
 1

Toward fast and accurate SNP genotyping from
whole genome sequencing data for bedside

diagnostics

Chen Sun
1,†

 and Paul Medvedev
1,2,3

1 Department of Computer Science and Engineering, The Pennsylvania State University, USA

2 Department of Biochemistry and Molecular Biology, The Pennsylvania State University, USA

3 Center for Computational Biology and Bioinformatics, Genome Sciences Institute of the Huck, The

Pennsylvania State University, USA

†
to whom correspondence should be addressed: chensun@cse.psu.edu

Abstract
Motivation: Genotyping a set of variants from a database is an important step for identifying known

genetic traits and disease related variants within an individual. The growing size of variant databases as

well as the high depth of sequencing data pose an efficiency challenge. In clinical applications, where

time is crucial, alignment-based methods are often not fast enough. To fill the gap, Shajii et al. (2016)

propose LAVA, an alignment-free genotyping method which is able to more quickly genotype SNPs;

however, there remains large room for improvements in running time and accuracy.

Results: We present the VarGeno method for SNP genotyping from Illumina whole genome sequencing

data. VarGeno builds upon LAVA by improving the speed of k-mer querying as well as the accuracy of

the genotyping strategy. We evaluate VarGeno on several read datasets using different genotyping SNP

lists. VarGeno performs 7-13 times faster than LAVA with similar memory usage, while improving

accuracy.

Availability: VarGeno is freely available at: https://github.com/medvedevgroup/vargeno.

1 Introduction
Given a set of target genetic variants, the problem of variant genotyping is to report which variants an

individual possesses (Luikart et al. 2003; Shajii et al. 2016; Syvänen 2005). Single nucleotide

polymorphism (SNP) genotyping has been widely used in human disease-related research such as

genome wide association studies (Hirschhorn and Daly 2005). The approaches to SNP genotyping can be

roughly divided into three categories: microarray methods, sequencing alignment-based methods, and

alignment-free methods.

The first approach uses SNP arrays (Pastinen et al. 2000). SNP arrays are based on the hybridization of

fragmented, single-stranded, target DNA, labelled with fluorescent dyes, to arrays containing

immobilized allele-specific oligonucleotide probes (LaFramboise 2009). SNP arrays are fast and

inexpensive; however, they can only hold a limited number of probes: the state-of-the-art Affymetrix

genome-wide SNP array 6.0 has only 906,000 SNP probes, compared with 31,565,214 known common

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 6, 2018. ; https://doi.org/10.1101/239871doi: bioRxiv preprint

https://doi.org/10.1101/239871
http://creativecommons.org/licenses/by-nc-nd/4.0/

 2

SNPs in dbSNP (build 150). They also are more narrowly applicable than sequencing when additional

analyses are desired.

The second approach is based on high-throughput whole genome sequencing and read alignment. In a

standard pipeline using this method, sequencing reads are first aligned to the reference genome. The

alignment results are then used as input for genotyping tools such as SAMtools mpileup (Li et al. 2009),

or Freebayes (Garrison and Marth 2012), or GATK HaplotypeCaller (Depristo et al. 2011; McKenna et al.

2010). The limitation of this direction is that it requires a lot of time in alignment. This limitation

becomes especially crucial in clinical applications, where bedside genotyping of disease-related SNPs

may become common in the future.

The third approach is based on high-throughput whole genome sequencing followed by an alignment-

free sequence comparison (Vinga and Almeida 2003). Alignment-free methods save compute time and

memory by avoiding the cost of full-scale alignment. Recent alignment-free ideas that have made

significant application improvements include pseudo-alignment (Bray et al. 2016), lightweight alignment

(Patro et al. 2017), and quasi-mapping (Srivastava et al. 2016). Simultaneously, an alignment-free

approach has been applied to SNP genotyping by Shajii et al. (2016). They introduce a SNP genotyping

tool named LAVA, which builds an index from known SNPs (e.g. dbSNP) and then uses approximate k-

mer matching to genotype the donor from sequencing data. LAVA is reported to perform 4-7 times

faster than a standard alignment-based genotyping pipeline, while achieving comparable accuracy.

In this paper, we present a data structure for indexing and querying k-mers that is designed for variant

genotyping. Our data structure builds on the core data structure of Shajii et al. (2016) but makes use of a

Bloom filter and a linear scanning approach. A Bloom filter is a space efficient data structure for

improving scalability (Bloom 1970; Broder and Mitzenmacher 2004) that has been widely used in the

context of indexing, compressing and searching whole genome datasets (Rozov, Shamir, and Halperin

2014) and large sequence databases (Solomon and Kingsford 2016, 2017; Sun et al. 2017). Furthermore,

we incorporate our data structure into a genotyping framework similar to LAVA, but using quality values

and a modified mapping criteria to improve speed and accuracy. Finally, we evaluate our approach on

several datasets, compare to existing tools, and evaluate the role of our parameters.

2 Definitions
A �-mer is a sting of length � over the four letters DNA alphabet. A �-mer can be naturally encoded in

2� bits. Given a parameter �, we can divide the bits into the upper � bits and the lower 2� � � bits. The

Hamming neighborhood of distance 1 for a �-mer K, denoted by N�K�, is the set of all �-mers with a

Hamming distance at most 1 to K. We refer to N�K� as the neighborhood of K, for short. Notice that

K
 N�K� and |N�K�| � 3� � 1. N�K� can be partitioned into three subsets: 1) the original �-mer K, 2)

the upper neighborhood of K, which is the set of �-mers whose encoding differs with K in the upper �

bits, and 3) the lower neighborhood of K, which is the set of �-mers whose encoding differs with K in the

lower 2� � � bits.

A Bloom filter for representing a set � of � elements is a bitvector of size � and � independent hash

functions ��, ��, … , ��. Each hash function maps an element to a random integer uniformly between 0

and � � 1. The bitvector is initialized to an array of zeros. For each element �
 �, the bits ����� of the

bitvector are set to 1 for 1 � � � �. To check if an item � is in �, we check whether all ����� are set to 1.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 6, 2018. ; https://doi.org/10.1101/239871doi: bioRxiv preprint

https://doi.org/10.1101/239871
http://creativecommons.org/licenses/by-nc-nd/4.0/

 3

If not, then � is not a member of �. Otherwise, � is a member of � with a small false positive rate

(Broder and Mitzenmacher 2004).

3 Methods
Our method uses the same framework as Shajii et al. (2016) and consists of two main ingredients. The

first is a data structure to solve the following problem. We are given a set of �-mers �, with satellite

data associated with every �-mer. Then, given a �-mer �, return all the satellite data associated with all

the �-mers ���� that are in �. The motivation behind the data structure is that the set � contains �-

mers based on the reference genome, and the query takes a �-mer � from a donor genome and checks

where it matches in the reference. The neighborhood of � is used to allow for up to one sequencing

error. The second ingredient is a genotyping module that uses the above data structure to call

genotypes in a donor. In this section, we describe our data structure (Section 3.1 and 3.2) and

genotyping module (Section 3.3).

3.1 Indexing data structure description
We choose the value � � 32 so that the probability of more than one erroneous nucleotide is low and

so that a �-mer can be conveniently encoded using a 64-bit integer (Shajii et al. 2016). We also use a

parameter � to divide an encoded �-mer into upper � bits and lower 2� � � bits. In our application, we

will use �
 �24, 32�.

Index construction: We construct a dictionary from the set �. is an array of <encoded �-mer,

satellite-data-pointer> tuples, sorted in increasing order of encoded �-mers. We also construct a

secondary indexing hash table ! which maps an �-bit unsigned integer " to the first location in at

which there is an encoded �-mer whose upper bits are ". Finally, we build a Bloom filter # where each

element is the lower 2� � � bits of a �-mer in �.

Query algorithm: To query a given �-mer � and its neighborhood ����, we proceed in two steps

(illustrated in Figure 1). In the first step, we perform an upper neighborhood query, which searches for

all the �-mers that are in the upper neighborhood of �. We first check if the lower 2� � � bits of �

exist in #. If no, then we abandon the upper neighborhood search. If yes, then for every �-mer �$ in the

upper-neighborhood, we query ! to find the start and end of the block in with the same upper bits as

�$. We then do a binary search through this block to find an entry that matches �$, if it exists. Note that

because # contains false positives, there may be no match in .

In the second step, we perform a lower neighborhood query, which searches for all the �-mers that are

in the lower neighborhood of �. First, we query ! to find the start and end indices of the block in with

the same upper � bits as �. Then, if the size of the block is larger than a size threshold (given as a

parameter % to the algorithm), for every k-mer in ����, we do a binary search to find if it exists in this

block. If the size of the block is smaller than %, we instead do a linear scan of the block and, for every

element, compute its Hamming distance to �. A hit is reported if the distance is at most 1. The

Hamming distance computation is done using a fast bitwise routine which also identifies where the

differing position is (see Supplementary Information).

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 6, 2018. ; https://doi.org/10.1101/239871doi: bioRxiv preprint

https://doi.org/10.1101/239871
http://creativecommons.org/licenses/by-nc-nd/4.0/

 4

Figure 1. VarGeno’s query algorithm. The encoded �-mer � can be divided into the upper � bits and the lower

2� � � bits, represented as � and �. VarGeno starts by checking if � exists in Bloom filter �, and if yes, performing

the upper neighborhood query as follows. It first looks up the upper bits of each �-mer in the upper neighborhood

of � (represented as �) in index
. This locates the search block in dictionary � for all �-mers whose upper bits are

�	. Next, VarGeno performs the lower neighborhood query by first looking up � in
. This locates the block in � of

k-mers whose upper bits are �. In this figure, we will assume that the block is larger than the threshold. VarGeno

than scans the block and for each element �ℓ	 checks its Hamming distance to �ℓ.

3.2 Indexing data structure performance
Our data structure is based on the data structure of Shajii et al. (2016) with two key differences: the use

of the Bloom filter in the upper neighborhood query and the use of a linear scan in the lower

neighborhood query. The improvements of our data structure are heuristic in nature and hence a formal

analysis did not yield any insights. Here, we argue why these heuristics can improve running time.

For the upper neighborhood query, each �-mer in the upper neighborhood of � will have different

upper bits and hence will require a separate access to ! and one random access to . The random access

to will likely result in a cache miss for every �-mer in the upper neighborhood. By using the Bloom

filter #, we make sure to pay this cost only for �-mers that are likely to result in hits.

For the lower neighborhood query, using a linear scan when the block size % is small can have a

significant improvement on performance. In the worst case, binary search requires 16 ' 3 � 1 searches

of (�log %� time each, i.e. 49 ' (�log %� comparisons. A linear scan, on the other hand, requires only %

calls to the highly optimized Hamming distance routine. In the Results, we investigate which block size

threshold yields improved performance.

While binary search is asymptotically faster, its overhead relative to a linear scan makes it slower when

the size of the block being searched is small. We found that using % � 25 works well in practice.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 6, 2018. ; https://doi.org/10.1101/239871doi: bioRxiv preprint

https://doi.org/10.1101/239871
http://creativecommons.org/licenses/by-nc-nd/4.0/

 5

The following Observation and analysis shows that the number of blocks larger than % is small.

Observation 1. Let � be the number of distinct �-mers stored in the dictionary and let . be the

number of blocks in . Under the assumption that the encoded �-mers are independent from each

other, the size of a block in is at least % with probability of at most
�

��
.

Proof. Let �� be the size of block � in . Under the independence assumption, �� follows a Binomial

distribution with � trials and success probability of
�

�
. The expected size of block � is therefore

E���� �
�

�
. Applying Markov’s inequality (Buot 2006), the probability that �� is at least % is P��� ≥ t� �

�	
��

�
�

�

��
 .

 2

The assumption that encoded �-mers are independent from each other is not true in our application

since many of the k-mers overlap. However, we argue that block locations of two encoded k-mers are

much less dependent. Even for overlapping �-mers, a one nucleotide difference in the higher-order bits

will significantly change the encoded k-mer value and, hence, the block location.

For the human genome, the number of �-mers � is about 3 billion and . is about 2��. The probability

that a block is larger than % � 25 (VarGeno’s default threshold) is less than 0.028. Thus, the Observation

estimates that we resort to the binary search method for less than 3% of the blocks.

3.3 Genotyping module
We now describe how our genotyping module works and integrates the indexing data structure.

In VarGeno, one index is constructed for all the �-mers in the reference genome (using � � 32). Another

index is constructed with �-mers from positions that overlap some SNP from the population SNP

database (called the SNP list), with the reference allele replaced by alternate allele (using � � 24). Then,

given reads from a donor genome, VarGeno splits each read into non-overlapping k-mers and queries

the two indices with them (reverse complements are handled in the implementation but, for the sake of

brevity, are not accounted for in our description). However, VarGeno does not explore the whole

Hamming neighborhood: if the quality score for a certain position within the query �-mer is higher than

a threshold, then the neighborhood �-mers which differ at this position are skipped and not looked up

in the dictionaries. The intuition behind this is that a sequencing error in a position with a high quality

score is unlikely.

After querying the �-mers from a read, VarGeno determines a single mapping location for the read. A

read is considered mapped to a reference genome location if 1) that location has the most hits from the

queries, 2) at least two of the hitting �-mers originate from different positions in the read, and 3) at

least one � -mer should be non-modified (i.e. present in the read without a substitution). A read is

discarded if more than one location satisfies these criteria.

Once the read’s best matching location on the reference genome is decided, the read is used to support

either the reference or alternate allele of SNPs inside the matching location. The information is stored in

a pileup table. After processing all reads, the pileup table is then used to compute the most likely

genotype for each SNP in the SNP list following the formulas in Shajii et al. (2016). Finally, we note that

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 6, 2018. ; https://doi.org/10.1101/239871doi: bioRxiv preprint

https://doi.org/10.1101/239871
http://creativecommons.org/licenses/by-nc-nd/4.0/

 6

our genotyping module is similar to Shajii et al. (2016) with the difference that LAVA does not use

quality values and only uses the first criterion for determining a mapping location for a read.

4 Results
We implemented VarGeno in a C++ package, building on the LAVA code base (Shajii et al. 2016) and

code from Sun et al. (2017). VarGeno is freely available at: https://github.com/medvedevgroup/vargeno.

VarGeno fixes the number of hash function in the Bloom filter to be one, to reduce the hashing time. All

experiments were run on an Intel Xeon CPU with 512 GB of RAM using a single core (at 2.10 GHz).

Default parameters were used for all tools, unless otherwise noted.

4.1 Experimental setup
Our first dataset is a set of NA12878 reads from Phase 1 of the 1000 Genome Project (1000 Genomes

Project Consortium et al. 2012). The reads are 101nt long and the depth of coverage is around 6X. To

further benchmark on higher coverage datasets, we used a set of NA12878 reads from Genome in a

Bottle Consortium (GIAB) (Zook et al. 2014). The dataset contains reads with length 148, and we

randomly selected three subsets of reads with depth of coverage around 15X, 25X and 51X, respectively.

We use two different SNP lists. The dbSNP-list contains all common SNPs from dbSNP (11,129,706 SNPs;

build 142). The affy-list contains 943,192 SNPs that are used by the Affymetrix SNP chip (McCarroll et al.

2008). This is a smaller SNP list with few dense regions (32bp windows with more than one SNP) than

the dbSNP-list, and easier to genotype. We used GRCh37/hg19 as the reference sequence.

For validation, we used an up-to-date high-quality genotype annotation generated by GIAB (Zook et al.

2014). The GIAB gold standard contains validated genotype information for NA12878, from 14

sequencing datasets with five sequencing technologies, seven read mappers and three different variant

callers. To measure accuracy, we use loci in the SNP list which are also genotyped in the GIAB gold

standard (so called high confident regions). Genotypes not reported explicitly are considered as

homozygous reference by default, for all genotyping methods.

4.2 Comparison against alignment-based discovery pipelines
We compared the performance of VarGeno against two alignment-based discovery pipelines on the 6X

dataset and the dbSNP-list (Table 1). The first pipeline, denoted by BWA+mpileup, runs BWA-mem (Li

and Durbin 2010), followed by samtools mpileup (Li et al. 2009), followed by ‘bcftools call –gf’

(Narasimhan et al. 2016). The second pipeline, denoted by BWA+GATK-HC ran BWA-mem, followed by

the up-to-date best practice suggested by GATK (Depristo et al. 2011; McKenna et al. 2010).

Category Algorithm Run time (mins) Memory usage (GB) Accuracy (%)

Alignment-based BWA+mpileup 1,800 3.2 93.46

BWA+GATK-HC 2,400 17.0 91.80

Alignment-free LAVA 315 59.7 91.90

VarGeno 29 60.9 93.45

Table 1. Performance of VarGeno and LAVA compared to alignment-based approaches on the 6X dataset and the

dbSNP list.

Between the alignment-based pipelines, BWA+mpileup performs better than BWA+GATK HC in all

aspects, which agrees with the previous reported observation (Shajii et al. 2016). VarGeno is more than

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 6, 2018. ; https://doi.org/10.1101/239871doi: bioRxiv preprint

https://doi.org/10.1101/239871
http://creativecommons.org/licenses/by-nc-nd/4.0/

 7

62 times faster with the same level of accuracy as BWA+mpileup, though with substantially more

memory use. We explore a lower memory version of VarGeno in Section 4.5.

4.3 Comparison against LAVA
Next we compare VarGeno against LAVA using the 6X and higher coverage GIAB datasets on the dbSNP-

list (Tables 1 and 2). VarGeno is 7-13 times faster than LAVA on all benchmarked datasets. The memory

usage of LAVA and VarGeno is dominated by the size of the indices and is 2% higher for VarGeno then

LAVA (Table 1).

Read Coverage Algorithm Run time (mins) Accuracy (%)

15x

LAVA 820 94.54

VarGeno 66 96.80

25x

LAVA 1,392 94.69

VarGeno 108 97.20

51x

LAVA — 94.58

VarGeno 196 97.34

Table 2. Performance of VarGeno and LAVA on the dbSNP list, with different read depth of coverage. LAVA’s run-

time on 51X data is not shown since we could not maintain isolated server conditions long enough (~2 days) to

generate an accurate benchmark. The memory usage of LAVA and VarGeno with higher coverage reads is the same

as with the 6X reads in Table 1 and is not shown.

VarGeno’s accuracy is 2-3 percentage points higher than LAVA’s, due to its use of quality values and

modified mapping criteria (Tables 1 and 2). The genotyping accuracy of VarGeno and LAVA increases

with coverage but starts to plateau after 15x.

We also tested VarGeno using a different SNP list. Table 3 shows the results for the 6X dataset on the

affy-list. The speed-up relative to LAVA is consistent with Tables 1 and 2. However, on this dataset we

observe a slight decrease in accuracy with VarGeno’s default parameters. We believe this is due to the

fact that affy-list contains less dense regions. However, we note that if VarGeno’s quality threshold

parameter is set so that it explores the whole Hamming neighborhood, regardless of quality scores, then

its accuracy matches LAVA while still being 46% faster (Table 3, third row).

 Running time (mins) Memory usage (GB) Accuracy (%)

LAVA 160 40.8 92.99

VarGeno 25 43.8 92.50

VarGeno (c=42) 87 43.8 93.07

Table 3. Performance of the 6X dataset using the Affymetrix SNP list. The second row shows VarGeno run with the

default value for the quality value cutoff (
 � 23).

4.4 Achieving higher accuracy
With sufficient coverage, VarGeno achieves >97% accuracy on the dbSNP-list (Table 2); however, in

medical diagnostic applications an even higher accuracy may be desired. Since increasing the depth of

coverage beyond 15x has only a minor effect (Table 2), we looked at alternate ways to improve accuracy.

We observed that most of the errors occurred in dense regions. Because of linkage disequilibrium, SNPs

are often used as markers for nearby variation. In such cases, the SNP list is unlikely to have many dense

regions. To emulate this scenario, we scanned through the dbSNP-list and, for each 32nt genome

window that has more than one SNP in it, filtered out all but the first SNP. This resulted in a list of

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 6, 2018. ; https://doi.org/10.1101/239871doi: bioRxiv preprint

https://doi.org/10.1101/239871
http://creativecommons.org/licenses/by-nc-nd/4.0/

 8

4,162,639 SNPs (37.4% of dbSNP-list, but more than four times the affy-list). VarGeno’s accuracy on this

filtered SNP list is 1.4-1.7 percentage points higher than on the dbSNP-list, reaching 98.75% on the 51X

dataset (Table 4).

Read Coverage Accuracy (%)

6x 95.03

15x 98.28

25x 98.63

51x 98.75

Table 4. Accuracy of VarGeno on the filtered dbSNP-list.

4.5 Memory-lite version
VarGeno uses around 60 GB of RAM for the dbSNP-list experiments and 44 GB for the affy-list, most of

which is used to store the �-mer indices. To decrease memory usage, we use an idea from Shajii et al.

(2016) to provide a memory-lite version called VarGeno Lite. Instead of including every �-mer from the

reference genome in the reference index, we only include �-mers that are within one read length range

of some SNP in the SNP list. Table 5 shows the results on the 6X dataset, compared with the memory-lite

version of LAVA (Shajii et al. 2016).

SNP list Algorithm Running time (mins) Memory usage (GB) Accuracy (%)

dbSNP-list LAVA Lite 464 33.0 91.62

VarGeno Lite 50 35.2 93.44

affy-list LAVA Lite 210 15.2 92.96

VarGeno Lite 20 15.5 92.49

Table 5. Performance of memory-lite algorithms on the 6X dataset.

The memory-lite version reduces memory by 44% for the dbSNP-list (Table 1) and by 64% for the affy-list

(Table 5). For the affy-list, this means that the algorithm can almost be run on a commodity desktop

computer with 16 GB RAM. Surprisingly, the accuracy is nearly identical, with differences less than 0.3

percentage points compared to Tables 1 and 3. The running time change is not consistent with respect

to the full memory versions, with an increase for the dbSNP-list (Table 1) and a decrease on the affy-list

(Table 3). The relative speed advantage of VarGeno to LAVA remains roughly the same in their

corresponding memory-lite versions.

4.6 Effect of �-mer index optimizations
VarGeno’s algorithm can be viewed as the base LAVA algorithm + use of Bloom filter + linear scanning +

quality value cutoff + modified mapping criteria. In this section we investigate the contribution of the

Bloom filter and linear scan optimizations in isolation, using the 6X dataset with the dbSNP-list. Table 6

shows the result of applying only the Bloom-filter optimization to LAVA’s algorithm. It reduces the run

time by 46%, at the expense of only a 2% increase in memory usage.

 Running time (mins) Memory usage (GB)

LAVA 315 59.7

LAVA + Bloom filters (� � 8�) 171 60.9

LAVA + Bloom filters (� � 16�) 170 62.1

Table 6. The effect of using Bloom filters to accelerate genotyping.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 6, 2018. ; https://doi.org/10.1101/239871doi: bioRxiv preprint

https://doi.org/10.1101/239871
http://creativecommons.org/licenses/by-nc-nd/4.0/

 9

We also measure the effect of varying the size of the Bloom filter (denoted by m). A larger size

decreases the false positive rate and hence the number of unnecessary queries to the dictionaries; a

smaller size decreases the memory usage. VarGeno’s default setting is , where is the number

of distinct values that are stored in a Bloom filter. This corresponds to a theoretical false positive rate of

0.118 (Broder and Mitzenmacher 2004). We also tried , which corresponds to a theoretical

false positive rate of 0.06. Our results indicate that there is not a significant change in running time or

memory usage, relative to the totals (Table 6).

We also measured the cache usage improvements by the Bloom filter optimization with the Linux

profiler ‘perf.’ LAVA had total cache misses, while there were only (66%) cache

misses after the Bloom filter optimization. This result is consistent with our hypothesis that using the

Bloom filter reduces run time mainly by reducing the number of cache misses.

Next, we measured the effects of the linear scan optimization. Adding only the linear scan optimization

to LAVA resulted in an improvement of 38.5% to the run time. We also measure the running time as a

function of different block size thresholds (Figure 2). Performance drastically improves as long as

threshold is at least ten. The performance is not substantially impacted by further increasing the

threshold, though it does slightly decline again when it the threshold is very large.

Figure 2. Speed-up due to the linear scan optimization in isolation, as a function of the block size threshold (. A

block size threshold of zero is equivalent to what LAVA does. If threshold is infinity, a linear scan is applied to every

block.

4.7 Effect of the quality value cutoff
We studied the effect that the quality value cutoff optimization has on performance. Recall that

VarGeno does not generate neighbors at positions with Phred quality score (Cock et al. 2009) more than

some threshold c. Figure 3 shows how this parameter affects performance on the 6X dataset with the

dbSNP-list.

First, we observe a trade-off between running time and accuracy (Figure 3a). The highest accuracy is

achieved at (i.e. the highest quality score), which is equivalent to disabling the quality value

cutoff and generating all Hamming neighbors. The fastest running time is achieved at , which is

equivalent to not exploring any of the Hamming neighborhood. Second, we observe a trade-off between

recall and precision (Figure 3b, black curve), with achieving the highest recall and

achieving the highest precision. We note that in all cases, VarGeno is faster and more accurate than

LAVA. By default, VarGeno uses to achieve a balanced performance.

9

y

n

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 6, 2018. ; https://doi.org/10.1101/239871doi: bioRxiv preprint

https://doi.org/10.1101/239871
http://creativecommons.org/licenses/by-nc-nd/4.0/

 10

Figure 3: The performance of VarGeno on 6X reads set with the dbSNP-list, under different quality value cutoffs,

which are Phred scores in the integer range of �0,42�. (a) The accuracy and running time at various cutoffs. (b) The

receiver operating characteristic (ROC) curve over different subset of variants in dbSNP-list, with respect to quality

value cutoffs. The green line (respectively, the yellow and blue line) represents the subset of variants in dbSNP-list

with a homozygous reference (respectively, a homozygous alternate and a heterozygous) genotype in the GIAB

gold standard. The black line represents all the variants together. Three representative quality value cutoffs are

highlighted using a square (c=23), a circle (c=39) and a triangle (c=40) on each line.

We further looked at the effect of the quality score separately for loci that are homozygous for the

reference allele (according to the GIAB gold standard), heterozygous, or homozygous for the alternate

allele (Figure 3b, green, blue, and yellow lines, respectively). Interestingly, the trade-off between recall

and precision happens in the opposite direction for loci that are homozygous for the reference allele

than it does for all other loci. In other words, using a higher quality value cutoff helps improve the recall

of variants (i.e. loci with either an alternate allele present) but decreases the recall of non-variants (i.e.

loci with only the reference allele). We observe this affect also when looking at the raw counts of

correctly called loci (Table 7).

Counts in GIAB gold standard Hom Ref: 7,463,731 Heter: 1,363,475 Hom Alt: 812,638

Correct calls by VarGeno

c = 0 7,312,827 1,018,751 702,699

c = 23 - 6,768 + 5,337 + 2,890

c = 42 - 55,300 + 54,565 + 30,742

Table 7. Number of correctly reported genotypes by VarGeno based on the genotypes in GIAB gold standard. The

first row shows the number of SNPs in dbSNP-list with homozygous reference, heterozygous, and homozygous

alternate genotypes in GIAB gold standard. The next three rows show, for three representative quality value

cutoffs, the number of correct calls for each subset of the SNP database. For c = 0, the absolute numbers of correct

calls are presented. For c = 23 and 42, the relative changes compared to c = 0 are presented.

5 Conclusions
In this paper, we presented VarGeno, an alignment-free SNP genotyping method. We demonstrated that

it is more accurate and 7-13 times faster than LAVA, the state-of-the-art alignment-free method. We

also compared VarGeno to alignment-based discovery approaches, and, on genotyping, it performs 62

times faster with the same accuracy. VarGeno’s performance advantages are consistent for different

SNP lists, such as all the common SNPs in dbSNP (~11 million SNPs) or the SNPs used in an Affymetrix

SNP chip (~1 million SNPs). We also demonstrate that even higher accuracy (98.75%) can be achieved by

filtering out SNPs from the SNP list that are less than 32nt away from each other.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 6, 2018. ; https://doi.org/10.1101/239871doi: bioRxiv preprint

https://doi.org/10.1101/239871
http://creativecommons.org/licenses/by-nc-nd/4.0/

 11

VarGeno is a streaming algorithm: it can process reads on-the-fly as they come off a sequencer. This is

especially useful for variant genotyping scenarios where time is crucial, such as in clinical applications.

For instance, in our experiment, VarGeno can genotype 11 million known SNPs from 25x human whole

genome sequencing data within 1.8 hours, with accuracy 97.2%. VarGeno can be applied more widely to

portable medical devices, if either the genotyping is chromosome specific, or the memory usage can be

further reduced for whole genome sequencing data. One possible way to achieve this, at the cost of

running time, is to process the reference in separate chunks. Techniques to further reduce memory

usage are a future research direction.

Acknowledgements
This work has been supported in part by NSF awards DBI-1356529, CCF1439057, IIS-1453527 to PM. We

would like to thank the anonymous reviewers for their suggestions that led to improving the manuscript.

Conflict of Interest: none declared.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 6, 2018. ; https://doi.org/10.1101/239871doi: bioRxiv preprint

https://doi.org/10.1101/239871
http://creativecommons.org/licenses/by-nc-nd/4.0/

 12

References
1000 Genomes Project Consortium, The 1000 Genomes Project et al. 2012. “An Integrated Map of

Genetic Variation from 1,092 Human Genomes.” Nature 491(7422):56–65.

Bloom, Burton H. 1970. “Space/Time Trade-Offs in Hash Coding with Allowable Errors.” Communications

of the ACM 13(7):422–26.

Bray, Nicolas L., Harold Pimentel, Páll Melsted, and Lior Pachter. 2016. “Near-Optimal Probabilistic RNA-

Seq Quantification.” Nature Biotechnology 34(5):525–27.

Broder, Andrei and Michael Mitzenmacher. 2004. “Network Applications of Bloom Filters: A Survey.”

Internet Mathematics 1(4):485–509.

Buot, Max. 2006. Probability and Computing: Randomized Algorithms and Probabilistic Analysis.

Cock, Peter J. A., Christopher J. Fields, Naohisa Goto, Michael L. Heuer, and Peter M. Rice. 2009. “The

Sanger FASTQ File Format for Sequences with Quality Scores, and the Solexa/Illumina FASTQ

Variants.” Nucleic Acids Research 38(6):1767–71.

Depristo, Mark A. et al. 2011. “A Framework for Variation Discovery and Genotyping Using Next-

Generation DNA Sequencing Data.” Nature Genetics 43(5):491–501.

Garrison, Erik and Gabor Marth. 2012. “Haplotype-Based Variant Detection from Short-Read

Sequencing.” ArXiv Preprint ArXiv:1207.3907.

Hirschhorn, Joel N. and Mark J. Daly. 2005. “Genome-Wide Association Studies for Common Diseases

and Complex Traits.” Nature Reviews Genetics 6(2):95–108.

LaFramboise, Thomas. 2009. “Single Nucleotide Polymorphism Arrays: A Decade of Biological,

Computational and Technological Advances.” Nucleic Acids Research 37(13):4181–93.

Li, Heng et al. 2009. “The Sequence Alignment/Map Format and SAMtools.” Bioinformatics 25(16):2078–

79.

Li, Heng and Richard Durbin. 2010. “Fast and Accurate Long-Read Alignment with Burrows-Wheeler

Transform.” Bioinformatics 26(5):589–95.

Luikart, Gordon, Phillip R. England, David Tallmon, Steve Jordan, and Pierre Taberlet. 2003. “The Power

and Promise of Population Genomics: From Genotyping to Genome Typing.” Nature Reviews

Genetics 4(12):981–94.

McCarroll, Steven A. et al. 2008. “Integrated Detection and Population-Genetic Analysis of SNPs and

Copy Number Variation.” Nature Genetics 40(10):1166–74.

McKenna, Aaron et al. 2010. “The Genome Analysis Toolkit: A MapReduce Framework for Analyzing

next-Generation DNA Sequencing Data.” Genome Research 20(9):1297–1303.

Narasimhan, Vagheesh et al. 2016. “BCFtools/RoH: A Hidden Markov Model Approach for Detecting

Autozygosity from next-Generation Sequencing Data.” Bioinformatics 32(11):1749–51.

Pastinen, Tomi et al. 2000. “A System for Specific, High-Throughput Genotyping by Allele-Specific Primer

Extension on Microarrays.” Genome Research 10(7):1031–42.

Patro, Rob, Geet Duggal, Michael I. Love, Rafael A. Irizarry, and Carl Kingsford. 2017. “Salmon Provides

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 6, 2018. ; https://doi.org/10.1101/239871doi: bioRxiv preprint

https://doi.org/10.1101/239871
http://creativecommons.org/licenses/by-nc-nd/4.0/

 13

Fast and Bias-Aware Quantification of Transcript Expression.” Nature Methods.

Rozov, Roye, Ron Shamir, and Eran Halperin. 2014. “Fast Lossless Compression via Cascading Bloom

Filters.” BMC Bioinformatics 15.

Shajii, Ariya, Deniz Yorukoglu, Yun William Yu, and Bonnie Berger. 2016. “Fast Genotyping of Known

SNPs through Approximate K-Mer Matching.” Bioinformatics 32(17):i538--i544.

Solomon, Brad and Carl Kingsford. 2016. “Fast Search of Thousands of Short-Read Sequencing

Experiments.” Nature Biotechnology 34(3):300–302.

Solomon, Brad and Carl Kingsford. 2017. “Improved Search of Large Transcriptomic Sequencing

Databases Using Split Sequence Bloom Trees.” Pp. 257–71 in Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol.

10229 LNCS.

Srivastava, Avi, Hirak Sarkar, Nitish Gupta, and Rob Patro. 2016. “RapMap: A Rapid, Sensitive and

Accurate Tool for Mapping RNA-Seq Reads to Transcriptomes.” Bioinformatics 32(12):i192–200.

Sun, Chen, Robert S. Harris, Rayan Chikhi, and Paul Medvedev. 2017. “Allsome Sequence Bloom Trees.”

Pp. 272–86 in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), vol. 10229 LNCS.

Syvänen, Ann-Christine. 2005. “Toward Genome-Wide SNP Genotyping.” Nature Genetics 37:S5--S10.

Vinga, Susana and Jonas Almeida. 2003. “Alignment-Free Sequence Comparison-a Review.”

Bioinformatics (Oxford, England) 19(4):513–23.

Zook, Justin M. et al. 2014. “Integrating Human Sequence Data Sets Provides a Resource of Benchmark

SNP and Indel Genotype Calls.” Nature Biotechnology 32(3):246–51.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 6, 2018. ; https://doi.org/10.1101/239871doi: bioRxiv preprint

https://doi.org/10.1101/239871
http://creativecommons.org/licenses/by-nc-nd/4.0/

