyde, etc. (Murray et al., 2003; Tu et
722  al., 2005; Cai et al., 2011). Notably, these carbon sources end up being converted

723  directly to acetyl-CoA, and can only then be utilized (Figure 5D). Additionally, a growth
724  program will require not just sufficient energy (ATP) to sustain the anabolic processes
725  within it, but also activate a program boosting anabolic processes that lead to cell

726  division, including making enough lipid moieties required for cell membranes and other
727  constituents of a new cell. Notably, acetyl-CoA satisfies all these requirements in the
728  following manner (Figure 5D): it directly enters the TCA cycle to generate ATP (Nelson,
729 DL; Cox, 2017); it can be utilized for the biosynthesis of numerous cellular metabolites,
730 including fatty acids, sterols, and amino acids (Nelson, DL; Cox, 2017); and directly

731  regulates cell growth and ribosome biogenesis by the acetylation of histones at “growth
732  promoting genes”, especially histones at ribosome subunit, tRNA and ribi genes, and
733  activates their transcription by the SAGA complex (Cai et al., 2011). The genes that
734  breakdown storage carbohydrates (such as glycogen and trehalose) that produce

735 acetyl-CoA all peak before the maximal acetyl-CoA concentration (Tu et al., 2005;

736  Kudlicki et al., 2007). Finally, the exit from quiescence requires the liquidation of these
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storage carbohydrates (Shi et al., 2010; Laporte et al., 2011; Shi and Tu, 2013), and
conversion to acetyl-CoA (and the subsequent gene expression program) (Shi and Tu,
2013). Perturbations in the ability to sense and utilize acetyl-CoA (particularly for the
gene expression program) completely abolish oscillations (Cai et al., 2011).
Physiologically, this anabolic commitment also absolutely requires the process of
reduction for anabolic biosynthesis, and this reductive capacity is supplied by NADPH
(Nelson, DL; Cox, 2017) (Figure 5D). NADPH is primarily synthesized from the pentose
phosphate pathway, which branches from this same central carbon network, and this
NADPH will fuel the required reductive biosynthesis to make molecules required for
anabolism (Figure 5D). Finally, genes encoding proteins that increase the synthesis of
NADPH are similarly coincident with those that lead to the generation of acetyl-CoA,
and disrupting NADPH production slightly results in a collapse of oscillations (Tu et al.,
2005, 2007). Relatedly, studies from the YMC show multiple other metabolite
oscillations coupled to or dependent upon NADPH, although any hierarchical
organization was not immediately apparent (Murray et al., 2007). Without a necessary
coupling of the two molecules, the overall process of entry to growth cannot be
completed. There is substantial data, particularly from the studies of various cancers, to
show the close coupling of acetyl-CoA and NADPH for growth (Heiden et al., 2009), as
well as direct evidence of acetyl-CoA promoting NADPH synthesis (Patra and Hay,
2014; Shan et al., 2014). Summarizing, based on the pattern of oscillation of the
resource predicted by our model, acetyl-CoA and NADPH (based on production and
utilization) satisfy sufficiency requirements to be the molecules that control the Q-G
state oscillations. Our model thus strongly supports an argument for oscillations in

acetyl-CoA being sufficient to control Q-G state oscillations.

Discussion

In this study, we present a simple frustrated bistability model to explain how the
amounts of an internal metabolic resource can determine oscillations between a

quiescent and growth state. For this, we relied on extensive data coming from the YMC,

and represented the oscillations in dissolved oxygen (seen during YMCs) as a reflection
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768  of growth and quiescent states (Figure 1). Our model incorporates factors dependent on
769  growth rate and amounts of the resource, as well as switching rates (between the G and
770  Q states). Importantly, the model emphasizes a necessary communication between the
771  cells in the quiescent state and the growth state, both of which interact with the

772  metabolic resource during such transitions (Figure 2). Quiescent cells “push” cells in the
773  growth state into quiescence, and “pull” other quiescent cells to remain quiescent, with
774  the feedback requirements imposed by the resource being distinct and opposite for the
775 Q and G states. Given this communication requirement between the Q and G states,
776  our model suggests that such oscillations will eventually breakdown when the cell

777  numbers are small and cells are no longer in contact with each other (something that
778 has been experimentally observed (Laxman et al., 2010)). This model also provides

779 insight into understanding the “growth/division” rate of cells once committed to growth.
780  While healthy debates continue on the rate of growth in a cell and stages of the cell

781  cycle (Johnston et al., 1977; Conlon and Raff, 2003; Jorgensen et al., 2004; Brauer et
782  al., 2008; Goranov et al., 2013). our model shows that it is sufficient for oscillations to
783  have a fixed “growth rate” once the metabolic resource has crossed its threshold

784  concentration, and triggered a committed growth program, after which the growth and
785  division process is no longer dependent on available nutrients. This is also analogous to
786  studies of the CDC, which are built around committed, “no return” steps that proceed at
787  constant, predictable rates once committed to. In our model, because there is a

788 timescale separation between growth and switching rates, making the growth rate

789 dependent on the resource would make some quantitative difference to the rate of

790 accumulation/consumption of the resource, but would leave the Q-G oscillations largely
791 unchanged. Finally, using a parsimony based argument, we suggest that acetyl-CoA
792  (along with NADPH) satisfies all requirements for the resource that drive these

793  oscillations between the Q and G states (Figure 5). With acetyl-CoA as a resource, our
794  model, which builds oscillations on an underlying hysteresis, reproduces universal

795 features observed in these yeast metabolic oscillations, and provides a fairly simple

796  sufficiency argument for how cells transition between Q and G states. We reiterate that
797  our model only provides a paradigm to explain how the oscillations in an internal

798 metabolic resource is sufficient to control oscillations between quiescent and growth
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799 states. This allows for (but doesn’t include) other necessary elements in cells (e.qg.,

800 unique gene transcription programs, or subsequent metabolic events that typically must
801 follow), that may also be required to build a more detailed model for Q-G oscillations.
802

803  The kind of oscillator we have built falls under the class of “relaxation oscillators”, which
804 have been used to model a very wide variety of phenomena, ranging from electronic
805 oscillations to oscillating chemical reactions (Balthasar, 1926; Strogatz, 1994). These
806 are a subset of several possible types of oscillators that arise in biological systems, and
807  are especially relevant for the CDC (Novak and Tyson, 2008; Tsai et al., 2008; Ferrell et
808 al., 2009; Ferrell, 2011). Relaxation oscillators typically involve the cyclic slow build-up
809 of some quantity, like charge in a capacitor, until it reaches a threshold level which then
810 triggers a “discharge” event, resulting in a rapid drop of the quantity. Thus, relaxation
811  oscillators are often characterised by processes happening on two very different

812 timescales, with the time period mainly determined by the slow process (Tyson et al.,
813  2003; Novak and Tyson, 2008; Tsai et al., 2008; Ferrell et al., 2009; Ferrell, 2011). This
814  is why, in contrast to linear, harmonic oscillators, they can produce non-smooth

815 oscillations like a square or sawtooth waveform. We note that the YMC oscillations

816  show a clear signature of multiple timescales - in Figure 1 it is evident that the exit from
817  quiescence (fast drop in dO2), as well as the re-entry into quiescence (fast rise in dO2),
818 happen at much faster timescales than the other phases of the oscillation. In our

819 relaxation oscillator model of the YMC, these differing timescales arise from the fact that
820 the switching rates are an order of magnitude larger than the rates of production and
821  consumption of the resource, and even the growth rate of the cells. The latter processes
822 are therefore what determine the time period of the YMC. Within the class of relaxation
823  oscillators, our models fall into a sub-class that depends on an underlying bistability,
824  which is ‘frustrated’ (Krishna et al., 2009). The bistability, and the resultant hysteresis,
825 are what determine the threshold points at which the behaviour of the system rapidly
826  switches between accumulating or consuming the metabolic resource. Interestingly, our
827 model necessitates this strong hysteresis element within the Q and G state cells. The
828 phenomenon of hysteresis has been extremely well studied (and established)

829 particularly during many phases of the classical CDC, or proliferation cycle ((Pomerantz
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830 and McCloskey, 1990; Tyson and Novak, 2001; Solomon, 2003; Wei et al., 2003; Angeli
831 etal., 2004; Han et al., 2005; Ferrell et al., 2009; Ferrell, 2011; Yao et al., 2011) and
832 many more). In contrast, a hysteresis phenomenon has not been extensively explored
833 when cells transition between a growth state and an effective quiescence state. Yet, in
834  such conditions where the transition between the two states is substantially determined
835 by a metabolic oscillator, as seen in the YMC and several other studies from simple

836 models like yeast, the hysteresis phenomenon is clearly revealed by our model. Given
837 this, experimental studies can be designed to dissect the nature of this hysteresis

838 phenomenon.

839

840 General features emerging from the model to understand oscillations between

841  quiescence and growth:

842

843  Although our model is relatively simple, uses data from a fairly elementary system, and
844  makes minimal assumptions, it does surprisingly well to constrain the possibilities for
845 how transitions between quiescence and growth are regulated. The model successfully
846  captures universally observed waveforms of oscillations, can reset the oscillations, can
847  predict how the oscillations of a resource can control the two states, and can predict
848 breakdown of oscillation fairly well, as observed in experiments. From the very large set
849  of metabolites known to oscillate during the YMC (Tu et al., 2007; Mohler et al., 2008),
850 our model constrains possibilities to a few, that oscillate in a way that can permit such a
851  bistability to exist. From this, and consistent with extensive experimental data

852 (discussed earlier, and in Figure 5), it is possible to make parsimonious arguments for
853 acetyl-CoA (coincident with NADPH) as the metabolic resources controlling transitions
854  from quiescence to growth, and vice versa. Our model helps differentiate this small set
855 of metabolites from other metabolites that are important to maintain oscillations, but not
856 initiate them (i.e. they may only allow the cell to continue in one state, or the other). For
857 example, sulfur metabolism is critical to maintain oscillations (Murray et al., 2003, 2007;
858 Tuetal., 2007). It is also essential for the completion of a growth program, post entry
859 into the high oxygen consuming phase. But this metabolite peaks after acetyl-CoA in the

860 YMC (Tu et al., 2007), and can be viewed as a consequence of initiating a growth
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861 program, and also critical to sustain/complete this growth program, but not to initiate the
862 oscillation. Substantiating this explanation is the fact that sulfur metabolism is highly
863 dependent upon the utilization of NADPH for reduction, and NADPH (as described

864 earlier) is coincident with acetyl-CoA. A similar argument can be made for the

865 sustained, high respiration seen in the YMC, which produces ATP that will be required
866 to maintain the growth program once committed to by the cell. Separately, other studies
867 have shown that “quiescent” cells can show metabolic oscillations without entry into the
868 CDC (Slavov et al., 2011). Here, these cells appear to show a commitment to the CDC
869  during these oscillations, based on gene expression patterns (Slavov et al., 2011). This
870 can also be viewed through our interpretation of the commitment of cells to the CDC

871  due to a central resource. Cells will commit to the CDC, which however may not be

872 completed if a subsequent metabolic resource, normally dependent upon the

873  central/controlling resource (predicted to be acetyl-CoA/NADPH here), becomes

874  limiting. In other words, for a cell, usually if this committing resource is at the correct

875 threshold, other resources should not be limiting unless artificially constrained in an

876  experimental set-up. In (Slavov et al., 2011), the limiting resource was phosphate, which
877 typically should be available and not limiting, and be assimilated into nucleotides in an
878 NADPH and acetyl-CoA dependent manner. If in a specific instance this resource

879 becomes limiting, the cells would commit to the growth/CDC state, but will not be able to
880 complete this, and will fall back into the Q state.

881

882  Our model provides a foundation to build new models to resolve other aspects observed
883  during the YMCs. First, in each cycle of the YMC, a fraction of the cells exit quiescence
884 and divide. It is not fully clear if the same cell divides in each cycle, or if a cell that has
885 entered division in one cycle does not in the next, and so on. The decision to divide has
886 been viewed as a stochastic, but irreversible step (Laxman et al., 2010; Burnetti et al.,
887  2015). While our model as it stands cannot directly address these questions, the

888 dependence of the oscillations on the build-up and utilization of a specific resource,

889 allows the following argument to be made. First, the decision to divide in a cell would be
890 purely made by the amount of resource (acetyl-CoA) that has been built up in the cell.

891  Once acetyl-CoA reaches a certain threshold, the decision to divide is irreversible.
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892 However, the build up of acetyl-CoA within an individual cell itself would be dependent
893 on small differences in overall metabolic homeostasis (compared to its neighbor), and
894  thus which cell reaches the threshold level first could be purely stochastic. Second, we
895 may speculate that if a cell has reached this threshold level and then used up its

896 resource during division, it is unlikely to be in a position to divide in the next round/next
897 cycle, whereas a cell that had not reached the threshold level in the previous cycle

898 would be best poised to divide instead. Our model does not take this into account, but it
899 provides a framework within which one could model the entire distribution of cells in
900 different Q/G states and with different levels of the resource. Despite the overall

901  stochastic aspect of Q-G transitions, such models would be able to make testable

902 predictions about the switching process even at the level of single cells. It is also

903 apparent that this level of synchrony requires high cell density in the system.

904  Separately, most studies have noted that upon initiating feeding in the chemostat, there
905 is a short period of tiny, non-robust oscillations. Based on our model, we would argue
906 that this is a situation where the quiescent cells are all now building up just sufficient
907 reserves of acetyl-CoA, within this stochastic process, and are starting to divide, but the
908 unusual steady-state condition in the chemostat will eventually lead to stable

909 oscillations.

910

911  Finally: Given the existing frameworks to describe Q-G state oscillations, our model is
912 necessarily coarse grained, and is intended only to build a more rigorous conceptual
913  framework within which to investigate the process of cells switching between

914  quiescence and growth states. For instance, it is straightforward to extend our models,
915 by adding space and diffusion processes, to account for scenarios where nutrients are
916  not well mixed and equally accessible, and where there is a high degree of spatial

917  rigidity within cell populations. It is also easy to alter other assumptions underlying our
918 model. For instance, our conclusions regarding acetyl-CoA being the driving resource
919 depend on an assumption we made in building the model that G cells consume the

920 resource. While this is biologically plausible, mathematically we could have assumed
921  the opposite, namely that the resource is consumed by cells in the Q state and not by

922 cells in the G state. In that case too our model could give similar oscillations - switching
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923 rates would still need to be density/resource dependent, but the form of dependence on
924  resource would need to be reversed so that the high and low-g branches would be the
925  mirror images, with the low g branch being the only one at low a and the high g branch
926  being the only one at large values of a. And hence the waveform of the oscillating

927  resource would be flipped compared to Figures 2 and 3 - i.e., when q is high a would be
928 decreasing, while when q is low a would be increasing. If one could find a metabolite
929 that exhibited this waveform, then that metabolite would be an equally likely possibility
930 as adriver of the Q-G transition, except that it would have to act such that it caused a
931  switch from Q to G when it crossed a low threshold, or caused the opposite transition
932 when it crossed a high threshold. From the considerable data available, we have not
933 found a reasonable molecule with such a reversed waveform. Moreover, we know of no
934  process which consumes a metabolite in the Q state in the way described, so for now
935 acetyl-CoA driving the Q-G transition and being consumed during growth is the most
936 parsimonious explanation. Nevertheless, this shows how our framework could be easily
937  used in alternate scenarios.

938

939  Currently, existing experimental approaches to study such metabolically-driven Q-G
940 oscillations are very limited. Crude readouts, such as oxygen consumption, have very
941 limited resolution even to show the Q and G states, as the bistability begins to break
942 down. Gene expression analysis (even when done in single cells) is a late, end-point
943  readout which cannot explain this bistability but instead occurs after a switch. The key to
944  experimentally studying such bistability, therefore, will be the development of in vivo
945 intracellular metabolic sensors with excellent dynamic range and sensitivity, for

946  metabolites like acetyl-CoA or NADPH. This will allow the development of more precise
947  models to predict commitment steps, and identify differences within the population of
948 cells, that will help understand reversibility (between states), hysteresis and other

949  apparent phenomena.

950

951

952

953
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Methods

Experimental methods and data sets:

Chemostat culture and cell division datasets: All dO2 data were obtained from YMCs
set up similar to already published data (Tu et al., 2005, 2007; Kudlicki et al., 2007;
Mohler et al., 2008). In these studies, yeast cells were grown in chemostat cultures
using semi-defined medium, and yeast metabolic cycles were set up as described
earlier (Tu et al., 2005; Tu, 2010). Data for cell division across three metabolic cycles
was obtained from earlier studies (Tu et al., 2005; Laxman et al., 2010). YMC gene
expression and metabolite datasets: Gene expression datasets were obtained from (Tu
et al., 2005; Kudlicki et al., 2007), and metabolite oscillation datasets were obtained
from (Tu et al., 2007; Mohler et al., 2008; Cai et al., 2011; Machné and Murray, 2012),

including acetyl-CoA oscillation datasets.
Parameter values and their g/a dependencies

Figures 2C, 3C(i), 4A(ii), 4B(ii), 5A and 5B (default choices):

To produce the oscillation shown in these figures, we make the following choices (within
scenario 3c):

v=1.665 hr'. 6=0.3996 hr'', u=1, vaa=16.65 hr', vaec=h(q), where h(q) is the Hill function
h(q) = vm(1+B(q/K)?°)(1+(q/K)?°) with p=0.01, K=a%/(0.75%+a?), vn=16.65x(1.65-1.25K).
We use this Hill function with such a high Hill coefficient to approximate a step function

which drops rapidly from v, to fvm at g=K.

Figure 4, other panels:
The other panels of Fig 4 are made using exactly the same equations and parameter

choices as above, except for varying ¢ and y as mentioned in the Fig 4 caption.

Figure 3C, other panels:

As above, except that

(i) vm=16.65x(1.65-1.25K)x2.25K hr" and 6=0.3596 hr".

(iii) vmm=16.65x(1.65-1.25K)+16.65x1.85a"%(200+a’®) hr'" and 6=0.3297 hr™,
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(iv) vin=16.65x2.25K hr'" and 0=0.3397 hr™".

o values were varied in order to keep the time period close to 4 hours.

Figure 5C, addition of bolus:

Until time t = 11.5 hours, the simulation is the same as in Fig 2C. At t = 11.5 hrs, the
resource level is abruptly changed to 1.75 (just above its peak value in previous cycles,
which was 1.73), and then the simulation is continued with the same equations and

parameter values.

In all the above cases, the simulations were started, at t = 0 hours, with initial conditions
g=1 and a=10" (i.e., we start with all cells in a quiescent state and starved of the
resource). Simulations and figures were produced in Matlab. We used the ode45
differential equation integrator. The code is provided in Supplemental material. As extra
controls, we checked that the stiff solver ode15s also provided the same results for the
simulations in Fig 2 and 5, and a Mathematica notebook which repeats many of the
same simulations, using the default NDSolve algorithm within Mathematica, is also

provided with the Supplemental material.

Acknowledgements

SK is supported by funds from the Simons Foundation, and institutional support from
NCBS-TIFR. SL is supported by a Wellcome Trust-DBT IA Intermediate Fellowship
(IA/1/14/2/501523), and institutional support from inStem and the Department of
Biotechnology.

38


https://doi.org/10.1101/239897
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/239897; this version posted June 26, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

1009 References

1010

1011 Ackermann, M. (2015). A functional perspective on phenotypic heterogeneity in

1012  microorganisms. Nat. Rev. Microbiol. 713, 497-508.

1013  Angeli, D., Ferrell, J. E., and Sontag, E. (2004). Detection of multistability, bifurcations,
1014  and hysteresis in a large class of biological positive-feedback systems. Proc. Natl.
1015  Acad. Sci. 101, 1822-1827.

1016  Avery, S. (2006). Microbial cell individuality and the underlying sources of

1017  heterogeneity. Nat. Rev. Microbiol. 4, 577-587.

1018  Balthasar, van der P. (1926). “On Relaxation-Oscillations”. London, Edinburgh, Dublin
1019  Philos. Mag. 2, 978-992.

1020  Brauer, M. J., Huttenhower, C., Airoldi, E. M., Rosenstein, R., Matese, J. C., Gresham,
1021  D., Boer, V. M., Troyanskaya, O. G., and Botstein, D. (2008). Coordination of Growth
1022 Rate, Cell Cycle, Stress Response, and Metabolic Activity in Yeast. Mol. Biol. Cell 19,
1023  352-267.

1024  Burnetti, A. J., Aydin, M., and Buchler, N. E. (2015). Cell cycle Start is coupled to entry
1025 into the yeast metabolic cycle across diverse strains and growth rates. Mol. Biol. Cell
1026 XXXIII, 81-87.

1027  Cai, L., Sutter, B. M., Li, B., and Tu, B. P. (2011). Acetyl-CoA induces cell growth and
1028  proliferation by promoting the acetylation of histones at growth genes. Mol. Cell 42,
1029 426-437.

1030 Cai, L., and Tu, B. P. (2012). Driving the Cell Cycle Through Metabolism. Annu. Rev.
1031  Cell Dev. Biol. 28, 59-87.

1032  Cairns, R. A,, Harris, I. S., and Mak, T. W. (2011). Regulation of cancer cell metabolism.
1033  Nat. Rev. Cancer 711, 85-95.

1034  Campbell, K. et al. (2015). Self-establishing communities enable cooperative metabolite
1035 exchange in a eukaryote. Elife 4, 1-23.

1036  Campbell, K., Vowinckel, J., and Ralser, M. (2016). Cell-to-cell heterogeneity emerges
1037  as consequence of metabolic cooperation in a synthetic yeast community. Biotechnol. J.
1038 11, 1169-1178.

1039  Chance, B., Estabrook, R., and Ghosh, A. (1964). DAMPED SINUSOIDAL

39


https://doi.org/10.1101/239897
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/239897; this version posted June 26, 2018. The copyright holder for this preprint (which was not

certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070

aCC-BY-NC-ND 4.0 International license.

OSCILLATIONS OF CYTOPLASMIC REDUCED PYRIDINE NUCLEOTIDE IN YEAST
CELLS. Proc. Natl. Acad. Sci. U. S. A. 51, 1244-1251.

Chen, H., Fujita, M., Feng, Q., Clardy, J., and Fink, G. R. (2004). Tyrosol is a quorum-
sensing molecule in Candida albicans. Proc. Natl. Acad. Sci. U. S. A. 7101, 5048 LP-
5052.

Coller, H. A., Sang, L., and Roberts, J. M. (2006). A New Description of Cellular
Quiescence. PLoS Biol. 4, €83.

Conlon, I., and Raff, M. (2003). Differences in the way a mammalian cell and yeast cells
coordinate cell growth and cell-cycle progression. J. Biol. 2.

Cooper, S. (1998). On the proposal of a GO phase and the restriction point. FASEB J.
12, 367-373.

Cooper, S. (2003). Reappraisal of serum starvation, the restriction point, GO, and G1
phase arrest points . FASEB J. 17, 333-340.

Cross, F., Archambault, V., Miller, M., and Klovstad, M. (2002). Testing a mathematical
model of the yeast cell cycle. Mol. Biol. Cell 13, 52—70.

Daignan-Fornier, B., and Sagot, I. (2011). Proliferation/Quiescence: When to start?
Where to stop? What to stock? Cell Div. 6, 20.

Daignan-Fornier B and Sagot | (2011). Proliferation / quiescence : the controversial *
aller-retour .” Cell Div. 6, 2-5.

Dhawan, J., and Laxman, S. (2015). Decoding the stem cell quiescence cycle - lessons
from yeast for regenerative biology. J. Cell Sci. 128, 4467-4474.

Farewell, A., Magnusson, L. U., and Nystrom, T. (2005). ppGpp: a global regulator in
Escherichia coli. Trends Microbiol. 13, 236—-242.

Ferrell, J. E. (2011). Simple Rules for Complex Processes: New Lessons from the
Budding Yeast Cell Cycle. Mol. Cell 43, 497-500.

Ferrell, J. E., Pomerening, J., Kim, S. Y., Trunnell, N. B., Xiong, W., Huang, C.-Y. F.,
and Machleder, E. M. (2009). Simple, realistic models of complex biological processes:
Positive feedback and bistability in a cell fate switch and a cell cycle oscillator. FEBS
Lett. 583, 3999-4005.

Futcher, B. (2006). Metabolic cycle , cell cycle , and the finishing kick to Start.

Goldbeter, A. (1991). A minimal cascade model for the mitotic oscillator involving cyclin

40


https://doi.org/10.1101/239897
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/239897; this version posted June 26, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

1071 and cdc2 kinase. Proc. Natl. Acad. Sci. 88, 9107-9111.

1072  Goranov, A. |., Gulati, A., Dephoure, N., Takahara, T., Maeda, T., Gygi, S. P., Manalis,
1073  S., and Amon, A. (2013). Changes in cell morphology are coordinated with cell growth
1074  through the TORC1 pathway. Curr. Biol. 23, 1269-1279.

1075 Gray, J. V, Petsko, G. a, Johnston, G. C., Ringe, D., Singer, R. a, and Werner-

1076  washburne, M. (2004).’’ Sleeping Beauty ' ’: Quiescence in Saccharomyces cerevisiae
1077  “ Sleeping Beauty ": Quiescence in Saccharomyces cerevisiae 1. Microbiol. Mol. Biol.
1078 Rev. 68, 187-206.

1079 Han, Z,, Yang, L., MacLellan, R. W., Weiss, J. N., and Qu, Z. (2005). Hysteresis and
1080  Cell Cycle Transitions: How Crucial Is 1t? Biophys. J. 88, 1626—1634.

1081  Hartwell, L. H. (1974). Saccharomyces cerevisiae cell cycle. Bacteriol. Rev. 38, 164—
1082 198.

1083  Heiden, M. G. Vander, Cantley, L. C., Thompson, C. B., Vander Heiden, M. G., Cantley,
1084 L. C., and Thompson, C. B. (2009). Understanding the Warburg Effect: The Metabolic
1085 Requirements of Cell Proliferation. Science (80-. ). 324, 1029-1033.

1086 Hess, B., and Boiteux, A. (1971). Oscillatory Phenomena in Biochemistry. Annu. Rev.
1087  Biochem. 40, 237-258.

1088 Holland, S. L., Reader, T., Dyer, P. S., and Avery, S. V. (2014). Phenotypic

1089  heterogeneity is a selected trait in natural yeast populations subject to environmental
1090  stress. Environ. Microbiol. 16, 1729-1740.

1091  Hommes, F. (1964). OSCILLATORY REDUCTIONS OF PYRIDINE NUCLEOTIDES
1092 DURING ANAEROBIC GLYCOLYSIS IN BREWERS’ YEAST. Arch. Biochem. Biophys.
1093 108, 36—46.

1094 Ibanez, A. J., Fagerer, S. R., Schmidt, A. M., Urban, P. L., Jefimovs, K., Geiger, P.,
1095 Dechant, R., Heinemann, M., and Zenobi, R. (2013). Mass spectrometry-based

1096  metabolomics of single yeast cells. Proc. Natl. Acad. Sci. 770, 8790-8794.

1097  J, T. J. (1991). Modeling the cell division cycle: cdc2 and cyclin interactions. Proc. Natl.
1098  Acad. Sci. 88, 7328-7332.

1099 Johnston, G. C., Pringle, J. R., and Hartwell, L. H. (1977). Coordination of growth with
1100 cell division in the yeast Saccharomyces cerevisiae. Exp. Cell Res. 105, 79-98.

1101  Jorgensen, P., Rupes, |., Sharom, J. R., Schneper, L., Broach, J. R., and Tyers, M.

41


https://doi.org/10.1101/239897
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/239897; this version posted June 26, 2018. The copyright holder for this preprint (which was not

certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132

aCC-BY-NC-ND 4.0 International license.

(2004). A dynamic transcriptional network communicates growth potential to ribosome
synthesis and critical cell size. Genes Dev. 18, 2491-2505.

Jules, M., Francgois, J., and Parrou, J. L. (2005). Autonomous oscillations in
Saccharomyces cerevisiae during batch cultures on trehalose. FEBS J. 272, 1490-
1500.

Kalucka, J. et al. (2015). Metabolic control of the cell cycle. Cell Cycle 4101, 3379—
3388.

Kaplon, J., Dam, L. Van, Peeper, D., Kaplon, J., Dam, L. Van, and Peeper, D. (2015).
Two-way communication between the metabolic and cell cycle machineries : the
molecular basis. Cell Cycle 14, 2022-2032.

Keulers, M., Suzuki, T., Satroutdinov, A., and Kuriyama, H. (1996). Autonomous
metabolic oscillation in continuous culture of Saccharomyces cerevisiae grown on
ethanol. FEMS Microbiol. Lett. 142, 253-258.

Klevecz, R. R., Bolen, J., Forrest, G., and Murray, D. B. (2004). A genomewide
oscillation in transcription gates DNA replication and cell cycle. Proc. Natl. Acad. Sci.
101, 1200-1205.

Klosinska, M. M., Crutchfield, C. A., Bradley, P. H., Rabinowitz, J. D., and Broach, J. R.
(2011). Yeast cells can access distinct quiescent states. Genes Dev. 25, 336-349.
Krishna, S., Semsey, S., and Jensen, M. (2009). Frustrated bistability as a means to
engineer oscillations in biological systems. Phys. Biol. 6, 036009.

Kudlicki, A., Rowicka, M., and Otwinowski, Z. (2007). SCEPTRANS: an online tool for
analyzing periodic transcription in yeast . Bioinformatics 23, 1559-1561.

Klenzi, M. T., and Fiechter, A. (1969). Changes in carbohydrate composition and
trehalase-activity during the budding cycle of Saccharomyces cerevisiae. Arch.
Mikrobiol. 64, 396—407.

Laporte, D., Lebaudy, A., Sahin, A., Pinson, B., Ceschin, J., Daignan-Fornier, B., and
Sagot, I. (2011). Metabolic status rather than cell cycle signals control quiescence entry
and exit. J. Cell Biol. 192, 949-957.

Laxman, S., Sutter, B. M., and Tu, B. P. (2010). Behavior of a metabolic cycling
population at the single cell level as visualized by fluorescent gene expression
reporters. PLoS One 5, €12595.

42


https://doi.org/10.1101/239897
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/239897; this version posted June 26, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

1133  Lee, |. H., and Finkel, T. (2013). Metabolic regulation of the cell cycle. Curr. Opin. Cell
1134  Biol. 25, 724-729.

1135 Lewis, D., and Gattie, D. (1991). The Ecology of Quiescent Microbes. U.S. Environ.
1136  Prot. Agency, Washington, D.C. EPA/600/J-.

1137  Lloyd, D., and Murray, D. B. (2005). Ultradian metronome: timekeeper for orchestration
1138  of cellular coherence. Trends Biochem. Sci. 30, 373-377.

1139  Machné, R., and Murray, D. B. (2012). The yin and yang of yeast transcription:

1140 elements of a global feedback system between metabolism and chromatin. PLoS One
1141 7, e37906.

1142  Mellor, J. (2016). The molecular basis of metabolic cycles and their relationship to
1143  circadian rhythms. Nat. Struct. Mol. Biol. 23, 1035-1044.

1144  Miller, M. B., and Bassler, B. L. (2001). Quorum Sensing in Bacteria. Annu. Rev.

1145  Microbiol. 55, 165—-199.

1146  Mirchenko, L., and Uhimann, F. (2010). Sli15(INCENP) dephosphorylation prevents
1147  mitotic checkpoint reengagement due to loss of tension at anaphase onset. Curr. Biol.
1148 20, 1396-1401.

1149  Mohler, R., Tu, B. P., Dombek, K. M., Hoggard, J., Young, E., and Synovec, R. E.
1150  (2008). Identification and evaluation of cycling yeast metabolites in two-dimensional
1151  comprehensive gas chromatography-time-of-flight-mass spectrometry data. J.

1152  Chromatogr. A 1186, 401-411.

1153  Murray, D. B., Beckmann, M., and Kitano, H. (2007). Regulation of yeast oscillatory
1154  dynamics. Proc. Natl. Acad. Sci. U. S. A. 194, 2241-2246.

1155  Murray, D. B., Klevecz, R., and Lloyd, D. (2003). Generation and maintenance of

1156  synchrony in Saccharomyces cerevisiae continuous culture. Exp. Cell Res. 287, 10-15.
1157  Nelson, DL; Cox, M. (2017). Principles of biochemistry, NY, USA: W. H. Freeman.
1158  Norel, R., and Agur, Z. (1991). A model for the adjustment of the mitotic clock by cyclin
1159  and MPF levels. Science (80-. ). 257, 1076-1078.

1160  Novak, B., and Tyson, J. J. (1993). Numerical analysis of a comprehensive model of M-
1161  phase control in Xenopus oocyte extracts and intact embryos. J. Cell Sci. 106, 1153—
1162 1168.

1163  Novak, B., and Tyson, J. J. (2008). Design principles of biochemical oscillators. Nat.

43


https://doi.org/10.1101/239897
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/239897; this version posted June 26, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

1164  Rev. Mol. Cell Biol. 9, 981-991.

1165 Patra, K. C., and Hay, N. (2014). The pentose phosphate pathway and cancer. Trends
1166  Biochem. Sci. 39, 347-354.

1167  Pigolotti, S., Krishna, S., and Jensen, M. H. (2007). Oscillation patterns in negative
1168 feedback loops. Proc. Natl. Acad. Sci. 104, 6533 LP-6537.

1169 Pomerantz, S. C., and McCloskey, J. A. (1990). Analysis of RNA Hydrolyzates by Liquid
1170  Chromatography-Mass Spectrometry. Methods Enzymol. 193, 796—824.

1171 Pomerening, J., Sontag, E., and Ferrell, J. E. (2003). Building a cell cycle oscillator:
1172  hysteresis and bistability in the activation of Cdc2. Nat. Cell Biol. 5, 346-351.

1173  Robertson, J. B., Stowers, C. C., Boczko, E., and Johnson, C. H. (2008). Real-time
1174  luminescence monitoring of cell-cycle and respiratory oscillations in yeast. Proc. Natl.
1175  Acad. Sci. U. S. A. 105, 17988-17993.

1176  Rowicka, M., Kudlicki, A., Tu, B. P., and Otwinowski, Z. (2007). High-resolution timing of
1177  cell cycle-regulated gene expression. Proc. Natl. Acad. Sci. U. S. A. 104, 16892-16897.
1178  Satroutdinov, A. D., Kuriyama, H., and Kobayashi, H. (1992). Oscillatory metabolism of
1179  Saccharomyces cerevisiae in continuous culture. FEMS Microbiol. Lett. 77, 261-267.
1180  Schauder, S., Shokat, K., Surette, M. G., and Bassler, B. L. (2001). The LuxS family of
1181  bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Mol.
1182  Microbiol. 41, 463—476.

1183  Shan, C. et al. (2014). Lysine acetylation activates 6-phosphogluconate dehydrogenase
1184  to promote tumor growth. Mol. Cell 565, 552—-565.

1185  Shi, L., Sutter, B. M., Ye, X., and Tu, B. P. (2010). Trehalose is a key determinant of the
1186  quiescent metabolic state that fuels cell cycle progression upon return to growth. Mol.
1187  Biol. Cell 21, 1982—-1990.

1188  Shi, L., and Tu, B. P. (2013). Acetyl-CoA induces transcription of the key G1 cyclin

1189  CLN3 to promote entry into the cell division cycle in Saccharomyces cerevisiae. Proc.
1190  Natl. Acad. Sci. 110, 7318-7323.

1191  Shi, L., and Tu, B. P. (2014). Protein acetylation as a means to regulate protein function
1192  in tune with metabolic state. Biochem. Soc. Trans. 42, 1037-1042.

1193  Silverman, S. J. et al. (2010). Metabolic cycling in single yeast cells from

1194  unsynchronized steady-state populations limited on glucose or phosphate. Proc. Natl.

44


https://doi.org/10.1101/239897
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/239897; this version posted June 26, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

1195  Acad. Sci. U. S. A. 107, 6946-6951.

1196  Slavov, N., and Botstein, D. (2011). Coupling among growth rate response, metabolic
1197  cycle, and cell division cycle in yeast. Mol. Biol. Cell 22, 1997-20009.

1198  Slavov, N., and Botstein, D. (2013). Decoupling nutrient signaling from growth rate
1199  causes aerobic glycolysis and deregulation of cell size and gene expression. Mol. Biol.
1200 Cell 24, 157-168.

1201  Slavov, N., Macinskas, J., Caudy, A., and Botstein, D. (2011). Metabolic cycling without
1202 cell division cycling in respiring yeast. Proc. Natl. Acad. Sci. U. S. A. 708, 19090-19095.
1203  Solomon, M. J. (2003). Hysteresis meets the cell cycle. Proc. Natl. Acad. Sci. 100, 771-
1204  772.

1205 Srivatsan, A., and Wang, J. D. (2008). Control of bacterial transcription, translation and
1206  replication by (p)ppGpp. Curr. Opin. Microbiol. 77, 100-105.

1207  Strogatz, S. (1994). Nonlinear Dynamics and Chaos., Reading, MA: Addison-Wesley.
1208  Sumner, E. R., and Avery, S. V (2017). Phenotypic heterogeneity : differential stress
1209 resistance among individual cells of the yeast Saccharomyces cerevisiae. Microbiology
1210 1941, 14-345.

1211 Tiana, G., Krishna, S., Pigolotti, S., Jensen, M., and Sneppen, K. (2007). Oscillations
1212  and temporal signalling in cells. Phys. Biol. 4, R1-17.

1213  Tsai, T., Choi, Y., Ma, W., Pomerening, J., Tang, C., and Ferrell, J. E. (2008). Robust,
1214  tunable biological oscillations from interlinked positive and negative feedback loops.
1215  Science (80-.). 321, 126-129.

1216  Tu, B. P. (2010). Ultradian metabolic cycles in yeast. Methods Enzymol. 470, 857—-866.
1217  Tu, B. P., Kudlicki, A., Rowicka, M., and McKnight, S. L. (2005). Logic of the yeast
1218  metabolic cycle: temporal compartmentalization of cellular processes. Science 370,
1219  1152-1158.

1220 Tu, B. P., Mohler, R. E., Liu, J. C., Dombek, K. M., Young, E. T., Synovec, R. E., and
1221 McKnight, S. L. (2007). Cyclic changes in metabolic state during the life of a yeast cell.
1222  Proc. Natl. Acad. Sci. U. S. A. 104, 16886—16891.

1223  Tyson, J. J., Chen, K. C., and Novak, B. (2003). Sniffers, buzzers, toggles and blinkers:
1224  Dynamics of regulatory and signaling pathways in the cell. Curr. Opin. Cell Biol. 15,
1225  221-231.

45


https://doi.org/10.1101/239897
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/239897; this version posted June 26, 2018. The copyright holder for this preprint (which was not

certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247

aCC-BY-NC-ND 4.0 International license.

Tyson, J. J., and Novak, B. (2001). Regulation of the Eukaryotic Cell Cycle: Molecular
Antagonism, Hysteresis, and Irreversible Transitions. J. Theor. Biol. 210, 249-263.
Tyson, J. J., and Novak, B. (2015). Models in biology: lessons from modeling regulation
of the eukaryotic cell cycle. BMC Biol. 13, 46.

Veening, J., Igoshin, O., Eijlander, R., Nijland, R., Hamoen, L., and OP, K. (2008).
Transient heterogeneity in extracellular protease production by Bacillus subtilis. Mol.
Syst. Biol. 4.

De Virgilio, C. (2012). The essence of yeast quiescence. FEMS Microbiol. Rev. 36,
306-339.

Wei, S., Moore, J., Chen, K., Lassaletta, A. D., Yi, C.-S., Tyson, J. J., and Sible, J. C.
(2003). Hysteresis drives cell-cycle transitions in Xenopus laevis egg extracts. Proc.
Natl. Acad. Sci. 700, 975-980.

Whitehead, N. A., Barnard, A. M. L., Slater, H., Simpson, N. J. L., and Salmond, G. P.
C. (2001). Quorum-sensing in Gram-negative bacteria. FEMS Microbiol. Rev. 25, 365—
404.

Yao, G., Tan, C., West, M., Nevins, J. R., and You, L. (2011). Origin of bistability
underlying mammalian cell cycle entry. Mol. Syst. Biol. 7, 485.

Zhu, J., Chai, Y., Zhong, Z., Li, S., and Winans, S. C. (2003). Agrobacterium Bioassay
Strain for Ultrasensitive Detection of N-Acylhomoserine Lactone-Type Quorum-Sensing
Molecules: Detection of Autoinducers in Mesorhizobium huakuii. Appl. Environ.
Microbiol. 69, 6949-6953.

46


https://doi.org/10.1101/239897
http://creativecommons.org/licenses/by-nc-nd/4.0/

