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Abstract 
Motivation: Genotyping a set of variants from a database is an important step for identifying known 

genetic traits and disease related variants within an individual. The growing size of variant databases as 

well as the high depth of sequencing data pose an efficiency challenge. In clinical applications, where 

time is crucial, alignment-based methods are often not fast enough. To fill the gap, Shajii et al. (2016) 

propose LAVA, an alignment-free genotyping method which is able to more quickly genotype SNPs; 

however, there remains large room for improvements in running time and accuracy. 

Results: We present the VarGeno method for SNP genotyping from Illumina whole genome sequencing 

data. VarGeno builds upon LAVA by improving the speed of k-mer querying as well as the accuracy of 

the genotyping strategy. We evaluate VarGeno on several read datasets using different genotyping SNP 

lists. VarGeno performs 7-13 times faster than LAVA with similar memory usage, while improving 

accuracy.  

Availability: VarGeno is freely available at: https://github.com/medvedevgroup/vargeno. 

1 Introduction 
Given a set of target genetic variants, the problem of variant genotyping is to report which variants an 

individual possesses (Luikart et al. 2003; Shajii et al. 2016; Syvänen 2005). Single nucleotide 

polymorphism (SNP) genotyping has been widely used in human disease-related research such as 

genome wide association studies (Hirschhorn and Daly 2005). The approaches to SNP genotyping can be 

roughly divided into three categories: microarray methods, sequencing alignment-based methods, and 

alignment-free methods. 

The first approach uses SNP arrays (Pastinen et al. 2000). SNP arrays are based on the hybridization of 

fragmented, single-stranded, target DNA, labelled with fluorescent dyes, to arrays containing 

immobilized allele-specific oligonucleotide probes (LaFramboise 2009). SNP arrays are fast and 

inexpensive; however, they can only hold a limited number of probes: the state-of-the-art Affymetrix 

genome-wide SNP array 6.0 has only 906,000 SNP probes, compared with 31,565,214 known common 
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SNPs in dbSNP (build 150). They also are more narrowly applicable than sequencing when additional 

analyses are desired. 

The second approach is based on high-throughput whole genome sequencing and read alignment. In a 

standard pipeline using this method, sequencing reads are first aligned to the reference genome. The 

alignment results are then used as input for genotyping tools such as SAMtools mpileup (Li et al. 2009), 

or Freebayes (Garrison and Marth 2012), or GATK HaplotypeCaller (Depristo et al. 2011; McKenna et al. 

2010). The limitation of this direction is that it requires a lot of time in alignment. This limitation 

becomes especially crucial in clinical applications, where bedside genotyping of disease-related SNPs 

may become common in the future.  

The third approach is based on high-throughput whole genome sequencing followed by an alignment-

free sequence comparison (Vinga and Almeida 2003). Alignment-free methods save compute time and 

memory by avoiding the cost of full-scale alignment. Recent alignment-free ideas that have made 

significant application improvements include pseudo-alignment (Bray et al. 2016), lightweight alignment 

(Patro et al. 2017), and quasi-mapping (Srivastava et al. 2016). Simultaneously, an alignment-free 

approach has been applied to SNP genotyping by Shajii et al. (2016). They introduce a SNP genotyping 

tool named LAVA, which builds an index from known SNPs (e.g. dbSNP) and then uses approximate k-

mer matching to genotype the donor from sequencing data. LAVA is reported to perform 4-7 times 

faster than a standard alignment-based genotyping pipeline, while achieving comparable accuracy.  

In this paper, we present a data structure for indexing and querying k-mers that is designed for variant 

genotyping. Our data structure builds on the core data structure of Shajii et al. (2016) but makes use of a 

Bloom filter and a linear scanning approach. A Bloom filter is a space efficient data structure for 

improving scalability (Bloom 1970; Broder and Mitzenmacher 2004) that has been widely used in the 

context of indexing, compressing and searching whole genome datasets (Rozov, Shamir, and Halperin 

2014) and large sequence databases (Solomon and Kingsford 2016, 2017; Sun et al. 2017). Furthermore, 

we incorporate our data structure into a genotyping framework similar to LAVA, but using  quality values 

and a modified mapping criteria to improve speed and accuracy. Finally, we evaluate our approach on 

several datasets, compare to existing tools, and evaluate the role of our parameters. 

2 Definitions 
A �-mer is a sting of length � over the four letters DNA alphabet. A �-mer can be naturally encoded in 

2� bits. Given a parameter �, we can divide the bits into the upper � bits and the lower 2� � � bits. The 

Hamming neighborhood of distance 1 for a �-mer K, denoted by N�K�, is the set of all �-mers with a 

Hamming distance at most 1 to K. We refer to N�K� as the neighborhood of K, for short. Notice that 

K 
 N�K� and |N�K�| � 3� � 1.  N�K� can be partitioned into three subsets: 1) the original �-mer K, 2) 

the upper neighborhood of K, which is the set of �-mers whose encoding differs with K in the upper � 

bits, and 3) the lower neighborhood of K, which is the set of �-mers whose encoding differs with K in the 

lower 2� � � bits. 

A Bloom filter for representing a set � of � elements is a bitvector of size � and � independent hash 

functions ��, ��, … , ��. Each hash function maps an element to a random integer uniformly between 0 

and � � 1. The bitvector is initialized to an array of zeros. For each element � 
 �, the bits ����� of the 

bitvector are set to 1 for 1 � � � �. To check if an item � is in �, we check whether all ����� are set to 1. 
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If not, then � is not a member of �. Otherwise, � is a member of � with a small false positive rate 

(Broder and Mitzenmacher 2004). 

3 Methods 
Our method uses the same framework as Shajii et al. (2016) and consists of two main ingredients. The 

first is a data structure to solve the following problem. We are given a set of �-mers �, with satellite 

data associated with every �-mer. Then, given a �-mer �, return all the satellite data associated with all 

the �-mers ���� that are in �. The motivation behind the data structure is that the set � contains �-

mers based on the reference genome, and the query takes a �-mer � from a donor genome and checks 

where it matches in the reference. The neighborhood of � is used to allow for up to one sequencing 

error. The second ingredient is a genotyping module that uses the above data structure to call 

genotypes in a donor. In this section, we describe our data structure (Section 3.1 and 3.2) and 

genotyping module (Section 3.3). 

3.1 Indexing data structure description 
We choose the value � � 32 so that the probability of more than one erroneous nucleotide is low and 

so that a �-mer can be conveniently encoded using a 64-bit integer (Shajii et al. 2016). We also use a 

parameter � to divide an encoded �-mer into upper � bits and lower 2� � � bits. In our application, we 

will use � 
 �24, 32�.  

Index construction: We construct a dictionary   from the set �.   is an array of <encoded �-mer, 

satellite-data-pointer> tuples, sorted in increasing order of encoded �-mers. We also construct a 

secondary indexing hash table ! which maps an �-bit unsigned integer " to the first location in   at 

which there is an encoded �-mer whose upper bits are ". Finally, we build a Bloom filter # where each 

element is the lower 2� � � bits of a �-mer in �.  

Query algorithm: To query a given �-mer � and its neighborhood ����, we proceed in two steps 

(illustrated in Figure 1). In the first step, we perform an upper neighborhood query, which searches for 

all the �-mers that are in the upper neighborhood of �.  We first check if the lower 2� � � bits of � 

exist in #. If no, then we abandon the upper neighborhood search. If yes, then for every �-mer �$ in the 

upper-neighborhood, we query ! to find the start and end of the block in   with the same upper bits as 

�$. We then do a binary search through this block to find an entry that matches �$, if it exists. Note that 

because # contains false positives, there may be no match in  .  

In the second step, we perform a lower neighborhood query, which searches for all the �-mers that are 

in the lower neighborhood of �. First, we query ! to find the start and end indices of the block in   with 

the same upper � bits as �. Then, if the size of the block is larger than a size threshold (given as a 

parameter % to the algorithm), for every k-mer in ����, we do a binary search to find if it exists in this 

block. If the size of the block is smaller than %, we instead do a linear scan of the block and, for every 

element, compute its Hamming distance to �. A hit is reported if the distance is at most 1. The 

Hamming distance computation is done using a fast bitwise routine which also identifies where the 

differing position is (see Supplementary Information).  
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Figure 1. VarGeno’s query algorithm. The encoded �-mer � can be divided into the upper � bits and the lower 

2� � � bits, represented as � and �. VarGeno starts by checking if � exists in Bloom filter �, and if yes, performing 

the upper neighborhood query as follows. It first looks up the upper bits of each �-mer in the upper neighborhood 

of � (represented as �	) in index 
. This locates the search block in dictionary � for all �-mers whose upper bits are 

�	. Next, VarGeno performs the lower neighborhood query by first looking up � in 
. This locates the block in � of 

k-mers whose upper bits are �. In this figure, we will assume that the block is larger than the threshold.  VarGeno 

than scans the block and for each element �ℓ	 checks its Hamming distance to �ℓ.  

3.2 Indexing data structure performance 
Our data structure is based on the data structure of Shajii et al. (2016) with two key differences: the use 

of the Bloom filter in the upper neighborhood query and the use of a linear scan in the lower 

neighborhood query. The improvements of our data structure are heuristic in nature and hence a formal 

analysis did not yield any insights. Here, we argue why these heuristics can improve running time. 

For the upper neighborhood query, each �-mer in the upper neighborhood of � will have different 

upper bits and hence will require a separate access to ! and one random access to  . The random access 

to   will likely result in a cache miss for every �-mer in the upper neighborhood. By using the Bloom 

filter #, we make sure to pay this cost only for �-mers that are likely to result in hits. 

For the lower neighborhood query, using a linear scan when the block size % is small can have a 

significant improvement on performance. In the worst case, binary search requires 16 ' 3 � 1 searches 

of (�log %� time each, i.e. 49 ' (�log %� comparisons. A linear scan, on the other hand, requires only % 

calls to the highly optimized Hamming distance routine. In the Results, we investigate which block size 

threshold yields improved performance. 

While binary search is asymptotically faster, its overhead relative to a linear scan makes it slower when 

the size of the block being searched is small. We found that using % � 25 works well in practice. 
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The following Observation and analysis shows that the number of blocks larger than % is small. 

Observation 1. Let � be the number of distinct �-mers stored in the dictionary   and let . be the 

number of blocks in  . Under the assumption that the encoded �-mers are independent from each 

other, the size of a block in   is at least % with probability of at most 
�

��
. 

Proof. Let ��  be the size of block � in  . Under the independence assumption, ��  follows a Binomial 

distribution with � trials and success probability of  
�

�
.  The expected size of block � is therefore 

E���� �
�

�
. Applying Markov’s inequality (Buot 2006), the probability that ��  is at least % is P���  ≥ t� �

�	
��

�
�

�

��
 .  

 2 

The assumption that encoded �-mers are independent from each other is not true in our application 

since many of the k-mers overlap. However, we argue that block locations of two encoded k-mers are 

much less dependent. Even for overlapping �-mers, a one nucleotide difference in the higher-order bits 

will significantly change the encoded k-mer value and, hence, the block location. 

For the human genome, the number of �-mers � is about 3 billion and . is about 2��. The probability 

that a block is larger than % � 25 (VarGeno’s default threshold) is less than 0.028. Thus, the Observation 

estimates that we resort to the binary search method for less than 3% of the blocks. 

3.3 Genotyping module 
We now describe how our genotyping module works and integrates the indexing data structure. 

In VarGeno, one index is constructed for all the �-mers in the reference genome (using � � 32). Another 

index is constructed with �-mers from positions that overlap some SNP from the population SNP 

database (called the SNP list), with the reference allele replaced by alternate allele (using � � 24). Then, 

given reads from a donor genome, VarGeno splits each read into non-overlapping k-mers and queries 

the two indices with them (reverse complements are handled in the implementation but, for the sake of 

brevity, are not accounted for in our description).  However, VarGeno does not explore the whole 

Hamming neighborhood: if the quality score for a certain position within the query �-mer is higher than 

a threshold, then the neighborhood �-mers which differ at this position are skipped and not looked up 

in the dictionaries. The intuition behind this is that a sequencing error in a position with a high quality 

score is unlikely. 

After querying the �-mers from a read, VarGeno determines a single mapping location for the read. A 

read is considered mapped to a reference genome location if 1) that location has the most hits from the 

queries, 2) at least two of the hitting �-mers originate from different positions in the read, and 3) at 

least one � -mer should be non-modified (i.e. present in the read without a substitution).  A read is 

discarded if more than one location satisfies these criteria. 

Once the read’s best matching location on the reference genome is decided, the read is used to support 

either the reference or alternate allele of SNPs inside the matching location. The information is stored in 

a pileup table. After processing all reads, the pileup table is then used to compute the most likely 

genotype for each SNP in the SNP list following the formulas in Shajii et al. (2016). Finally, we note that 
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our genotyping module is similar to Shajii et al. (2016) with the difference that LAVA does not use 

quality values and  only uses the first criterion for determining a mapping location for a read. 

4 Results 
We implemented VarGeno in a C++ package, building on the LAVA code base (Shajii et al. 2016) and 

code from Sun et al. (2017). VarGeno is freely available at: https://github.com/medvedevgroup/vargeno. 

VarGeno fixes the number of hash function in the Bloom filter to be one, to reduce the hashing time. All 

experiments were run on an Intel Xeon CPU with 512 GB of RAM using a single core (at 2.10 GHz). 

Default parameters were used for all tools, unless otherwise noted.  

4.1 Experimental setup 
Our first dataset is a set of NA12878 reads from Phase 1 of the 1000 Genome Project (1000 Genomes 

Project Consortium et al. 2012). The reads are 101nt long and the depth of coverage is around 6X. To 

further benchmark on higher coverage datasets, we used a set of NA12878 reads from Genome in a 

Bottle Consortium (GIAB) (Zook et al. 2014). The dataset contains reads with length 148, and we 

randomly selected three subsets of reads with depth of coverage around 15X, 25X and 51X, respectively.  

We use two different SNP lists. The dbSNP-list contains all common SNPs from dbSNP (11,129,706 SNPs; 

build 142). The affy-list contains 943,192 SNPs that are used by the Affymetrix SNP chip (McCarroll et al. 

2008). This is a smaller SNP list with few dense regions (32bp windows with more than one SNP) than 

the dbSNP-list, and easier to genotype. We used GRCh37/hg19 as the reference sequence. 

For validation, we used an up-to-date high-quality genotype annotation generated by GIAB (Zook et al. 

2014). The GIAB gold standard contains validated genotype information for NA12878, from 14 

sequencing datasets with five sequencing technologies, seven read mappers and three different variant 

callers. To measure accuracy, we use loci in the SNP list which are also genotyped in the GIAB gold 

standard (so called high confident regions). Genotypes not reported explicitly are considered as 

homozygous reference by default, for all genotyping methods.  

4.2 Comparison against alignment-based discovery pipelines 
We compared the performance of VarGeno against two alignment-based discovery pipelines on the 6X 

dataset and the dbSNP-list (Table 1). The first pipeline, denoted by BWA+mpileup, runs BWA-mem (Li 

and Durbin 2010), followed by samtools mpileup (Li et al. 2009), followed by ‘bcftools call –gf’ 

(Narasimhan et al. 2016). The second pipeline, denoted by BWA+GATK-HC ran BWA-mem, followed by 

the up-to-date best practice suggested by GATK (Depristo et al. 2011; McKenna et al. 2010).  

Category Algorithm Run time (mins) Memory usage (GB) Accuracy (%) 

Alignment-based BWA+mpileup 1,800 3.2 93.46 

BWA+GATK-HC 2,400 17.0 91.80 

Alignment-free LAVA 315 59.7 91.90 

VarGeno  29 60.9 93.45 

Table 1. Performance of VarGeno and LAVA compared to alignment-based approaches on the 6X dataset and the 

dbSNP list.   

Between the alignment-based pipelines, BWA+mpileup performs better than BWA+GATK HC in all 

aspects, which agrees with the previous reported observation (Shajii et al. 2016). VarGeno is more than 
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62 times faster with the same level of accuracy as BWA+mpileup, though with substantially more 

memory use. We explore a lower memory version of VarGeno in Section 4.5. 

4.3 Comparison against LAVA 
Next we compare VarGeno against LAVA using the 6X and higher coverage GIAB datasets on the dbSNP-

list (Tables 1 and 2). VarGeno is 7-13 times faster than LAVA on all benchmarked datasets. The memory 

usage of LAVA and VarGeno is dominated by the size of the indices and is 2% higher for VarGeno then 

LAVA (Table 1). 

Read Coverage Algorithm Run time (mins) Accuracy (%) 

 

15x 

LAVA  820 94.54 

VarGeno 66 96.80 

 

25x 

LAVA  1,392 94.69 

VarGeno 108 97.20 

 

51x 

LAVA  — 94.58 

VarGeno 196 97.34 

Table 2. Performance of VarGeno and LAVA on the dbSNP list, with different read depth of coverage. LAVA’s run-

time on 51X data is not shown since we could not maintain isolated server conditions long enough (~2 days) to 

generate an accurate benchmark. The memory usage of LAVA and VarGeno with higher coverage reads is the same 

as with the 6X reads in Table 1 and is not shown.  

VarGeno’s accuracy is 2-3 percentage points higher than LAVA’s, due to its use of quality values and 

modified mapping criteria (Tables 1 and 2). The genotyping accuracy of VarGeno and LAVA increases 

with coverage but starts to plateau after 15x.  

We also tested VarGeno using a different SNP list. Table 3 shows the results for the 6X dataset on the 

affy-list. The speed-up relative to LAVA is consistent with Tables 1 and 2. However, on this dataset we 

observe a slight decrease in accuracy with VarGeno’s default parameters. We believe this is due to the 

fact that affy-list contains less dense regions. However, we note that if VarGeno’s quality threshold 

parameter is set so that it explores the whole Hamming neighborhood, regardless of quality scores, then 

its accuracy matches LAVA while still being 46% faster (Table 3, third row). 

 Running time (mins) Memory usage (GB) Accuracy (%) 

LAVA 160 40.8 92.99 

VarGeno 25 43.8 92.50 

VarGeno (c=42) 87 43.8 93.07 

Table 3. Performance of the 6X dataset using the Affymetrix SNP list. The second row shows VarGeno run with the 

default value for the quality value cutoff (
 � 23). 

4.4 Achieving higher accuracy  
With sufficient coverage, VarGeno achieves >97% accuracy on the dbSNP-list (Table 2); however, in 

medical diagnostic applications an even higher accuracy may be desired. Since increasing the depth of 

coverage beyond 15x has only a minor effect (Table 2), we looked at alternate ways to improve accuracy. 

We observed that most of the errors occurred in dense regions. Because of linkage disequilibrium, SNPs 

are often used as markers for nearby variation. In such cases, the SNP list is unlikely to have many dense 

regions. To emulate this scenario, we scanned through the dbSNP-list and, for each 32nt genome 

window that has more than one SNP in it, filtered out all but the first SNP. This resulted in a list of 
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4,162,639 SNPs (37.4% of dbSNP-list, but more than four times the affy-list). VarGeno’s accuracy on this 

filtered SNP list is 1.4-1.7 percentage points higher than on the dbSNP-list, reaching 98.75% on the 51X 

dataset (Table 4).  

Read Coverage Accuracy (%) 

6x 95.03 

15x 98.28 

25x 98.63 

51x 98.75 

Table 4. Accuracy of VarGeno on the filtered dbSNP-list. 

4.5 Memory-lite version 
VarGeno uses around 60 GB of RAM for the dbSNP-list experiments and 44 GB for the affy-list, most of 

which is used to store the �-mer indices. To decrease memory usage, we use an idea from Shajii et al. 

(2016) to provide a memory-lite version called VarGeno Lite. Instead of including every �-mer from the 

reference genome in the reference index, we only include �-mers that are within one read length range 

of some SNP in the SNP list. Table 5 shows the results on the 6X dataset, compared with the memory-lite 

version of LAVA (Shajii et al. 2016). 

SNP list Algorithm Running time (mins) Memory usage (GB) Accuracy (%) 

dbSNP-list LAVA Lite 464 33.0 91.62 

VarGeno Lite 50 35.2 93.44 

affy-list LAVA Lite 210 15.2 92.96 

VarGeno Lite 20 15.5 92.49 

Table 5. Performance of memory-lite algorithms on the 6X dataset. 

The memory-lite version reduces memory by 44% for the dbSNP-list (Table 1) and by 64% for the affy-list 

(Table 5). For the affy-list, this means that the algorithm can almost be run on a commodity desktop 

computer with 16 GB RAM. Surprisingly, the accuracy is nearly identical, with differences less than 0.3 

percentage points compared to Tables 1 and 3. The running time change is not consistent with respect 

to the full memory versions, with an increase for the dbSNP-list (Table 1) and a decrease on the affy-list 

(Table 3). The relative speed advantage of VarGeno to LAVA remains roughly the same in their 

corresponding memory-lite versions. 

4.6 Effect of �-mer index optimizations 
VarGeno’s algorithm can be viewed as the base LAVA algorithm + use of Bloom filter + linear scanning + 

quality value cutoff + modified mapping criteria. In this section we investigate the contribution of the 

Bloom filter and linear scan optimizations in isolation, using the 6X dataset with the dbSNP-list. Table 6 

shows the result of applying only the Bloom-filter optimization to LAVA’s algorithm. It reduces the run 

time by 46%, at the expense of only a 2% increase in memory usage.  

 Running time (mins) Memory usage (GB) 

LAVA 315 59.7 

LAVA + Bloom filters (� � 8�) 171 60.9 

LAVA + Bloom filters (� � 16�) 170 62.1 

Table 6. The effect of using Bloom filters to accelerate genotyping. 
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We also measure the effect of varying the size of the Bloom filter (denoted by m). A larger size 

decreases the false positive rate and hence the number of unnecessary queries to the dictionaries; a 

smaller size decreases the memory usage. VarGeno’s default setting is , where  is the number 

of distinct values that are stored in a Bloom filter. This corresponds to a theoretical false positive rate of 

0.118 (Broder and Mitzenmacher 2004). We also tried , which corresponds to a theoretical 

false positive rate of 0.06. Our results indicate that there is not a significant change in running time or 

memory usage, relative to the totals (Table 6). 

We also measured the cache usage improvements by the Bloom filter optimization with the Linux 

profiler ‘perf.’ LAVA had  total cache misses, while there were only  (66%) cache 

misses after the Bloom filter optimization. This result is consistent with our hypothesis that using the 

Bloom filter reduces run time mainly by reducing the number of cache misses.  

Next, we measured the effects of the linear scan optimization. Adding only the linear scan optimization 

to LAVA resulted in an improvement of 38.5% to the run time. We also measure the running time as a 

function of different block size thresholds (Figure 2). Performance drastically improves as long as 

threshold is at least ten. The performance is not substantially impacted by further increasing the 

threshold, though it does slightly decline again when it the threshold is very large. 

 

Figure 2. Speed-up due to the linear scan optimization in isolation, as a function of the block size threshold ( . A 

block size threshold of zero is equivalent to what LAVA does. If threshold is infinity, a linear scan is applied to every

block. 

4.7 Effect of the quality value cutoff 
We studied the effect that the quality value cutoff optimization has on performance. Recall that 

VarGeno does not generate neighbors at positions with Phred quality score (Cock et al. 2009) more than 

some threshold c. Figure 3 shows how this parameter affects performance on the 6X dataset with the 

dbSNP-list. 

First, we observe a trade-off between running time and accuracy (Figure 3a). The highest accuracy is 

achieved at  (i.e. the highest quality score), which is equivalent to disabling the quality value 

cutoff and generating all Hamming neighbors. The fastest running time is achieved at , which is 

equivalent to not exploring any of the Hamming neighborhood. Second, we observe a trade-off between

recall and precision (Figure 3b, black curve), with  achieving the highest recall and  

achieving the highest precision. We note that in all cases, VarGeno is faster and more accurate than 

LAVA. By default, VarGeno uses  to achieve a balanced performance. 
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Figure 3: The performance of VarGeno on 6X reads set with the dbSNP-list, under different quality value cutoffs, 

which are Phred scores in the integer range of �0,42�. (a) The accuracy and running time at various cutoffs. (b) The 

receiver operating characteristic (ROC) curve over different subset of variants in dbSNP-list, with respect to quality 

value cutoffs. The green line (respectively, the yellow and blue line) represents the subset of variants in dbSNP-list 

with a homozygous reference (respectively, a homozygous alternate and a heterozygous) genotype in the GIAB 

gold standard. The black line represents all the variants together. Three representative quality value cutoffs are 

highlighted using a square (c=23), a circle (c=39) and a triangle (c=40) on each line. 

We further looked at the effect of the quality score separately for loci that are homozygous for the 

reference allele (according to the GIAB gold standard), heterozygous, or homozygous for the alternate 

allele (Figure 3b, green, blue, and yellow lines, respectively). Interestingly, the trade-off between recall 

and precision happens in the opposite direction for loci that are homozygous for the reference allele 

than it does for all other loci. In other words, using a higher quality value cutoff helps improve the recall 

of variants (i.e. loci with either an alternate allele present) but decreases the recall of non-variants (i.e. 

loci with only the reference allele). We observe this affect also when looking at the raw counts of 

correctly called loci (Table 7). 

Counts in GIAB gold standard Hom Ref: 7,463,731 Heter: 1,363,475 Hom Alt: 812,638 

 

Correct calls by VarGeno 

c = 0 7,312,827 1,018,751 702,699 

c = 23 - 6,768 + 5,337 + 2,890 

c = 42 - 55,300 + 54,565 + 30,742 

Table 7. Number of correctly reported genotypes by VarGeno based on the genotypes in GIAB gold standard. The 

first row shows the number of SNPs in dbSNP-list with homozygous reference, heterozygous, and homozygous 

alternate genotypes in GIAB gold standard. The next three rows show, for three representative quality value 

cutoffs, the number of correct calls for each subset of the SNP database. For c = 0, the absolute numbers of correct 

calls are presented. For c = 23 and 42, the relative changes compared to c = 0 are presented. 

5 Conclusions 
In this paper, we presented VarGeno, an alignment-free SNP genotyping method. We demonstrated that 

it is more accurate and 7-13 times faster than LAVA, the state-of-the-art alignment-free method. We 

also compared VarGeno to alignment-based discovery approaches, and, on genotyping, it performs 62 

times faster with the same accuracy. VarGeno’s performance advantages are consistent for different 

SNP lists, such as all the common SNPs in dbSNP (~11 million SNPs) or the SNPs used in an Affymetrix 

SNP chip (~1 million SNPs). We also demonstrate that even higher accuracy (98.75%) can be achieved by 

filtering out SNPs from the SNP list that are less than 32nt away from each other.  
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VarGeno is a streaming algorithm: it can process reads on-the-fly as they come off a sequencer. This is 

especially useful for variant genotyping scenarios where time is crucial, such as in clinical applications. 

For instance, in our experiment, VarGeno can genotype 11 million known SNPs from 25x human whole 

genome sequencing data within 1.8 hours, with accuracy 97.2%. VarGeno can be applied more widely to 

portable medical devices, if either the genotyping is chromosome specific, or the memory usage can be 

further reduced for whole genome sequencing data. One possible way to achieve this, at the cost of 

running time, is to process the reference in separate chunks. Techniques to further reduce memory 

usage are a future research direction. 
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